
Multiprecision multiplication on AVR revisited

Michael Hutter · Peter Schwabe

July 31, 2014

Abstract This paper presents new speed records for multi-

precision multiplication on the AVR ATmega family of 8-

bit microcontrollers. For example, our software takes only

1976 cycles for the multiplication of two 160-bit integers;

this is more than 15% faster than previous work. For 256-

bit inputs, our software is not only the first to break through

the 6000-cycle barrier; with only 4797 cycles it also breaks

through the 5000-cycle barrier and is more than 21% faster

than previous work. We achieve these speed records by care-

fully optimizing the Karatsuba multiplication technique for

AVR ATmega. One might expect that subquadratic-comple-

xity Karatsuba multiplication is only faster than algorithms

with quadratic complexity for large inputs. This paper shows

that it is in fact faster than fully unrolled product-scanning

multiplication already for surprisingly small inputs, starting

at 48 bits. Our results thus make Karatsuba multiplication

the method of choice for high-performance implementations

of elliptic-curve cryptography on AVR ATmega microcon-

trollers.

Keywords Karatsuba multiplication · microcontroller ·
ATmega.

This work was supported by the Austrian Science Fund (FWF)

under the grant number TRP251-N23, by the Netherlands Organ-

isation for Scientific Research (NWO) through Veni 2013 project

13114, and by the European Cooperation in Science and Technol-

ogy (COST) Action IC1204 (Trustworthy Manufacturing and Uti-

lization of Secure Devices - TRUDEVICE). Part of the work was

done while the authors visited Academia Sinica. They wish to thank

Bo-Yin Yang for his hospitality. Permanent ID of this document:

102fe77c6d1003e5694ac04543a52410.

Michael Hutter

Graz University of Technology

Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A-8010, Graz, Austria

E-mail: michael.hutter@iaik.tugraz.at

Peter Schwabe

Radboud University Nijmegen

Digital Security Group

PO Box 9010, 6500GL Nijmegen, The Netherlands

E-mail: peter@cryptojedi.org

1 Introduction

How much effort is it to multiply two integers? Over the

last 6 decades, many researchers have attempted to answer

this question. One main line of research is concerned with

the asymptotic complexity of integer multiplication. In the

1950s, Kolmogorov conjectured that the complexity for the

multiplication of two n-digit integers is Θ(n2). This conjec-

ture was proven wrong by one of his students, Karatsuba, in

1960 who presented a multiplication algorithm with asymp-

totic complexity Θ(nlog2 3) This ground-breaking result was

published in 1962 [13]. See [14, Section 6] for a history

of this publication. In 1963, Toom lowered the complex-

ity further to n2Θ (
√

log2 n) [26] and the FFT-based method

by Schönhage and Strassen achieves asymptotic complex-

ity Θ(n logn loglogn) [20]. The latest result in this line of

research is Fürer’s algorithm with asymptotic complexity

Θ(n logn2log∗ n) [4].

Another main line of research is concerned with the num-

ber of clock cycles required for multiplication of two inte-

gers of a particular fixed size on a particular micro-architec-

ture. This paper presents new results from this second line of

research. Specifically, we present new multiplication speed

records for multiplication of integers between 48 and 256

bits on the AVR ATmega family of microcontrollers. We ex-

pect that the techniques described in this paper can be ex-

tended to larger inputs. However, in this paper we are mainly

interested in input sizes in the range between 160 and 256

bits that we typically encounter in elliptic-curve cryptogra-

phy on embedded processors. The software presented in this

paper takes time independent of the inputs and is thus suit-

able for use in timing-attack-protected implementations of

cryptographic primitives.

All previous speed records for multiplication of integers

of up to 256 bits on AVR are achieved by algorithms with

quadratic complexity. We obtained our speed records by op-

timizing the Karatsuba multiplication algorithm for the AVR

2 Michael Hutter and Peter Schwabe

ATmega architecture. We do not claim novelty for any par-

ticular technique we used. What is new is the combination of

techniques and careful hand-optimization of multiprecision

multiplication for AVR ATmega microcontrollers.

Notes on the naming. While working on this paper we ob-

served that the term “schoolbook multiplication” has a dif-

ferent meaning for different people and in different contexts.

Sometimes, it only refers to operand-scanning multiplica-

tion. Other techniques with quadratic complexity, such as

product-scanning multiplication, hybrid multiplication [8],

or operand-caching multiplication [11] are not considered to

be “schoolbook”. For an example of this naming conven-

tion, see [11, Section 3]. However, when distinguishing mul-

tiplication algorithms with different asymptotic complexi-

ties, “schoolbook multiplication” is often used to refer to any

quadratic-complexity algorithm. See, for example, [8, Sec-

tion 3]. To avoid confusion we avoid the term “schoolbook

multiplication” throughout this paper.

It is common to refer to the product-scanning technique

as “Comba multiplication”, and to give credit to a 1990 pa-

per by Comba [3]. See, for example, [5,11,21]. However,

the technique has earlier been described (without a claim

of novelty) by Barrett in [1, Diagram three]. The method

has in fact already been described by Leonardo Pisano (Fi-

bonacci) in his work “Liber Abaci” from 1202; see [24,

Chapter 2]. Swetz in [25, Chapter 4] states that the “cross

method of multiplication” can be traced back to the Lı̄lāvatı̄

by Bhāskara from 1150, but we were not able to confirm this

in the English translation by Patwardhan, Naimpally, and

Singh [19]. We will use the term “product-scanning multi-

plication”.

Related work. Many results exist on fast multiprecision mul-

tiplication on embedded processors, often in the context of

modular arithmetic and elliptic-curve cryptography. Some

papers also consider the Karatsuba technique for multipli-

cation on embedded processors. For example, Großschädl,

Avanzi, Savaş, and Tillich use the Karatsuba technique for

fast and energy-efficient multiplication of 512-bit and larger

integers on StrongARM [7]; Gouvêa and López use Karat-

suba for 256-bit multiplication on the MSP430 [5]; Gouvêa,

Oliveira, and López use it for fast 256-bit multiplication on

the MSP430X [6].

On AVR ATmega microcontrollers the state of the art in

multiplication of integers of up to 256 bits has consistently

been held by algorithms with quadratic complexity. Until

2004 the fastest known algorithm was product-scanning mul-

tiplication. For inputs of size larger than 96 bits this changed

with the introduction of hybrid multiplication by Gura, Pa-

tel, Wander, Eberle and Chang Shantz in [8]. This algorithm

was later improved by Scott and Szczechowiak in [21]. The

next milestone in optimizing multiprecision multiplication

on AVR was the best paper of CHES 2011 by Hutter and

Wenger that introduced operand caching multiplication [11].

The results of that paper were slightly improved in two fol-

lowup papers by Seo and Kim, which introduced and op-

timized consecutive operand caching [22,23]. These papers

mark the current state of the art in multiprecision multipli-

cation on AVR ATmega microcontrollers. Note that the use

of hybrid multiplication is covered by a patent [9]; a patent

for operand-caching multiplication is pending [12].

We are aware of only two papers considering the Karat-

suba technique for multiplication of big integers on AVR

ATmega. Both papers conclude that Karatsuba multiplica-

tion is slower than quadratic-complexity multiplication al-

gorithms for input sizes commonly used in elliptic-curve

cryptography. In [17], Liu, Großschädl, and Kizhvatov con-

sider different approaches for implementing Montgomery

multiplication including “Hybrid Karatsuba-Comba Multi-

plication (HKCM)”. They conclude in Section III.B that

“The HKCM method is faster than HSOS (and also

HFIPS) for operands exceeding 512 bits in length,

but slower in the case of 256-bit operands. [. . .] For

512-bit operands, the HKCM method achieves es-

sentially the same performance as HSOS, and both

are roughly 7% faster than HFIPS.”

Both “Hybrid Separated Operand Scanning” (SOS) and “Hy-

brid Finely Integrated Product Scanning” (HFIPS) are algo-

rithms with quadratic complexity.

In [10], we used Karatsuba for multiplication of 256-bit

integers; however, with 6686 cycles, that approach turned

out to be considerably slower than state-of-the-art operand-

caching and consecutive-operand-caching multiplication.

Availability of Software. We placed all software described

in this paper into the public domain1. We will not apply for

any patents for the techniques described in this paper.

Organization of the paper. Section 2 briefly reviews the

specifics of the AVR ATmega family of microcontrollers.

Section 3 first considers efficient approaches for small multi-

precision multiplication, then discusses different approaches

for implementing Karatsuba multiplication on AVR ATmega,

and finally derives a lower bound on the number of cycles

purely from arithmetic instructions. Section 4 describes how

we minimize the number of loads and stores in Karatsuba

multiplication for different input sizes to translate the lower

computational complexity to lower cycle counts. In Section 4.2

we present detailed performance results of our software and

compare with the best results from the literature. We con-

clude the paper and give ideas for future work in Section 6.

1 The source code is available at http://cryptojedi.org/

crypto/#avrmul and at http://mhutter.org/research/avr/#

karatsuba.

http://cryptojedi.org/crypto/#avrmul
http://cryptojedi.org/crypto/#avrmul
http://mhutter.org/research/avr/#karatsuba
http://mhutter.org/research/avr/#karatsuba

Multiprecision multiplication on AVR revisited 3

2 The AVR ATmega architecture

This paper optimizes Karatsuba multiplication for the AVR

ATmega family of 8-bit microcontrollers. Many of the tech-

niques we describe apply in a similar way on other architec-

tures, but the concrete application of these techniques and

the cost analysis is specific to the 8-bit AVR ATmega ar-

chitecture. This section briefly reviews the specifics of this

architecture that are relevant to the remainder of the paper.

