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Abstract

This paper presents a design-space exploration of an application-specific instruction-set
processor (ASIP) for the computation of various cryptographic pairings over Barreto-Naehrig
curves (BN curves). Cryptographic pairings are based on elliptic curves over finite fields—in
the case of BN curves a fieldFp of large prime orderp. Efficient arithmetic in these fields is
crucial for fast computation of pairings. Moreover, computation of cryptographic pairings is
much more complex than elliptic-curve cryptography (ECC) in general. Therefore, we facilitate
programming of the proposed ASIP by providing a C compiler.

In order to speed upFp-arithmetic, a RISC core is extended with additional functional units.
The critical path delay of these units is adjusted to the basearchitecture in order to maintain
the operating frequency. Independently from that adjustment, these units are scalable allowing
for a trade-off between execution time and area consumption. Because the resulting speedup
can be limited by the memory throughput, utilization of multiple data memories is proposed.
However, developing a C compiler for multiple memories is a challenging task. Therefore, we
introduce an enhanced memory system enabling multiple concurrent memory accesses while
remaining totally transparent to the C compiler.

The proposed design needs 15.8 ms for the computation of the Optimal-Ate pairing over a
256-bit BN curve at 338 MHz implemented with a 130 nm standardcell library. The processor
core consumes 97 kGates making it suitable for the use in embedded systems.

Index Terms

Application-specific instruction-set processor (ASIP), design-space exploration, pairing-
based cryptography, Barreto-Naehrig curves, elliptic-curve cryptography (ECC),Fp-arithmetic.
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1. Introduction

Pairings were first introduced to cryptography as a means to break cryptographic protocols based on
the elliptic-curve discrete-logarithm problem (ECDLP) [1], [2]. Joux showed in 2000 that they can also be
used constructively for tripartite key agreement [3]; other applications such as identity based encryption
[4] and schemes to generate short digital signatures [5] have subsequently been introduced.

Cryptographic pairings are based on elliptic curves. To meet both, security requirements and computa-
tional feasibility, only elliptic curves with special properties can be considered as basis for cryptographic
pairings. For the 128-bit security level, the best known curves are 256-bit Barreto-Naehrig curves (BN
curves), introduced in [6]. Fast arithmetic on these curvesdemands for fast finite field arithmetic in a
field Fp of prime orderp, wherep is determined by the curve construction. Additionally, thevariety
and complexity of pairing applications demand for a flexibleand programmable solution. Application-
specific instruction-set processors (ASIPs) are a promising candidate to find a good trade-off between
these contradicting demands of speed, flexibility and ease of programmability.

This paper shows a design-space exploration of an ASIP for pairing computations over BN curves.
The design does not target maximum speed at the cost of silicon area. Instead, we describe how to trade
off execution time against area making the ASIP suitable foruse in the embedded domain. Dedicated
functional units are introduced that speed up generalFp-arithmetic. Their critical path delay can be
modified in order to be integrated with any existing RISC-like architecture without compromising its
clock frequency. Independently from that adjustment, these units are scalable allowing for a trade-off
between execution time and area consumption. The scaling influences the number of cycles required
for a certain operation, but does not require any modification to the special instruction triggering it.
Therefore, the same software can be used regardless of the selected size of the extensions. We show
that the speedup from the special functional units is limited by a memory system with a single memory
port. Hence, we introduce a memory system utilizing multiple memories. However, due to the resulting
segmentation of the memory space this approach makes development of a C compiler a challenging
task. As complexity of cryptographic pairings demands for aconvenient programming model we address
this issue by introducing an enhanced memory system which istotally transparent to the C compiler by
hiding the memory space segmentation from the instruction set. The number of attached memories can
thus be altered without changing the C compiler, the developed software or even the processor pipeline
including the newly introduced special functional units. As a result, the proposed ASIP offers a flexible
and scalable implementation for pairing applications.

We are—up to our knowledge—the first to implement and time a complete implementation of crypto-
graphic pairings achieving a 128-bit security level on dedicated specialized hardware.

We would like to thank Jia Huang for supporting the implementation. We furthermore thank Daniel J.
Bernstein, Tanja Lange, Ernst Martin Witte and Filippo Borlenghi for suggesting many improvements to
our explanations.

Related work. Several architectures for the computation of cryptographic pairings have been proposed
in the literature [7]–[19]. All these implemenations use supersingular curves over fields of characteristic
2 or 3. This choice, together with the choice of the underlying fields, yields security levels far below
128 bit. A comparative overview over these architectures isgiven in [7].

Barenghi et al. recently proposed a hardware architecture for cryptographic pairings using curves
defined over fields of large prime characteristic [20]. They use a supersingular curve (with embedding
degree 2) defined over a 512-bit field and thus achieve 80-bit security, according to [21].

Another architecture targeting speedup of pairings and supporing fields of large prime characteristic
has been proposed in [22]. The instruction set of a SPARC V8 processor is extended for acceleration
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of arithmetic in F2n, F3m and Fp. However, the focus is put on minor modifications of the datapath
resulting in a performance gain for multiplications inFp which is two-fold only. Our work focusses
rather on significant datapath extensions in order to achieve high speedup for pairings in the embedded
domain.

