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Abstract. This paper presents first results of the Networking and Cryp-
tography library (NaCl) on the 8-bit AVR family of microcontrollers. We
show that NaCl, which has so far been optimized mainly for different
desktop and server platforms, is feasible on resource-constrained devices
while being very fast and memory efficient. Our implementation shows
that encryption using Salsa20 requires 268 cycles/byte, authentication
using Poly1305 needs 195 cycles/byte, a Curve25519 scalar multiplication
needs 22 791 579 cycles, signing of data using Ed25519 needs 23 216 241
cycles, and verification can be done within 32 634 713 cycles. All imple-
mented primitives provide at least 128-bit security, run in constant time,
do not use secret-data-dependent branch conditions, and are open to the
public domain (no usage restrictions).

Keywords: Elliptic-curve cryptography, Edwards curves, Curve25519,
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1 Introduction

This paper describes implementations of the Networking and Cryptography li-
brary (NaCl) [4] on 8-bit AVR microcontrollers. More specifically, we describe
two different approaches, one aiming at higher speed, one aiming at smaller
memory requirements, of porting NaCl to the AVR ATmega family of microcon-
trollers. The aim of the high-speed implementation is not to achieve the highest
possible speed at all (memory-)costs for all primitives. Similarly, the aim of
the low-memory implementation is not to obtain the smallest possible footprint
without any performance considerations. The two implementations are rather
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two example tradeoffs between speed and memory footprint that we consider
reasonable and useful for various applications and different microcontrollers in
the ATmega family.

Previous NaCl optimization focused on large general-purpose server and
desktop CPUs; the “smallest” architecture targeted by previous NaCl optimiza-
tion is ARMv7 CPUs with the NEON vector-instruction set [10]. Despite this
focus on large processors, the NaCl designers claim in [4, Section 4] that

“all of the cryptographic primitives in NaCl can fit onto much smaller
CPUs: there are no requirements for large tables or complicated code”

This paper shows that this claim is actually correct.
The cryptographic primitives used by default in NaCl to provide public-key

authenticated encryption are the Curve25519 elliptic-curve Diffie-Hellman key-
exchange protocol [2], the Poly1305 authenticator [5], and the Salsa20 stream
cipher [3]. The designers of NaCl announced, that the next release of NaCl will
use the Ed25519 elliptic-curve signature scheme [7,8] to provide cryptographic
signatures. This signature scheme—as described in the original paper and as
implemented in this paper—uses the SHA-512 hash function [28].

We will put all software described in this paper into the public domain to
maximize reusability of our results3. We will furthermore discuss possibilities
for public benchmarking with the editors of eBACS [9] and XBX [35]. Currently
eBACS does not support benchmarking on AVR microcontrollers; XBX only
supports benchmarking of hash functions.

Main contribution. There exists an extensive literature describing implemen-
tations of cryptographic primitives on AVR microcontrollers and other embed-
ded processors. Some of them have been integrated into libraries that offer a set
of cryptographic functionalities, e.g., AVR-Crypto-Lib [15], TinyECC [24], Na-
noECC [32], or the AVR Cryptolibrary from Efton s.r.o. [13]. These libraries are
specifically tailored to match the specific restricted environment of the AVR.

This paper is the first to describe implementations of the entire NaCl library
on AVR microcontrollers. These include the cryptographic primitives Salsa20 [3],
Poly1305 [5], Curve25519 [2], and Ed25519 [8]. All primitives are based—in con-
trast to existing AVR libraries—on at least 128-bit security and provide new
speed records for that level of security. In addition, all functions run in con-
stant time and do not contain secret-data-dependent branch conditions. This is
important to provide a certain level of security against basic implementation at-
tacks [22,25]. In particular the implementation is protected against remote side-
channel attacks. Other cryptographic libraries for AVR do not address this issue.
Moreover, the entire library is very small in size and requires only 17366 bytes
of code, no static RAM, and less than 1350 bytes of stack memory; it therefore
fits into very resource-constrained devices such as the very small ATmega family
of microcontrollers, e.g., the ATmega32, ATmega328, and ATmega324A. Last
but not least, we present new speed records for Salsa20 on AVRs and give first

3 The software is available online at http://cryptojedi.org/crypto/#avrnacl
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results of scalar multiplication for Curve25519 and signing and verifying using
Ed25519 on AVR.

Roadmap. The paper is organized as follows. In Section 2, we briefly describe
the AVR family of microcontrollers. Section 3 describes the NaCl library and
the general approach to porting it to AVR. In Section 4, we describe the imple-
mentation of Salsa20. In Section 5, we describe the implementation of Poly1305.
Section 6 presents the implementations of Curve25519 and Ed25519 (including
SHA-512). Results, a comparison with previous work, and a discussion are given
in Section 7.