Register set. The AVR has 32 registers labeled R0,. . . , R31.

The register pair (R26,R27) is aliased as X, the register pair

(R28,R29) is aliased as Y, and the the register pair (R30,R31)

is aliased as Z. These three register pairs are the only ones

that can hold the address argument of a load or store instruc-

tion. The register pair (R0,R1) is special because it holds the

output of a multiplication instruction (see below).

Memory access. All load and store instructions on the AT-

mega take 2 cycles. The LD load instruction and the ST store

instruction access memory at the address specified in their

argument (either X, Y, or Z). They can post-increment or pre-

decrement their 2-register argument for free. The LDD load

instruction takes a constant offset to the address register as

second argument; so does the STD store instruction.

The standard way to use the stack is to use the instruc-

tions PUSH and POP. However, it is also possible to use two

IN instructions to copy the stack pointer into one of the ad-

dress register pairs X, Y, or Z and then operate on the stack

with LD/LDD and ST/STD instructions. Writing back the stack

pointer takes two OUT instructions

Arithmetic instructions. Our software makes use of only

relatively few arithmetic instructions. Most important is the

MUL instruction, which multiplies the 8-bit unsigned integers

in its two register arguments; the 16-bit result is written to

the register pair (R0,R1). The MUL instruction takes 2 cycles

and it overwrites the carry flag. Addition (ADD/ADC), sub-

traction (SUB,SBC), and exclusive or (EOR) are two-operand

instructions; one of their inputs is overwritten by the out-

put. For subtraction it is always the minuend that is over-

written. Another helpful instruction is SBCI which performs

subtraction with borrow of an immediate value from a reg-

ister. There is no equivalent “ADCI” instruction to perform

addition with carry of an immediate value. The CLR instruc-

tion sets a register to zero; the MOV instruction copies the

value in one register to another register. The MOVW instruc-

tion copies a register pair to another register pair. Note that

two adjacent registers are a register pair only if the lower

register is “even” (i.e., R0, R2, . . .). It is worth noting that

MOVW, like all other arithmetic instructions except MUL, takes

only one cycle.

Aside from the typical flags (like carry, zero, etc.), the

AVR also features a T flag, which can be used to remember

a single bit. The BST instruction stores one bit of a given

register to the T flag, the BLD instruction loads from the T

flag into one bit of a given register. It is possible to perform

conditional branches depending on the value of the T flag.

C function-call ABI. The avr-gcc function-call ABI spec-

ifies that the first three 16-bit arguments (e.g., pointers) are

passed in register pairs (R24,R25), (R22,R23), and (R20,R21).

It furthermore specifies that registers R2–R17, R28, and R29

are caller registers, and that register R1 has to be set to zero

before returning from a function. Our software follows these

conventions to make it directly usable from C code, but as in

previous papers we do not include function-call-ABI related

overhead in our cycle counts. See Section 4.2.

3 Arithmetic considerations

In this section we consider the pure arithmetic cost, i.e., ig-

noring costs for loads and stores, of Karatsuba multiplica-

tion on AVR ATmega. We start with fixing the represen-

tation of big integers and reviewing the arithmetic cost of

small multiprecision multiplications to establish a baseline.

Representation of big integers. Throughout this paper we

will represent big integers in unsigned radix-28 represen-

tation, i.e., an 8m-bit integer A is represented in m bytes

(a0, . . . ,am−1) with A = ∑
m−1
i=0 ai2

8i and ai ∈ {0, . . . ,255}.
This big-integer representation is standard for AVR through-

out the literature. We do not expect any benefits from us-

ing a signed representation or a “carry-safe” representation,

which leaves some bits on the top of each limb free to accu-

mulate carries.

Small multiprecision multiplications. Karatsuba multipli-

cation, like hybrid multiplication, constructs full-size multi-

precision multiplication from blocks of smaller multiplica-

tions. The block sizes that are most relevant for this paper are

24×24 bits, 32×32 bits, 40×40 bits, and 48×48 bits. One

obvious way to handle those “small multiprecision” multi-

plications is to use operand scanning or product scanning.

However, this is not optimal as demonstrated in the context

of inner-loop optimization for the hybrid multiplication by

Lederer, Mader, Koschuch, Großschädl, Szekely, and Tillich

in [15], by Liu, Großschädl, and Kizhvatov in [17], and most

recently by Liu and Großschädl in [16].

For 32× 32-bit multiplication we adapted the technique

described in [16, Section 3.1] for multiplication (the orig-

inal algorithm performs multiply-accumulate). Inspired by

this technique we wrote similar routines for 24× 24-bit, for

40× 40-bit, and for 48× 48-bit multiplication. Table 1 lists

instruction and cycle counts for those small multiplications;

the corresponding code listings are in Appendix B. Note that

our routines are slightly different from the one by Liu and

Großschädl in the sense that they can be seen as tweaked

operand scanning. We assume that inputs are already loaded

4 Michael Hutter and Peter Schwabe

Table 1 Instruction and cycle counts for small multiprecision multi-

plications without loads and stores. Corresponding counts of fully un-

rolled product-scanning multiplication are listed in parentheses.

Input size MUL ADD/ADC MOV (W) CLR cycles

24×24 bits 9 17 4 3 42

(9) (22) (1) (5) (46)

32×32 bits 16 35 6 3 76

(16) (43) (1) (7) (83)

40×40 bits 25 58 8 2 118

(25) (70) (1) (9) (130)

48×48 bits 36 83 15 2 172

(36) (103) (1) (11) (187)

to registers and that outputs are also kept in registers. The

cost for loads and stores depends on the context in which

these multiplication blocks are used.

We do not claim speed records for these small multi-

plications, although we are not aware of any faster results.

We would expect that there exist thoroughly optimized rou-

tines for these input sizes that are in the range of standard C

data types. We were surprised to find the currently fastest ap-

proach somewhat “hidden” as an inner-loop optimization of

big-integer hybrid multiplication in a paper on Montgomery

modular multiplication.

Note that the optimized small multiprecision multipli-

cations need slightly more live registers than fully unrolled

product-scanning multiplications. Whether they are better

than product scanning or not depends on the context, i.e.,

the amount of registers that are available without spilling.

Additive vs. subtractive Karatsuba. From now on we are

considering n× n-byte multiplication, where n is even and

k = n/2. The typical way to describe Karatsuba multiplica-

tion of an n-byte integer A=̂(a0, . . . ,an−1) and and n-byte

integer B=̂(b0, . . . ,bn−1) is the following:

• Write A = Aℓ+ 28kAh and B = Bℓ+ 28kBh for k-byte in-

tegers Aℓ,Ah,Bℓ, and Bh;

• compute L = Aℓ ·Bℓ =̂(ℓ0, . . . , ℓn−1);

• compute H = Ah ·Bh =̂(h0, . . . ,hn−1);

• compute M = (Aℓ+Ah) · (Bℓ+Bh)=̂(m0, . . . ,mn); and

• obtain the result as A ·B = L+ 28k(M−L−H)+ 28nH.

We will refer to this approach as additive Karatsuba. The

problem with this approach is that the additions of two k-

byte numbers Aℓ +Ah and Bℓ + Bh produce carry bits. An

efficient way to handle multiplications by such a carry bit

during the computation of M is to perform a subtraction-

with-carry from a zero register to produce a register that is

either 0xff (if the carry is one) or zero and then compute

multiplication through an AND instruction with this register.

Subsequent accumulation of the one-byte result of such a

multiplication costs only two addition instructions (one ADD

and one ADC) instead of three instructions for two-byte re-

sults.

The problem with this approach is twofold: First the mul-

tiplications by carry bits still contribute a significant over-

head. Second the tweak to use AND instructions only works

for a single carry bit. Recursive application of Karatsuba’s

technique yields multiple carry bits which have to be han-

dled by full multiplication and accumulation. It turns out to

be more efficient to use subtractive Karatsuba:

• Write A = Aℓ+ 28kAh and B = Bℓ+ 28kBh for k-byte in-

tegers Aℓ,Ah,Bℓ, and Bh;

• compute L = Aℓ ·Bℓ =̂(ℓ0, . . . , ℓn−1);

• compute H = Ah ·Bh =̂(h0, . . . ,hn−1);

• compute M = |Aℓ−Ah| · |Bℓ−Bh|=̂(m0, . . . ,mn−1);

• set t = 0, if M = (Aℓ−Ah) · (Bℓ−Bh); t = 1 otherwise;

• compute M̂ = (−1)tM = (Aℓ−Ah)(Bℓ−Bh)
=̂(m̂0, . . . , m̂n−1); and

• obtain the result as A ·B = L+ 28k(L+H− M̂)+ 28nH.

This variant of Karatsuba avoids the carry bits in the compu-

tation of M but instead needs to compute two absolute differ-

ences |Aℓ−Ah| and |Bℓ−Bh| and one conditional negation

of M. This has to be done in constant time to make the multi-

plication routine suitable for timing-attack-protected imple-

mentations of cryptographic primitives.

