Designing an ASIP for Cryptographic Pairingsover Barreto-Naehrig Curves

David Kammlet, Diandian Zhant, Peter Schwalie
Hanno ScharwaechterMarkus Langenbefg Dominik Auras,
Gerd Ascheid, Rainer Leupers Rudolf Mathat, Heinrich Mey¥

* Institute for Integrated Signal Processing Systems (ISS),
RWTH Aachen University, Aachen, Germany
Email: kam er @ ss. r wt h- aachen. de

T Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, Nethesapreviously at
Email: pet er @r ypt oj edi . org
! Institute for Theoretical Information Technology (T1),
RWTH Aachen University, Aachen, Germany

Email: mat har @i . r wt h- aachen. de

Abstract

This paper presents a design-space exploration of an agimic-specific instruction-set
processor (ASIP) for the computation of various cryptodpiagpairings over Barreto-Naehrig
curves (BN curves). Cryptographic pairings are based oiptadl curves over finite fields—in
the case of BN curves a field, of large prime orderp. Efficient arithmetic in these fields is
crucial for fast computation of pairings. Moreover, comgtidn of cryptographic pairings is
much more complex than elliptic-curve cryptography (EQCyéneral. Therefore, we facilitate
programming of the proposed ASIP by providing a C compiler.

In order to speed ufy,-arithmetic, a RISC core is extended with additional fumatil units.
The critical path delay of these units is adjusted to the karshitecture in order to maintain
the operating frequency. Independently from that adjustithese units are scalable allowing
for a trade-off between execution time and area consumpBecause the resulting speedup
can be limited by the memory throughput, utilization of iplét data memories is proposed.
However, developing a C compiler for multiple memories ihallenging task. Therefore, we
introduce an enhanced memory system enabling multipleucte@t memory accesses while
remaining totally transparent to the C compiler.

The proposed design needs 15.8 ms for the computation ofilim&-Ate pairing over a
256-bit BN curve at 338 MHz implemented with a 130 nm standalidibrary. The processor
core consumes 97 kGates making it suitable for the use in @éudelesystems.

Index Terms

Application-specific instruction-set processor (ASIPgsidn-space exploration, pairing-
based cryptography, Barreto-Naehrig curves, elliptiexaicryptography (ECC)F,-arithmetic.

This work has been supported by the UMIC Research Centre,lRWachen University. The third author was supported by the
European Commission through the ICT Programme under Gur€d—2007-216499 CACE. Permanent ID of this document:
7e38974d56cc76a7f572f328ee4al3761. Date: Feb 5, 2009

1. Introduction

Pairings were first introduced to cryptography as a meansdakbcryptographic protocols based on
the elliptic-curve discrete-logarithm problem (ECDLP),[[R]. Joux showed in 2000 that they can also be
used constructively for tripartite key agreement [3]; othpplications such as identity based encryption
[4] and schemes to generate short digital signatures [5¢ lsabsequently been introduced.

Cryptographic pairings are based on elliptic curves. Totrheth, security requirements and computa-
tional feasibility, only elliptic curves with special pregies can be considered as basis for cryptographic
pairings. For the 128-bit security level, the best knowrvearare 256-bit Barreto-Naehrig curves (BN
curves), introduced in [6]. Fast arithmetic on these cudeands for fast finite field arithmetic in a
field IF,, of prime orderp, wherep is determined by the curve construction. Additionally, treiety
and complexity of pairing applications demand for a flexiated programmable solution. Application-
specific instruction-set processors (ASIPs) are a progisandidate to find a good trade-off between
these contradicting demands of speed, flexibility and edggagrammability.

This paper shows a design-space exploration of an ASIP fsingacomputations over BN curves.
The design does not target maximum speed at the cost ofrséiocea. Instead, we describe how to trade
off execution time against area making the ASIP suitableufs in the embedded domain. Dedicated
functional units are introduced that speed up gen&ahrithmetic. Their critical path delay can be
modified in order to be integrated with any existing RISGlilirchitecture without compromising its
clock frequency. Independently from that adjustment, ¢hesits are scalable allowing for a trade-off
between execution time and area consumption. The scaliiigentes the number of cycles required
for a certain operation, but does not require any modificatm the special instruction triggering it.
Therefore, the same software can be used regardless of ldwesksize of the extensions. We show
that the speedup from the special functional units is lichiby a memory system with a single memory
port. Hence, we introduce a memory system utilizing mutiplemories. However, due to the resulting
segmentation of the memory space this approach makes gevein of a C compiler a challenging
task. As complexity of cryptographic pairings demands faoavenient programming model we address
this issue by introducing an enhanced memory system whitbtadly transparent to the C compiler by
hiding the memory space segmentation from the instruct&inhe number of attached memories can
thus be altered without changing the C compiler, the dewsgoftware or even the processor pipeline
including the newly introduced special functional units A result, the proposed ASIP offers a flexible
and scalable implementation for pairing applications.

We are—up to our knowledge—the first to implement and timerapgtete implementation of crypto-
graphic pairings achieving a 128-bit security level on datid specialized hardware.

We would like to thank Jia Huang for supporting the impleraginh. We furthermore thank Daniel J.
Bernstein, Tanja Lange, Ernst Martin Witte and Filippo Boghi for suggesting many improvements to
our explanations.

Related work. Several architectures for the computation of cryptographirings have been proposed
in the literature [7]-[19]. All these implemenations us@aisingular curves over fields of characteristic
2 or 3. This choice, together with the choice of the undegyiields, yields security levels far below
128 bit. A comparative overview over these architecturegivien in [7].

Barenghi et al. recently proposed a hardware architectorecifyptographic pairings using curves
defined over fields of large prime characteristic [20]. Theg @& supersingular curve (with embedding
degree 2) defined over a 512-bit field and thus achieve 8Cebiirity, according to [21].

Another architecture targeting speedup of pairings anghatipg fields of large prime characteristic
has been proposed in [22]. The instruction set of a SPARC \W8qwsor is extended for acceleration

2

of arithmetic inFq-, F3~» andF,. However, the focus is put on minor modifications of the dathp
resulting in a performance gain for multiplications Iy, which is two-fold only. Our work focusses
rather on significant datapath extensions in order to aehiggh speedup for pairings in the embedded
domain.

In [23], a special public-key cryptographic processor base a SPARC CPU with special support
for ECC point multiplication inF, and[F,- is presented. The operating frequency is 1.5 GHz targeting
desktop general-purpose processors rather than the esthéddain.

The architectures closest to the one proposed in this papeacxelerating arithmetic in gener#)
for elliptic-curve cryptography (ECC) [24]-[29]. Howevyedhese designs have not been reported to be
used for complex applications like pairings. A detailed pamison with these architectures is given in
Section 4.

