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Abstract

This report describes the functionality, installation, and use of the Networking and Cryptog-
raphy library (NaCl).
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Chapter 1

Introduction to NaCl

“NaCl” (pronounced “salt”) is the CACE Networking and Cryptography library, a new easy-
to-use high-speed high-security public-domain software library for network communication,
encryption, decryption, signatures, etc. NaCl’s goal is to provide all of the core operations
needed to build higher-level cryptographic tools.

Of course, other libraries already exist for these core operations. NaCl advances the state
of the art by improving security, by improving usability, and by improving speed.

1.1 Contributors

NaCl was initiated by the CACE (Computer Aided Cryptography Engineering) project funded
by the European Commission’s Seventh Framework Programme (FP7), contract number ICT-
2008-216499. CACE activities were organized into several Work Packages (WPs). NaCl was
the main task of CACE WP2, “Accelerating Secure Networking,” led by Tanja Lange (at
Technische Universiteit Eindhoven) and Daniel J. Bernstein (at the University of Illinois at
Chicago, currently visiting Eindhoven). CACE finished at the end of 2010 but NaCl is a
continuing project.

NaCl benefits from close collaboration with two other projects. The NaCl API is based on,
and has influenced, the SUPERCOP (System for Unified Performance Evaluation Related to
Cryptographic Operations and Primitives) API developed for the eBACS (ECRYPT Bench-
marking of Cryptographic Systems) project [18]. Many of the algorithms used in NaCl were
developed as part of Daniel J. Bernstein’s High-Speed Cryptography project funded by the
U.S. National Science Foundation, grant number ITR-0716498. “Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.”

Emilia Käsper at Katholieke Universiteit Leuven and Peter Schwabe at Technische Uni-
versiteit Eindhoven wrote the fast AES implementations used in C NaCl. Peter Schwabe also
implemented signatures for C NaCl and C++ NaCl.

Adam Langley at Google wrote the donna and donna_c64 implementations of Curve25519
in C NaCl and a prototype Python NaCl wrapper around C NaCl.

Matthew Dempsky at Mochi Media wrote the ref implementation of Curve25519 in C
NaCl and reference implementations of many functions in Python NaCl.
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Chapter 2

Features

2.1 C NaCl, C++ NaCl, and Python NaCl

The current version of NaCl supports C and C++. Support for Python is a high priority.
NaCl takes advantage of higher-level language features to simplify the APIs for those

languages. For example:

• A message is represented in C NaCl as two variables: an array variable m and an integer
variable mlen. Higher-level APIs use a single string variable m that knows its own length.

• The C NaCl functions return error codes to indicate, e.g., invalid signatures; a caller
that neglects to check for those error codes will blithely proceed as if the signatures
were valid. Higher-level APIs raise exceptions.

• The C NaCl functions write output strings via pointers. Higher-level APIs simply return
the strings as function values.

2.2 High-speed implementations of high-speed primitives

NaCl aims to, and in many cases already does, provide record-setting speeds for each of its
cryptographic operations.

This means not merely record-setting speeds for (e.g.) bulk data encryption with AES,
but record-setting speeds for bulk data encryption with the best secret-key cipher available.
Note that a state-of-the-art stream cipher such as Salsa20 is considerably faster than AES.

Sometimes NaCl includes slow implementations of primitives that are expected to set
speed records with better implementations. Applications built using these NaCl functions
will eventually benefit from higher-speed implementations.

2.3 Automatic CPU-specific tuning

NaCl, like other speed-oriented cryptographic libraries, supports multiple implementations of
the same function.

Most of these libraries attempt to recognize CPUs and select implementations (and com-
piler options) known to work well on those CPUs. NaCl instead compiles all implementations

5
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(with all specified compiler options) and uses speed measurements to select the fastest imple-
mentation for the user’s CPU.

One advantage of NaCl’s automatic tuning is that new CPUs automatically use the best
option available, without any human intervention. Another advantage is that new implemen-
tations (and new compiler options) can be added with a minimum of fuss.

In theory, there is a compile-time cost for automatic tuning, and the cost grows with the
number of implementations (and compiler options). In practice, the cost of NaCl’s automatic
tuning is quite small, and if it ever becomes troublesome then it can easily be split across
many machines.

2.4 Support for standard primitives

Whenever NaCl includes–for speed reasons or for security reasons–a newly proposed cipher, a
newly proposed signature system, etc., it also includes an older standard cipher (e.g., AES),
[TO DO:] an older standard signature system (e.g., ECDSA using the NIST P-256 elliptic
curve), etc. Some users avoid new proposals as a matter of policy; NaCl accommodates those
users.

This does not mean that it is a high priority for NaCl to support every cryptographic
standard. Example: An implementation of triple DES might be of interest for bank-industry
applications, but is a lower priority for NaCl than an improved implementation of AES.