2 The 8-bit Family of AVR Microcontrollers

Atmel offers a wide range of 8-bit microcontrollers that can be mainly sepa-
rated into three groups. High-end devices with high performance (ATxmega),
mid-range devices featuring most functionality needed for the majority of ap-
plications (ATmega), and low-end devices with limited memory and processing
power (ATtiny). Typical use cases of those devices are embedded systems such
as motor control, sensor nodes, smart cards, networking, metering, medical ap-
plications, etc.

All those devices process data on 8-bit words. There are 32 general-purpose
registers available, R0-R31, which can be freely used by implementations. Some
of them have special features like R26-R31, which are register pairs used to
address 16-bit addresses in SRAM, i.e., X (R27:R26), Y (R29:R28), and Z
(R31:R30). Some of those registers (R0-R15) can also only be accessed by a
limited set of instructions (in fact only those that do not have an immediate
value as one operand).

The instruction set offers up to 90 instructions which are equal for all AVR
devices. For devices with more memory or enhanced cores, it is extended by more
than 30 additional instructions. The most important instruction for (public-key)
cryptography is multiplication. It is not available for minimal cores such as the
ATtiny or AT90Sxxxx family. But for enhanced cores like most of the ATmega
and also all ATxmega cores, it allows (signed or unsigned) multiplication of two
8-bit words within two clock cycles. The 16-bit result of the multiplication is
always stored in the register pair R1:R0. The software described in this paper
makes use of these multipliers and does therefore not support the low-end ATtiny
and AT90Sxxxx devices.

ATmega example configurations. We perform all benchmarks on an AT-
mega2560 which has a maximal clock frequency of 16MHz, a flash storage of
256KB and 8KB of RAM. Other typical configurations of ATmega microcon-
trollers are, for example, the ATmega128 with a maximal clock frequency of
16MHz, 128KB of flash storage and 4KB of RAM and the ATmega328 with a
maximal clock frequency of 20MHz, 32KB of flash storage and 2KB of RAM.

Radix-28 representation. The typical representation of integers of size larger
than 8 bits on an 8-bit architecture is to split integers into byte arrays using



radix 28. In other words, an m-bit integer x is represented as n = ⌈m/8⌉ bytes
(x0, x1, . . . , xn−1) such that x =

∑n

i=0
xi2

8∗i. We use this representation for all
integers and elements of finite fields.

3 The NaCl Library

The Networking and Cryptography library (short: NaCl; pronounced: “salt”) is a
cryptographic library for securing Internet communication [4]. It was developed
as one deliverable of the project CACE (Computer Aided Cryptography Engi-
neering) funded by the European Commission. After CACE ended in December
2010, development of NaCl continued within the VAMPIRE virtual lab [23] of
the European Network of Excellence in Cryptology, ECRYPT II [12]. The main
features of the library are the following:

Easy usability. The library provides a high-level API for public-key authen-
ticated encryption through one function call to crypto box. The receiver of
the message verifies the authentication and recovers the message through
one function call to crypto box open. A pair of a public and a private key
is generated through cryto box keypair. A similarly easy-to-use API is
offered for cryptographic signatures: A function call to crypto sign signs
a message, crypto sign open verifies the signature and recovers the mes-
sage, crypto sign keypair generates a keypair for use with this signature
scheme. Implementors of information-security systems obtain high-security
cryptographic protection without having to bother with the details of the
underlying primitives and parameters. Those are chosen by the NaCl design-
ers.

High security. The key sizes are chosen such that the security level of the
primitives is at least 128 bits. Furthermore, NaCl is the only cryptographic
library that systematically protects against timing attacks by avoiding loads
from addresses that depend on secret data and avoiding branch conditions
that depend on secret data. For further security features of NaCl see the
extensive discussion in [4, Section 3].

High speed. The cryptographic primitives chosen for NaCl allow very fast
implementations on a large variety of architectures.

No usage restrictions. The library is free of copyright restrictions. It is in the
public domain. Furthermore the library avoids all patents that the authors
are aware of. NaCl is free for download at http://nacl.cr.yp.to/.

3.1 Porting NaCl to AVRs

Reusing code. Porting a whole cryptographic library to a memory-restricted
and storage-restricted environment such as AVR microcontrollers is different
from porting each primitive in the library separately. To minimize code size we
can use some functionalities (such as big-integer arithmetic) in multiple prim-
itives. Sometimes this requires optimizing algorithm choices across primitives.

http://nacl.cr.yp.to/


For example, the Poly1305 authenticator described in Section 5 needs multiplica-
tion of 130-bit numbers; the Curve25519 key-exchange and Ed25519 signatures
described in Section 6 need fast multiplication of 256-bit (or at least 255-bit)
numbers. With the Karatsuba technique [20] we decompose the 256-bit (32×32-
byte) multiplication into two 16× 16-byte multiplications and one 17× 17-byte
multiplication. The latter one can directly be used for the Poly1305 authentica-
tor.

