New software speed records for
cryptographic pairings

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

Montreal, 13 April 2010

joint work with Peter Schwabe (TU/e) and Ruben Niederhagen (TU/e, NTU)

Implementing pairings for crypto

For implementing pairings for use in pairing-based
cryptographic protocols we usually use variants of the Tate
pairing on elliptic curves.
We need:

» suitable curves, i.e. pairing-friendly elliptic curves,

» efficient algorithms to compute pairings as fast as possible.

Notation

Let £/ be an elliptic curve over F,, (p > 3 prime) with
»n=H#EF,) =p+1-t, [t[]<2\p,
» 7 | n alarge prime divisor of n (r # p, r > /p),
» and embedding degree k > 1.

The embedding degree of E w.r.t. r is the smallest integer &
with r | p*F — 1.

> G1 = E(Fp)[r],
> Gy = E(Fy)[r] Nker(¢p — [p]),
> ate pairing:

ar : Go X Gy — G3, ap(Q, P) = fT7Q(P)(Pk—1)/r’

T=t—1,G3C F;k group of r-th roots of unity.

Security and parameter size

» k should be small,
» DLPs must be hard in all three groups G+, Gs, and G3,
» for efficiency reasons balance the security.

Security | Extension field | EC base point | ratio
level (bits) | size p* (bits) order r (bits) | p-k
Gs G1,Go

80 1248 160 7.8
112 2432 224 10.9
128 3248 256 12.7
192 7936 384 20.7
256 15424 512 30.1

ECRYPT Il recommendations (2009), p = log(p)/ log(r).

BN curves
(Barreto-N., 2005)

» Security requirements and key size recommendations fix
optimal value for p - k for given security level.

BN curves are (nearly) ideal for the 128-bit security level.
If w € Z such that

v

v

p = plu) = 36u* + 36u’ + 24u” 4 6u + 1,
n = n(u) = 36u’+36u® + 18u® + 6u + 1

are both prime, then there exists an ordinary elliptic curve
E:y?=2%+0b, b e F,with

r=n=#E(F,) prime,i.e. p~1,

and embedding degree k = 12.

v

v

v

An optimal ate pairing on BN curves (> 0)

Input: Pe G1,Q € Go, 6u+2=(1,ms_1,...,mp)2.
Output: aept(Q, P).

N e
ARwbhr o

@O Na kR NR

T R—Q, f—1
cfor(i—s—1;i>0; i——)do
f<—f2~lR7R(P),R<— [Q]R
if (m; =1) then
f—f-lro(P),R—R+Q
end if
end for
Ql :pr(Q): Q2 :qbp?(Q)
f—f1rq,(P), R— R+
fe—flr-q,(P), R R—Q
fe gt
fe

. return f

Using twists of degree 6

There exists a twist E’/FF,» of degree 6 with
> n | E/(Fp2),
» isomorphism

Vv:E — E, (x/,y/) — (51/337/,51/23//)7

where E' : y? = 2% + b/¢.
Thus we can represent G by

Gy = E'(Fy)|n]

and v : G — G+ is a group isomorphism.
» Replace all points R € G2 by R’ € G, via R = ¢(R'),
» points are much smaller,
» curve arithmetic over . instead of F 2.

Modular multiplication

» The pairing algorithm can be improved in all parts by
improving arithmetic in F,,.
» Can the polynomial shape

p = 36u* + 36u + 24u? 4+ 6u + 1

be used to speed up multiplication modulo p?

» Fan, Vercauteren, Verbauwhede (2009) demonstrate this
for hardware.

» More efficient because uses specially sized multipliers.
» What about software?

Using the polynomial representation
(Inspired by Bernstein’s Curve25519 paper)

Consider the ring R = Z[z] N Z[v/6ux] and the element

P = 36u*z* + 36wz + 24ux® + 6ux + 1
= (V6uz)* + V6(vV6uz)?® + 4(V6uz)? + vV6(V6uzr) + 1.