Constant-time absolute differences. We compute |Aℓ−Ah|
as follows: First perform a subtraction of Aℓ − Ah which

costs k subtraction instructions. Then we use a subtract-with-

carry of a register from itself to obtain a register with the

value tA = 0xff if Aℓ < Ah or tA = 0 otherwise. We then xor

tA to all k result registers of the subtraction Aℓ−Ah. If tA = 0,

this does not change anything; if tA = 0xff, this produces

the ones’ complement. We then negate tA (obtaining either

tA = 1 or tA = 0), add it to the lowest of the k registers and

ripple the carry through to obtain the two’s complement. The

whole computation costs k+ 1 SUB/SBC instructions, k EOR

instructions, one NEG instruction, and k ADD/ADC instructions

adding up to a total of 3k + 2 instructions accounting for

3k+ 2 cycles. The computation of |Bℓ−Bh| is done in the

same way. We obtain the value of t required for the condi-

tional negation of M as t = tA⊕ tB.

Constant-time conditional negation. The most obvious way

to compute L + H − M̂, given M, is to use a conditional

branch that either adds or subtracts M, depending on the

value of t. Note that the EOR instruction which we use to

compute t sets the zero flag, which we can then use for

the branch condition. On many platforms such a conditional

branch would inevitably create a timing leak. The AVR does

not have any branch-prediction mechanisms and we can bal-

ance the time taken in each of the two branches through NOP

instructions to eliminate timing leaks. We implemented this

approach and refer to it as the “branched” approach in the

following.

There are multiple reasons to avoid branches in crypto-

graphic software. In our port of NaCl to the AVR architec-

Multiprecision multiplication on AVR revisited 5

ture described in [10], we avoid all secret-data-dependent

branches primarily because of the fact that reviewing NOP-

balanced branches for timing leaks is tedious work and ar-

gued that avoiding such branches incurs only small penal-

ties. Furthermore, secret-data-dependent branches are often

an easy target for safe-error attacks. See, for example, Yen

and Joye who described these attacks in [27]. A careful anal-

ysis of different multiplication methods from a side-channel

point of view is outside the scope of this paper, but we be-

lieve that eliminating secret-data-dependent branches is gen-

erally a good practice.

An alternative, branch-free way to perform conditional

negation is to use the same technique that we used for con-

stant-time absolute differences above (without the initial sub-

traction). The additions required to convert from the ones’

complement to the two’s complement can be merged with

the additions that are required to combine the partial results;

we simply move the bit to the carry flag and replace one ADD

instruction by an ADC instruction.

We recommend the branch-free approach for applica-

tions that handle secret data and the slightly faster branched

approach for applications that do not handle secret data, e.g.,

signature verification.

Refined Karatsuba multiplication. Combining the partial

results in the last step as L+ 28k(L+H− M̂)+ 28nH looks

like two n-byte additions and one n-byte subtraction plus

rippling a carry bit to the end. However, observe that the

byte at position k of the result is obtained as rk = ℓk− m̂0 +
ℓ0 + h0; the byte at position n is obtained as rn = h0− m̂k +

ℓk+hk. What looks like 4 additions and 2 subtractions can be

reduced to 3 additions and 2 subtractions by precomputing

s = h0 + ℓk and then obtaining rk = ℓ0 + s− m̂0 and rn =
hk + s− m̂k. The same trick applies to rk+1 and rn+1 and so

on and saves a total of k additions. We learned this trick from

a Crypto 2009 paper by Bernstein [2, Section 2].

An additional advantage of refined Karatsuba is that we

can merge the additions of h0 + ℓk, h1 + ℓk+1 etc. into the

multiplication H = Ah · Bh. This is not an advantage from

the point of view of purely arithmetic cost, but it simpli-

fies register allocation as explained in Section 4. Note that

H̄ = H +(ℓk, . . . , ℓn−1) cannot overflow, the result fits into n

bytes.

However, there is also a slight disadvantage of merging

this accumulation of (ℓk, . . . , ℓn−1). The carry bit that may

result from the accumulation is immediately rippled into

hk, . . . ,hn−1. Later we add (ℓ0, . . . , ℓk−1,hk, . . . ,hn−1) into the

result with an offset of k bytes and subtract (m̂0, . . . , m̂n−1)

with the same offset. The addition may produce a carry bit c

which needs to be rippled to the end; the subtraction may

produce a borrow bit b which needs to be rippled to the

end. One can also think of this as a carry bit d = b + c

which is either 0, 1, or −1; The fact that this carry bit can

be negative is a direct consequence of merging the addi-

tion of (ℓk, . . . , ℓn−1) into the multiplication H = Ah ·Bh and

rippling the resulting carry. The non-merged computation

of (ℓ0, . . . , ℓn−1)+(h0, . . . ,hn−1)− (m̂0, . . . , m̂n−1) would al-

ways produce a non-negative carry, which can simply be rip-

pled to the end.

Merging carries and borrows. If we independently rippled

a carry bit c∈ {0,1} and a borrow bit b∈ {−1,0} to the end

of the result, we would essentially lose the arithmetic benefit

of refined Karatsuba. What we do instead is to first compute

c, then, after subtraction of (m̂0, . . . , m̂n−1), use an SBCI of

zero from c to obtain d ∈ {−1,0,1} and set the borrow bit if

and only if d =−1. We then clear another register f and per-

form an SBC from the same register to clear the content of f

and to obtain f ∈ {−1,0} depending on the value of d. Now

the register pair (d, f) contains (−1,−1), (0,0) or (1,0). In

the case of the branched-free approach, we first merge c and

b into d and then perform a MOV operation of d into f and ap-

ply an ASR instruction afterwards, which logically shifts d to

the right, resulting in f ∈ {−1,0}. After that, we can ripple

the carry to the end of the result through one addition of d

and then subsequent additions-with-carry (ADC instructions)

of f .

Putting it together. The overall arithmetic cost of (branched)

Karatsuba multiplication on AVR is thus composed of the

following parts:

• One CLR instruction to produce a zero register

• The cost of computing L (multiplication of two k-byte

integers);

• the cost of computing M (multiplication of two k-byte

integers);

• the cost of computing H̄ =H+(ℓk, . . . , ℓn−1) (essentially

the cost a k-byte integer multiplication and k addition

instructions);

• 2k+ 2 SUB/SBC instructions, 2k EOR instructions, 2 NEG

instructions, and 2k ADD/ADC instructions to compute two

absolute differences |Aℓ−Ah| and |Bℓ−Bh|;
• n+ 1 ADD/ADC instructions in order to add (ℓ0, . . . , ℓk−1,

hk . . . ,hn−1) to the result and to remember the carry bit;

• one EOR instruction to compute t and to set the zero flag

if t = 0;

• one BRNE instruction;

• if the branch is not taken (1 cycle for BRNE):

– n+ 2 SUB/SBC instructions to subtract M and to pro-

duce the carry register pair (d, f);
– one RJMP instruction (2 cycles);

• if the branch is taken (2 cycles for BRNE):

– n+ 1 ADD/ADC instructions and one CLR instruction

to add M and to produce the carry register pair (d, f);
– one NOP instruction;

• k ADD/ADC instructions to ripple the carry in (d, f) to the

end.

6 Michael Hutter and Peter Schwabe

In the example of multiplying two 48-bit integers (i.e.,

k = 3, see also Appendix A) the computation of L and M

costs 40 cycles each (cf. Table 1, the cost is slightly lower

because we can replace some CLR instructions by MOVW from

a zero register pair; this becomes more efficient for multiple

multiplications). The computation of H̄ = H + (ℓ3, . . . , ℓ5)

costs 44 cycles. Overall we obtain a cost of 169 cycles from

arithmetic (and branch) instructions. This is 18 cycles faster

than fully unrolled product-scanning multiplication and 3

cycles faster than our optimized 48-bit multiplication. Note

that the overhead from loads and stores in this case is the

same for all three approaches: 12 loads of input bytes and

12 stores of outputs; 48-bit Karatsuba multiplication does

not need any spills as detailed in Section 4. The 3-cycle gain

is small and probably of merely theoretic interest (in partic-

ular because Karatsuba multiplication requires more regis-

ters), but the gain becomes larger for bigger inputs.

4 Efficient scheduling for Karatsuba multiplication

As shown in the previous section, Karatsuba multiplication

needs fewer arithmetic instructions than, e.g., fully unrolled

product scanning already for very small input sizes. How-

ever, it is yet unclear how this arithmetic cost translates to

an overall cost including the cost for loads and stores. This

section explains our strategies to make efficient use of the

available registers and the specifics of the AVR instruction

set to keep the overhead from load and store instructions

low.

These strategies consist of two levels of optimizations.

First we use carefully tuned instruction scheduling that min-

imizes the number of live registers throughout the whole

Karatsuba multiplication. Second we use various techniques

to avoid costly loads and stores for the cases where not suffi-

cient registers are available despite smart scheduling. Some

of these techniques slightly increase the number of arith-

metic instructions; the total number of cycles required for

Karatsuba multiplication can thus not be obtained by adding

the lower bound on arithmetic instructions derived in Sec-

tion 3 to the memory-access overhead explained here. The

complete cycle counts for multiprecision multiplication on

AVR are reported in Section 4.2. All instruction counts in

this section refer to the branched variant of our software.