Some other architectures for ECC over prime fields limitrtiseipport to a prime which allows for
particularly fast modular reduction (see i.e. [30]). Thepproaches are not adequate for pairing-based
cryptography where additional properties of the ellipticv@s are required. Thus, a detailed comparison
with these architectures is omitted here.

Organization of the paper. Section 2 of the paper gives a short overview of cryptogm@aphirings
and Barreto-Naehrig curves. Section 3 describes our approfian ASIP suitable for pairing computa-
tion. In Section 4 we discuss the results. We futhermore givemparison with specialized hardware
targeting acceleration of elliptic-curve scalar mulialiion on curves defined over fields of large prime
characteristic described in the literature. The paperti€lcmed and future work is outlined in Section 5.

2. Background on cryptographic pairings

We only give a short overview of the notion of cryptographarimgs, a comprehensive introduction
is given in [31, chapter IX].

For three groupg~;, G2 (written additively) andGs (written multiplicatively) of prime orden- a
cryptographic pairing is a map: G; x Gy — Gj3, with the following properties:

o Bilinearity:

e(kP,Q) = e(P,kQ) = e(P,Q)* for k € Z.

o Non-degeneracy:

For all nonzeroP € G there exists) € G5 such thate(P, Q) # 1 and
for all nonzero@ € G5 there existsP € 7 such thate(P, Q) # 1.

o Computability:

There exists an efficient algorithm to compute?, Q) given P and Q.

We consider the following construction of cryptographidripgs: Let E be an elliptic curve defined
over a finite fieldF, of prime order. Let- be a prime dividing the group ordgtE(F,) =n=p+1—1t
and letk be the smallest integer, such thaftp* — 1. We callk the embedding degree & with respect
to r.

Let Py € E(F,) andQo € E(F,+) be points of order such thatQ, ¢ (), let O € E(F,) denote
the point at infinity. Defingz; = (Fy) and Gy = (Qo). Let G3 = u,. be the group of--th roots of unity
in F*,.

Fgrz’ € Z and P € E a Miller function [32] is an elemenf; p of the function field of £, such that
the principal divisor off; p is div(f; p) = i(P) — ([i]P) — (i — 1)O.

Using such Miller functions, we can define the map

es: G1 X Gy — JT (P’ Q) — fs,P(Q)(pk_l)/r,

For certain choices of the mape, is non-degenerate and bilinear. ko r we obtain the reduced-Tate
pairing 7 and fors =T =t — 1 we obtain the reduced-Ate pairing by switching the arguments [33].
Building on work presented in [34], Vercauteren introdutlee Optimal-Ate pairing in [35] which for
BN curves can be computed usiage v/t and a few additional computations (see also [36]).

Using twists of elliptic curves we can further define the gatired reduced; pairing [33], [37]. In [38]
a method to compute the Tate ap@airing keeping intermediate results in compressed forimtisduced.
We refer to the resulting algorithms as Compressed-TateCamdpressedr pairing, respectively.

2.1. Choice of an Elliptic Curve

For cryptographic protocols to be secure on the one hand femgairing computation to be com-
putationally feasible on the other hand, the elliptic cuAJfemust have certain properties: Security of
cryptographic protocols based on pairings relies on thdress of the discrete logarithm problemda,

Gy and Gis. For the 128-bit security level, the National Institute dai&lards and Technology (NIST)
recommends a prime group order of 256 bit fo(lF,,) and of 3072 bit for the finite field,. [21].

Barreto-Naehrig curves, introduced in [6], are elliptiacas over fields of prime order with embed-
ding degreek = 12. The group orden = r of E(F,) is prime by construction, the valugsandn can
be given as polynomial expressions in an integexs follows:

p = p(u) = 36u? + 36u> + 24u* + 6u + 1 and
n = n(u) = 36u* + 36u> + 18u® + 6u + 1.

For our implementation we follow [39] and set = 0x6000000000001F2D, Yyielding two primesp(u)
andn(u) of [= 256 bit. The field size off,» then has256 - k = 3072 bit.

2.2. Computation of Pairings

The computation of cryptographic pairings consists of twainrsteps: the computation ¢f p(Q) for
Tate andn pairings or of f; o(P) when considering the Ate pairing and the final exponentiatidth
(* —1)/r.

The first part is usually done iteratively using variants dfiéf’s algorithm [32]. Several optimizations
of this algorithm have been presented in [40]. The resulaigprithm is often referred to as BKLS
algorithm. For BN curves even more optimizations can beiaggly exploiting the fact that such curves
have sextic twists. A detailed description of efficient cartgpion of pairings over BN curves, including
the computation of Miller functions and the final exponetntia is given in [39]. Our implementation
follows this description in large parts.

Finite field computations constitute the bulk of the pairsamputation — in software implementations
typically more thar90% of the time is spent on modular multiplication, inversioddaion and subtraction.
Throughout the pairing computation we keep points on @liptirves in Jacobian coordinates and can
thus almost entirely avoid field inversions.

Our targets for hardware acceleration are thus multiphoataddition and subtraction if,,.

3. An ASIP for Cryptographic Pairings

To implement various pairing algorithms, a programmabld Hrerefore flexible architecture is tar-
geted in this paper. Standard architectures like embedd®8@ Rores are flexible, but they are lacking
sufficient computational performance for specific applarad. Therefore, we apply the ASIP concept
to cryptographic-pairing applications in order to redube tomputation time while maintaining pro-
grammability. Development and implementation of our ASH¥d been carried out using the Processor

4

Designer from CoWare [41]. We used this tool suite for deisigithe actual architecture implementation
on register transfer level (RTL) as well as the simulator anchitecture specific software tools.

Keeping control over the data flow on the higher layers of thieipy computation, like®,.> or E(IF,2)
arithmetic, is a rather complex task. This calls for a comenprogramming model. However, on the
lower level realizing theF,-arithmetic, computational performance is of highest fitjo Therefore, we
decided to extend a basic RISC core with speéialinstructions. The available C compiler enables
convenient application development on higher levels, evilie computational intensive tasks are mapped
to dedicated specialized instructions accessible viansits'. The RISC core is a 32-bit five-stage
pipelined load-store architecture featuring a 32-bitgetemultiplier.IF,, operations are the computationally
expensive part of pairing computations. Table 1 shows theheu of these operations for the each of
the six implemented pairing applications. The low numbemgérsions does not justify the effort of a
dedicated hardware implementation. We thus target modulgtiplication as well as addition/subtraction
for hardware based acceleration.

| Application | # mod muI| # mod add/sub| # inversions|
Optimal Ate 17,913 84,956 3
Ate 25,870 121,168 2
n 32,155 142,772 2
Tate 39,764 174,974 2
Compressed 75,568 155,234 0
Compressed Tatg 94,693 193,496 0

Table 1. Number of FF,, operations for different pairing applications

Among those operations, the most challenging to implenmgefast modular multiplication, especially
for a large word width (e.g. 256 bit). In general, multiplica in F,, can be done by first multiplying the
two factors (256 bit each) and then reducing the product 1@f Bit) modulop. This might indeed be the
fastest approach, {f could be chosen of a special form as for example specifiedlihd2[42]. However,
due to the construction of Barreto-Naehrig curves (seeW&)cannot use such primes. Therefore, our
approach uses Montgomery arithmetic [43].