Then P(1) = p. Represent f € F,, by a polynomial F' € R as

F = fo+ fi-V6(V6uz) + fo- (V6uz)?+ f3-vV6(vV6uz)?
= fo+ f1-(6u)z+ fo- (6u)a® + f3- (36u3)x’

such that F(1) = f.

f A [f()vflvf?)f?)]a fz cZ

Polynomial multiplication and degree reduction
f = fot+fi-6wz+ fo- (6u2)332 + f3- (36u3)x3
g = go+g1-(6u)x+ go- (6u2)332 + g3 - (36u3)a:3
f-g = ho + hy - (6u)z + ho - (6u®)z? + hs - (36u’)2®
+ hy - (36ut)zt + hs - (216u5) 2 + hg - (216u5)2°
Reduce modulo P:

(216u®)2® = —(216u’)z® — 4(36u?)x — (36u®)z® — (6u?)z?
(216u®)z® = —6(36ut)z? — 4(36u)z® — 6(6u?)z? — (6u)x
4 2

(36ut)z —(36u)z® — 4(6u?)a? — (6u)z — 1
ho ho ho ho — ha + 6hs — 2hg
h1 h1 hy — (h5 — h6) h1 — hg + 5hs — hg
ha ha — hg ho — he — 6(hs — he) ha — 4hg + 18hs — 3hg
hs| — | hg —hg | — h3—h6—4(h5—h6) h3 — hg + 2h5 + hg
ha hg — 4he ha — 4he — 6(hs — he) 0
hs hs — hg 0 0

he 0 0 0

Four coefficients are not enough

Using this for a 256-bit BN prime p:
» elementin I, is represented by 4 coefficients, some can
be larger than 64 bits,
» only have 64 x 64 — 128 multiplier on amd64 architecture.
Idea: more coefficients and use
» fast double precision floating point arithmetic,

» SIMD instructions (SSE, SSE2, SSE3) to do two 64-bit
floating point multiplications or additions at once.

Represent elements in F,, with coefficients that fit into a 53-bit
mantissa of a 64-bit floating point value (double precision).

Representing integers with 12 coefficients
Now assume u = v3 for some v € Z. Let § = /6, then
(dvx)? = V/6ux3. Consider R = Z[z] N Z[évz], and

P

= 36u’z'? 4+ 36ui2® + 24025 + 6ua® + 1
= 360222 + 36072 + 240%2° + 60322 + 1
(Svz)1? 4 83 (0vx)® + 4(6vx)® + 83 (dvz)® + 1.

Represent f < IF,, by a polynomial F' € R as
F

fo+ f1(6v)z + fo(60")a® + f3(60°)2

+fa(6vh)at + f5(60°)ad + fo(600)ad + f7(3607)2
—|—f8(36v8)a:8 + f9(36119);1:9 + f10(36vlo)a:10 + f11(36v11)x11
such that F(1) = f.

f — [vafl)f?)f3)f47f57f6)f7)f8)f97f10)f11]

Multiplication and degree reduction

Multiplication of two elements

f — [vaf1>f2>f37f47f57f67f7>f8>f9>f10>f11]
g < [9079179279379479579679779879979107911]

gives 23 coefficients. Reduce the degree of the polynomial as

before via
(bvz)2 = —83(6vz)® — 4(6vz) — 3 (Svz)® — 1
(36v'%)z!? = —(3607)2® — 4(60%)2% — (60)2® — 1

By multiplications, additions, reduction etc. the absolute values
of the coefficients grow. Need to reduce them once in a while.

Coefficient reduction

F = fo+ fi(6v)z + fo(60%)2® + ...

v

replace fy by (fo mod 6v) and add quotientto f,
use rounding r = round(fy/(6v)), then

v

fo fo—71-(6v), fi — f1+,

r =round(f1/v), f1 < fi—r-v, fa = fo+r,
gives fo € [-3v,3v], f1 € [-v/2,v/2],

vV v v VY

carry from fi, goes to fo, fs, fs, fo.

Reduced representation and comparison

An element f € I, with representation [fo, fi, ..., fi1] is
reduced if
|f0|7 |f6| < 31)) |fl| < ’U/2¢ i 7é 0)6

» product of two reduced elements is (almost) reduced after
degree and coefficient reduction,

» [0,0,...,0] is the unique reduced representation for 0,
» it is even a unique representation for 0 among elements
with

|fol, | fs| < 6v, |fi| <wv, i #0,6.