4.1 One level of Karatsuba

For multiplications with input sizes of 48, 64, 80, and 96

bits we use 1 level of Karatsuba. Our approach to scheduling

the computations for 1-level Karatsuba multiplication with

effects on register usage is detailed in Algorithm 1. Note that

the number of register stated in this algorithm is ignoring

some registers, specifically,

• a zero register required to accumulate carries,

• registers to hold the borrows from the subtractions in

Step 5,

• registers R0 and R1 which hold the result of multiplica-

tion instructions,

• accumulation registers in the multiplications in Steps 2, 6,

and 7,

• two registers required to ripple the carry or borrow to the

end in Step 11.

Even with these additional registers taken into account, re-

fined Karatsuba multiplication of 48-bit inputs and 64-bit

inputs does not require any load and store instructions be-

yond loading inputs once and storing the result once. What

is crucial to make this possible for the 64-bit input case is

the computation of H̄, i.e., that we accumulate (ℓk, . . . , ℓn−1)

on the fly during the multiplication Ah ·Bh. This is possible

because we use refined Karatsuba; without this approach the

6k registers would increase to 7k registers and all input sizes

starting from 64 bits would need significantly more load and

store instructions.

For 80-bit and 96-bit multiplications we cannot entirely

avoid memory access beyond loading inputs and storing the

result. In the following we describe the techniques we use to

keep the overhead from these additional loads and stores as

small as possible.

Reload ℓ0, . . . , ℓk−1. Spilling register contents to stack costs

4 cycles per register, 2 cycles for the store (PUSH) instruc-

tion and 2 cycles for the load (POP) instruction. We avoid

such spills as much as possible by re-loading values that had

to be stored anyway as part of the result stores. Specifically,

after storing ℓ0, . . . , ℓk−1 in Step 3, we can “forget” the val-

ues in the corresponding registers and reload these values

again, when they are needed in Step 8. This only costs k

load instructions and no additional stores, and reduces the

maximal amount of required registers from 6k+2 to 5k+2.

Minimize accumulation registers. The multiplications in

Steps 2, 6, and 7 need registers to accumulate the result co-

efficients. For the multiplication Aℓ ·Bℓ in Step 2 this is no

problem, because the result does not overwrite any of the

inputs and simply occupies n “fresh” registers. The opti-

mized versions of small multiprecision multiplications de-

scribed in Section 3 need two additional registers, but this

is also not a problem in Step 2. The situation is different in

Steps 6 and 7. When using unrolled product scanning, the

result coefficients of the multiplication in Step 6 can over-

write ℓk, . . . , ℓn−1 with the low half of result coefficients and

one of the inputs with the high half of the result coefficients.

The multiplication in Step 7 cannot overwrite any registers

for the low half of the result (this is why it temporarily needs

additional k accumulation registers), but can overwrite input

coefficients with the high half of the result.

Multiprecision multiplication on AVR revisited 7

Algorithm 1 Scheduling and register use for n× n 1-level Karatsuba multiplication (notation: k = n/2).

Input: A=̂(a0, . . .,an−1) and B=̂(b0, . . . ,bn−1), pointers to inputs in register pairs X,Y, pointer to output in register pair Z

Output: R← A ·B=̂(r0, . . . , r2n−1)

1: Load Aℓ and Bℓ ∈ (0, . . . ,2k−1) ⊲ 2k+6 live registers: a0, . . .,ak−1,b0, . . .,bk−1,X,Y,Z

2: Compute L← Aℓ ·Bℓ =̂(ℓ0, . . . , ℓn−1) ⊲ 4k+6 live registers: a0, . . .,ak−1,b0, . . .,bk−1, ℓ0, . . ., ℓn−1,X,Y,Z

3: Store ℓ0, . . . , ℓk−1 to r0, . . . , rk−1 ⊲ 4k+6 live registers: a0, . . .,ak−1,b0, . . .,bk−1, ℓ0, . . ., ℓn−1,X,Y,Z

4: Load Ah and Bh ⊲ 6k+2 live registers: a0, . . .,an−1,b0, . . .,bn−1, ℓ0, . . . , ℓn−1,Z

5: Compute |Aℓ−Ah| and |Bℓ−Bh| ⊲ 6k+2 live registers: 2k registers for |Aℓ − Ah| and |Bℓ − Bh|,
ak, . . .,an−1,bk, . . .,bn−1, ℓ0, . . ., ℓn−1, Z

6: Compute H̄← Ah ·Bh +(ℓk, . . . , ℓn−1) ⊲ 5k+2 live registers: 2k registers for |Aℓ − Ah| and |Bℓ − Bh|,
2k registers for H̄, ℓ0, . . . , ℓk−1, Z

7: Compute M← |Aℓ−Ah| · |Bℓ−Bh| ⊲ 5k+2 live registers: 2k registers for M, 2k registers for H̄, ℓ0, . . ., ℓk−1, Z

(temporarily need 6k+2 registers during multiplica-

tion)

8: Compute U ← (ℓ0, . . . , ℓk−1,hk, . . . ,hn−1) + H̄ ⊲ 5k+2 live registers: 2k registers for U , 2k registers for M, hk, . . .,hn−1, Z

9: Compute U ←U +M or U ←U −M ⊲ 3k+2 live registers: 2k registers for U , hk, . . . ,hn−1, Z

10: Store U to rk, . . ., rn+k−1 ⊲ k+2 live registers: hk, . . .,hn−1, Z

11: Ripple carry/borrow from Steps 8+9 through hk, . . .,hn−1 ⊲ k+2 live registers: hk, . . .,hn−1, Z

12: Store hk, . . .,hn−1 to rn+k, . . . , r2n−1

Overwriting registers that are no longer needed with re-

sult coefficients step-by-step is not possible to the same ex-

tent with the optimized small multiprecision multiplications.

We therefore often use fully unrolled product scanning in-

stead of the optimized multiplication variants in Step 6 and 7

to reduce the number of live register variables.

Using the T flag. An AVR-specific optimization is to make

use of the T flag. Specifically, the bit t = tA⊕ tB, which de-

cides whether we need to add or subtract M, does not need

to occupy a register. Instead we can use a BST instruction to

store this bit in the T flag and later use a BRTS instruction

to branch depending on the value of this bit. The branch-

free variant of our software needs to use a BLD instruction

to copy this bit back to a register. This is still cheaper than

a PUSH and a POP, because writing and reading the T flag

costs only 1 cycle each.

Memory access in 1-level Karatsuba on AVR. In total, the

48-bit refined Karatsuba multiplication needs 12 LD/LDD in-

structions, and 12 ST/STD instructions. The 64-bit multipli-

cation needs 16 LD/LDD instructions, and 16 ST/STD instruc-

tions. These instructions are precisely what is needed to load

the inputs from memory and to store the result. The 80-bit

multiplication needs 25 LD/LDD instructions, and 20 ST/STD

instructions. The 96-bit multiplication needs 42 LD/LDD in-

structions, 24 ST/STD instructions, 4 PUSH instructions, and

4 POP instructions.

4.2 Two levels of Karatsuba

For input sizes of 128, 160, and 192 bits we use two levels

of Karatsuba recursion. That means that we use the 1-level

Karatsuba multiplication routines described above as build-

ing blocks. The general strategy to perform 2-level Karat-

suba multiplication is similar to the 1-level Karatsuba mul-

tiplications but requires additional spills (PUSH and POP) to

the stack. For details of the scheduling and register use, see

Algorithm 2. The register usage in this algorithm describes

the usage after each step and ignores constant overhead; for

details inside the respective steps, see Algorithm 1.

We applied the following techniques to improve the per-

formance of 2-level Karatsuba.

Address-pointer handling. For 160 and 192-bit Karatsuba,

the input-address pointers have to be spilled to the stack in

each 1-level Karatsuba multiplication and they have to be

restored from the stack afterwards. This spilling of X and Y

is only required for the computation of L and H; after the

computation of M the input taddresses are not needed any-

more. Spilling would typically require a total of 8 PUSH and

8 POP instructions (i.e., 32 cycles); these are 4 PUSH and 4

POP instructions for each of the two 1-level Karatsuba mul-

tiplications. To improve the efficiency, we initially store the

address pointers on the stack and load them twice afterwards

using two IN, four LDD instructions, and one MOVW instruc-

tion. The LDD instructions load the pointer to A from stack

into X and the pointer to B into two temporary registers. The

MOVW instruction finally copies the pointer from the tempo-

rary registers to Y. This saves 5 cycles in total (needing 4

PUSH instructions, 2 IN instructions, 4 LDD instructions, 1

MOVW instruction, and 4 POP instructions).

We further decided to push X and Y right after the load-

ing of Ah in Step 4 in Algorithm 1. There are two reasons

for pushing the addresses at this point. First, the X registers

already point to the next input address needed in the compu-

8 Michael Hutter and Peter Schwabe

Algorithm 2 Scheduling and register use for n× n 2-level Karatsuba multiplication (notation: k = n/2).

