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Pairings
A pairing is a map
e: G1 X GQ — Gg

((G1,+), (Ga,+), (G, -) finite abelian groups), which is
» bilinear,

e(Pr+ P, Q1) = e(P,Qh)e(Pr,Qn),
e(P, Q1+ Q2) = e(P,Q1)e(Pr,Q2),
» non-degenerate, given 0 # P € GG thereisa ) € Gs
with
e(P,Q) #1,

» efficiently computable.



Pairing-friendly elliptic curves

Take an elliptic curve over I, (p > 3) with

» Weierstrass equation F : 4% = 2 + ax + b,
E(F,) = {(z,y) € F2 : y* = 2* + ax + b} U{O},
n=#EF,)=p+1-t, [t]<2p,
r | n alarge prime divisor of n (r # p, r > /p),
and embedding degree 1 < k < 50.
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The embedding degree of E w.r.t. r is the smallest integer
k with
r|p*—1.



The reduced Tate pairing

Assume r? { #F(F,). The reduced Tate pairing

tr: E(Fp)[r] x E(Fp)[r] — pr CFy,
(P.Q) — fr(@Q .

defines a non-degenerate, bilinear map, where

> E(F,)[r] € E(Fy)lr] = {P € E(F,) | [r]P = O},

> 4, is the group of r-th roots of unity in 7, ,

» f.pis afunction with divisor (f,. p) = r(P) — r(O),

» for P € E(F,)[r], we have t,.(P, P) =1,

> take Q ¢ (P), i.e. from E(F,.)[r] \ E(F,)[r)-




Three groups

Define the following groups:
> Gy = E(F,)[r] Nker(g, — [1]) = E(F,)[r],
> Gy = E(F,)[r] Nker(¢, — [p)),
» G35 =, C F;k

¢, is the p-power Frobenius on E, i.e. ¢,(z,y) = (2%, y?).
Let

G1:<P>> G2:<Q>
We have E(F,)[r] = Gi ® G5, and we compute the Tate
pairing as
trlG1XG2 — Gg,

(P7Q) = fr,P(Q) a :




Specific parameters

» DLPs must be hard in all three groups.
» For efficiency reasons balance the security as much

as possible.
» Define p = log(p)/ log(r).

Security | Extension field | EC base point | ratio
level (bits) | size of p* (bits) | order r (bits) p-k
80 1024 160 6.40
112 2048 224 9.14
128 3072 256 12.00
192 7680 384 20.00
256 15360 512 30.00

NIST recommendations



My favorite examples... BN curves

If w € Z such that

p = p(u) = 36u*+36u®+ 24u* + 6u + 1,
n = 36u’ +36u’ + 18u® + 6u + 1

I
=
S

are both prime, then there exists an elliptic curve
» with equation F : y?> = 2* + b, b € F,,
» r=n=#E(F,) isprime,i.e. p~ 1,
» the embedding degree is k = 12.

BN curves can be found easily.

» BNtiny:u=—-1,p=19,n=13,E : y*> = 23 + 3.
P =(1,2) € E(F,).



Computing the pairing

There are two parts:

1. compute f, »(Q),
2. the final exponentiation to the power (p* — 1)/r.

For the first part, consider Miller functions f; p, i € Z.
These are functions with divisor

> (fir) =1i(P)—([i]P) — (i = 1)(O).
Then
> (frp) =7(P) = ([r]P) — (r = 1)(O) = r(P) — r(O).



Miller functions and line functions

Miller functions can be computed recursively with
> fir=1,
> faip = f7p - lap e/ Ve,
> firip = fip- l[z‘]P,P/U[i+1]P,

where

» lrs: line through R and S, tangent if R = S,
vg: vertical line through R.

Evaluate at ) = (¢, yo):
> Irs(Q) = Yo — yr — Mz — 21),
> vr(Q) = rQ — TR,
with R = (zg,yr) and the line has slope \.