Secret load addresses. On all architectures targeted in previous NaCl op-
timization, loading data from an address that depends on secret data causes
timing variation that can be used by an attacker to mount a timing attack.
The reason is that memory access on all these architectures uses a hierarchy of
transparent caches; the time required for a load operation depends on whether
the requested data is in cache (cache hit) or not (cache miss). Memory access
on the AVR microcontroller is not cached, it takes a constant amount of time.
Loading data from a secret position on an AVR will not leak timing information.
Avoiding loads from secret positions incurs performance penalties, we therefore
decided to not avoid loads from secret addresses on the AVR.

Secret branch conditions. Conditional branches are an even more obvious
source for timing variation than data loads. Even if both possible branches take
the same amount of time to execute, branch conditions that depend on secret
data will leak timing information on most architectures. The reason is that
most processors use branch-prediction techniques to avoid pipeline stalls. If a
branch is predicted correctly, the branch will incur only a small or no penalty;
a mispredicted branch typically takes much more time.

AVR microcontrollers do not use any branch-prediction techniques so in prin-
ciple one can write software that does use secret branch conditions and still runs
in constant time. However, it is very tedious to review such code for constant-
time behavior and the performance benefits are relatively small. We therefore
follow the strategy of all other NaCl optimizations and avoid all data flow from
secret data to branch conditions.

Randomness generation. NaCl uses the operating-system’s random-number
generator and reads random bytes from /dev/urandom (see [4, Section 3, “Cen-
tralizing randomness”]). This is not possible on the AVR microcontroller. Our
implementation of NaCl does not contain any cryptographically secure random-
ness generator. To test the key-generation functions that require randomness
we used the deterministic randombytes function from the try-anything pro-
gram of the SUPERCOP benchmarking suite. There are two different ways to
address randomness generation on the AVR: One can use NaCl in a way that
does not require randomness by computing key pairs on an external device and
transferring them to the AVR. In NaCl, all operations except key-generation are
deterministic. See [4, Section 3, “Avoiding unnecessary randomness”].

If one needs to generate keys on an AVR microcontroller it is necessary to
include cryptographically secure randomness generation. One possible source of
randomness is, for example, the jitter of the RC oscillator as described in [18].



Message lengths. In the C interface of NaCl, message lengths are passed as 64-
bit unsigned integers (datatype unsigned long long). Addresses on the AVR
ATmega microcontrollers have only 16 bits; we therefore omit expensive arith-
metic on 64-bit integers to support messages of a length that would anyway not
fit into the addressable memory.

Benchmarking. The cycle-count numbers of the various primitives presented
in this paper have been obtained as follows. The numbers given in the following
sections are the results of cycle-accurate simulations for an ATmega2560 micro-
controller. The results given in the Section 7 (the results given in Table 1 in par-
ticular), are obtained through actual measurements on the same targeted micro-
controller. For this purpose we re-implemented the 64-bit resolution cpucycles

cycle counter included in NaCl and the eBACS benchmarking suite SUPER-
COP [9] for AVR. We combine the 8-bit and the 16-bit cycle counters into one
24-bit cycle counter and increase the overall count by 224 for an overflow in-
terrupt of the higher counter. The cycle counts include an 247-cycle overhead
(284-cycle overhead for the low-area variant) for function call and reading the
64-bit cycle count; this is reported as “empty” benchmark in Table 1. We mea-
sured this overhead by subsequently calling an empty function and reading the
cycle counter many times and computing the differences of the measurements.
We also measured the overhead for reading the cycle counter without the over-
head of function calls by computing differences of subsequent readings of the
cycle counter. This overhead is 230 cycles (274 cycles for the low-area variant);
it is reported as “nothing” benchmark in Table 1.

4 Implementation of Salsa20

Salsa20 is a stream cipher which has been proposed in 2005 [3]. It has been
included in the final portfolio of the eSTREAM project initiated in 2004 by
the European Network of Excellence for Cryptology (ECRYPT). The cipher
consists of 20 rounds4 where an internal state is modified by various (logical and
arithmetic) transformations. To encrypt a message, a 32-byte key is used.

