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Pairings

A pairing is a map

e : G1 ×G2 → G3

((G1,+), (G2,+), (G3, ·) finite abelian groups), which is
I bilinear,

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2),

I non-degenerate, given 0 6= P ∈ G1 there is a Q ∈ G2

with
e(P,Q) 6= 1,

I efficiently computable.



Pairing-friendly elliptic curves

Take an elliptic curve over Fp (p > 3) with
I Weierstrass equation E : y2 = x3 + ax+ b,
I E(Fp) = {(x, y) ∈ F2

p : y2 = x3 + ax+ b} ∪ {O},
I n = #E(Fp) = p+ 1− t, |t| ≤ 2

√
p,

I r | n a large prime divisor of n (r 6= p, r ≥ √p),
I and embedding degree 1 < k ≤ 50.

The embedding degree of E w.r.t. r is the smallest integer
k with

r | pk − 1.



The reduced Tate pairing

Assume r2 - #E(Fp). The reduced Tate pairing

tr : E(Fp)[r]× E(Fpk)[r] → µr ⊂ F∗pk ,

(P,Q) 7→ fr,P (Q)
pk−1
r .

defines a non-degenerate, bilinear map, where
I E(Fp)[r] ⊂ E(Fpk)[r] = {P ∈ E(Fpk) | [r]P = O},
I µr is the group of r-th roots of unity in F∗

pk
,

I fr,P is a function with divisor (fr,P ) = r(P )− r(O),
I for P ∈ E(Fp)[r], we have tr(P, P ) = 1,
I take Q /∈ 〈P 〉, i. e. from E(Fpk)[r] \ E(Fp)[r].



Three groups

Define the following groups:
I G1 = E(Fpk)[r] ∩ ker(φp − [1]) = E(Fp)[r],
I G2 = E(Fpk)[r] ∩ ker(φp − [p]),
I G3 = µr ⊂ F∗

pk
.

φp is the p-power Frobenius on E, i. e. φp(x, y) = (xp, yp).
Let

G1 = 〈P 〉, G2 = 〈Q〉.

We have E(Fpk)[r] = G1 ⊕G2, and we compute the Tate
pairing as

tr : G1 ×G2 → G3,

(P,Q) 7→ fr,P (Q)
pk−1
r .



Specific parameters

I DLPs must be hard in all three groups.
I For efficiency reasons balance the security as much

as possible.
I Define ρ = log(p)/ log(r).

Security Extension field EC base point ratio
level (bits) size of pk (bits) order r (bits) ρ · k

80 1024 160 6.40
112 2048 224 9.14
128 3072 256 12.00
192 7680 384 20.00
256 15360 512 30.00

NIST recommendations



My favorite examples... BN curves

If u ∈ Z such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are both prime, then there exists an elliptic curve

I with equation E : y2 = x3 + b, b ∈ Fp,
I r = n = #E(Fp) is prime, i. e. ρ ≈ 1,
I the embedding degree is k = 12.

BN curves can be found easily.
I BNtiny: u = −1, p = 19, n = 13, E : y2 = x3 + 3.
P = (1, 2) ∈ E(Fp).



Computing the pairing

There are two parts:
1. compute fr,P (Q),
2. the final exponentiation to the power (pk − 1)/r.

For the first part, consider Miller functions fi,P , i ∈ Z.
These are functions with divisor

I (fi,P ) = i(P )− ([i]P )− (i− 1)(O).

Then
I (fr,P ) = r(P )− ([r]P )− (r − 1)(O) = r(P )− r(O).



Miller functions and line functions

Miller functions can be computed recursively with
I f1,P = 1,
I f2i,P = f 2

i,P · l[i]P,[i]P/v[2i]P ,
I fi+1,P = fi,P · l[i]P,P/v[i+1]P ,

where
I lR,S: line through R and S, tangent if R = S,
vR: vertical line through R.

