
New software speed records for
cryptographic pairings

Michael Naehrig

Microsoft Researchmnaehrig�mi
rosoft.
om
Montreal, 13 April 2010

joint work with Peter Schwabe (TU/e) and Ruben Niederhagen (TU/e, NTU)

Implementing pairings for crypto

For implementing pairings for use in pairing-based
cryptographic protocols we usually use variants of the Tate
pairing on elliptic curves.
We need:

◮ suitable curves, i.e. pairing-friendly elliptic curves,
◮ efficient algorithms to compute pairings as fast as possible.

Notation

Let E be an elliptic curve over Fp (p > 3 prime) with
◮ n = #E(Fp) = p+ 1− t, |t| ≤ 2

√
p,

◮ r | n a large prime divisor of n (r 6= p, r ≥ √p),
◮ and embedding degree k > 1.

The embedding degree of E w.r.t. r is the smallest integer k
with r | pk − 1.

◮ G1 = E(Fp)[r],
◮ G2 = E(Fpk)[r] ∩ ker(φp − [p]),
◮ ate pairing:

aT : G2 ×G1 → G3, aT (Q,P) = fT,Q(P)(p
k
−1)/r,

T = t− 1, G3 ⊆ F
∗

pk group of r-th roots of unity.

Security and parameter size

◮ k should be small,
◮ DLPs must be hard in all three groups G1, G2, and G3,
◮ for efficiency reasons balance the security.

Security Extension field EC base point ratio
level (bits) size pk (bits) order r (bits) ρ · k

G3 G1, G2

80 1248 160 7.8
112 2432 224 10.9
128 3248 256 12.7
192 7936 384 20.7
256 15424 512 30.1

ECRYPT II recommendations (2009), ρ = log(p)/ log(r).

BN curves
(Barreto-N., 2005)

◮ Security requirements and key size recommendations fix
optimal value for ρ · k for given security level.

◮ BN curves are (nearly) ideal for the 128-bit security level.
◮ If u ∈ Z such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are both prime, then there exists an ordinary elliptic curve
◮ E : y2 = x3 + b, b ∈ Fp with
◮ r = n = #E(Fp) prime, i. e. ρ ≈ 1,
◮ and embedding degree k = 12.

An optimal ate pairing on BN curves (u > 0)

Input: P ∈ G1, Q ∈ G2, 6u+ 2 = (1,ms−1, . . . ,m0)2.
Output: aopt(Q,P).

1: R← Q, f ← 1
2: for (i← s− 1; i ≥ 0; i−−) do
3: f ← f2 · lR,R(P), R← [2]R
4: if (mi = 1) then
5: f ← f · lR,Q(P), R← R+Q
6: end if
7: end for
8: Q1 = φp(Q), Q2 = φp2(Q)
9: f ← f · lR,Q1

(P), R← R+Q1

10: f ← f · lR,−Q2
(P), R← R−Q2

11: f ← fp6
−1

12: f ← fp2+1

13: f ← f (p4
−p2+1)/n

14: return f

Using twists of degree 6

There exists a twist E′/Fp2 of degree 6 with
◮ n | E′(Fp2),
◮ isomorphism

ψ : E′ → E, (x′, y′) 7→ (ξ1/3x′, ξ1/2y′),

where E′ : y2 = x3 + b/ξ.

Thus we can represent G2 by

G′

2 = E′(Fp2)[n]

and ψ : G′

2 → G2 is a group isomorphism.
◮ Replace all points R ∈ G2 by R′ ∈ G′

2 via R = ψ(R′),
◮ points are much smaller,
◮ curve arithmetic over Fp2 instead of Fp12.

Modular multiplication

◮ The pairing algorithm can be improved in all parts by
improving arithmetic in Fp.

◮ Can the polynomial shape

p = 36u4 + 36u3 + 24u2 + 6u+ 1

be used to speed up multiplication modulo p?
◮ Fan, Vercauteren, Verbauwhede (2009) demonstrate this

for hardware.
◮ More efficient because uses specially sized multipliers.
◮ What about software?

Using the polynomial representation
(Inspired by Bernstein’s Curve25519 paper)

Consider the ring R = Z[x] ∩ Z[
√

6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√

6ux)4 +
√

6(
√

6ux)3 + 4(
√

6ux)2 +
√

6(
√

6ux) + 1.