4.1 High-speed implementation

The Salsa20 stream cipher is implemented in the library functions crypto stream

and crypto stream xor. The function crypto stream only generates a pseudo-
random bitstream, the function crypto stream xor generates this stream and
xors it to a message to produce a ciphertext. The pseudorandom stream is gener-
ated in blocks of 64 bytes, each block is generated by the function crypto core.
This function first initializes a 32-byte state and starts the round calculation
afterwards. We implemented both the initialization and crypto core in as-
sembly to improve the performance in Salsa20. The functions crypto stream

4 Note that there also exist round-reduced versions of Salsa20, e.g., Salsa20/12 apply-
ing 12 rounds instead of 20.



and crypto stream xor are written in C; to save code size we implemented
crypto stream as a call to crypto stream xor with an all zero-message.

Initialization of the State. The function init core mainly consists of 7 loop
iterations where the state x (and a copy of the state j which is later added to
the cipher output) gets initialized with the 32-byte key, the 64-byte input, and
a 16-byte nonce. The initialization takes 642 clock cycles in total.

Round Calculation. The round-calculation function provides the most promis-
ing potential to increase the speed of Salsa20. It treats 64-byte blocks as 4 × 4
matrix of 32-bit words and transforms this state matrix through ten loop iter-
ations consisting of 8 quarterround function calls each (thus 80 function calls
in total). Within one quarterround function, three different 32-bit operations
(addition, bitwise addition, and rotations) are performed on either the rows or
the columns of the state x.

We implemented the following optimizations. First, we used all 32 available
registers of the AVR to avoid unnecessary storing and loading from the stack
which is costly in terms of memory and speed. For this, we passed the addresses
of the current row or column of the state in the registers R18-R25. The val-
ues of the state are then loaded into the registers R0-R15. The register pair
R17:R16 is reserved to store the 16-bit base address. It will not be modified
within the quarterround function. The remaining address registers R26-R31 are
used for fast addressing during the round transformations. They allow to implic-
itly decrement the addresses before or after a ST (store) or LD (load) instruction.
Second, the state variables are modified in-place. This means that the state is
directly modified without needing extra variables and copy instructions. Third,
we implemented shifts by 7 and 9 as cheap logical shift (LSR and LSL) and rotate-
through-carry instructions (ROR and ROL). Shifts by 13 and 18 are performed as
multiplications (MUL instruction) with the constants 25 = 32 and 22 = 4.

One quarterround function call requires 176 clock cycles in total. The en-
tire round calculation needs 15 763 clock cycles. The entire crypto stream xor

function needs 17 787 clock cycles to encrypt a 64-byte message. The code size
of Salsa20 is 1 556 bytes, including crypto stream and crypto stream xor.

4.2 Low-area implementation

For the low-area version, we looped the final addition of j at the end of the
quarterround function. The remaining assembly parts are already optimized in
terms of low area. We also used the -Os compiler flag to optimize for small code
size. With these modifications, the performance is slightly reduced by 159 clock
cycles, resulting in 17 893 clock cycles for crypto stream xor; the code size is
reduced by 426 bytes to only 1 130 bytes, i.e., by 27.38%.

5 Implementation of Poly1305

Poly1305 is a message authentication code (MAC) proposed in 2005 [5]. The
name is related to the underlying polynomial 2130−5. A messagem with variable



size n is authenticated using a (random) 32-byte one-time secret key s (and a 16-
byte nonce). The secret key s consists of two parts, each 16-bytes in length, i.e.,
s = (k, r). First, the message m is split into 16-byte blocks where each block is
padded with a 1. The resulting 17-byte chunks ci, where i ∈ [1, q] and q = ⌈n/16⌉,
are then represented as unsigned little-endian integers. After that, one addition
and one modular multiplication is performed for each chunk c resulting in the
16-byte authenticator h, i.e.,

h = (((c1 · r
q + c2 · r

q−1 + ...+ cq · r
1) mod 2130 − 5) + s) mod 2128.

5.1 High-speed implementation

The most time-consuming operation in Poly1305 is modular multiplication in
the field 2130− 5. In order to obtain high speeds, we implemented both multipli-
cation and reduction in assembly. To save code size, we implemented a 2136-bit
multiplier that is also (re)used by the Karatsuba-multiplier implementation for
Curve25519 and Ed25519 as described in Section 6.

17 × 17-byte Multiplication. There exist various ways to implement large-
integer multiplication, for example, the widely used schoolbook or Comba mul-
tiplication. On AVRs, it has been shown by various papers that a combination
of both techniques significantly helps in speeding up the computation. See, for
example, [16,24,32,34].

We followed a similar approach by breaking the 136-bit multiplication into
8 × 8-byte, 9 × 9-byte, and 9 × 8-byte multiplications and combine the partial
results within each block in a conventional schoolbook approach. The 17 × 17-
byte multiplication takes 1 882 cycles (excluding function call overhead). The
code size of the fully unrolled implementation is 2 944 bytes.