Evaluate at Q = (xQ, yQ):
I lR,S(Q) = yQ − yR − λ(xQ − x1),
I vR(Q) = xQ − xR,

with R = (xR, yR) and the line has slope λ.



Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1
r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← f

pk−1
r

return f



Some improvements
I If possible, choose r with low Hamming-weight.
I Choose k even, then the final exponentiation is

pk − 1

r
= (pk/2 − 1)

pk/2 + 1

r
.

Note that r - pk/2 − 1.
I Represent the field extension Fpk = Fpk/2(α), α2 = β,

where β is a non-square in Fpk/2.
I Then f = f0 + f1α with f0, f1 ∈ Fpk/2, computing

(f0 + f1α)p
k/2

= f0 − f1α is for free,
I and (f0 + f1α)p

k/2−1 = (f0 − f1α)/(f0 + f1α).
I And ask Peter Montgomery for good exponentiation

methods and field arithmetic!



Representation of G2

I Let δ = 6 if a = 0, δ = 4 if b = 0, and δ = 2 else.
I If δ | k, there exists a unique twist E ′ of E of degree δ

with r | #E ′(Fpk/δ).
I Define G′2 = E ′(Fpk/δ)[r].
I There exists an element ξ ∈ Fpk/δ , not a δ-th power,

s.t. the map ψ : G′2 → G2,

Q′ = (xQ′ , yQ′) 7→ (ξxQ′ , ξ
3/2yQ′) if δ = 2,

Q′ = (xQ′ , yQ′) 7→ (ξ1/2xQ′ , ξ
3/4yQ′) if δ = 4,

Q′ = (xQ′ , yQ′) 7→ (ξ1/3xQ′ , ξ
1/2yQ′) if δ = 6,

is a group isomorphism.



Denominator elimination

I All points Q ∈ G2 have a special form, in particular
the x-coordinate xQ = ξ2/δxQ′ ∈ Fpk/2.

I The value of the vertical line function
vR(Q) = xQ − xR ∈ Fpk/2.

I The first part of the final exponentiation thus gives

vR(Q)p
k/2−1 = 1.

I Remove all denominators in Miller’s algorithm.
I Similarly, all values in proper subfields of Fpk are

mapped to 1 by the final exponentiation.



Improved Miller

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1
r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
end for
f ← fp

k/2−1

f ← f
pk/2+1

r

return f



Loop shortening - eta pairing

Let e = k/δ and Te = (t− 1)e mod r.
I It turns out that the map

ηTe : G1 ×G2 → G3,

(P,Q) 7→ fTe,P (Q)(pk−1)/r.

is a pairing, called the eta pairing.
I One can take T je mod r for 1 ≤ j ≤ δ − 1 instead of
Te. Choose the shortest non-trivial power.



Loop shortening - ate pairing

Let T = t− 1.
I The map

aT : G2 ×G1 → G3,

(Q,P ) 7→ fT,Q(P )(pk−1)/r.

is a pairing, called the ate pairing.
I As for the eta pairing, we can replace T by T j mod r

for 1 ≤ j ≤ k − 1 to possibly get a shorter loop.
I Note that groups are swapped. Curve arithmetic in

Miller’s algorithm must now be done over a field
extension. Use G′2.



The final exponentiation

Let Φk be the kth cyclotomic polynomial.
I The embedding degree condition

r | pk − 1, r - pm − 1 for m < k

is equivalent to r | Φk(p).
I Φk(p) | pk/2 + 1.
I The second part of the final exponent can be written

as
pk/2 + 1

r
=
pk/2 + 1

Φk(p)
· Φk(p)

r
.



The final exponentiation

I pk/2+1
Φk(p)

is a polynomial in p with very small coefficients,
and can be computed with some applications of the
p-power Frobenius automorphism and some
multiplications.

I Example k = 12:

p6 + 1

r
= (p2 + 1) · p

4 − p2 + 1

r
.

I Compute f (p6+1)/r = ((fp)p · f)(p4−p2+1)/r.



The final slide... cheap pairings...