Then P (1) = p. Represent f ∈ Fp by a polynomial F ∈ R as

F = f0 + f1 ·
√

6(
√

6ux) + f2 · (
√

6ux)2 + f3 ·
√

6(
√

6ux)3

= f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3

such that F (1) = f .

f ↔ [f0, f1, f2, f3], fi ∈ Z

Polynomial multiplication and degree reduction

f = f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3,

g = g0 + g1 · (6u)x + g2 · (6u2)x2 + g3 · (36u3)x3,

f · g = h0 + h1 · (6u)x + h2 · (6u2)x2 + h3 · (36u3)x3

+ h4 · (36u4)x4 + h5 · (216u5)x5 + h6 · (216u6)x6

Reduce modulo P :

(216u6)x6 = −(216u5)x5
− 4(36u4)x4

− (36u3)x3
− (6u2)x2

(216u5)x5 = −6(36u4)x4
− 4(36u3)x3

− 6(6u2)x2
− (6u)x

(36u4)x4 = −(36u3)x3
− 4(6u2)x2

− (6u)x − 1

2

6

6

6

6

6

6

6

4

h0

h1

h2

h3

h4

h5

h6

3

7

7

7

7

7

7

7

5

→

2

6

6

6

6

6

6

6

4

h0

h1

h2 − h6

h3 − h6

h4 − 4h6

h5 − h6

0

3

7

7

7

7

7

7

7

5

→

2

6

6

6

6

6

6

6

4

h0

h1 − (h5 − h6)
h2 − h6 − 6(h5 − h6)
h3 − h6 − 4(h5 − h6)
h4 − 4h6 − 6(h5 − h6)

0
0

3

7

7

7

7

7

7

7

5

· · ·

2

6

6

6

6

6

6

6

4

h0 − h4 + 6h5 − 2h6

h1 − h4 + 5h5 − h6

h2 − 4h4 + 18h5 − 3h6

h3 − h4 + 2h5 + h6

0
0
0

3

7

7

7

7

7

7

7

5

Four coefficients are not enough

Using this for a 256-bit BN prime p:
◮ element in Fp is represented by 4 coefficients, some can

be larger than 64 bits,
◮ only have 64× 64→ 128 multiplier on amd64 architecture.

Idea: more coefficients and use
◮ fast double precision floating point arithmetic,
◮ SIMD instructions (SSE, SSE2, SSE3) to do two 64-bit

floating point multiplications or additions at once.

Represent elements in Fp with coefficients that fit into a 53-bit
mantissa of a 64-bit floating point value (double precision).

Representing integers with 12 coefficients
Now assume u = v3 for some v ∈ Z. Let δ = 6

√
6, then

(δvx)3 =
√

6ux3. Consider R = Z[x] ∩ Z[δvx], and

P = 36u4x12 + 36u3x9 + 24u2x6 + 6ux3 + 1

= 36v12x12 + 36v9x9 + 24v6x6 + 6v3x3 + 1

= (δvx)12 + δ3(δvx)9 + 4(δvx)6 + δ3(δvx)3 + 1.

Represent f ∈ Fp by a polynomial F ∈ R as

F = f0 + f1(6v)x + f2(6v
2)x2 + f3(6v

3)x3

+f4(6v
4)x4 + f5(6v

5)x5 + f6(6v
6)x6 + f7(36v

7)x7

+f8(36v
8)x8 + f9(36v

9)x9 + f10(36v
10)x10 + f11(36v

11)x11

such that F (1) = f .

f ↔ [f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11]

Multiplication and degree reduction

Multiplication of two elements

f ↔ [f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11]

g ↔ [g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11]

gives 23 coefficients. Reduce the degree of the polynomial as
before via

(δvx)12 = −δ3(δvx)9 − 4(δvx)6 − δ3(δvx)3 − 1

(36v12)x12 = −(36v9)x9 − 4(6v6)x6 − (6v3)x3 − 1

By multiplications, additions, reduction etc. the absolute values
of the coefficients grow. Need to reduce them once in a while.

Coefficient reduction

F = f0 + f1(6v)x + f2(6v
2)x2 + . . .

◮ replace f0 by (f0 mod 6v) and add quotient to f1,
◮ use rounding r = round(f0/(6v)), then

f0 ← f0 − r · (6v), f1 ← f1 + r,

◮ r = round(f1/v), f1 ← f1 − r · v, f2 ← f2 + r,
◮ gives f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2],
◮ . . .
◮ carry from f11 goes to f0, f3, f6, f9.

Reduced representation and comparison

An element f ∈ Fp with representation [f0, f1, . . . , f11] is
reduced if

|f0|, |f6| ≤ 3v, |fi| ≤ v/2, i 6= 0, 6.