In [23], a special public-key cryptographic processor based on a SPARC CPU with special support
for ECC point multiplication inFp andF2n is presented. The operating frequency is 1.5 GHz targeting
desktop general-purpose processors rather than the embedded domain.

The architectures closest to the one proposed in this paper are accelerating arithmetic in generalFp

for elliptic-curve cryptography (ECC) [24]–[29]. However, these designs have not been reported to be
used for complex applications like pairings. A detailed comparison with these architectures is given in
Section 4.

Some other architectures for ECC over prime fields limit their support to a primep which allows for
particularly fast modular reduction (see i.e. [30]). Theseapproaches are not adequate for pairing-based
cryptography where additional properties of the elliptic curves are required. Thus, a detailed comparison
with these architectures is omitted here.

Organization of the paper. Section 2 of the paper gives a short overview of cryptographic pairings
and Barreto-Naehrig curves. Section 3 describes our approach of an ASIP suitable for pairing computa-
tion. In Section 4 we discuss the results. We futhermore givea comparison with specialized hardware
targeting acceleration of elliptic-curve scalar multiplication on curves defined over fields of large prime
characteristic described in the literature. The paper is concluded and future work is outlined in Section 5.

2. Background on cryptographic pairings

We only give a short overview of the notion of cryptographic pairings, a comprehensive introduction
is given in [31, chapter IX].

For three groupsG1, G2 (written additively) andG3 (written multiplicatively) of prime orderr a
cryptographic pairing is a mape : G1 × G2 → G3, with the following properties:

• Bilinearity:

e(kP,Q) = e(P, kQ) = e(P,Q)k for k ∈ Z.

• Non-degeneracy:
For all nonzeroP ∈ G1 there existsQ ∈ G2 such thate(P,Q) 6= 1 and
for all nonzeroQ ∈ G2 there existsP ∈ G1 such thate(P,Q) 6= 1.

• Computability:

There exists an efficient algorithm to computee(P,Q) given P andQ.

We consider the following construction of cryptographic pairings: Let E be an elliptic curve defined
over a finite fieldFp of prime order. Letr be a prime dividing the group order#E(Fp) = n = p + 1− t
and letk be the smallest integer, such thatr | pk − 1. We callk the embedding degree ofE with respect
to r.

Let P0 ∈ E(Fp) andQ0 ∈ E(Fpk) be points of orderr such thatQ0 /∈ 〈P0〉, let O ∈ E(Fp) denote
the point at infinity. DefineG1 = 〈P0〉 andG2 = 〈Q0〉. Let G3 = µr be the group ofr-th roots of unity
in F

∗

pk .
For i ∈ Z andP ∈ E a Miller function [32] is an elementfi,P of the function field ofE, such that

the principal divisor offi,P is div(fi,P ) = i(P ) − ([i]P ) − (i − 1)O.
Using such Miller functions, we can define the map

es : G1 × G2 → µr; (P,Q) 7→ fs,P (Q)(p
k
−1)/r.
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For certain choices ofs the mapes is non-degenerate and bilinear. Fors = r we obtain the reduced-Tate
pairing τ and fors = T = t − 1 we obtain the reduced-Ate pairingα by switching the arguments [33].
Building on work presented in [34], Vercauteren introducedthe Optimal-Ate pairing in [35] which for
BN curves can be computed usings ≈

√
t and a few additional computations (see also [36]).

Using twists of elliptic curves we can further define the generalized reduced-η pairing [33], [37]. In [38]
a method to compute the Tate andη pairing keeping intermediate results in compressed form isintroduced.
We refer to the resulting algorithms as Compressed-Tate andCompressed-η pairing, respectively.

2.1. Choice of an Elliptic Curve

For cryptographic protocols to be secure on the one hand and the pairing computation to be com-
putationally feasible on the other hand, the elliptic curveE must have certain properties: Security of
cryptographic protocols based on pairings relies on the hardness of the discrete logarithm problem inG1,
G2 and G3. For the 128-bit security level, the National Institute of Standards and Technology (NIST)
recommends a prime group order of 256 bit forE(Fp) and of 3072 bit for the finite fieldFpk [21].

Barreto-Naehrig curves, introduced in [6], are elliptic curves over fields of prime orderp with embed-
ding degreek = 12. The group ordern = r of E(Fp) is prime by construction, the valuesp andn can
be given as polynomial expressions in an integeru as follows:

p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 and

n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1.

For our implementation we follow [39] and setu = 0x6000000000001F2D, yielding two primesp(u)
andn(u) of l = 256 bit. The field size ofFpk then has256 · k = 3072 bit.

2.2. Computation of Pairings

The computation of cryptographic pairings consists of two main steps: the computation offs,P (Q) for
Tate andη pairings or offs,Q(P ) when considering the Ate pairing and the final exponentiation with
(pk − 1)/r.