Reduction mod 2130
− 5 on AVR. We implemented modular reduction as

follows. Since the prime p = 2130− 5 is a Mersenne-like prime, we can apply fast
reduction by using simple shifts and additions only which are relatively cheap on
AVRs. Consider the integer X ∈ [0, p2) and let X = X1 · 2

130 +X0 be the result
of the multiplication. Then, we can exploit the congruence 2130 ≡ 5 and we can
add x1 ·5 to the lower part x0, i.e., X ≡ x1 ·5+x0 = x1+(x1 ≪ 2)+x0 (mod p).
Note that one of the two input operands to the multiplication in Poly1305 has
only 124 bits. Even if we assume that the other argument has full 17 bytes,
i.e., 136 bits, the result of the multiplication has at most 260 bits. After adding
x1 · 5 to x0 we obtain a number of at most 133 bits; addition with a 128-bit
number during processing of the next block yields at most 134 bits which fits
into 17 bytes and is thus safe to use as input for the following multiplication.
We therefore do not have to reduce further after adding x1 · 5 to x0.

We optimize the reduction by exploiting the gap between 2128 and 2130 − 5
on the AVR. Since we operate on radix-28, the integer X is represented as
X = X ′

1
· 2128 +X ′

0
where X ′

0
is a 128-bit integer represented as 16-byte array

and X ′

1 is an integer represented as a 17-byte array. Let X ′′

1 = 4 · ⌊X1/4⌋, i.e.,
X ′

1
with the two lowest bits set to zero. Note that 4X1 = X ′′

1
. We compute



the reduction as X0 +X ′′

1
+ X ′′

1
/4 = X0 + X ′′

1
+ (X ′′

1
≫ 2). Shifting X ′′

1
right

by one bit can done in two clock cycles per byte through a logical-shift-right
(LSR) instruction (which shifts the LSB to the carry register) and a rotate-right-
through-carry (ROR) instruction which rotates a byte by shifting the carry into
the MSB. Shifting by two bits means performing this shift twice.

5.2 Low-area implementation

For the low-area version of Poly1305, we implemented three operations in a loop,
i.e., two initializations of intermediate variables and the addition operation. For
the latter operation we simply re-used the function bigint add, which is also
used for scalar arithmetic in Ed25519. These modifications have only a slight
impact in performance (13 270 clock cycles are needed for a 64-byte message
instead of 12 525) but the code size is reduced from 1 153 bytes to only 729, i.e.,
by 36.77%.

6 Curve25519 and Ed25519

In 2006, Bernstein introduced the Curve25519 elliptic-curve Diffie-Hellman key-
exchange primitive and the corresponding high-speed software for various x86
CPUs [2]. Curve25519 uses the elliptic curve defined by the equation E : y2 =
x3 + 486662x2 + x over the field F2255−19. The scalar multiplication performed
in Curve25519 uses the x-coordinate-based differential addition introduced by
Montgomery in [27, Section 10]. The main computational effort for the scalar
multiplication are 255 so called ladder steps, 255 conditional swaps, each based
on one bit of the scalar, and one inversion in 22

255
−19. Each of the laddersteps

consists of 5 multiplications, 4 squarings, 1 multiplication with the constant
121666, 4 additions, and 4 subtractions in F2255−19.

In 2011, Bernstein, Lange, Duif, Schwabe, and Yang introduced the Ed25519
elliptic-curve digital-signature scheme and presented corresponding high-speed
software for Intel Nehalem/Westmere processors [7,8]. The signatures are based
on arithmetic on the twisted Edwards curve [6] defined by the equation E :
x2 + y2 = 1 − 121665

121666
x2y2 over F2255−19. This curve is birationally equivalent to

the Montgomery curve used in the Curve25519 key-exchange software. The main
computational effort for Ed25519 key-pair generation and signing is one fixed-
base-point scalar multiplication with a secret scalar. The main computational
effort for signature verification is one point decompression (Ed25519 stores only
the y coordinate and one bit of the x coordinate of public keys) and one double-
point scalar multiplication with public scalars. One of the two points involved
in this double-point scalar multiplication is the fixed-base-point also used in
key-pair generation and signing.

6.1 High-speed implementation

Arithmetic in F2255
−19. The computations of both Curve25519 key exchange

and Ed25519 signatures break down to operations in the field F2255−19. The most



speed-critical operations are multiplications and squarings. We decided to not
specialize squarings to save code size.

Multiplication is implemented as one level of Karatsuba multiplication, that
breaks the 32× 32-byte multiplication into two 16× 16-byte multiplications and
one 17×17-byte multiplication. Note that the latter multiplication is also used for
the Poly1305 authenticator described in Section 5. On top these multiplications,
we need two 16-byte additions, two 33-byte additions, and two 33-byte subtrac-
tions to accumulate the intermediate results. The entire 32× 32-byte Karatsuba
multiplication takes 6 868 cycles; this is slightly slower than the current state of
the art presented at CHES 2011 [19] (6 208 cycles); but we save in code size, es-
pecially for the low-area variant as described later. For the completely unrolled
high-speed version of the 32 × 32-byte multiplication, 7 184 bytes of code are
required.