Input: A=̂(a0, . . .,an−1) and B=̂(b0, . . . ,bn−1), pointers to inputs in register pairs X,Y, pointer to output in register pair Z

Output: R← A ·B=̂(r0, . . . , r2n−1)

1: Compute L← Aℓ ·Bℓ using Algorithm 1 ⊲ k+2 live registers: ℓk, . . ., ℓn−1, Z (X and Y are pushed on the stack in

Step 4 of Algorithm 1)

2: Load X and Y from stack (restore address pointers) ⊲ k+6 live registers: ℓk, . . ., ℓn−1, X, Y, Z

3: Compute H̄← Ah ·Bh +(ℓk, . . . , ℓn−1) using Algorithm 1 ⊲ 2 live registers: Z (for on-the-fly accumulation of ℓk, . . ., ℓn−1 into H

see correponding paragraph in Section 4.2)

4: Load X and Y from stack (restore address pointers) ⊲ 6 live registers: X, Y, Z

5: Load A and B and compute |Aℓ−Ah| and |Bℓ−Bh| ⊲ 2k+2 live registers: a0, . . .,an−1,b0, . . .,bn−1, Z

6: Compute M← |Aℓ−Ah| · |Bℓ−Bh| ⊲ 2k+2 live registers: 2k registers for M, Z

7: Load ℓk, . . . , ℓn−1 ⊲ 3k+2 live registers: 2k registers for M, ℓk, . . ., ℓn−1, Z

8: Compute Uℓ ← (ℓk, . . ., ℓn−1)±Mℓ ⊲ 3k+2 live registers: 2k registers for M, k registers for Uℓ, Z

9: Load h0, . . . ,hk−1 ⊲ 3k+2 live registers: k registers for Mh, k registers for Uℓ, h0, . . .,hk−1, Z

10: Compute Uℓ← (h0, . . . ,hk−1)+Uℓ ⊲ 3k+2 live registers: k registers for Mh, k registers for Uℓ, h0, . . .,hk−1, Z

11: Store Uℓ to rk, . . . , rn−1 ⊲ 2k+2 live registers: k registers for Mh, h0, . . . ,hk−1, Z

12: Compute Uh← (h0, . . .,hk−1)±Mh ⊲ 2k+2 live registers: k registers for Mh, k registers for Uh, Z

13: Load hk, . . .,hn−1 ⊲ 2k+2 live registers: k registers for Uh, hk, . . .,hn−1, Z

14: Compute Uh← (hk, . . .,hn−1)+Uh ⊲ 2k+2 live registers: k registers for Uh, hk, . . .,hn−1, Z

15: Store Uh to rn, . . ., rn+k−1 ⊲ k+2 live registers: hk, . . .,hn−1, Z

16: Ripple carry/borrow through hk, . . . ,hn−1 ⊲ k+2 live registers: hk, . . .,hn−1, Z

17: Store hk, . . .,hn−1 to rn+k, . . . , r2n−1

tation of H, so no additional update of the pointer is needed,

e.g., using the ADIW instruction, which would be needed if

we pushed the pointer right before the computation of L.

Second, after pushing the address on the stack, the register

X can be efficiently re-used for storing the input operands of

Bh. This avoids additional spilling of registers.

When mixing LDD with PUSH and POP, the stack pointer

needs to be corrected again at the end of the computation.

This can be done by one ADIW instruction and two OUT in-

structions.

On-the-fly accumulation. As in 1-level Karatsuba, and es-

sentially thanks to refined Karatsuba, we perform an on-the-

fly accumulation of (ℓk, . . . , ℓn−1) during the multiplication

of H = Ah ·Bh in 2-level Karatsuba. Applying this optimiza-

tion, however, is not as straight forward as in 1-level Karat-

suba, because H itself is computed using 1-level Karatsuba.

This makes the accumulation and especially the handling of

carry bits more complex.

The main idea to avoid the propagation of carry bits from

the accumulation of (ℓk, . . . , ℓn−1) into the multiplication of

Ah ·Bh in 2-level Karatsuba, is to split the accumulation into

two parts of size k/2 each. The first part (ℓk, . . . , ℓ1.5k−1) is

accumulated into (h0, . . . ,hk/2−1) and the result is stored in

memory. After that, one could accumulate the second part

(ℓ1.5k, . . . , ℓn−1) into (hk/2, . . . ,hn−1). However, this would

also add an unintended carry into hk that would also rip-

ple through hk+1, . . . ,hn−1. In order to avoid this unintended

carry propagation, we accumulate (ℓ1.5k, . . . , ℓn−1) again into

(h0, . . . ,hk/2−1), which still resides in registers. The advan-

tage of this technique is that this accumulated result is then

added correctly only once in Step 8 of Algorithm 1 and

the carry is added only once into hk/2 and ripples correctly

through hk/2+1, . . . ,hn−1.

Memory access in 2-level Karatsuba on AVR. In total, the

128-bit refined Karatsuba multiplication needs 92 LD/LDD

instructions, 50 ST/STD instructions, 2 PUSH instructions, and

2 POP instructions. The 160-bit multiplication needs 140

LD/LDD instructions, 80 ST/STD instructions, 15 PUSH in-

structions, 17 POP instructions, and 4 IN instructions to copy

the stack pointer to Y. The 192-bit multiplication needs 241

LD/LDD instructions, 108 ST/STD instructions, 46 PUSH in-

structions, 21 POP instructions, 8 IN instructions, and 2 OUT

instructions.

4.3 Three levels of Karatsuba

We implemented the 256-bit multiplication using 3-levels of

Karatsuba. Due to the high register usage of the 1-level and

2-level Karatsuba blocks there is almost no room to hold and

re-use registers. Thus, we store all results obtained from the

2-level Karatsuba multiplications in the memory and load

the values again at the end of calculation M. Also all ab-

solute differences are pushed to the stack and are popped

again during the final 2-level Karatsuba multiplication. The

obtained results for M are also pushed to the stack and are

popped again at the end of the multiplication.

Multiprecision multiplication on AVR revisited 9

Table 2 Speed and size comparison of multiprecision multiplication on AVR ATmega. All counts exclude function-call overhead.

Input size (bits)

Approach 48 64 80 96 128 160 192 256

Unrolled product scanning: cycles 235 395 595 836 — — — —

bytes 350 598 910 1288 — — — —

Operand caching [11]: cycles — — — — — 2393a 3467a 6121a

bytes — — — — — 3696a 5354a 9476a

Consecutive operand caching [22]: cycles — — — — 1532 2356 3464 6180

bytes — — — — N/A 3652 N/A N/A

(Consecutive) operand caching [23]: cycles — — — — 1523b 2341b 3437 6115

bytes — — — — 2346b 3622b N/A N/A

This paper (branched): cycles 217c 360c 522c 780c 1325d 1976d 2923d 4797e

bytes 348c 580c 828c 1228c 2228d 3222d 4602d 8022e

stack 0 0 0 4 1 19 36 58

This paper (branch-free): cycles 222c 368c 533c 800c 1369d 2030d 2987d 4961e

bytes 342c 576c 826c 1226c 2156d 3106d 4492d 7616e

stack 0 0 0 4 1 19 36 58

a Counts obtained using the online code generator
b Counts from the software we received from the authors
c One level of Karatsuba
d Two levels of Karatsuba
e Three levels of Karatsuba

In total, the 256-bit multiplication needs the following

memory instructions: 352 LD/LDD instructions, 156 ST/STD

instructions, 82 PUSH instructions, 130 POP instructions, 8

IN instructions, and 32 OUT instructions.

5 Results

This section reports cycle counts, code size, and stack us-

age for the software presented in this paper. All cycle counts

are obtained through simulation in the Atmel AVR Studio

version 5.0.1223. All multiplication routines passed tests on

1000 random inputs and passed a test with all input bytes

set to 255. These tests were performed on an ATmega2560

(Arduino MEGA development board).

Like previous papers we report cycle counts, code sizes,

and stack usage excluding the function-call cost, i.e., the

cost for CALL, RET, initial PUSH and final POP of caller reg-

isters, 3 MOVW instructions required to copy the function ar-

guments to the X, Y, Z registers, and the cost to clear register

R1 before returning from the function.

It is important to note that for small input sizes, product

scanning does not use all available registers and can avoid

some of the PUSHs and POPs of caller registers. A function

that only multiplies, e.g., two 48-bit integers and follows the

C function-call ABI for AVR will thus be faster when using

product scanning than our Karatsuba multiplication. How-

ever, the 48-bit Karatsuba multiplication will be faster if it

is used in a larger (inlined) context. See also Section 4.

A summary of our results, together with the best previ-

ous results from the literature, is presented in Table 2. All

implementations listed in this table focus on speed and are

fully unrolled. For input sizes from 48 to 96 bits we are

not aware of any results from the literature achieving better

speeds than fully unrolled product-scanning multiplication.

For those input sizes we include a comparison with fully

unrolled product scanning. For 48-bit inputs this is not op-

timal as demonstrated by our optimized multiplication rou-

tine (see Section 3 and Appendix B). We believe that also

for 64-bit, 80-bit, and 96-bit inputs, careful optimization of

quadratic-complexity multiplication can gain a few cycles

compared to fully unrolled product scanning. However, we

do not expect those gains to be larger than what we gain by

using subquadratic-complexity Karatsuba multiplication.

The software described in [11] is available through an

online code generator at http://mhutter.org/research/

avr#mulopcache. The cycle counts of the software gen-

erated by this online tool are slightly lower than the ones

reported in the paper. We compare to the improved cycle

counts. From the authors of [23], we received 128-bit and

160-bit consecutive-operand-caching multiplication routines,

which are slightly faster than the numbers listed in their pa-

per. We also compare to the improved cycle counts.