The large word width also raises the issue of storing the.datéypical 16x32-bit RISC register
file can store just two complete 256-bit words. Hence, notredjuired values can be kept locally in
registers. In case of a simple load-store architecturetiaddi instructions for memory accesses have to
be executed which reduces the overall performance.

3.1. Data Processing: A Scalable Montgomery-Multiplier Unit

In 1985 Montgomery introduced an algorithm for modular nplitation of two integersA and B
modulo an integeM [43]. The idea of the algorithm is to represeAtas A = AR mod M and
B as B = BR mod M for a fixed integerR > M with ged(R, M) = 1. This representation is
called Montgomery representation. To multiply two numbierdlontgomery representation we have to
computeAB = ABR™' mod M. For certain choices oR this computation can be carried out much
more efficiently than usual modular multiplication: Let ussame thafl/ is odd and lei be the bitlength
of M. ChoosingR = 2! clearly fulfills the requirements oR and allows for modular multiplication that
replaces division operations by shifts, allowing an effitirardware implementation.

1. An adoption of our code to general purpose processorgyubi@ GMP library instead of intrinsics is available from
http://cryptojedi.org/cryptol/.

In the context off,,-multiplication the modulus/ corresponds tp. All IF,, operations can be performed
in Montgomery representation. Therefore, all values cakepe in Montgomery representation throughout
the whole pairing computation.

b, b, b, b, my m, m;
t, — t,
o gFA gFA gFA gFA LSB gFA gFA gFA
| l l | o l | l
h gFA gFA gFA gFA % LSB gFA gFA gFA
I l l | o |8y, l l l
o
* gFA gFA gFA gFA "§ LSB gFA gFA gFA
| l l | ! l | l
* gFA gFA gFA gFA LSB gFA gFA gFA
| | ! |
| Adder #1 | | Adder #2 |
_ S T—
— —f Adder #3 l
! | AN
PO P1 2 P3 P4
gFA: gated —
Full Adder
FA
v

Figure 1. Montgomery-multiplier based on Nibouche et al. [44]

Nibouche et al. introduced a modified version of the Montggmmultiplication algorithm in [44]. It
splits the algorithm into two multiplication operationkat can be carried out simultaneously, and allows
using carry save (CS) multipliers. This results in a fashaecture that can be pipelined and segmented
easily. Therefore, it is chosen as basis for our developnfedix4-bit example is shown in Fig. 1.

The actual multiplication is carried out in the left half dfet architecture, while the reduction is
performed in the right part simultaneously. The left paraisonventional multiplier built of gated full
adders (gFAs), whereas the right part consists of a mdtipliith special cells for the least-significant
bits (LSBs). The LSB cells are built around a half adder (HM)eir overall delay is comparable to that
of a gFA. A more detailed description of the functionalityndae found in [44].

Due to area constraints we decided to implement only sub$éi® regular structures of the multiplier
and perform the computation in multiple cycles. Intermealieesults are stored in dedicated special
registers. The CS-based design provides the opportunityotoonly make horizontal but also vertical
cuts. In our case, the horizontal cuts are made every eight.gFhis height {7) of the multiplier
implementation is selected such that the critical pathydefathe unit is adjusted to that of the base
RISC. Due to the CS-based design the critical path of theiplielt unit depends on its height only. This
makes the desigadaptableto existing cores in terms dfming maintaining the performance of their
general instruction set. Once the height of the multiplieit is chosen, the widthi{’) can be selected
to adaptthe design to the desirembmputational performancand to trade offarea vs. execution timef
the multiplication. The number and width of required regjistto store intermediate data is independent

6

from this choice.

| cycle | partial multiplication (¥ x H-bit) | partial reduction (V" x H-bit)

to+0 | A[7: 0] x B[255 : 224]

to+1 | A[7: 0]x B[223:192]

to+7 | Al 7: 0 xB[31: (] |

to+8 | A[15: 8] x B[255 : 224] T'[7: 0] x M[255 : 224]
to+9 | A[15: 8] x B[223: 192] T'[7: 0] x M[223:192]
to+15 | A[15: 8| xB[31: 0 [T 7: 0] xM[31: 0]
to 4 248 | A[255 : 248] x B[255 : 224] T'[247 1 240] x M[255 : 224]
to 4249 | A[255 : 248] x B[223 : 192] T'[247 1 240] x M[223 : 192]
to+255 | A[255: 248] x B[31: (0] | T'[247 : 240] x M[31: 0]
to + 256 addition #1 T'[255 : 248] x M[255 : 224]
to + 257 T'[255 : 248] x M[223 : 192]
to + 263 | T'[255 : 248] x M[31 : (]
to + 264 | addition #2
to + 265 addition #3

Table 2. Time-flow example for 256-bit multi-cycle modular multiplication (W = 32, H = 8)

Multiplication and reduction are carried out simultandgssarting from the most-significant bit (MSB)
of their second operand(and M) first. However, the reduction cannot be started until tliiming data
for the LSB cells are available from the two’s complementéerefore, reduction starts after the firgt
lines of multiplication have been executed and remainsyeel&or [%] cycles (required for the computa-
tion of H lines). Table 2 shows the resulting time flow for a 256-bit miad multiplication with a 3 8-bit
unit. Eventually, the CS results need to be transformed batko’s complement number representation
(by addition #1andaddition #2 before they are combined to the resultdgdition #3 This is necessary
since the result lies in the range @fto 2A/ — 1, and requires a final comparison againgt which is
difficult to handle in CS representation. The comparisoruigiog a necessary subtraction df is per-
formed in another functional unit introduced later. Eqoiat{1) gives the number of required cycleg,,
to perform a Montgomery multiplication with the proposedltincycle architecture for the general case.

(4] 3 [2]

For evaluation, we implemented this Multi-cycle Montgom&tultiplier (MMM) in three different
sizes V' xH): 32x8 bhit, 64x8 bit and 12&8 bit, resulting in an execution time of 266, 134 and 68
cycles respectively. However, the area savings for smétad slower) architectures do not scale as
well as the execution time. This results from the increasmdpdexity of the required multiplexing for
smaller MMM units. In order to keep the amount of multiplexemall, we designed special 256-bit shift

7

registers, that enable a circular shift By bits for the operand®, M and the corresponding intermediate
CS values. This solution is suitable, since the input valresaccessed in consecutive order by blocks
of W bits. Still, area savings when scaling a X8bit architecture down to 328-bit are about 50%.