Throughout the whole computation we do not reduce modulo 2255 − 19, but
instead only modulo 2256−38. Only at the very end we “freeze” the values mod-
ulo 2255 − 19. To perform modular reduction after a multiplication or squaring
we multiply the upper 32 bytes of the 64-byte result by 38 and then add those
to the lower 32 bytes. This will leave us with a 33-bit value. We multiply the
highest byte again by 38 and add the 2-byte result to the lowest two bytes and
ripple the carry through all 32 bytes. This may again produce a carry which we
multiply by 38, add to the lowest byte and carry to the second byte. Note that
this final addition of the carry bit can not produce a carry. After an addition
or subtraction we simply multiply the final carry bit by 38 and add to (or sub-
tract from) the lowest byte; then ripple through the carry and again multiply
the carry by 38 and add to the lowest byte. These reductions after multiplica-
tion and addition use fully unrolled loops. We use a separate function call to
the modular reduction after multiplication and squaring. This way we are able
to reuse the 32 × 32-byte multiplication for arithmetic on scalars in Ed25519
signature verification. Addition and subtraction in F2255−19 do not use separate
function calls to reduction. They have been also fully unrolled.

Curve25519. Our Curve25519 software uses the same sequence of 255 Mont-
gomery ladder steps and 255 conditional swaps as previous optimized implemen-
tations of Curve25519 [10,2]. The conditional swaps neither use lookups from
secret addresses nor (as previously explained) secret branch conditions; a con-
ditional swap between two values a and b depending on one secret bit s is com-
puted as two conditional moves; each conditional move is computed by first
expanding the secret bit s to an all-one or all-zero mask s and then computing
a← a XOR (s AND (a XOR b)).

The final inversion in F2255−19 is computed as exponentiation with 2255 −
20 using the same sequence of 254 squarings and 11 multiplications as [2]. We
implemented this sequence of function calls in C and used the compiler flags
-mmcu=atmega2560 -Os -mcall-prologues to translate it.

Ed25519 key-pair generation and signing. The fixed-base-point scalar mul-
tiplication in key-pair generation and signing is implemented through a signed-
fixed-window scalar multiplication with window size 4. The elliptic-curve arith-



metic uses the extended coordinates introduced in [17]. In total the fixed-base-
point scalar multiplication requires 64 table lookups, 63 additions of a precom-
puted multiple of the basepoint to a point in extended coordinates, and 252
doublings in extended coordinates. At the end of this computation we need
one inversion and two multiplications in F2255−19 to convert to affine coordi-
nates. The precomputed multiples of the base point are in an array marked as
PROGMEM. This way they do not occupy space in the data segment in RAM but
only in the (much larger) flash memory. Before performing the fixed-base-point
scalar multiplication we copy this table of precomputed points into a space on
the stack to avoid (secretly indexed) lookups from flash memory.

Ed25519 verification. We perform point decompression of the public key in
the same way as explained in [8, Section 5]. We implement the required expo-
nentiation by 2252 − 3 the same way as the inversion: A sequence of function
calls to multiplications and squarings implemented in C and compiled with the
flags -mmcu=atmega2560 -Os -mcall-prologues.

For double-scalar multiplication we apply Straus’ algorithm [31] with window-
size 1, a special case that is sometimes referred to as “Shamir’s trick”. For the
multiplication of 256-bit scalars modulo the group order we use the 32× 32-byte
multiplication and subsequent Barrett reduction [1].

SHA-512. Ed25519 signatures need a 512-bit-output hash function; the original
paper [8] uses SHA-512 but the authors comment that they “will not hesitate
to recommend Ed25519-SHA-3 after SHA-3 is standardized”. In order to pro-
vide a compatible implementation to the Ed25519 implementations currently
included in SUPERCOP [9] we also use Ed25519-SHA-512. We implemented all
speed-critical low-level functions, in particular arithmetic on 64-bit integers, in
assembly. This assembly implementation unrolls all length-8 loops. Calls to the
low-level assembly functionalities are implemented in C. Compiling this SHA-512
C code with the -O3 flag, which we use for most files in the high-speed version,
results in unacceptably large code; for SHA-512 we therefore use compiler flags
-mmcu=atmega2560 -Os -mcall-prologues.