6 Conclusion and future work

In this paper we presented new speed records for multiplica-

tion of integers from 48 bits up to 256 bits on AVR ATmega.

http://mhutter.org/research/avr#mulopcache
http://mhutter.org/research/avr#mulopcache

10 Michael Hutter and Peter Schwabe

We showed that carefully optimized Karatsuba multiplica-

tion technique is more efficient than quadratic-complexity

multiplication already for much smaller input sizes than pre-

viously believed.

The most obvious future work is to apply the multiplica-

tion routines described in this paper to elliptic-curve cryp-

tography. For example, in [18], Liu, Seo, Großschädl, and

Kim use consecutive operand-caching multiplication to push

the performance boundaries for arithmetic on the NIST-P192

curve. It will be straight-forward to push the boundaries even

further by replacing consecutive operand-caching multipli-

cation by our Karatsuba multiplication routines.

Furthermore, this paper focuses on speed of multiplica-

tion routines without considering the size of the implemen-

tation. It will be interesting to investigate tradeoffs between

speed and size for Karatsuba multiplication on AVR, for ex-

ample by implementing the small multiprecision multipli-

cations at the bottom of the recursion only once and use

jumps or calls to this routine. Another direction of future

research is to examine whether the Karatsuba technique can

also speed up squaring on AVR. Finally, we hope that the

techniques described in this paper will serve as an inspira-

tion to re-examine possible performance gains from Karat-

suba multiplication for relatively small inputs on other em-

bedded platforms.

References

1. Paul Barrett. Implementing the Rivest Shamir and Adleman pub-

lic key encryption algorithm on a standard digital signal proces-

sor. In Andrew M. Odlyzko, editor, Advances in Cryptology –

CRYPTO ’86, volume 263 of Lecture Notes in Computer Science,

pages 311–323. Springer-Verlag Berlin Heidelberg, 1987. 2

2. Daniel J. Bernstein. Batch binary Edwards. In Shai Halevi, editor,

Advances in Cryptology – CRYPTO 2009, volume 5677 of Lec-

ture Notes in Computer Science, pages 317–336. Springer-Verlag

Berlin Heidelberg, 2009. http://cr.yp.to/papers.html#bbe.

5

3. Paul G. Comba. Exponentiation cryptosystems on the IBM PC.

IBM Systems Journal, 29(4), 1990. http://lyle.smu.edu/

~seidel/courses/cse8351/papers/CombaCRYPTO.pdf. 2

4. Martin Fürer. Faster integer multiplication. SIAM Journal on

Computing, 39(3):979–1005, 2009. 1

5. Conrado P. L. Gouvêa and Julio López. Software implementa-

tion of pairing-based cryptography on sensor networks using the

MSP430 microcontroller. In Nicolas Sendrier Bimal Roy, editor,

Progress in Cryptology – INDOCRYPT 2009, volume 5922 of Lec-

ture Notes in Computer Science, pages 248–262. Springer-Verlag

Berlin Heidelberg, 2009. http://conradoplg.cryptoland.

net/files/2010/12/indocrypt09.pdf. 2

6. Conrado P. L. Gouvêa, Leonardo B. Oliveira, and Julio López.

Efficient software implementation of public-key cryptography on

sensor networks using the MSP430X microcontroller. Journal of

Cryptographic Engineering, 2(1), 2012. http://conradoplg.

cryptoland.net/files/2010/12/jcen12.pdf. 2

7. Johann Großschädl, Roberto M. Avanzi, Erkay Savaş, and Stefan

Tillich. Energy-efficient software implementation of long inte-

ger modular arithmetic. In Josyula R. Rao and Berk Sunar, ed-

itors, Cryptographic Hardware and Embedded Systems – CHES

2005, volume 3659 of Lecture Notes in Computer Science, pages

75–90. Springer-Verlag Berlin Heidelberg, 2005. www.iacr.org/

archive/ches2005/006.pdf. 2

8. Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and

Sheueling Chang Shantz. Comparing elliptic curve cryptogra-

phy and RSA on 8-bit CPUs. In Marc Joye, editor, Crypto-

graphic Hardware and Embedded Systems – CHES 2004, vol-

ume 3156 of Lecture Notes in Computer Science, pages 119–

132. Springer-Verlag Berlin Heidelberg, 2004. www.iacr.org/

archive/ches2004/31560117/31560117.pdf. 2

9. Nils Gura and Lawrence A. Spracklen. Hybrid multi-precision

multiplication. United States Patent 7650374, 2010. Applica-

tion filed Nov. 23, 2004, http://www.freepatentsonline.com/

7650374.html. 2

10. Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR mi-

crocontrollers. In Amr Youssef and Abderrahmane Nitaj, ed-

itors, Progress in Cryptology – AFRICACRYPT 2013, volume

7918 of Lecture Notes in Computer Science, pages 156–172.

Springer-Verlag Berlin Heidelberg, 2013. http://cryptojedi.

org/papers/#avrnacl. 2, 5

11. Michael Hutter and Erich Wenger. Fast multi-precision multi-

plication for public-key cryptography on embedded microproces-

sors. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic

Hardware and Embedded Systems – CHES 2011, volume 6917

of Lecture Notes in Computer Science, pages 459–474. Springer-

Verlag Berlin Heidelberg, 2011. https://online.tugraz.at/

tug_online/voe_main2.getvolltext?pCurrPk=58138. 2, 9

12. Michael Hutter and Erich Wenger. Multiplication of large

operands. WIPO Patent Application WO/2013/044276, 2013. Ap-

plication filed Sep.27, 2011, http://www.freepatentsonline.

com/WO2013044276A1.html. 2

13. Anatolii Karatsuba and Yuri Ofman. Multiplication of multidigit

numbers on automata. Soviet Physics Doklady, 7:595–596, 1963.

Translated from Doklady Akademii Nauk SSSR, Vol. 145, No. 2,

pp. 293–294, July 1962. Scanned version on http://cr.yp.to/

bib/1963/karatsuba.html. 1

14. Anatolii A. Karatsuba. The complexity of computations. Proceed-

ings of the Steklov Institute of Mathematics, 211:169–183, 1995.

http://www.ccas.ru/personal/karatsuba/divcen.pdf. 1

15. Christian Lederer, Roland Mader, Manuel Koschuch, Jo-

hann Großschädl, Alexander Szekely, and Stefan Tillich.

Energy-efficient implementation of ECDH key exchange for

wireless sensor networks. In Olivier Markowitch, An-

gelos Bilas, Jaap-Henk Hoepman, Chris J. Mitchell, and

Jean-Jacques Quisquater, editors, Information Security The-

ory and Practice, volume 5746 of Lecture Notes in Com-

puter Science, pages 112–127. Springer-Verlag Berlin Hei-

delberg, 2009. http://www.cs.bris.ac.uk/~tillich/pdf/

Lederer2009Energy-EfficientImplementation.pdf. 3

16. Zhe Liu and Johann Großschädl. New speed records for Mont-

gomery modular multiplication on 8-bit AVR microcontrollers.

Cryptology ePrint Archive, Report 2013/882, 2013. https://

eprint.iacr.org/2013/882/. 3

17. Zhe Liu, Johann Großschädl, and Ilya Kizhvatov. Efficient

and side-channel resistant RSA implementation for 8-bit AVR

microcontrollers. In Proceedings of the 1st International

Workshop on the Security of the Internet of Things – SE-

CIoT’10, 2010. https://www.nics.uma.es/seciot10/files/

pdf/liu_seciot10_paper.pdf. 2, 3

18. Zhe Liu, Hwajeong Seo, Johann Großschädl, and Howon Kim.

Efficient implementation of NIST-compliant elliptic curve cryp-

tography for sensor nodes. In Sihan Qing, Jianying Zhou, and

Dongmei Liu, editors, Information and Communications Security,

volume 8233 of Lecture Notes in Computer Science, pages 302–

317. Springer-Verlag Berlin Heidelberg, 2013. http://orbilu.

uni.lu/bitstream/10993/12934/1/ICICS2013.pdf. 10

http://cr.yp.to/papers.html#bbe
http://lyle.smu.edu/~seidel/courses/cse8351/papers/CombaCRYPTO.pdf
http://lyle.smu.edu/~seidel/courses/cse8351/papers/CombaCRYPTO.pdf
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
www.iacr.org/archive/ches2005/006.pdf
www.iacr.org/archive/ches2005/006.pdf
www.iacr.org/archive/ches2004/31560117/31560117.pdf
www.iacr.org/archive/ches2004/31560117/31560117.pdf
http://www.freepatentsonline.com/7650374.html
http://www.freepatentsonline.com/7650374.html
http://cryptojedi.org/papers/#avrnacl
http://cryptojedi.org/papers/#avrnacl
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
http://www.freepatentsonline.com/WO2013044276A1.html
http://www.freepatentsonline.com/WO2013044276A1.html
http://cr.yp.to/bib/1963/karatsuba.html
http://cr.yp.to/bib/1963/karatsuba.html
http://www.ccas.ru/personal/karatsuba/divcen.pdf
http://www.cs.bris.ac.uk/~tillich/pdf/Lederer2009Energy-EfficientImplementation.pdf
http://www.cs.bris.ac.uk/~tillich/pdf/Lederer2009Energy-EfficientImplementation.pdf
https://eprint.iacr.org/2013/882/
https://eprint.iacr.org/2013/882/
https://www.nics.uma.es/seciot10/files/pdf/liu_seciot10_paper.pdf
https://www.nics.uma.es/seciot10/files/pdf/liu_seciot10_paper.pdf
http://orbilu.uni.lu/bitstream/10993/12934/1/ICICS2013.pdf
http://orbilu.uni.lu/bitstream/10993/12934/1/ICICS2013.pdf

Multiprecision multiplication on AVR revisited 11

19. Krishnaji S. Patwardhan, Somashekara A. Naimpally, and

Shyam L. Singh. Lı̄lāvtı̄ of Bhāskarācārya. Motilal Banar-

sidass Publishers, 2001. http://books.google.com/books?

id=AoX5q7JjM2kC. 2

20. Arnold Schönhage and Volker Strassen. Schnelle Multiplikation

großer Zahlen. Computing, 7(3):281–292, 1971. 1

21. Michael Scott and Piotr Szczechowiak. Optimizing multipreci-

sion multiplication for public key cryptography. Cryptology ePrint

Archive, Report 2007/299, 2007. https://eprint.iacr.org/

2007/299/. 2

22. Hwajeong Seo and Howon Kim. Multi-precision multiplication

for public-key cryptography on embedded microprocessors.