‘ T T T
Symbol: D ' ! ' |
v

Pass 256w | | Dossw 2seow | - Paw-1 w| | Pw 0]

load from memory

EV:‘;;;‘—|| T —

+ OI T T + O| T T
Pow + v v] Poe + v v]
+ “O: T T r + “O: T T r
psy + ¢ v | Pse + ¢ v |

A A ‘ A A ‘

oy b, [N S ¢ 0 m;, C, s

load 32 H Multiplication Reduction
from A f out > >t :
memory WxH bit WxH bit

31 Cout Sout H-1 Cout Sout

Figure 2. Structure of the multi-cycle Montgomery-multiplier (MMM)

Fig. 2 shows the overall resulting structure of the MMM uiiihe two’s complementer is included in
the multiplication unit while thereduction unitcontains additional LSB cells that produce input for the
gFA cells on the fly (as depicted in Fig. 1). The input shiftiségys are initialized step-by-step during
the first [%] cycles. After the whole process, the result is stored in ¢ggsters for temporary CS values
(Cary Sary Cr, Sr). The adders for the final summations are not depicted.

An advantage of stepwise executing the multiplication &t tine total multiplication width can be
configured at runtime in steps &7. The overall dependence of the execution timelas quadratic.
Modular multiplication is thus significantly faster for shes multiplication width. This may be interesting
for ECC applications that do not require 128-bit security.

Similar to the MMM unit we developedmaulti-cycle adder unifor modular additions and subtractions,
which reads two input operands block-wise and simultanigo#®r evaluation, a 32-bit and a 64-
bit version of this unit have been implemented. Details areétted here since the implementation is
straightforward. Please note that the adder unit causéehiiemand on the throughput of data than the
MMM, since an addition can be performed within much shoritet

Both, MMM and adder unitrequire a final subtraction af/ whenever the result exceeds this prime
number. A specialvriteback unittakes care of this subtraction right before writing backdh&, operating
block-wise in multiple cycles as well. This unit has been lienpented with a width of 32, 64 and 128
bit.

All three special units foF,-arithmetic are placed in the execute stage of the procegseline. During
the execution of multi-cycle operations for modular addiitisubtraction and multiplication the pipeline is
stalled. Three special instructions are implemented erigg these operations. Instruction arguments are
registers containing the starting address of each of tlee th56-bit operands. Since the moduldss not
changed during an application run, a special register ligedi and implicitly accessed by the instructions.

This register is initialized withp at the beginning of an application via another dedicatetfuogon.
3.2. Data Access. An Enhanced Memory Architecture

Special instructions with high computational performacea result in high throughput demands for
the memory system. In case of the proposed ASIP, espediedlyniodular addition/subtraction on 256-
bit operands requires a throughput higher than one 32-bitlvper cycle. The following two evident
mechanisms to increase memory throughput for ASIP desigasat well suited here: First, using
memories with multiple ports is costly. The number of posslimited to two for SSRAMs and the
required area is roughly doubled. Second, designing a deicsystem with several (often specialized)
memories targets highest performance, but is a complex Td#k data memory space gets segmented
irregularly, making it difficult to access and manage for anpder.

Due to the drawbacks of these two approaches we apply addifféechnique, which we would like
to introduce adransparent interleaved memory segmentation (TIMiS)basic principle is to extend the
number of ports to the memory system in order to increasehtmghput. TIMS splits the memory
into regular blocks, which can be selected on the basis ofeaddbits and accessed in parallel. In
case of our ASIP, the LSBs of the address are used for the nyelnhmek selection. This results in an
addressing scheme, where the memory block is selected tylatihg the address modulo the number of
memoriesmy, which has to be a power of two. Because of its fairly simplehagisms and regularity,
the distribution of accesses to the memory system can bedahefficiently at runtime by a dedicated
hardware block, thenemory-access unit (MAUWFig. 3).

= address / control ezizl data data
memory memory | __ | memory
—> data 1 2 m,
4 A4
W
program
parallel e potentially
accesses : X paraIIeI
[A requests
IIIII L] AL ‘E‘
PF FE DC EX§ v ¥ WB

address multi-cycle
calc modular v
@q mul / add FZbit
store |\ load

Figure 3. TIMS implementation with MAU

Memory accesses are requested concurrently by the pipetindemand resulting in multiple inde-
pendent read or write connections (unidirectional) betwpieline and MAU. The MAU takes care
of distributing these requests and granting accessesefiiner a simple handshaking protocol is used
between pipeline and MAU, which is able to confirm a requeghiwithe same cycle in order not to
cause any delay cycles when trying to access the fast SSRAMs.

One advantage of this mechanism is the fact, that from thgppetive of the core, the memory space
remains unchanged, regardless of the number of attachedrnesmExisting load and store instructions
are sufficient to access the whole data memory space. Evem sgeeial instructions perform concurrent

9

memory accesses, a modification in the memory system (eamgaing number of attached memaories)
does not result in a change of the core, if the pipeline isgiesl properly. This enables orthogonal
implementation and modification of the base architectuigk the memory system.

connection to

connection to

8 memory 1 memory 2
'3 %] %]
£ 23 28
g gsgs TS 8 g
€ cCom © cC o m ®
o ® ® T T ® ® T T
e 4 4 \ 4 4 A
; /’ a’/’ | /’ /’/’
wemer [1L 1] i1
Access
Unit
A W & [
HH H H
address | |read data| |write data| Access

= ETED

IN

1 2
ATl AT Al ATl
???? ll i‘t ?:I ?:u ?':n?i=|
=EEE (L T L B R |
g = . I I I =]
iy iy Vliv lliy
A T A AT A T A AT
1 ’ 1 | |2 + 1. 3? t 1 4? t 1.
P 3 P 3 . ¥ . > 3
. X 1 . 4 1 . 2 4 1 . 2 4 1
1 L 227 1 v 1 1/ L 227 1 1/ v
O nw § F L v @ E L > T = O > 0 @ ¥
2 2 8§85 S 455 s 8355 s£ 8385
= T = T = T < T & © O = T % T O & T =
8_ c © o c © o c & O (o)) c & O o
8 o T [} o & B o & B
Q. [© © ©
[}
= read connection write connection read connection write connection
static priority static priority dynamic priority dynamic priority

communication schemes between MAU and pipeline

Figure 4. Interconnect of memory-access unit (MAU)