6.2 Low-area implementation

Arithmetic in F2255
−19. The main difference in the implementation of finite-

field arithmetic for the low-area implementation is that we get rid of the 16 ×
16-byte multiplication. Instead we copy the arguments to 17-byte arrays with
leading zero byte and use the 17×17-byte multiplication. The resulting assembly
implementation of 32 × 32-byte multiplication that performs 3 calls to 17 × 17
byte multiplication and all necessary additions and copies for the Karatsuba
multiplication has a size of 3 358 bytes (53.25% less code size compared to the
high-speed version). The runtime is increased to 8 322 clock cycles.

Aside from that change we do not unroll the loops in the modular reduction
after multiplication, addition, and subtraction to further reduce code size.



Curve25519. The high-level implementation of Curve25519 is the same for the
small-area implementation as for the high-speed implementation.

Ed25519 key-pair generation and signing. For the fixed-base-point scalar
multiplication we also use a signed-fixed-window scalar-multiplication algorithm.
Instead of window size 4 (as in the high-speed implementation) we use a window
size of only 2 to save space in flash and RAM.

Ed25519 verification. The high-level implementation of verification is the
same for the small-area implementation as for the high-speed implementation.

SHA-512. SHA-512 uses almost the same code as same in the high-speed im-
plementation. The only difference is that we do not unroll the 3 length-8 loops
in the σ-transformation of SHA-256. This change slightly shrinks the code size
without significantly hurting performance.

7 Results

In this section we report benchmarks of our software and give a comparison with
previous results. As described in Subsection 3.1, the benchmarks are not obtained
in a simulator but by measuring cycles on an actual ATmega2560 microcontroller
clocked at 16MHz (on the Arduino Mega 2560 development board). Measuring
cycles incurs a certain overhead; we give this overhead as a “nothing” benchmark,
i.e., simply differences of subsequent readings to the cycle counter. The reported
numbers are the median of the cycle counts of 20 runs of the respective primitive.

We compiled all C software with avr-gcc version 4.7.2. For the high-speed
implementation we used compiler flags -mmcu=atmega2560 -O3 where not oth-
erwise reported; for the low-area implementation we used the compiler flags
-mmcu=atmega2560 -Os -mcall-prologues. Our implementation does not use
any space in the data segment and no dynamic memory allocation; so RAM is
only used by the stack5. We measured stack space by writing a canary value
to the whole stack before running the actual function; then reading later how
many of the canary bytes have been overwritten. Reporting code sizes for indi-
vidual primitives does not make much sense because of large portions of code
that is shared between the primitives (for example Curve25519 and Ed25519
share the code for field arithmetic in F2255−19). Instead, we report the code
size (i.e. required space in the flash memory) for both implementations of the
whole library. These sizes were obtained with avr-size from GNU binutils version
2.20.1.20100303. Our results are summarized in Table 1.

Comparison with Related Work. To the authors’ knowledge, there exist
three resources that present results of Salsa20 on AVR microcontrollers. Meiser
et al. [26] and Eisenbarth et al. [14] reported results of Salsa20 implemented
in C and assembly. Their fastest design needs 17 812 clock cycles for one 64-
byte message block needing 2 984 bytes of code. Their low-area variant needs

5 We observed that earlier versions of avr-gcc, for example, avr-gcc 4.5, place some
constants in the data segment; gcc-4.7 stores those constants in program memory.



Table 1. Benchmark results of NaCl on the AVR ATmega2560 microcontroller

Primitive Message bytes Cycles Stack bytes

nothing high-speed 230
low-area 274

empty high-speed 247
low-area 284

Salsa20 high-speed 8 17 076 268
64 17 787

576 155 195
1024 275 427
2048 550 243

low-area 8 17 202 273
64 17 893

576 155 981
1024 276 808
2048 552 984

Poly1305 high-speed 8 4 411 148
64 12 525

576 98 477
1024 173 685
2048 345 588

low-area 8 4 773 148
64 13 270

576 103 286
1024 182 050
2048 362 081

SHA-512 high-speed 8 536 133 689
64 535 945

576 2 656 525
1024 4 777 297
2048 9 018 552

low-area 8 607 082 669
64 606 916

576 3 012 120
1024 5 417 516
2048 10 228 019

Primitive Operation Cycles Stack bytes

Curve25519 high-speed crypto scalarmult base 22 791 580 677
crypto scalarmult 22 791 579 677

low-area crypto scalarmult base 27 926 288 917
crypto scalarmult 27 926 278 920

Ed25519 high-speed crypto sign keypair 21 928 751 1 566
crypto sign 23 216 241 1 642

crypto sign open 32 634 713 1 315
low-area crypto sign keypair 32 870 759 1 282

crypto sign 34 303 972 1 289
crypto sign open 40 083 281 1 346

NaCl implementation Code size (in bytes)

high-speed 27 962
low-area 17 366



18 400 clock cycles and 1 452 bytes of code. Both implementations need 280
bytes of RAM. There is also a C implementation of Salsa20 in the AVR-Crypto-
Lib [15] written by Daniel Otte. His implementation requires 723 clock cycles for
initializing the state and 94 476 clock cycles for encryption.