» For comparing two IF,-elements, subtract them and reduce
the result.

The curve

» We need u to be a third power and 6u + 2 to have low
Hamming weight.

There are about 12000 primes p that lead to BN curves s.t.
u is a third power and p has 256 or 257 bits.

Lowest Hamming weight (h(6u + 2) = 9) for

v

v

= 1966080 (21 bits)
u=1v® = 7599824371187712000 (63 bits)
6u+2 = 45598946227126272002 (66 bits)
p = 36u’ + 36u> + 24u* + 6u + 1 (257 bits)

v

Curve equation: E : y? = 23 + 17 over F,,

Fp2 = Fp(i), i = -7,

Twist: E' : y? = a® + 17/ over F 2, { =i + 6.

v

v

Arithmetic in .

The (optimal) ate pairing needs fast IF,.-arithmetic.
» Mainly optimize computations in 2,
» use SIMD instructions addpd, mulpd,

» can do one mulpd and one addpd in one cycle, i.e. 4
floating point operations,

only do full reductions when absolutely necessary,
often short coefficient reduction is sufficient.

v

v

High-level implementation

» Field extensions: Fp2 is built as a tower on F,2 as
Fe=TF(r), ° =¢, Fpi2 = Fpe(w), w? =T

» Miller loop:
» Jacobian coordinates on twist for curve arithmetic,
» explicit formulas for line function computation,
» special multiplication of F:.-element with sparse line
function value.

» Final exponentiation:

» uses method from Scott et al. (2009),

» hard part done with 3 exponentiations to the power «, and
addition-chain to build special exponent (polynomial
parametrization),

» special squaring functions for elements in the cyclotomic
subgroup (Granger, Scott, 2009).

Timings

» Optimal ate pairing on a single core of a 2.4 GHz Core 2
Quad Q6600 in less than 4,500,000 cycles (< 2 ms).

no function 63
F,> x F,» multiplication 693
[F,» squaring 531
> x F, multiplication 432
IF,» short coefficient reduction 135
F 2 inversion 127,152
Miller loop 2,267,343
optimal ate pairing 4,455,954

» Previous fastest published timings of an implementation by
Mike Scott: 10,000,000 cycles on some Core 2 for the
R-ate pairing (Hankerson, Menezes, Scott, 2008),

» Mike’s implementation now: 7,850,000 cycles on a Core 2
T5500.

Thanks for your attention

» For more details see:
M. N., Ruben Niederhagen, Peter Schwabe,
New software speed records for cryptographic pairings
http://eprint.iacr.org/2010/186

» Implementation (Niederhagen/Schwabe):
http://www.cryptojedi.org/crypto/#dclxvi

mnaehrig@microsoft.com

http://eprint.iacr.org/2010/186
http://www.cryptojedi.org/crypto/#dclxvi

Coefficient reduction

Input: Coefficient vector (hg, by, ..., h11) € Z'2.
Output: Reduced coefficient vector (hy, by, ...,).
1: for (i € {1,4,7}) do
2: r <« round(h;/v), h; < h; —rv, hiy1 < hip1 +r
3: r «— round(h;11/v), hiz1 < hiy1 — 10, hjive «— higa + 1
4: end for
5. r « round(hyg/v), hio < h1o — rv, h11 < hi1 +r
6: r < round(hq1 /v), hi1 < h1y — rv
7: hg < hg — 1, hg < hg —4r, hs < hg —r, hg < hg —r
8: r < round(ho/(6v)),hg < hg —r-6v,hy «— hy +r
9: r « round(hs/v), hg < hg —rv,hy < hy +r

e =
o0 wN PO

(
r < round(hg/(6v)), hg < hg —r - 6v,hy «— h7 +r
(

. 7« round(hg/v), hg < hg — rv, hig < hig +r
. for (i € {1,4,7,10}) do

r <« round(h;/v), h; < h; —rv, hiy1 < hip1 +r
. end for
. return (hy, kY, ..., RY).