Of course, memory-access conflicts can occur when simultenaccesses refer to the same memory.
Therefore, a priority based resolution of access conflistariplemented in the MAU in two ways.
Static priorities can be used if certain accesses always haher priority than others. For instance
write accesses from later pipeline stages should always h@her priority than read accesses from
prior stages. When the priority is changing at runtime, dyitapriority management is required. Then,
dedicated additional communication lines between core AU indicate a change of priority. In our
design this is required for the accesses fromdtder unit

Fig. 4 depicts the four different connection schemes betwdAU and pipeline. The number and
type of connections between MAU and pipeline are determimethe number and type of independent
memory accesses initiated by the pipeline, while the nunob@ctual memory connections depends on
the number of attached data memorieg (m,; = 2 in this example). For sake of clarity, the actual
interconnections within the MAU have been omitted in Fig.Tée access-controblock combines the
enableand priority signals with thelog,(m,4) LSBs of theaddresssignals from the read and write
connections in order to produce thgeants At the same time thenablesignals for the SSRAMs are set
accordingly by this unit. It also controls the crossbard #ra switching the corre@ddressread data
andwrite datasignals to the memory ports. Please note, thatré¢lae datacrossbar is switched with one
cycle delay compared to theddresscrossbar in order to be in sync with the single cycle reachiatef
the SSRAMs. Effects of TIMS on physical parameters like tignand area consumption are discussed
in detalil in the result section.

Memory access collisions decrease the performance of #terayand cannot be avoided completely
due to the automatic address management of the C compilevevds, in our case this effect is kept

10

minimal due to the good distribution of the 256-bit wordsr Bdditions and multiplications this causes a
maximum additional delay of one single cycle only. This fssin a maximum performance degradation
caused by memory-access conflicts of less than 2% for anyeointplemented pairing applications.

data memories (single 32-bit port)
| 256-bitIF,-Operation 4 (128-bit writeback)| 2 (64-bit writeback) | 1 (32-bit writeback)
mod mul (128« 8-bit unit) 79 83 91
mod mul (64« 8-bit unit) 150 - 151 153 161
mod mul (32 8-bit unit) 294 - 295 296 - 297 301
mod add (64-bit unit) 8-9 14 - 15 26
mod add (32-bit unit) 12 - 13 14 - 15 26

Table 3. Number of cycles for 256-bit IF,-arithmetic including memory access

Due to hidden latencies of memory accesses and possible mawncess collisions, the execution
times of the arithmetic functional units and the memory eystannot be subsumed in a simple equation.
Table 3 presents the cycle count for each operation depgrfinthe number of attached memories. It
can be seen that the cycle count for an addition using theit6dealer unitdoes not differ from the
case utilizing a 32-bit unit, when one or two 32-bit wide meim® are attached. The throughput of
the memory system limits the maximum achievable perforraancthis case. Not adapting the width
of the adder to the memory system therefore wastes eithé&rpgmnce or area, this also holds for the
writeback unit Thus the width of thevriteback unitis coupled to the number of memories in the table.
Note that the performance gain of the 32-hitder unitin the four-memories case results from a faster
writeback and not from an actual speedup of the addition. ifffementation of a 16-bit adder for the
single-memory case would not reduce area significantly dugdditional multiplexing and is therefore
neglected. The width of the multiplier can be selected iedeently from the number of memories,
since operands do not need to be fetched continuously frerm#imory and smaller memory bandwidth
reduces performance only slightly.

4. Results

Overall, we have implemented nine variants of our ASIP wiiffecent design parameters regarding
number of data memories and width of the computational ueitsmodular multiplication, modular
addition and multi-cycle writeback (Table 4). As explainadthe previous section, the number of data
memories is closely coupled with the width of thederand thewriteback unit All synthesis results
have been obtained with Synopsys Design Compiler [45] uaidig0 nm CMOS standard cell library
with a supply voltage of 1.2 V. The memories are synchronougies port SRAMs with a latency of one
cycle. The total data memory size is 2048 words for each ofddsgn variants, while the number of
memories can vary according to TIMS. The program memory tsimduded in the area reports, since
it is not changing through the different designs and couldniy@emented differently (as ROM, RAM,
synthesized logic etc.) depending on the final target system

Fig. 5 shows the area distribution of the different ASIP aats. While the basic core only shows
moderate area increase from 17 to 21 kGates for all variaesulfing from decoder extensions and
additional pipeline registers), the area for the registerificreases from 9 to 28 kGates compared to
the plain RISC. The reason are specialized 256-bit registaring the prime number and intermediate
results of the modular operations. These registers ar@amtent from the width of any of the additional

11

Variant

| 128m4| 64m4 | 32m4| 128m2| 64m2| 32m2| 128m1]| 64m1]| 32m1 | plain RISC
mod mul size(bit) 128x8 | 64x8 | 32x8 | 128x8 | 64x8 | 32x8 | 128x8 | 64x8 | 32x8 -
mod add width(bit) 64 64 64 32 32 32 32 32 32 -
writeback width(bit) 128 128 128 64 64 64 32 32 32 -
data memories 4 4 4 2 2 2 1 1 1 1
total areé(kGates) 195 186 182 164 153 148 145 134 130 77
core arey(kGates) 96 87 83 97 86 81 93 83 79 26
timing (ns) 3.69 3.65 3.52 2.96 2.97 3.02 2.95 3.03 3.09 2.89
Optimal Ate (ms) 17.5 21.8 29.9 15.8 19.4 27.3 19.2 23.4 32.0 -
Ate (ms) 25.3 31.4 42.6 22.8 27.9 38.9 27.6 335 45.6 -
n (Ms) 323| 395| 528| 288 350 481 | 346 41.6| 56.2 -
Tate (ms) 385 47.0 62.7 34.4 41.6 57.1 41.1 49.5 65.3 -
Compressed) (ms) 38.6 55.0 86.2 345 | 48.2 77.1 41.6 56.5 85.8 -
Compressed Tatéms) 48.2 | 68.9| 107.8 43.2| 60.3| 96.5 52.0| 70.7| 107.3 -

Table 4. Implemented design variants of the ASIP for pairings

200
180 .
160 . .
_ 140 . .]
2 120
E 80 % .7?3 .yw .?3 Zig
o 78 U4 4 R
ol NN
20 mll m i |
0 . : : : : : : : : ;
\fl‘P@b‘ @"‘@b‘ rb’l'@b‘ ,(1‘3’& @"‘& 'bq’él/ .{f,b@\ <b‘>‘®\ rb’l'@\ Q?O

Design Variant

M basic core [registerfile E crypto extension W data memory & MAU

functional units. Therefore, the register file area is edoakll variants. The area of the cryptographic

Figure 5. ASIP area consumption and distribution

extensions is dominated by the MMM unit.