The first part is usually done iteratively using variants of Miller’s algorithm [32]. Several optimizations
of this algorithm have been presented in [40]. The resultingalgorithm is often referred to as BKLS
algorithm. For BN curves even more optimizations can be applied by exploiting the fact that such curves
have sextic twists. A detailed description of efficient computation of pairings over BN curves, including
the computation of Miller functions and the final exponentiation is given in [39]. Our implementation
follows this description in large parts.

Finite field computations constitute the bulk of the pairingcomputation – in software implementations
typically more than90% of the time is spent on modular multiplication, inversion, addition and subtraction.
Throughout the pairing computation we keep points on elliptic curves in Jacobian coordinates and can
thus almost entirely avoid field inversions.

Our targets for hardware acceleration are thus multiplication, addition and subtraction inFp.

3. An ASIP for Cryptographic Pairings

To implement various pairing algorithms, a programmable and therefore flexible architecture is tar-
geted in this paper. Standard architectures like embedded RISC cores are flexible, but they are lacking
sufficient computational performance for specific applications. Therefore, we apply the ASIP concept
to cryptographic-pairing applications in order to reduce the computation time while maintaining pro-
grammability. Development and implementation of our ASIP have been carried out using the Processor
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Designer from CoWare [41]. We used this tool suite for designing the actual architecture implementation
on register transfer level (RTL) as well as the simulator andarchitecture specific software tools.

Keeping control over the data flow on the higher layers of the pairing computation, likeFp12 or E(Fp2)
arithmetic, is a rather complex task. This calls for a convenient programming model. However, on the
lower level realizing theFp-arithmetic, computational performance is of highest priority. Therefore, we
decided to extend a basic RISC core with specialFp instructions. The available C compiler enables
convenient application development on higher levels, while the computational intensive tasks are mapped
to dedicated specialized instructions accessible via intrinsics1. The RISC core is a 32-bit five-stage
pipelined load-store architecture featuring a 32-bit integer multiplier.Fp operations are the computationally
expensive part of pairing computations. Table 1 shows the number of these operations for the each of
the six implemented pairing applications. The low number ofinversions does not justify the effort of a
dedicated hardware implementation. We thus target modularmultiplication as well as addition/subtraction
for hardware based acceleration.

Application # mod mul # mod add/sub # inversions

Optimal Ate 17,913 84,956 3

Ate 25,870 121,168 2

η 32,155 142,772 2

Tate 39,764 174,974 2

Compressedη 75,568 155,234 0

Compressed Tate 94,693 193,496 0

Table 1. Number of Fp operations for different pairing applications

Among those operations, the most challenging to implement is fast modular multiplication, especially
for a large word width (e.g. 256 bit). In general, multiplication in Fp can be done by first multiplying the
two factors (256 bit each) and then reducing the product (of 512 bit) modulop. This might indeed be the
fastest approach, ifp could be chosen of a special form as for example specified in [21] or [42]. However,
due to the construction of Barreto-Naehrig curves (see [6])we cannot use such primes. Therefore, our
approach uses Montgomery arithmetic [43].

The large word width also raises the issue of storing the data. A typical 16×32-bit RISC register
file can store just two complete 256-bit words. Hence, not allrequired values can be kept locally in
registers. In case of a simple load-store architecture additional instructions for memory accesses have to
be executed which reduces the overall performance.

3.1. Data Processing: A Scalable Montgomery-Multiplier Unit

In 1985 Montgomery introduced an algorithm for modular multiplication of two integersA and B
modulo an integerM [43]. The idea of the algorithm is to representA as Â = AR mod M and
B as B̂ = BR mod M for a fixed integerR > M with gcd(R,M) = 1. This representation is
called Montgomery representation. To multiply two numbersin Montgomery representation we have to
computeÂB = ÂB̂R−1 mod M . For certain choices ofR this computation can be carried out much
more efficiently than usual modular multiplication: Let us assume thatM is odd and letl be the bitlength
of M . ChoosingR = 2l clearly fulfills the requirements onR and allows for modular multiplication that
replaces division operations by shifts, allowing an efficient hardware implementation.

1. An adoption of our code to general purpose processors using the GMP library instead of intrinsics is available from
http://cryptojedi.org/crypto/.
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In the context ofFp-multiplication the modulusM corresponds top. All Fp operations can be performed
in Montgomery representation. Therefore, all values can bekept in Montgomery representation throughout
the whole pairing computation.

Figure 1. Montgomery-multiplier based on Nibouche et al. [44]

Nibouche et al. introduced a modified version of the Montgomery multiplication algorithm in [44]. It
splits the algorithm into two multiplication operations, that can be carried out simultaneously, and allows
using carry save (CS) multipliers. This results in a fast architecture that can be pipelined and segmented
easily. Therefore, it is chosen as basis for our development. A 4×4-bit example is shown in Fig. 1.

