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Pairings

e:G1><G2—>GT

v

Gi1 and G; are groups (of points on an elliptic curve),
Gt is a (multiplicative) group (of finite field elements),

v

v

all groups have prime order r,

v

e is bilinear, non-degenerate, efficiently computable



Pairing groups

e:G1><G2—>G7-

v

G = E(Fp)lr], Ga € E(F,)lr],

E/Fp: elliptic curve, e.g. in short Weierstrass form

v

E:y?>=x3+ax+b,

v

r prime, r | #E(F,), char(F,) > 3,
with small (even) embedding degree k > 1,

v

rlpk—1, rip' —1fori<k,

v

Gr=u, C ]F;k group of r-th roots of unity,



Optimal ate pairings

Typical setting at higher security levels:

k_1

e: Ghx G = Gr, (Q,P)r go(P)™

> G = E(Fp)[r], Gy = E'(Fpe)lr], Gr = pur © e
> E'/Fpe: twist of E of degree d | k, e = k/d, r | #E'(Fpe),

» gq: function depending on Q" with coefficients in F;k.



The pairing explosion

» The big bilinear bang: [Jou00], [SOK00], [BFO01] ...

PBC universe still expanding: ...[2013/413],[2013/414] ...

» Secure bilinear maps would have been welcomed by
cryptographers regardless of where they came from

Ben Lynn 2007:

“ .. that pairings come from the realm of algebraic geometry (on
curves) is a happy coincidence”

» Why so happy?
> Already received a huge amount of optimization
» Much more fun than traditional crypto primitives
» Discrete log problem on curves already under the microscope



ECC and PBC: a symbiotic relationship

Many ECC optimisations quickly transferred to pairings, e.g.

» avoiding inversions
> projective space
» fast primes (supersingular curves)

> ..

Pairings helped ECC too, e.g.

» Galbraith-Scott 2008: fast exponentiation on pairing groups
using efficiently computable endomorphisms

» i.e. Frobenius useful over extension fields

» Galbraith-Lin-Scott (GLS) 2008: fast ECC over extension
fields using eff. comp. endomorph.



Non-Weierstrass models for pairings. .. not so much

> A very successful ECC optimization: non-Weierstrass curves

e.g. Montgomery, Hessian, Jacobi quartics, Jacobi
intersections, Edwards, twisted Edwards, . .. (see EFD)

» Not so successful in PBC ...why?
P+Q=Fk , div(f)=(P)+(Q)—(R)—-(0)
In ECC computations we only need points

get R as fast as possible

In pairing computations we need points and functions

get R and f as fast as possible



Non-Weierstrass faster for ECC. .. not for PBC

Getting R from P and Q: much faster on Edwards (and others)
Getting R, f from P and Q: Weierstrass preferable



This work: focus only on the scalar multiplications

Alternative models not faster for pairing, but can they be used to
enhance scalar multiplications in pairing groups???
» maybe even bigger speedups for pairing exponentiations
» high dimensional GLV/GLS (# doublings < # additions)

» for additions, Weierstrass coordinates suck most,
e.g. y> = x3+ b - Weierstrass add. ~ 17m, Edwards ~ 9m !!!

» curve models in pairings very minor improvement at best, but
in scalar mulplications big savings possible!
Pairing-based protocols in practice

> pairing computation involves three groups e: G; X G, — Gt

» often many more standalone operations in any or all of G,
Ga, Gt than pairing(s) ...can be orders of magnitude more!



Utilizing non-Weierstrass models

» J = Jacobi quartic H = Hessian & = twisted Edwards
» We always have j = 0 in this work (e.g. H has d = 0)

Pairing on Scalar mults on iff
T y? =dx* +2ax* +1 2| #W
éT
Wy=x+b 7-[x+y+C—0 3| #W
\\
E:ax’ +y? =14 dx%y? 4| #FW*

» Note x: field K has #K =1 mod 4, then 4 | E is enough,
otherwise need point of order 4 for £ (cheers anon. reviewer)



The power of the sextic twist for G,

> Elements in G are points over the extension field C E(F )

> k times larger to store
» m times more costly to work over IE‘pk, where k < m < k2 Il

» Can use group isomorphic to G, which is on a different curve:
G C E'(F ye/0)

» E’ is called the twisted curve

» elements compressed by factor d
» m times faster to work with, where d < m < d?