Observe that splitting the memory into two of half the sizsults in a data-memory area increase of
31%. Utilizing a dual port memory instead would increaseadrg over 83%. Splitting the memory into

2. Including area for data memories
3. Without area for memories, but including area for MAU

12

four parts causes an area overhead of 94%, but also enalolessatw) four words at the same time, as
long as there are no conflicts. The area overhead due to the M&UWetween only 0.5 and 1.2 kGates,
when two memories are attached. Even for four attached mesnibris below 3.5 kGates.

However, limitations of TIMS utilizing the proposed MAU bame visible when looking at the timing
of the different variants of the ASIP. While attaching ondwo data memories barely affects the critical
path with respect to the original RISC architecture (witti@sign tool accuracy, see Table 4), an additional
delay is observed when four memories are attached. Thiy deleaused by the complexity of priority
resolution for four attached memories combined with fowteipendent memory accesses with dynamic
priority, which are necessary to implement the 64-bit adtkewever, maximum frequencies of ASIPs
are often designed to be lower than in this case. For our défsig possible (and reasonable) to maintain
the clock frequency of the original RISC although the instian set is extended with quite complex
instructions, due to the adjustable delay of the MMM.

The execution times of all six implemented pairing appiaas on all nine ASIP variants are shown
in Table 4. Note that running an application on different RSlariants does not require recompling
the application because the instruction set is identicalfbof them. For all applications performance
improves significantly with increasing width of the MMM. Adsthe number of cycles decreases when
increasing the number of connected data memories. Unfatelyy the longer critical path of the four-
memory system leads to a lower performance than for the desigh two memories. The overall fastest
design is variantl28mz2 executing the Optimal-Ate pairing in 15.8 ms. With the detl and slowest
variant completing the task in 32.0 ms, the user is offereditedproad design space enabling trade-offs.

33,0
A
31,0
29,0 128m4
270 A 64ma
32md
w 250 O 128m2
£ o 64m2
£ 3.0] A 32m2
F 210 = 128m1
¢ 64m1
n <
19,0 A 32m1
17,0 \E\ — AT = const
15,0
13,0 T T T T T T T T Te—

120 130 140 150 160 170 180 190 200 210
Area (kGates)

Figure 6. Area-time trade-off for different ASIP variants and the Optimal-Ate-pairing application

In order to evaluate the efficiency of the different designargs, Fig. 6 shows the area-time trade-off
for the Optimal-Ate pairing. It can be seen clearly that tlestbAT product is obtained by thE28m2
design. This shows the importance of investigaing the mgraarhitecture of ASIPs during design-space
exploration. In our case the best results are obtained withSTandtwo data memories in spite of the
considerable area increase due to the memory splitting.

13

4.1. Performance Comparison

There exists no literature reporting performance figuresltiag from actual implementations of cryp-
tographic pairings on dedicated hardware achieving a 128cburity level. Hardware implemenatations
for lower security levels and implementations using moreaacan obviously be much faster than the
proposed design. For example, Beuchat et al. in [7] repoonapeitation time of 24us for then pairing
on a supersingular 154-bit curve using 11318 slices of anXikc4vIx25 FPGA running at 200 MHz.
An even faster implementation of the same pairing is repoirte[16]. It uses 74105 slices of a Xilinx
xc4vIx200 FPGA running at 199.227 MHz to compute thepairing in 8.17us. Observe that this setting
does not even achieve 80-bit security level.

In [39], Devigili et al. report 5.17 s for the computation dfet Ate pairing over a 256-bit Barreto-
Naehrig curve on a Philips HiPerSmarsmart card operating at 20.57 MHz. This smart card contains
a SmartMIPS-based 32-bit architecture. The paper thuss giveimpression of the achievable perfor-
mance for the computation of cryptographic pairings in thdedded domain without highly specialized
hardware.

Other publications describing hardware for ECC over fieltilame prime characteristic give perfor-
mance figures in terms of time needed for a scalar multipdinavith a scalark of a certain size, e.g.
the computation ofk|P for someP € E(IF,).

The first dedicated hardware implementation of arithmeticethiptic curves oveil, is presented in
[24]. The authors estimate 3 ms for a scalar multiplicatioth\a 192-bit scalar on a curve over a 192-bit
field for an implementation on a Xilinx XCV1000E-8-BG680 (i¢x E) field-programmable gate array
(FPGA) operating at 40 MHz. However, this estimate assumEs0&o utilization of the multiplier.

Another FPGA implementation of ECC accelerating gen&raarithmetic is described in [26]. This
implementation needs less memory and can achieve highek filequencies. It features a linear systolic
array to speed up Montgomery modular multiplication. Thigraach leads to a high throughput and
massively parallel computation, since the multiplicasian [, are distributed bitwise over multiple
Processing Elements (PEs). For the proposed design withPE) scalar multiplication with a 160-
bit scalar on an elliptic curve over a 160-bit field is repdrte take 14.4 ms at a clock frequency of
91.308 MHz on a Xilinx V1000E-BG-560-8 (Virtex E) FPGA.

The processor presented in [27] is the fastest FPGA impleatien of ECC ovelf, reported to date.
A 256-bit scalar multiplication is executed in 3.86 ms at53MHz on a Xilinx XC2VP125-7-ff1696
(Virtex2 Pro). The design features a full 256-bit multiplitilizing embedded multipliers and the fast
carry look-ahead logic of the FPGA. As our ASIP is designeddmbedded systems, a 26B56-bit
multiplier is clearly not suitable due to area constraints.

A direct comparison of this work with these FPGA implemeiotag in terms of area and speed is
difficult, because our design is implemented using a 130 mmdsird cell library. However, there are two
publications targeting ASIC implementations on 130 nm a#i, ménich are discussed in the following
two paragraphs.

In [25] a processor is presented that speeds up ECC catmsaivith a dual-field multiplier, which
supports multiplications iy~ andF,. The architecture is scalable and depending on the meitiplze
different speedups can be achieved at the cost of increasad ldowever, the multiplier is restricted to
guadratic sizes of xr bit. The size of the multiplier therefore has a huge impacthancritical path of
the design and large multipliers decrease the maximum diecluency significantly. With a 6464-bit
multiplier and implemented with a 130 nm CMOS standard ¢kthly, the design requires 107 kGates
(without memories) and performs a 256-bit scalar multatiicn in F,, at a maximum achievable clock
frequency of 138 MHz in 2.68 ms.