The actual multiplication is carried out in the left half of the architecture, while the reduction is
performed in the right part simultaneously. The left part isa conventional multiplier built of gated full
adders (gFAs), whereas the right part consists of a multiplier with special cells for the least-significant
bits (LSBs). The LSB cells are built around a half adder (HA).Their overall delay is comparable to that
of a gFA. A more detailed description of the functionality can be found in [44].

Due to area constraints we decided to implement only subsetsof the regular structures of the multiplier
and perform the computation in multiple cycles. Intermediate results are stored in dedicated special
registers. The CS-based design provides the opportunity tonot only make horizontal but also vertical
cuts. In our case, the horizontal cuts are made every eight gFAs. This height (H) of the multiplier
implementation is selected such that the critical path delay of the unit is adjusted to that of the base
RISC. Due to the CS-based design the critical path of the multiplier unit depends on its height only. This
makes the designadaptableto existing cores in terms oftiming maintaining the performance of their
general instruction set. Once the height of the multiplier unit is chosen, the width (W ) can be selected
to adapt the design to the desiredcomputational performanceand to trade offarea vs. execution timeof
the multiplication. The number and width of required registers to store intermediate data is independent
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from this choice.

cycle partial multiplication (W × H-bit) partial reduction (W × H-bit)

t0 + 0 A[ 7 : 0] × B[255 : 224]

t0 + 1 A[ 7 : 0] × B[223 : 192]
...

...

t0 + 7 A[ 7 : 0] × B[ 31 : 0]

t0 + 8 A[ 15 : 8] × B[255 : 224] T ′[ 7 : 0] × M [255 : 224]

t0 + 9 A[ 15 : 8] × B[223 : 192] T ′[ 7 : 0] × M [223 : 192]
...

...
...

t0 + 15 A[ 15 : 8] × B[ 31 : 0] T ′[ 7 : 0] × M [ 31 : 0]

...
...

...

t0 + 248 A[255 : 248] × B[255 : 224] T ′[247 : 240] × M [255 : 224]

t0 + 249 A[255 : 248] × B[223 : 192] T ′[247 : 240] × M [223 : 192]
...

...
...

t0 + 255 A[255 : 248] × B[ 31 : 0] T ′[247 : 240] × M [ 31 : 0]

t0 + 256 addition #1 T ′[255 : 248] × M [255 : 224]

t0 + 257 T ′[255 : 248] × M [223 : 192]
...

...

t0 + 263 T ′[255 : 248] × M [ 31 : 0]

t0 + 264 addition #2

t0 + 265 addition #3

Table 2. Time-flow example for 256-bit multi-cycle modular multiplication (W = 32,H = 8)

Multiplication and reduction are carried out simultaneously starting from the most-significant bit (MSB)
of their second operand (B andM ) first. However, the reduction cannot be started until the incoming data
for the LSB cells are available from the two’s complementer.Therefore, reduction starts after the firstH
lines of multiplication have been executed and remains delayed for

⌈
l

W

⌉
cycles (required for the computa-

tion of H lines). Table 2 shows the resulting time flow for a 256-bit modular multiplication with a 32×8-bit
unit. Eventually, the CS results need to be transformed backto two’s complement number representation
(by addition #1andaddition #2) before they are combined to the result byaddition #3. This is necessary
since the result lies in the range of0 to 2M − 1, and requires a final comparison againstM , which is
difficult to handle in CS representation. The comparison including a necessary subtraction ofM is per-
formed in another functional unit introduced later. Equation (1) gives the number of required cyclescMM

to perform a Montgomery multiplication with the proposed multi-cycle architecture for the general case.

cMM =

(⌈
l

H

⌉
+ 1

)
·
⌈

l

W

⌉
+ 2 (1)

For evaluation, we implemented this Multi-cycle Montgomery-Multiplier (MMM) in three different
sizes (W×H): 32×8 bit, 64×8 bit and 128×8 bit, resulting in an execution time of 266, 134 and 68
cycles respectively. However, the area savings for smaller(and slower) architectures do not scale as
well as the execution time. This results from the increased complexity of the required multiplexing for
smaller MMM units. In order to keep the amount of multiplexers small, we designed special 256-bit shift
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registers, that enable a circular shift byW bits for the operandsB, M and the corresponding intermediate
CS values. This solution is suitable, since the input valuesare accessed in consecutive order by blocks
of W bits. Still, area savings when scaling a 128×8-bit architecture down to 32×8-bit are about 50%.

Figure 2. Structure of the multi-cycle Montgomery-multiplier (MMM)

Fig. 2 shows the overall resulting structure of the MMM unit.The two’s complementer is included in
the multiplication unit, while thereduction unitcontains additional LSB cells that produce input for the
gFA cells on the fly (as depicted in Fig. 1). The input shift registers are initialized step-by-step during
the first

⌈
l

W

⌉
cycles. After the whole process, the result is stored in the registers for temporary CS values

(CM , SM , CR, SR). The adders for the final summations are not depicted.
An advantage of stepwise executing the multiplication is that the total multiplication widthl can be

configured at runtime in steps ofW . The overall dependence of the execution time onl is quadratic.
Modular multiplication is thus significantly faster for smaller multiplication width. This may be interesting
for ECC applications that do not require 128-bit security.