In view of elliptic-curve implementations on AVR, there exist many results
presented for example in [16,21,33,34]. Most of these results are hard to compare
since the implementations differ in various ways such as in the size of the un-
derlying finite field, the used ECC group formulas, the multiplication technique
(both in terms of group and field arithmetic), and additionally implemented
higher-level protocols (e.g., hash functions, signing and verifying of messages,
random number generation, ...). For example, one of the first who reported the
performance of ECC on an ATmega128 are Gura et al. [16] who presented their
results at CHES 2004. They implemented ECC using the NIST standardized
curves over the prime fields Fp160, Fp192, and Fp224. Their implementation needs
17.52 million clock cycles for a single scalar multiplication on the curve over
Fp224. Uhsadel et al. [33] reported around 10 million cycles for a 160-bit scalar
multiplication.

One of the few AVR libraries that support also higher-level protocols are
TinyECC, NanoECC, or CRS-AVR010X-ECC. TinyECC has been presented by
Liu et al. [24] in 2008. The library implements ECDSA, ECDH, and ECIES on the
SECG curves over Fp128, Fp160

6, and Fp192. Signing using ECDSA-SECP160r1
needs 16 million clock cycles and 27 million cycles in addition to precompute
the base-point multiples of the implemented sliding window scalar-multiplication
method. The entire library needs between 15 492 and 19 308 bytes of code (de-
pending on the used multiplication method) and around 1 500 bytes of RAM.
The low-area variant needs 10 180 bytes of code and 152 bytes of RAM. Na-
noECC has been proposed by Szczechowiak et al. [32]. The library implements
the NIST-K163 Koblitz curve over Fp160. They reported 9.37 million clock cy-
cles for one scalar multiplication and the code size of the library is 46 100 bytes7

and the RAM usage is 1 800 bytes. There exist also another library called CRS-
AVR010X-ECC [29] that implements ECDSA and ECDH on SECG curves over
Fp160, Fp192, Fp224, and Fp256. The implementation on the curve over Fp256 needs
5 to 8 kB of code and 750 to 900 bytes of RAM. Signing using ECDSA requires
76.8 million cycles. Their high-speed implementation requires only 27.2 million
cycles with an additional memory of 16 384 bytes.

Recently, Chu et al. [11] set new speed records for a single scalar multiplica-
tion on Twisted Edwards curves on AVRs. Their implementation needs only 5.9
million clock cycles for a 160-bit curve on an ATmega128. However, the authors
aimed for high-speed without considering implementation attacks, e.g., they im-
plemented the conventional double-and-add method and used data-dependent
branch conditions which can be exploited in implementation attacks [22,25].

6 Curve secp160r1 has been used in [24] for evaluating the performance of TinyECC.
7 NanoECC is based on the MIRACLE (Multi-precision Integer and Rational Arith-
metic C/C++ Library) [30], which provides many functions and tools to implement
higher-level protocols.



Discussion. As explained in the introduction, our implementation of NaCl does
not aim at highest speed at all costs. Instead we aimed at good speeds with a
moderate RAM and ROM usage. With this paper we are hoping for feedback
from potential users of AVR NaCl telling us what the specific requirements of
their application are. For applications that require higher speeds for a specific
primitive there are various possibilities for speedups, in particular in Curve25519
and Ed25519:

– Arithmetic in F2255−19 does not use special code for squarings but instead
uses calls to the multiplication. A specialized squaring implementation would
speed up both Curve25519 and Ed25519.

– The Karatsuba multiplier used for multiplication in F2255−19 is only slightly
slower than the operand-caching multiplication presented in [19]; however,
switching to operand-caching multiplication would offer further speedups for
Curve25519 and Ed25519.

– The multiplication with the small constant 121 666 in Curve25519 is not
specialized; again we are using a call to the full multiplication. A specialized
function for multiplication with this constant would speed up Curve25519.

– Ed25519 signature verification uses Straus’ algorithm with window size 1
instead of, for example, a sliding-window algorithm that would require sig-
nificantly more RAM. If RAM usage is not a critical limitation we could thus
easily speed up signature verification.

– We do not expect users of AVR NaCl to have any use for the fast batch
verification of signatures; processing many signatures in short time is not
exactly the typical domain for embedded microcontrollers. If applications
benefit from fast batch verification and are willing to spend some space in
RAM, we could also include the fast batch verification based on the Bos-
Coster multi-scalar-multiplication algorithm described in [8, Section 5].
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