Similar to the work in [26], [28] presents an ECC processaeliaon a systolic arithmetic unit, which
is extended to also support binary fields in [2B], operations (including multiplication and division)

14

are executed on a unified systolic array with 130 PEs. Thelipgzk structure leads to highly parallel
computation at high frequencies. However, one issue withtéithnique is the utilization of this structure.
Conditions and data dependencies can lead to pipeline statireasing the overall performance of the
system. The authors reduce this effect by instruction eximd and utilization of delay slots. Another
drawback is that the data-transfer mode of the datapath It granularity and high concurrency, while
the memory access is of word granularity and low concurrefbg authors therefore introduce latching
registers close to the PEs in order to access the data in tich@lace. This comes at a cost of increased
area and critical-path delay. The presented processorpamate at a frequency of 556 MHz and consumes
122 kGates. It performs a 256-bit scalar multiplication i1l ms. Like our design it is implemented
with a 130 nm standard cell library. For elliptic-curve hnitetic it uses points in affine representation;
finite field inversions are accelerated through hardware.

In order to compare the results of this work with these aethitres we implemented scalar multipli-
cation on the 256-bit Barreto-Naehrig curve that we alsaldee pairing computation. Our design does
not accelerate field inversion through hardware, so we usebikn projective coordinates to represent
the points on the curve, trading inversions for several iplidations.

We emphasize that the choice of this curve is far from beirtgr@d in terms of achievable performance
for ECC not involving pairings. Clearly using an ellipticree in Edwards form [46] and representing
points in inverted Edwards coordinates [47] would impropeed for scalar multiplication significantly.

As in [25] and [28], we use the so-called NAF method for scataultiplication: The scalar is
first transformed into non-adjacent form (NAF); scalar nplittation is then carried out scanning this
representation from left to right (see e.g. [48, Section13)3 For each signed-bit entry of the NAF
one point doubling is performed; if the entry is non-zero dditonal point addition is performed. On
average onIy% and at most% of the signed bits of a NAF are non-zero. Clearly the numbarasf-zero
entries of the NAF affects the computation speed of a scalstiphcation. For benchmarking we follow
[25] and assume a scalar Wigwnon—zero entries.

Scalar multiplication with a 256-bit scalar takes 0.998 orstiie 128m2variant of the proposed design
at a maximum achievable clock frequency of 338 MHz. This nenificludes transformation of the scalar
into NAF and a transformation from Jacobian into affine cauates at the end.

Note that ASIP variani28m2is not only slightly faster than the designs in [25] and [28]t also
consumes less area (97 kGates). However, it should be nod&tdhie utilization of two data memories
in our design affects on the overall area consumption.

5. Conclusion and Outlook

In this paper we presented a design-space exploration of @R for computation of cryptographic
pairings over BN curves. The design is based on extensiacms eXisting RISC core, which are completely
transparent and independent from the original pipelinerétore, they could be applied to any RISC-like
architecture, which can stall the pipeline during multéleyoperations. The extensions are adaptable in
terms of timing and allow for a trade-off between executimnet and area. A flexible and transparent
memory architecture extension making use of multiple méesofTIMS) enables the usage of existing
compilers, since the address space remains unsegmented.

Future objectives are including countermeasures agaiestchannel attacks, which are not specially
targeted in the current design, either in hard- or in soféwar

References

[1] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing t@lipurve logarithms to logarithms in a finite field,”
IEEE Trans. Information Theoryol. 39, no. 5, pp. 1639-1646, 1993.

15

[2] G. Frey and H.-G. Rick, “A remark concernimg-divisibility and the discrete logarithm in the divisor sk
group of curves,Math. of Computationvol. 62, no. 206, pp. 865-874, 1994.

[3] A. Joux, “A one round protocol for tripartite Diffie-Hetlan,” in Algorithmic Number Theoryser. LNCS, vol.
1838, 2000, pp. 385-394.

[4] D. Boneh and M. Franklin, “Identity based encryptionrfirdhe Weil pairing,” inAdvances in Cryptology —
CRYPTO 200.1ser. LNCS, vol. 2139, 2001, pp. 213-229.

[5] D. Boneh, B. Lynn, and H. Shacham, “Short signatures ftbemWeil pairing,”J. Cryptology vol. 17, no. 4,
pp. 297-319, 2004.

[6] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly ipllic curves of prime order,” irSelected Areas in
Cryptography ser. LNCS, vol. 3897, 2006, pp. 319-331.

[7] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, &dRodriguez-Henriquez, “A comparison between
hardware accelerators for the modified Tate pairing d#er and Fs,” in Pairing-Based Cryptography —
Pairing 2008 ser. LNCS, vol. 5209, 2008, pp. 297-315.

[8] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, Mir&e, and T. Takagi, “Algorithms and arithmetic
operators for computing theg, pairing in characteristic threefJEEE Trans. Comput.vol. 57, no. 11, pp.
1454-1468, 2008.

[9] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “Algorithm for thern, pairing calculation in
characteristic three and its hardware implementationPrioc. 18th IEEE Symp. Computer Arithmet&007,
pp. 97-104.

[10] J.-L. Beuchat, H. Doi, K. Fujita, A. Inomata, A. Kanaghd. Katouno, M. Mambo, E. Okamoto, T. Okamoto,
T. Shiga, M. Shirase, R. Soga, T. Takagi, A. Vithanage, an¥dthamoto, “FPGA and ASIC implementations
of the n, pairing in characteristic three,” Cryptology ePrint Arehj Report 2008/280, 2008, http://eprint.iacr.
0rg/2008/280.

[11] C. Shu, S. Kwon, and K. Gaj, “FPGA accelerated Tate pgitbased cryptosystems over hinary fields,” in
Proc. IEEE Int'| Conf. Field Programmable Technology — FPO0B, 2006, pp. 173-180.

[12] M. Keller, R. Ronan, W. Marnane, and C. Murphy, “Hardearchitectures for the Tate pairing over GF},”
Computers & Electrical Eng.vol. 33, no. 5-6, pp. 392-406, 2007.

[13] M. Keller, T. Kerins, F. Crowe, and W. Marnane, “FPGA ilamentation of a GF™) Tate pairing
architecture,” inReconfigurable Computing: Architectures and Applicatises. LNCS, vol. 3985, 2006, pp.
358-369.

[14] R. Ronan, coO hEigeartaigh, C. Murphy, M. Scott, and T. Kerins, “FPGA aecation of the Tate pairing in
characteristic 2,” inProc. IEEE Int'l Conf. Field Programmable Technolq@3006, pp. 213—-220.

[15] P. Grabher and D. Page, “Hardware acceleration of thte pairing in characteristic three,” i@ryptographic
Hardware and Embedded Systems — CHES 2666 LNCS, vol. 3659, 2005, pp. 398-411.

[16] J. Jiang, “Bilinear pairing (Etal' pairing) IP core,” Tech. Rep., 2007, http://www.cs.cigau.hkfecc/doc/
etat datasheetw2.pdf.

[17] T. Kerins, W. P. Marnane, E. M. Popovici, and P. S. L. Mri#o, “Efficient hardware for the Tate pairing

calculation in characteristic three,” i@ryptographic Hardware and Embedded Systems — CHES, 2365
LNCS, vol. 3659, 2005, pp. 412-426.