In Dong Hoon Lee MotiYung, editor, Information Security

Applications, volume 7690 of Lecture Notes in Computer Sci-

ence, pages 55–67. Springer-Verlag Berlin Heidelberg, 2012.

http://isaa.sch.ac.kr/wisa2012/%EB%85%BC%EB%AC%B8/

Session%202/1-130_Multi-precision%20Multiplication

%20for%20Public-Key%20Cryptography%20on%20Embedded

%20Microprocessors.pdf. 2, 9

23. Hwajeong Seo and Howon Kim. Optimized multi-precision mul-

tiplication for public-key cryptography on embedded micropro-

cessors. International Journal of Computer and Communica-

tion Engineering, 2(3), 2013. http://www.ijcce.org/papers/

183-J034.pdf. 2, 9

24. Laurence E. Sigler. Fibonacci’s Liber Abaci – Leonardo Pisano’s

Book of Calculation. Springer-Verlag New York, 2003. http://

books.google.com/books?id=PilhoGJeKBUC. 2

25. Frank J. Swetz. Capitalism and Arithmetic: The New Math of the

15th Century. Open Court, 1987. 2

26. Andrei L. Toom. The complexity of a scheme of functional

elements realizing the multiplication of integers. Soviet Math-

ematics Doklady, 3:714–716, 1963. www.de.ufpe.br/~toom/

my-articles/engmat/MULT-E.PDF. 1

27. Sung-Ming Yen and Marc Joye. Checking before

output may not be enough against fault-based crypt-

analysis. IEEE Transactions on Computers, 49:967–

970, 2000. http://pdf.aminer.org/001/082/827/

checking_before_output_may_not_be_enough_against_

fault_based.pdf. 5

http://books.google.com/books?id=AoX5q7JjM2kC
http://books.google.com/books?id=AoX5q7JjM2kC
https://eprint.iacr.org/2007/299/
https://eprint.iacr.org/2007/299/
http://isaa.sch.ac.kr/wisa2012/%EB%85%BC%EB%AC%B8/Session%202/1-130_Multi-precision%20Multiplication%20for%20Public-Key%20Cryptography%20on%20Embedded%20Microprocessors.pdf
http://isaa.sch.ac.kr/wisa2012/%EB%85%BC%EB%AC%B8/Session%202/1-130_Multi-precision%20Multiplication%20for%20Public-Key%20Cryptography%20on%20Embedded%20Microprocessors.pdf
http://isaa.sch.ac.kr/wisa2012/%EB%85%BC%EB%AC%B8/Session%202/1-130_Multi-precision%20Multiplication%20for%20Public-Key%20Cryptography%20on%20Embedded%20Microprocessors.pdf
http://isaa.sch.ac.kr/wisa2012/%EB%85%BC%EB%AC%B8/Session%202/1-130_Multi-precision%20Multiplication%20for%20Public-Key%20Cryptography%20on%20Embedded%20Microprocessors.pdf
http://www.ijcce.org/papers/183-J034.pdf
http://www.ijcce.org/papers/183-J034.pdf
http://books.google.com/books?id=PilhoGJeKBUC
http://books.google.com/books?id=PilhoGJeKBUC
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
www.de.ufpe.br/~toom/my-articles/engmat/MULT-E.PDF
http://pdf.aminer.org/001/082/827/checking_before_output_may_not_be_enough_against_fault_based.pdf
http://pdf.aminer.org/001/082/827/checking_before_output_may_not_be_enough_against_fault_based.pdf
http://pdf.aminer.org/001/082/827/checking_before_output_may_not_be_enough_against_fault_based.pdf

12 Michael Hutter and Peter Schwabe

A Karatsuba multiplication of two 48-bit numbers

Listing 1 Karatsuba multiplication of 48-bit integer at address X and 48-bit integer at address Y; 96-bit result is written to address Z

CLR R22
CLR R23
MOVW R12,R22
MOVW R20,R22

;--- load a0..a2 and b0..b2 ---
LD R2, X+
LD R3, X+
LD R4, X+
LDD R5, Y+0
LDD R6, Y+1
LDD R7, Y+2

;--- Compute L ---
MUL R2, R7 ;a0*b2
MOVW R10, R0
MUL R2, R5 ;a0*b0
MOVW R8, R0
MUL R2, R6 ;a0*b1
ADD R9, R0
ADC R10, R1
ADC R11, R23
MUL R3, R7 ;a1*b2
MOVW R14, R0
MUL R3, R5 ;a1*b0
ADD R9, R0
ADC R10, R1
ADC R11, R14
ADC R15, R23
MUL R3, R6 ;a1*b1
ADD R10, R0
ADC R11, R1
ADC R12, R15
MUL R4, R7 ;a2*b2
MOVW R14, R0
MUL R4, R5 ;a2*b0
ADD R10, R0
ADC R11, R1
ADC R12, R14
ADC R15, R23
MUL R4, R6 ;a2*b1
ADD R11, R0
ADC R12, R1
ADC R13, R15
STD Z+0, R8
STD Z+1, R9
STD Z+2, R10

;--- load a3..a5 and b3..b5 ---
LD R14, X+
LD R15, X+
LD R16, X+
LDD R17, Y+3
LDD R18, Y+4
LDD R19, Y+5

;--- subtract a0-a3 etc. ---
SUB R2, R14
SBC R3, R15
SBC R4, R16
; 0xff if carry, 0x00 if no carry
SBC R26, R26

;--- subtract b0-b3 etc. ---
SUB R5, R17
SBC R6, R18
SBC R7, R19
; 0xff if carry, 0x00 if no carry
SBC R27, R27

;--- absolute values ---
EOR R2, R26
EOR R3, R26
EOR R4, R26
EOR R5, R27
EOR R6, R27
EOR R7, R27
NEG R26
NEG R27
ADD R2, R26
ADC R3, R23
ADC R4, R23
ADD R5, R27
ADC R6, R23
ADC R7, R23

;--- Compute H + (l3,l4,l5) ---
MUL R14, R19 ;a0*b2
MOVW R24, R0
MUL R14, R17 ;a0*b0
ADD R11, R0
ADC R12, R1
ADC R13, R24
ADC R25, R23
MUL R14, R18 ;a0*b1
ADD R12, R0
ADC R13, R1
ADC R20, R25
MUL R15, R19 ;a1*b2
MOVW R24, R0
MUL R15, R17 ;a1*b0
ADD R12, R0
ADC R13, R1
ADC R20, R24
ADC R25, R23
MUL R15, R18 ;a1*b1
ADD R13, R0
ADC R20, R1
ADC R21, R25
MUL R16, R19 ;a2*b2
MOVW R24, R0
MUL R16, R17 ;a2*b0
ADD R13, R0
ADC R20, R1
ADC R21, R24
ADC R25, R23
MUL R16, R18 ;a2*b1
MOVW R18,R22
ADD R20, R0
ADC R21, R1
ADC R22, R25

;--- Compute M ---
MUL R2, R7 ;a0*b2
MOVW R16, R0
MUL R2, R5 ;a0*b0
MOVW R14, R0
MUL R2, R6 ;a0*b1
ADD R15, R0
ADC R16, R1
ADC R17, R23
MUL R3, R7 ;a1*b2
MOVW R24, R0
MUL R3, R5 ;a1*b0
ADD R15, R0
ADC R16, R1
ADC R17, R24
ADC R25, R23
MUL R3, R6 ;a1*b1
ADD R16, R0

ADC R17, R1
ADC R18, R25
MUL R4, R7 ;a2*b2
MOVW R24, R0
MUL R4, R5 ;a2*b0
ADD R16, R0
ADC R17, R1
ADC R18, R24
ADC R25, R23
MUL R4, R6 ;a2*b1
ADD R17, R0
ADC R18, R1
ADC R19, R25

;--- add l3+h0 to h3 etc. ---
ADD R8, R11
ADC R9, R12
ADC R10, R13
ADC R11, R20
ADC R12, R21
ADC R13, R22
;store carry in R23
ADC R23, R23

;--- load sign bit ---
EOR R26, R27
BRNE add_M

;subtract M
SUB R8, R14
SBC R9, R15
SBC R10, R16
SBC R11, R17
SBC R12, R18
SBC R13, R19
SBCI R23, 0
SBC R24, R24
;R23:R24 is -1, 0, or 1
RJMP final

add_M:
ADD R8, R14
ADC R9, R15
ADC R10, R16
ADC R11, R17
ADC R12, R18
ADC R13, R19
CLR R24
ADC R23, R24
NOP ; constant time

final:
STD Z+3, R8
STD Z+4, R9
STD Z+5, R10
STD Z+6, R11
STD Z+7, R12
STD Z+8, R13

;--- ripple carry ---
ADD R20, R23
ADC R21, R24
ADC R22, R24

STD Z+9, R20
STD Z+10, R21
STD Z+11, R22

Multiprecision multiplication on AVR revisited 13

B Small multiprecision multiplications

Listing 2 Optimized multiplication of two 24-bit integers,

input A in registers R2,R3,R4; input B in registers R7,R8,R9;

result in registers R12,R13,R14,R15,R16,R17.