Similar to the MMM unit we developed amulti-cycle adder unitfor modular additions and subtractions,
which reads two input operands block-wise and simultaneously. For evaluation, a 32-bit and a 64-
bit version of this unit have been implemented. Details are omitted here since the implementation is
straightforward. Please note that the adder unit causes higher demand on the throughput of data than the
MMM, since an addition can be performed within much shorter time.

Both, MMM and adder unitrequire a final subtraction ofM whenever the result exceeds this prime
number. A specialwriteback unittakes care of this subtraction right before writing back thedata, operating
block-wise in multiple cycles as well. This unit has been implemented with a width of 32, 64 and 128
bit.

All three special units forFp-arithmetic are placed in the execute stage of the processorpipeline. During
the execution of multi-cycle operations for modular addition, subtraction and multiplication the pipeline is
stalled. Three special instructions are implemented triggering these operations. Instruction arguments are
registers containing the starting address of each of the three 256-bit operands. Since the modulusM is not
changed during an application run, a special register is utilized and implicitly accessed by the instructions.
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This register is initialized withp at the beginning of an application via another dedicated instruction.

3.2. Data Access: An Enhanced Memory Architecture

Special instructions with high computational performancecan result in high throughput demands for
the memory system. In case of the proposed ASIP, especially the modular addition/subtraction on 256-
bit operands requires a throughput higher than one 32-bit word per cycle. The following two evident
mechanisms to increase memory throughput for ASIP designs are not well suited here: First, using
memories with multiple ports is costly. The number of ports is limited to two for SSRAMs and the
required area is roughly doubled. Second, designing a dedicated system with several (often specialized)
memories targets highest performance, but is a complex task. The data memory space gets segmented
irregularly, making it difficult to access and manage for a compiler.

Due to the drawbacks of these two approaches we apply a different technique, which we would like
to introduce astransparent interleaved memory segmentation (TIMS). Its basic principle is to extend the
number of ports to the memory system in order to increase the throughput. TIMS splits the memory
into regular blocks, which can be selected on the basis of address bits and accessed in parallel. In
case of our ASIP, the LSBs of the address are used for the memory block selection. This results in an
addressing scheme, where the memory block is selected by calculating the address modulo the number of
memoriesmd, which has to be a power of two. Because of its fairly simple mechanisms and regularity,
the distribution of accesses to the memory system can be handled efficiently at runtime by a dedicated
hardware block, thememory-access unit (MAU)(Fig. 3).

Figure 3. TIMS implementation with MAU

Memory accesses are requested concurrently by the pipelineon demand resulting in multiple inde-
pendent read or write connections (unidirectional) between pipeline and MAU. The MAU takes care
of distributing these requests and granting accesses. Therefore, a simple handshaking protocol is used
between pipeline and MAU, which is able to confirm a request within the same cycle in order not to
cause any delay cycles when trying to access the fast SSRAMs.

One advantage of this mechanism is the fact, that from the perspective of the core, the memory space
remains unchanged, regardless of the number of attached memories. Existing load and store instructions
are sufficient to access the whole data memory space. Even when special instructions perform concurrent
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memory accesses, a modification in the memory system (e.g. changing number of attached memories)
does not result in a change of the core, if the pipeline is designed properly. This enables orthogonal
implementation and modification of the base architecture and the memory system.

Figure 4. Interconnect of memory-access unit (MAU)

Of course, memory-access conflicts can occur when simultaneous accesses refer to the same memory.
Therefore, a priority based resolution of access conflicts is implemented in the MAU in two ways.
Static priorities can be used if certain accesses always have higher priority than others. For instance
write accesses from later pipeline stages should always have higher priority than read accesses from
prior stages. When the priority is changing at runtime, dynamic priority management is required. Then,
dedicated additional communication lines between core andMAU indicate a change of priority. In our
design this is required for the accesses from theadder unit.

Fig. 4 depicts the four different connection schemes between MAU and pipeline. The number and
type of connections between MAU and pipeline are determinedby the number and type of independent
memory accesses initiated by the pipeline, while the numberof actual memory connections depends on
the number of attached data memoriesmd (md = 2 in this example). For sake of clarity, the actual
interconnections within the MAU have been omitted in Fig. 4.The access-controlblock combines the
enableand priority signals with thelog2(md) LSBs of theaddresssignals from the read and write
connections in order to produce thegrants. At the same time theenablesignals for the SSRAMs are set
accordingly by this unit. It also controls the crossbars that are switching the correctaddress, read data
andwrite datasignals to the memory ports. Please note, that theread datacrossbar is switched with one
cycle delay compared to theaddresscrossbar in order to be in sync with the single cycle read latency of
the SSRAMs. Effects of TIMS on physical parameters like timing and area consumption are discussed
in detail in the result section.