Miller's algorithm

Input: P € G,Q € Ga, 7 = (1,

pF-1
Output: ¢,.(P,Q) = f.p(Q) +
R—P,f—1
for(i —m—1;i>0;,:——) do
fe ]zle R(Q)
V[2]R r(Q)
R~ [2]R
if (r;, = 1) then
Ir,P(Q)
f= f7/'R+P(Q)
R—R+P
end if
end for
J fp

return f

.. ,7"0)2



Some improvements

» If possible, choose r with low Hamming-weight.
» Choose k even, then the final exponentiation is

k k/2
A 1)?&_
r T
Note that r { p*/2 — 1.

» Represent the field extension F. = F2(a), o = 6,
where (3 is a non-square in I 2.

» Then f = fo + fia with fo, fi € F,r/2, computing
(fO + floé)pk/2 = fg — floz is for free,
» and (fo + floé)pk/tl = (fo — fi)/(fo + frcv).

» And ask Peter Montgomery for good exponentiation
methods and field arithmetic!



Representation of GG

» Letd =6ifa=0,0=4ifb=0,and § = 2 else.

» If 0 | k, there exists a unique twist £’ of E of degree
with r ‘ #E,<Fpk/5).

» Define GY) = E'(IF/s)[r].

» There exists an element ¢ € IF,/5, not a 4-th power,
s.t. the map ¢ : G, — G,

Q' = (zqyq) — (€2, yq) if § =2,
Q' = (zqyq) — (£Pxq, &Myg) 6 =4,
Q = (zg,yo) — (€320, Pyq)  if 6 =6,

is a group isomorphism.



Denominator elimination

» All points @) € G5 have a special form, in particular
the z-coordinate zq = £*°zg € F /2.

The value of the vertical line function

UR<Q) =Xg — IR € ]Fpk/Z.

The first part of the final exponentiation thus gives

v

v

UR(Q)pk/2_1 = 1.

Remove all denominators in Miller’s algorithm.

Similarly, all values in proper subfields of IF . are
mapped to 1 by the final exponentiation.

v

v



Improved Miller

Input: P € G,Q € Ga, 7 = (1,

Output: t.(P,Q) = f,.p(Q)"~
R—P, f—1
for(i —m—1;i>0;,i——)do
[ f*1rr(Q)
R — 2]R
if (r;, = 1) then
f =T lrpQ)
R— R+ P
end if
end for
f(— f k/Z 1

‘k/z
fef

return f

.. ,To)g



Loop shortening - eta pairing

Lete=k/dand T, = (t — 1)¢ mod r.
» It turns out that the map

nr, : G1 X G2 — Gg,
(P,Q) + frp(QW D
is a pairing, called the eta pairing.

» One can take 7/ mod r for 1 < j <4 — 1 instead of
T.. Choose the shortest non-trivial power.



Loop shortening - ate pairing

LetT =1t —1.
» The map

CLTZGQXGl — Gg,
(Q,P) +— fro(P)® =0/

is a pairing, called the ate pairing.

» As for the eta pairing, we can replace 7' by 77 mod r
for 1 < j <k —11to possibly get a shorter loop.

» Note that groups are swapped. Curve arithmetic in

Miller’s algorithm must now be done over a field
extension. Use G,,.



The final exponentiation

Let @, be the kth cyclotomic polynomial.
» The embedding degree condition

rlpt =1, rtp™—1form <k

is equivalent to r | ®.(p).
> Oi(p) | P+ 1.

» The second part of the final exponent can be written
as

r ;. (p) ro



The final exponentiation

”;,Z;)l is a polynomial in p with very small coefficients,

and can be computed with some applications of the
p-power Frobenius automorphism and some
multiplications.

» Example k = 12:

>

PP+l

PPl

(p*+1) ;

» Compute fE*+D/r = ((fr)p . )@=+,



The final slide... cheap pairings...