CLR R23

MUL R2,R9
MOVW R14, R0

MUL R2,R7
MOVW R12, R0

MUL R2,R8
ADD R13,R0
ADC R14,R1
ADC R15,R23

CLR R16
LD R2, X+

MUL R3,R9
MOVW R24,R0

MUL R3,R7
ADD R13,R0
ADC R14,R1
ADC R15,R24
ADC R25,R23

MUL R3,R8
ADD R14,R0
ADC R15,R1
ADC R16,R25

CLR R17

LD R2, X+
MUL R4,R9
MOVW R24,R0

MUL R4,R7
ADD R14,R0
ADC R15,R1
ADC R16,R24
ADC R25,R23

MUL R4,R8
ADD R15,R0
ADC R16,R1
ADC R17,R25

Listing 3 Optimized multiplication of two 32-

bit integers, input A in registers R2,R3,R4,R5; in-

put B in registers R7,R8,R9,R10; result in registers

R12,R13,R14,R15,R16,R17,R18,R19.

CLR R23

MUL R2,R9
MOVW R14, R0

MUL R2,R7
MOVW R12, R0

MUL R2,R8
ADD R13,R0
ADC R14,R1
ADC R15,R23

MUL R3,R10
MOVW R16,R0

CLR R18
MUL R2,R10
MOVW R24,R0

MUL R3,R7
ADD R13, R0
ADC R14, R1
ADC R15, R24
ADC R25, R23

MUL R3,R8
ADD R14,R0
ADC R15,R1
ADC R25, R23

MUL R4,R10
ADD R16,R25
ADC R17,R0
ADC R18,R1

CLR R19
MUL R4,R9
MOVW R24,R0

MUL R4,R7
ADD R14, R0
ADC R15, R1
ADC R16, R24
ADC R25, R23

MUL R3,R9
ADD R15,R0
ADC R16,R1
ADC R25, R23

MUL R5,R10

ADD R17,R25
ADC R18,R0
ADC R19,R1

MUL R5,R8
MOVW R24,R0

MUL R4,R8
ADD R15, R0
ADC R24, R1
ADC R25, R23

MUL R5,R7
ADD R15, R0
ADC R24, R1
ADC R25, R23

MUL R5,R9
ADD R16, R24
ADC R0, R25
ADC R1, R23
ADD R17, R0
ADC R18, R1
ADC R19, R23

Listing 4 Optimized multiplication of two 40-bit in-

tegers, input A in registers R2,R3,R4,R5,R6; input

B in registers R7,R8,R9,R10,R11; result in registers

R12,R13,R14,R15,R16,R17,R18,R19,R20,R21.

CLR R18
CLR R19
MOVW R20, R18

MUL R2, R9
MOVW R14, R0

MUL R2, R7
MOVW R12, R0

MUL R2, R8
ADD R13, R0
ADC R14, R1
ADC R15, R21

MUL R2, R11
MOVW R16, R0

MUL R2, R10
ADD R15, R0
ADC R16, R1
ADC R17, R21

MUL R3, R9
MOVW R24, R0

MUL R3, R7
ADD R13, R0
ADC R14, R1
ADC R15, R24
ADC R25, R21

MUL R3, R8
ADD R14, R0
ADC R15, R1
ADC R25, R21

MUL R3, R11
ADD R16, R25
ADC R17, R0

ADC R18, R1

MUL R3, R10
ADD R16, R0
ADC R17, R1
ADC R18, R21

MUL R4, R9
MOVW R24, R0

MUL R4, R7
ADD R14, R0
ADC R15, R1
ADC R16, R24
ADC R25, R21

MUL R4, R8
ADD R15, R0
ADC R16, R1
ADC R25, R21

MUL R4, R11
ADD R17, R25
ADC R18, R0
ADC R19, R1

MUL R4, R10
ADD R17, R0
ADC R18, R1
ADC R19, R21

MUL R5, R9
MOVW R24, R0

MUL R5, R7
ADD R15, R0
ADC R16, R1
ADC R17, R24
ADC R25, R21

MUL R5, R8
ADD R16, R0
ADC R17, R1
ADC R25, R21

MUL R5, R11
ADD R18, R25
ADC R19, R0
ADC R20, R1

MUL R5, R10
ADD R18, R0
ADC R19, R1
ADC R20, R21

MUL R6, R9
MOVW R24, R0

MUL R6, R7
ADD R16, R0
ADC R17, R1
ADC R18, R24
ADC R25, R21

MUL R6, R8
ADD R17, R0
ADC R18, R1
ADC R25, R21

MUL R6, R10
ADD R19, R0
ADC R20, R1
ADC R21, R21

MUL R6, R11
ADD R19, R25
ADC R20, R0
ADC R21, R1

14 Michael Hutter and Peter Schwabe

Listing 5 Optimized multiplication of two 48-bit inte-

gers, input A in registers R2,R3,R4,R5,R6,R7; input B

in registers R8,R9,R10,R11,R12,R13; result in registers

R14,R15,R16,R17,R18,R19,R20,R21,R22,R23,R24,R25.

CLR R20
CLR R21
MOVW R22, R20
MOVW R24, R20

MUL R2,R10
MOVW R16, R0

MUL R2,R8
MOVW R14, R0

MUL R2,R9
ADD R15,R0
ADC R16,R1
ADC R17,R25

MUL R2,R12
MOVW R18,R0

MUL R2,R11
ADD R17,R0
ADC R18,R1
ADC R19,R25

MUL R2,R13
ADD R19, R0
ADC R20, R1

MUL R3,R10
MOVW R26, R0

MUL R3,R8
ADD R15,R0
ADC R16,R1
ADC R17,R26
ADC R27,R25

MUL R3,R9
ADD R16,R0
ADC R17,R1
ADC R27,R25

MUL R3,R12
ADD R18,R27
ADC R19,R0
ADC R20,R1
ADC R21,R25

MUL R3,R11
MOVW R26,R0

MUL R3,R13
ADD R18,R26
ADC R19,R27
ADC R20,R0
ADC R21,R1

MUL R4,R10
MOVW R26, R0

MUL R4,R8
ADD R16,R0
ADC R17,R1
ADC R18,R26
ADC R27,R25

MUL R4,R9
ADD R17,R0
ADC R18,R1
ADC R27,R25

MUL R4,R12
ADD R19,R27
ADC R20,R0
ADC R21,R1
ADC R22,R25

MUL R4,R11
MOVW R26,R0

MUL R4,R13
ADD R19,R26
ADC R20,R27
ADC R21,R0
ADC R22,R1

MUL R5,R10
MOVW R26, R0

MUL R5,R8
ADD R17,R0
ADC R18,R1
ADC R19,R26
ADC R27,R25

MUL R5,R9
ADD R18,R0
ADC R19,R1
ADC R27,R25

MUL R5,R12
ADD R20,R27
ADC R21,R0
ADC R22,R1
ADC R23,R25

MUL R5,R11
MOVW R26,R0

MUL R5,R13
ADD R20,R26
ADC R21,R27
ADC R22,R0
ADC R23,R1

MUL R6,R10
MOVW R26, R0

MUL R6,R8
ADD R18,R0
ADC R19,R1
ADC R20,R26
ADC R27,R25

MUL R6,R9
ADD R19,R0
ADC R20,R1
ADC R27,R25

MUL R6,R12
ADD R21,R27
ADC R22,R0
ADC R23,R1
ADC R24,R25

MUL R6,R11
MOVW R26,R0

MUL R6,R13
ADD R21,R26
ADC R22,R27
ADC R23,R0
ADC R24,R1

MUL R7,R10
MOVW R26, R0

MUL R7,R8
ADD R19,R0
ADC R20,R1
ADC R21,R26
ADC R27,R25

MUL R7,R9
ADD R20,R0
ADC R21,R1
ADC R27,R25

MUL R7,R12
ADD R22,R27
ADC R23,R0
ADC R24,R1
ADC R25,R25

MUL R7,R11
MOVW R26,R0

MUL R7,R13
ADD R22,R26
ADC R23,R27
ADC R24,R0
ADC R25,R1

	Introduction
	The AVR ATmega architecture
	Arithmetic considerations
	Efficient scheduling for Karatsuba multiplication
	Results
	Conclusion and future work
	Karatsuba multiplication of two 48-bit numbers
	Small multiprecision multiplications