Memory access collisions decrease the performance of the system and cannot be avoided completely
due to the automatic address management of the C compiler. However, in our case this effect is kept
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minimal due to the good distribution of the 256-bit words. For additions and multiplications this causes a
maximum additional delay of one single cycle only. This results in a maximum performance degradation
caused by memory-access conflicts of less than 2% for any of the implemented pairing applications.

# data memories (single 32-bit port)

256-bit Fp-Operation 4 (128-bit writeback) 2 (64-bit writeback) 1 (32-bit writeback)

mod mul (128×8-bit unit) 79 83 91

mod mul (64×8-bit unit) 150 - 151 153 161

mod mul (32×8-bit unit) 294 - 295 296 - 297 301

mod add (64-bit unit) 8 - 9 14 - 15 26

mod add (32-bit unit) 12 - 13 14 - 15 26

Table 3. Number of cycles for 256-bit Fp-arithmetic including memory access

Due to hidden latencies of memory accesses and possible memory-access collisions, the execution
times of the arithmetic functional units and the memory system cannot be subsumed in a simple equation.
Table 3 presents the cycle count for each operation depending on the number of attached memories. It
can be seen that the cycle count for an addition using the 64-bit adder unit does not differ from the
case utilizing a 32-bit unit, when one or two 32-bit wide memories are attached. The throughput of
the memory system limits the maximum achievable performance in this case. Not adapting the width
of the adder to the memory system therefore wastes either performance or area, this also holds for the
writeback unit. Thus the width of thewriteback unitis coupled to the number of memories in the table.
Note that the performance gain of the 32-bitadder unit in the four-memories case results from a faster
writeback and not from an actual speedup of the addition. Theimplementation of a 16-bit adder for the
single-memory case would not reduce area significantly due to additional multiplexing and is therefore
neglected. The width of the multiplier can be selected independently from the number of memories,
since operands do not need to be fetched continuously from the memory and smaller memory bandwidth
reduces performance only slightly.

4. Results

Overall, we have implemented nine variants of our ASIP with different design parameters regarding
number of data memories and width of the computational unitsfor modular multiplication, modular
addition and multi-cycle writeback (Table 4). As explainedin the previous section, the number of data
memories is closely coupled with the width of theadder and thewriteback unit. All synthesis results
have been obtained with Synopsys Design Compiler [45] usinga 130 nm CMOS standard cell library
with a supply voltage of 1.2 V. The memories are synchronous single port SRAMs with a latency of one
cycle. The total data memory size is 2048 words for each of thedesign variants, while the number of
memories can vary according to TIMS. The program memory is not included in the area reports, since
it is not changing through the different designs and could beimplemented differently (as ROM, RAM,
synthesized logic etc.) depending on the final target system.

Fig. 5 shows the area distribution of the different ASIP variants. While the basic core only shows
moderate area increase from 17 to 21 kGates for all variants (resulting from decoder extensions and
additional pipeline registers), the area for the register file increases from 9 to 28 kGates compared to
the plain RISC. The reason are specialized 256-bit registers storing the prime number and intermediate
results of the modular operations. These registers are independent from the width of any of the additional
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Variant 128m4 64m4 32m4 128m2 64m2 32m2 128m1 64m1 32m1 plain RISC

mod mul size(bit) 128×8 64×8 32×8 128×8 64×8 32×8 128×8 64×8 32×8 -

mod add width(bit) 64 64 64 32 32 32 32 32 32 -

writeback width(bit) 128 128 128 64 64 64 32 32 32 -

# data memories 4 4 4 2 2 2 1 1 1 1

total area2(kGates) 195 186 182 164 153 148 145 134 130 77

core area3(kGates) 96 87 83 97 86 81 93 83 79 26

timing (ns) 3.69 3.65 3.52 2.96 2.97 3.02 2.95 3.03 3.09 2.89

Optimal Ate (ms) 17.5 21.8 29.9 15.8 19.4 27.3 19.2 23.4 32.0 -

Ate (ms) 25.3 31.4 42.6 22.8 27.9 38.9 27.6 33.5 45.6 -

η (ms) 32.3 39.5 52.8 28.8 35.0 48.1 34.6 41.6 56.2 -

Tate (ms) 38.5 47.0 62.7 34.4 41.6 57.1 41.1 49.5 65.3 -

Compressedη (ms) 38.6 55.0 86.2 34.5 48.2 77.1 41.6 56.5 85.8 -

Compressed Tate(ms) 48.2 68.9 107.8 43.2 60.3 96.5 52.0 70.7 107.3 -

Table 4. Implemented design variants of the ASIP for pairings

Figure 5. ASIP area consumption and distribution

functional units. Therefore, the register file area is equalfor all variants. The area of the cryptographic
extensions is dominated by the MMM unit.