◮ product of two reduced elements is (almost) reduced after
degree and coefficient reduction,

◮ [0, 0, . . . , 0] is the unique reduced representation for 0,
◮ it is even a unique representation for 0 among elements

with
|f0|, |f6| < 6v, |fi| < v, i 6= 0, 6.

◮ For comparing two Fp-elements, subtract them and reduce
the result.

The curve

◮ We need u to be a third power and 6u+ 2 to have low
Hamming weight.

◮ There are about 12 000 primes p that lead to BN curves s.t.
u is a third power and p has 256 or 257 bits.

◮ Lowest Hamming weight (h(6u + 2) = 9) for

v = 1966080 (21 bits)

u = v3 = 7599824371187712000 (63 bits)

6u+ 2 = 45598946227126272002 (66 bits)

p = 36u4 + 36u3 + 24u2 + 6u+ 1 (257 bits)

◮ Curve equation: E : y2 = x3 + 17 over Fp,
◮ Fp2 = Fp(i), i2 = −7,

◮ Twist: E′ : y2 = x3 + 17/ξ over Fp2, ξ = i+ 6.

Arithmetic in Fp2

The (optimal) ate pairing needs fast Fp2-arithmetic.
◮ Mainly optimize computations in Fp2,
◮ use SIMD instructions addpd, mulpd,
◮ can do one mulpd and one addpd in one cycle, i.e. 4

floating point operations,
◮ only do full reductions when absolutely necessary,
◮ often short coefficient reduction is sufficient.

High-level implementation

◮ Field extensions: Fp12 is built as a tower on Fp2 as

Fp6 = Fp2(τ), τ3 = ξ, Fp12 = Fp6(ω), ω2 = τ.

◮ Miller loop:
◮ Jacobian coordinates on twist for curve arithmetic,
◮ explicit formulas for line function computation,
◮ special multiplication of Fp12-element with sparse line

function value.
◮ Final exponentiation:

◮ uses method from Scott et al. (2009),
◮ hard part done with 3 exponentiations to the power u, and

addition-chain to build special exponent (polynomial
parametrization),

◮ special squaring functions for elements in the cyclotomic
subgroup (Granger, Scott, 2009).

Timings

◮ Optimal ate pairing on a single core of a 2.4 GHz Core 2
Quad Q6600 in less than 4,500,000 cycles (< 2 ms).

no function 63
Fp2 × Fp2 multiplication 693
Fp2 squaring 531
Fp2 × Fp multiplication 432
Fp2 short coefficient reduction 135
Fp2 inversion 127,152
Miller loop 2,267,343
optimal ate pairing 4,455,954

◮ Previous fastest published timings of an implementation by
Mike Scott: 10,000,000 cycles on some Core 2 for the
R-ate pairing (Hankerson, Menezes, Scott, 2008),

◮ Mike’s implementation now: 7,850,000 cycles on a Core 2
T5500.

Thanks for your attention

◮ For more details see:
M. N., Ruben Niederhagen, Peter Schwabe,
New software speed records for cryptographic pairingshttp://eprint.ia
r.org/2010/186

◮ Implementation (Niederhagen/Schwabe):http://www.
ryptojedi.org/
rypto/#d
lxvimnaehrig�mi
rosoft.
om

http://eprint.iacr.org/2010/186
http://www.cryptojedi.org/crypto/#dclxvi

Coefficient reduction
Input: Coefficient vector (h0, h1, . . . , h11) ∈ Z

12.
Output: Reduced coefficient vector (h′0, h

′

1, . . . , h
′

11).
1: for (i ∈ {1, 4, 7}) do
2: r ← round(hi/v), hi ← hi − rv, hi+1 ← hi+1 + r
3: r ← round(hi+1/v), hi+1 ← hi+1 − rv, hi+2 ← hi+2 + r
4: end for
5: r ← round(h10/v), h10 ← h10 − rv, h11 ← h11 + r
6: r ← round(h11/v), h11 ← h11 − rv
7: h9 ← h9 − r, h6 ← h6 − 4r, h3 ← h3 − r, h0 ← h0 − r
8: r ← round(h0/(6v)), h0 ← h0 − r · 6v, h1 ← h1 + r
9: r ← round(h3/v), h3 ← h3 − rv, h4 ← h4 + r

10: r ← round(h6/(6v)), h6 ← h6 − r · 6v, h7 ← h7 + r
11: r ← round(h9/v), h9 ← h9 − rv, h10 ← h10 + r
12: for (i ∈ {1, 4, 7, 10}) do
13: r ← round(hi/v), hi ← hi − rv, hi+1 ← hi+1 + r
14: end for
15: return (h′0, h

′

1, . . . , h
′

11).