Sextic twists: d = 6 is biggest possible for elliptic curves

» only possible if 6 | k and j = 0 (i.e. y? = x>+ b)
> luckily all the best families with 6 | k have y?> = x3 + b
> E'[Fa:y> =x>+ b, and V: E' — E to map G} <+ G2



GLV/GLS

Galbraith-Scott 2008

» G1 CEF,):y?2=x3+b
- ¢ : (X7y) — (vay)r C3 =1 GFp
- ¢(P) = [Ag]P for AZ + Ay +1=0mod r
- gives 2-dimensional (GLV) decomposition on Gy

» Gy CE'(Fpe) :y2=x3+ b
- u) = \U . 7'('p . \U71
- Y(P) = [Ay]P for ®4(Ay) =0mod r
- gives ¢(k)-dimensional (GLS) decomposition on G}



GLV/GLS

v

[s]P starts by computing ¢(P) or ¢/(P) for 1 <i < ¢(k) —1

v

decompose [s]P = Z"O(k [s,]P by finding a vector close to
(s,0) or (s,0,...,0) in the GLV/GLS lattices

r 0o ... 0
)\ 1 ...0

r 0 v
B¢_<—A¢ 1)' B = :
Aj;(k)*l 0 1

v

all s; are much shorter than s

compute [s]P = Zf:(g)_l[s;]P; by multi-exponentiation

v



Mapping back and forth to W

> ideally we'd define (elements of) G1 or G/ on fastest model

» requires endomorphisms to transfer favorably to other model,
but only GLV morphism ¢ on H : x3 + y3 4+ ¢ = 0 does ®

The general strategy

We apply ¢ or ¢ (repeatedly) on W, map across to J, H or & for
the rest of the routine, and come back to VW at the end



Our goal

sec. level ‘ family-k pairing e exp. in G; exp. in G, exp. in Gt

28bit | BN-12 7 77 77 ?

| BLS12 7 7 7 ?
192bIt | ss1g 2 77 77 ?
256-bit | BLS-24 7 7 7 ?

fill in the above table using state-of-the-art techniques for
exponentiations and pairings

v

> give protocol designers a good idea of the ratios of
exponentiation costs in

Gli Gz: GTZ e
» no speed records (no assembly)

find optimal curve models in all ?? cases

v



Points of small order

Prop 1. BN (k =12): E(F,) and E'(FF2) do not contain points
of order 2, 3 or 4.

Prop 2. BLS (k =12): If p=3 mod 4, E(F,) contains a point of
order 3 and can contain a point of order 2, but not 4.
E'(F,2) does not contain a point of order 2, 3 or 4.

Prop 3. KSS (k =18): E(Fp) does not contain a point of order
2 3or4.
E'(FF3) contains a point of order 3 but none of order 2 or 4.

Prop 4. BLS (k =24): If p= 3 mod 4, E(F,,) can contain points
of order 2 or 3 (although not simultaneously), but not 4.
E'(F ) can contain a point of order 2, but none of order 3 or 4.



Available models

Gy G2

family-k algorithm  models avail. | algorithm  models avail.
BN-12 2-GLV 2% 4-GLS 2%
BLS-12 2-GLV H, T, W 4-GLS w
KSS-18 2-GLV w 6-GLS H, IV
BLS-24 2-GLV H, T, W 8-GLS E,T,W

model/ DBL ADD MIX AFF

coords cost cost cost cost

W/ Jac. 725014 16115013 1174014 642012
J / ext. 917112 1373319 1263318 1153318
H /proj. | Tepo011 1212003 1010003 880,03
E / ext. 94,417 109,0,1,7 9s,1,0,7 87,0,1,7

> operation counts don't/can’t assume small constants like ECC



Best models. ..

G G5
family-k algorithm models avail. algorithm models avail.
BN-12 2-GLV w 4-GLS w
BLS-12 2-GLV Hessian (1.23x) 4-GLS w
KSS-18 2-GLV w 6-GLS Hessian (1.11x)
BLS-24 2-GLV  Hessian (1.19x) | 8-GLS  twisted Edwards (1.16x)
model/ DBL ADD MIX AFF
coords ‘ cost cost cost cost
2% / Jac. 72,5,0,14 1511,5,0,13 117,4,0,14 64,2,0,12
J/ext. | 917112 1373310 1263318 1ls33.1s
H /proj. | Te1011 1212003 1010003 88003
£ / ext. 94,4,1,7 109,0,1,7 95,1,0,7 870,17

» for BLS k =12 and BLS k = 24, define Gy C H/F,
(modify pairing to include initial conversion to W)

» for KSS k =18 and BLS k =24, G, C W/F,, but 7 to H,&
after v's are computed, and 7! to come back to W at end



Results

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level ‘ family-k pairing e exp. in G; exp. in G, exp. in Gt

128.bit | BN-12 7.0 0.9 is 31

| BLS-12 472 44 10.9 17,5
192-bit | 5518 633 35 9.8 15.7
256-bit | BLS-24  115.0 5.2 27.6 471

> state-of-the-art algorithms
(optimal ate, lazy reduction, cyclotomic squarings, etc.)

» not rivaling speed records, but hope that G1: Go: Gt e
ratios stay similar

» should give protocol designers a good idea of ratios

» what's best for 192-bit security (match protocol to family)