Observe that splitting the memory into two of half the size results in a data-memory area increase of
31%. Utilizing a dual port memory instead would increase area by over 83%. Splitting the memory into

2. Including area for data memories
3. Without area for memories, but including area for MAU
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four parts causes an area overhead of 94%, but also enables accessing four words at the same time, as
long as there are no conflicts. The area overhead due to the MAUlies between only 0.5 and 1.2 kGates,
when two memories are attached. Even for four attached memories it is below 3.5 kGates.

However, limitations of TIMS utilizing the proposed MAU become visible when looking at the timing
of the different variants of the ASIP. While attaching one ortwo data memories barely affects the critical
path with respect to the original RISC architecture (withindesign tool accuracy, see Table 4), an additional
delay is observed when four memories are attached. This delay is caused by the complexity of priority
resolution for four attached memories combined with four independent memory accesses with dynamic
priority, which are necessary to implement the 64-bit adder. However, maximum frequencies of ASIPs
are often designed to be lower than in this case. For our design it is possible (and reasonable) to maintain
the clock frequency of the original RISC although the instruction set is extended with quite complex
instructions, due to the adjustable delay of the MMM.

The execution times of all six implemented pairing applications on all nine ASIP variants are shown
in Table 4. Note that running an application on different ASIP variants does not require recompling
the application because the instruction set is identical for all of them. For all applications performance
improves significantly with increasing width of the MMM. Also, the number of cycles decreases when
increasing the number of connected data memories. Unfortunately, the longer critical path of the four-
memory system leads to a lower performance than for the designs with two memories. The overall fastest
design is variant128m2, executing the Optimal-Ate pairing in 15.8 ms. With the smallest and slowest
variant completing the task in 32.0 ms, the user is offered a quite broad design space enabling trade-offs.

Figure 6. Area-time trade-off for different ASIP variants and the Optimal-Ate-pairing application

In order to evaluate the efficiency of the different design variants, Fig. 6 shows the area-time trade-off
for the Optimal-Ate pairing. It can be seen clearly that the best AT product is obtained by the128m2
design. This shows the importance of investigaing the memory architecture of ASIPs during design-space
exploration. In our case the best results are obtained with TIMS and two data memories in spite of the
considerable area increase due to the memory splitting.
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4.1. Performance Comparison

There exists no literature reporting performance figures resulting from actual implementations of cryp-
tographic pairings on dedicated hardware achieving a 128-bit security level. Hardware implemenatations
for lower security levels and implementations using more area can obviously be much faster than the
proposed design. For example, Beuchat et al. in [7] report a computation time of 24µs for theηT pairing
on a supersingular 154-bit curve using 11318 slices of a Xilinx xc4vlx25 FPGA running at 200 MHz.
An even faster implementation of the same pairing is reported in [16]. It uses 74105 slices of a Xilinx
xc4vlx200 FPGA running at 199.227 MHz to compute theηT pairing in 8.17µs. Observe that this setting
does not even achieve 80-bit security level.

In [39], Devigili et al. report 5.17 s for the computation of the Ate pairing over a 256-bit Barreto-
Naehrig curve on a Philips HiPerSmart

TM
smart card operating at 20.57 MHz. This smart card contains

a SmartMIPS-based 32-bit architecture. The paper thus gives an impression of the achievable perfor-
mance for the computation of cryptographic pairings in the embedded domain without highly specialized
hardware.

Other publications describing hardware for ECC over fields of large prime characteristic give perfor-
mance figures in terms of time needed for a scalar multiplication with a scalark of a certain size, e.g.
the computation of[k]P for someP ∈ E(Fp).

The first dedicated hardware implementation of arithmetic on elliptic curves overFp is presented in
[24]. The authors estimate 3 ms for a scalar multiplication with a 192-bit scalar on a curve over a 192-bit
field for an implementation on a Xilinx XCV1000E-8-BG680 (Virtex E) field-programmable gate array
(FPGA) operating at 40 MHz. However, this estimate assumes a100% utilization of the multiplier.

Another FPGA implementation of ECC accelerating generalFp-arithmetic is described in [26]. This
implementation needs less memory and can achieve higher clock frequencies. It features a linear systolic
array to speed up Montgomery modular multiplication. This approach leads to a high throughput and
massively parallel computation, since the multiplications in Fp are distributed bitwise over multiple
Processing Elements (PEs). For the proposed design with 160PEs, scalar multiplication with a 160-
bit scalar on an elliptic curve over a 160-bit field is reported to take 14.4 ms at a clock frequency of
91.308 MHz on a Xilinx V1000E-BG-560-8 (Virtex E) FPGA.

The processor presented in [27] is the fastest FPGA implementation of ECC overFp reported to date.
A 256-bit scalar multiplication is executed in 3.86 ms at 39.5 MHz on a Xilinx XC2VP125-7-ff1696
(Virtex2 Pro). The design features a full 256-bit multiplier utilizing embedded multipliers and the fast
carry look-ahead logic of the FPGA. As our ASIP is designed for embedded systems, a 256×256-bit
multiplier is clearly not suitable due to area constraints.