16

[18] R. Ronan, C. Murphy, T. Kerins, © hEigeartaigh, and P. Barreto, “A flexible processor for tharelsteristic
3 n: pairing,” Int’l J. High Performance Systems Architectuv®l. 1, no. 2, pp. 79-88, 2007.

[19] G. Kdmircu and E. Savas, “An efficient hardware inmpéntation of the Tate pairing in characteristic three,”
in Proc. Third Int'l Conf. Systems — ICONS 2Qa808, pp. 23-28.

[20] A. Barenghi, G. Bertoni, L. Breveglieri, and G. Pelo$h FPGA coprocessor for the cryptographic Tate
pairing overlF,,” in Proc. Fifth Int'l Conf. Information Technology: New Genéoms — ITNG 20082008, pp.
112-1109.

[21] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Reemendation for key management - part 1:
General (revised),” National Institute of Standards andhfelogy, NIST Special Publication 800-57, 2007.
http://csrc.nist.gov/publications/nistpubs/800-HBB0-57-Partl-revised®ar08-2007.pdf

[22] T. Vejda, D. Page, and J. GroR3schadl, “Instructionesgénsions for pairing-based cryptography,Hairing-
Based Cryptography — Pairing 200%er. LNCS, vol. 4575, 2007, pp. 208-224.

[23] H. Eberle, S. Shantz, V. Gupta, N. Gura, L. Rarick, an&pracklen, “Accelerating next-generation public-key
cryptosystems on general-purpose CPUBEE Micro, vol. 25, no. 2, pp. 52-59, 2005.

[24] G. Orlando and C. Paar, “A scalable Gl-€lliptic curve processor architecture for programmalaedware,”
in Cryptographic Hardware and Embedded Systems — CHES,2@01LNCS, vol. 2162, 2001, pp. 348-363.

[25] A. Satoh and K. Takano, “A scalable dual-field elliptieree cryptographic processotEEE Trans. Computers
vol. 52, no. 4, pp. 449-460, 2003.

[26] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardwarelémentation of an elliptic curve processor
over GF(p),” inProc. IEEE Int'l Conf. Application-Specific Systems, Atebiures, and Processors — ASAP
2003 2003, pp. 433-443.

[27] C. Mclvor, M. McLoone, and J. McCanny, “Hardware elliptcurve cryptographic processor over GF(p),”
IEEE Trans. Circuits and Systems |: Regular Papend. 53, no. 9, pp. 1946-1957, 2006.

[28] G. Chen, G. Bai, and H. Chen, “A high-performance ellimturve cryptographic processor for general curves
over GF(p) based on a systolic arithmetic uniEEE Trans. Circuits and Systems Il: Express Briefsl. 54,
no. 5, pp. 412-416, 2007.

[29] G. Chen, G. Bai, and H. Chen, “A dual-field elliptic curegyptographic processor based on a systolic
arithmetic unit,” inProc. IEEE Int'l Symp. Circuits and Systems — ISCAS 2@088, pp. 3298-3301.

[30] T. Gineysu and C. Paar, “Ultra high performance ECCrdu¥ST primes on commercial FPGAS,” in
Cryptographic Hardware and Embedded Systems — CHES,2808LNCS, vol. 5154, 2008, pp. 62-78.

[31] S. Galbraith, “Pairings,” inAdvances in Elliptic Curve Cryptographger. London Mathematical Society
Lecture Note Series, I. F. Blake, G. Seroussi, and N. P. Sraald. Cambridge University Press, 2005,
ch. IX.

[32] V. S. Miller, “The Weil pairing, and its efficient calcation,” J. Cryptology vol. 17, pp. 235-261, 2004.

[33] F. Hess, N. Smart, and F. Vercauteren, “The Eta pairawsited,”IEEE Trans. Information Theoryol. 52,
no. 10, pp. 4595-4602, 2006.

[34] E. Lee, H.-S. Lee, and C.-M. Park, “Efficient and genieed pairing computation on Abelian varieties,”
Cryptology ePrint Archive, Report 2008/040, 2008. htgpfint.iacr.org/2008/040

17

[35] F. Vercauteren, “Optimal pairings,” Cryptology eRrifirchive, Report 2008/096, 2008. http://eprint.iacr/org
2008/096

[36] F. Hess, “Pairing lattices,” ifPairing-Based Cryptography — Pairing 2008er. LNCS, vol. 5209, 2008, pp.
18-38.

[37] P. S. L. M. Barreto, S. D. Galbraith, © hEigeartaigh, and M. Scott, “Efficient pairing computation o
supersingular Abelian varietiesJesigns, Codes and Cryptographyol. 42, no. 3, pp. 239-271, 2007.

[38] M. Naehrig, P. S. L. M. Barreto, and P. Schwabe, “On casspible pairings and their computation,” in
Progress in Cryptology — AFRICACRYPT 20@8r. LNCS, vol. 5023, 2008, pp. 371-388.

[39] A. J. Devegili, M. Scott, and R. Dahab, “Implementinggtographic pairings over Barreto-Naehrig curves,”
in Pairing-Based Cryptography — Pairing 2003er. LNCS, vol. 4575, 2007, pp. 197-207.

[40] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Effent algorithms for pairing-based cryptosystems,”
in Advances in Cryptology — CRYPTO 20@D02, pp. 354-368.

[41] CoWare Processor Designer. http://www.coware.cootpcts/processordesigner.php

[42] D. J. Bernstein, “Curve25519: new Diffie-Hellman speedords,” inPublic Key Cryptography — PKC 2006
ser. LNCS, vol. 3386, 2006, pp. 207-228.

[43] P. Montgomery, “Modular multiplication without triadivision,” Mathematics of Computatiorvol. 44, no.
170, pp. 519-521, 1985.

[44] O. Nibouche, A. Bouridane, and M. Nibouche, “Architeiets for Montgomery’s multiplicationJEE Proc. —
Computers and Digital Techniquegol. 150, no. 6, pp. 361-368, 2003.

[45] Synopsys Design Compiler. http://www.synopsys.qmoducts/logic/desigrtompiler.html

[46] D. J. Bernstein and T. Lange, “Faster addition and diogbbn elliptic curves,” inAdvances in Cryptology —
ASIACRYPT 20Q%er. LNCS, vol. 4833, 2007, pp. 29-50.

[47] D. J. Bernstein and T. Lange, “Inverted Edwards coaatis,” inApplied Algebra, Algebraic Algorithms and
Error-Correcting Codesser. LNCS, vol. 4851, 2007, pp. 20-27.

[48] D. Hankerson, A. J. Menezes, and S. Vanstdbide to Elliptic Curve Cryptography Secaucus, NJ, USA:
Springer-Verlag, 2003.

18