A direct comparison of this work with these FPGA implementations in terms of area and speed is
difficult, because our design is implemented using a 130 nm standard cell library. However, there are two
publications targeting ASIC implementations on 130 nm as well, which are discussed in the following
two paragraphs.

In [25] a processor is presented that speeds up ECC calculations with a dual-field multiplier, which
supports multiplications inF2n andFp. The architecture is scalable and depending on the multiplier size
different speedups can be achieved at the cost of increased area. However, the multiplier is restricted to
quadratic sizes ofr×r bit. The size of the multiplier therefore has a huge impact onthe critical path of
the design and large multipliers decrease the maximum clockfrequency significantly. With a 64×64-bit
multiplier and implemented with a 130 nm CMOS standard cell library, the design requires 107 kGates
(without memories) and performs a 256-bit scalar multiplication in Fp at a maximum achievable clock
frequency of 138 MHz in 2.68 ms.

Similar to the work in [26], [28] presents an ECC processor based on a systolic arithmetic unit, which
is extended to also support binary fields in [29].Fp operations (including multiplication and division)
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are executed on a unified systolic array with 130 PEs. The pipelined structure leads to highly parallel
computation at high frequencies. However, one issue with this technique is the utilization of this structure.
Conditions and data dependencies can lead to pipeline stalls decreasing the overall performance of the
system. The authors reduce this effect by instruction reordering and utilization of delay slots. Another
drawback is that the data-transfer mode of the datapath is ofbit granularity and high concurrency, while
the memory access is of word granularity and low concurrency. The authors therefore introduce latching
registers close to the PEs in order to access the data in time and place. This comes at a cost of increased
area and critical-path delay. The presented processor can operate at a frequency of 556 MHz and consumes
122 kGates. It performs a 256-bit scalar multiplication in 1.01 ms. Like our design it is implemented
with a 130 nm standard cell library. For elliptic-curve arithmetic it uses points in affine representation;
finite field inversions are accelerated through hardware.

In order to compare the results of this work with these architectures we implemented scalar multipli-
cation on the 256-bit Barreto-Naehrig curve that we also used for pairing computation. Our design does
not accelerate field inversion through hardware, so we use Jacobian projective coordinates to represent
the points on the curve, trading inversions for several multiplications.

We emphasize that the choice of this curve is far from being optimal in terms of achievable performance
for ECC not involving pairings. Clearly using an elliptic curve in Edwards form [46] and representing
points in inverted Edwards coordinates [47] would improve speed for scalar multiplication significantly.

As in [25] and [28], we use the so-called NAF method for scalarmultiplication: The scalar is
first transformed into non-adjacent form (NAF); scalar multiplication is then carried out scanning this
representation from left to right (see e.g. [48, Section 3.3.1]). For each signed-bit entry of the NAF
one point doubling is performed; if the entry is non-zero an additional point addition is performed. On
average only13 and at most12 of the signed bits of a NAF are non-zero. Clearly the number ofnon-zero
entries of the NAF affects the computation speed of a scalar multiplication. For benchmarking we follow
[25] and assume a scalar with13 non-zero entries.

Scalar multiplication with a 256-bit scalar takes 0.998 ms for the128m2variant of the proposed design
at a maximum achievable clock frequency of 338 MHz. This number includes transformation of the scalar
into NAF and a transformation from Jacobian into affine coordinates at the end.

Note that ASIP variant128m2is not only slightly faster than the designs in [25] and [28],but also
consumes less area (97 kGates). However, it should be noted that the utilization of two data memories
in our design affects on the overall area consumption.

5. Conclusion and Outlook

In this paper we presented a design-space exploration of an ASIP for computation of cryptographic
pairings over BN curves. The design is based on extensions ofan existing RISC core, which are completely
transparent and independent from the original pipeline. Therefore, they could be applied to any RISC-like
architecture, which can stall the pipeline during multi-cycle operations. The extensions are adaptable in
terms of timing and allow for a trade-off between execution time and area. A flexible and transparent
memory architecture extension making use of multiple memories (TIMS) enables the usage of existing
compilers, since the address space remains unsegmented.

Future objectives are including countermeasures against side-channel attacks, which are not specially
targeted in the current design, either in hard- or in software.
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[22] T. Vejda, D. Page, and J. Großschädl, “Instruction setextensions for pairing-based cryptography,” inPairing-
Based Cryptography – Pairing 2007, ser. LNCS, vol. 4575, 2007, pp. 208–224.

[23] H. Eberle, S. Shantz, V. Gupta, N. Gura, L. Rarick, and L.Spracklen, “Accelerating next-generation public-key
cryptosystems on general-purpose CPUs,”IEEE Micro, vol. 25, no. 2, pp. 52–59, 2005.

[24] G. Orlando and C. Paar, “A scalable GF(p) elliptic curve processor architecture for programmable hardware,”
in Cryptographic Hardware and Embedded Systems – CHES 2001, ser. LNCS, vol. 2162, 2001, pp. 348–363.

[25] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic processor,”IEEE Trans. Computers,
vol. 52, no. 4, pp. 449–460, 2003.
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