2.5 Expert selection of default primitives

Typical cryptographic libraries force the programmer to specify choices of cryptographic prim-
itives: e.g., “sign this message with 4096-bit RSA using PKCS #1 v2.0 with SHA-256.”

Most programmers using cryptographic libraries are not expert cryptographic security
evaluators. Often programmers pass the choice along to users–who usually have even less
information about the security of cryptographic primitives. There is a long history of these
programmers and users making poor choices of cryptographic primitives, such as MD5 and
512-bit RSA, years after cryptographers began issuing warnings about the security of those
primitives.

NaCl allows, and encourages, the programmer to simply say “sign this message.” NaCl has
a side mechanism through which a cryptographer can easily specify the choice of signature
system. Furthermore, NaCl is shipped with a preselected choice, namely a state-of-the-art
signature system suitable for worldwide use in a wide range of applications.

2.6 High-level primitives

A typical cryptographic library requires several steps to authenticate and encrypt a message.
Consider, for example, the following typical combination of RSA, AES, etc.:

• Generate a random AES key.

• Use the AES key to encrypt the message.

• Hash the encrypted message using SHA-256.
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• Read the sender’s RSA secret key from “wire format.”

• Use the sender’s RSA secret key to sign the hash.

• Read the recipient’s RSA public key from wire format.

• Use the recipient’s public key to encrypt the AES key, hash, and signature.

• Convert the encrypted key, hash, and signature to wire format.

• Concatenate with the encrypted message.

Sometimes even more steps are required for storage allocation, error handling, etc.
NaCl provides a simple crypto_box function that does everything in one step. The func-

tion takes the sender’s secret key, the recipient’s public key, and a message, and produces an
authenticated ciphertext. All objects are represented in wire format, as sequences of bytes
suitable for transmission; the crypto_box function automatically handles all necessary con-
versions, initializations, etc.

Another virtue of NaCl’s high-level API is that it is not tied to the traditional hash-sign-
encrypt-etc. hybrid structure. NaCl supports much faster message-boxing solutions that reuse
Diffie-Hellman shared secrets for any number of messages between the same parties.

A multiple-step procedure can have important speed advantages when multiple computa-
tions share precomputations. NaCl allows users to split crypto_box into two steps, namely
crypto_box_beforenm for message-independent precomputation and crypto_box_afternm

for message-dependent computation.

2.7 No branches depending on secret data

The CPU’s instruction pointer, branch predictor, etc. are not designed to keep information
secret. For performance reasons this situation is unlikely to change. The literature has many
examples of successful timing attacks that extracted secret keys from these parts of the CPU.

NaCl systematically avoids all data flow from secret information to the instruction pointer
and the branch predictor. There are no conditional branches with conditions based on secret
information; in particular, all loop counts are predictable in advance.

This protection appears to be compatible with extremely high speed, so there is no reason
to consider weaker protections.

2.8 No array indices depending on secret data

The CPU’s cache, TLB, etc. are not designed to keep addresses secret. For performance
reasons this situation is unlikely to change. The literature has several examples of successful
cache-timing attacks that used secret information leaked through addresses.

NaCl systematically avoids all data flow from secret information to the addresses used in
load instructions and store instructions. There are no array lookups with indices based on
secret information; the pattern of memory access is predictable in advance.

The conventional wisdom for many years was that achieving acceptable software speed
for AES required variable-index array lookups, exposing the AES key to side-channel at-
tacks, specifically cache-timing attacks. However, the paper “Faster and timing-attack re-
sistant AES-GCM” by Emilia Käsper and Peter Schwabe at CHES 2009 introduced a new
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implementation that set record-setting speeds for AES on the popular Core 2 CPU despite
being immune to cache-timing attacks. NaCl reuses these results.

2.9 No dynamic memory allocation

C NaCl is intended to be usable in environments that cannot guarantee the availability of
large amounts of heap storage but that nevertheless rely on their cryptographic computations
to continue working. C NaCl functions do not call malloc, sbrk, etc. They do use small
amounts of stack space; these amounts will eventually be measured by separate benchmarks.

This feature applies only to C NaCl. Higher-level languages such as Python are not cur-
rently usable in restricted environments.

2.10 No copyright restrictions

All of the NaCl software is in the public domain.



Chapter 3

Installation

NaCl works on a wide variety of UNIX-like systems, including Linux, BSD, Solaris, etc. Here
is how to download and compile NaCl:

wget http://hyperelliptic.org/nacl/nacl-20110221.tar.bz2

bunzip2 < nacl-20110221.tar.bz2 | tar -xf -

cd nacl-20110221

./do

Several machines sharing the same filesystem can compile NaCl simultaneously in the same
shared directory. All compilation takes place in a host-specific subdirectory: for example,
build/atlas on a machine named atlas, and build/katana on a machine named katana.

Some machines support multiple application binary interfaces (ABIs). For example, the
machine katana can run 32-bit x86 programs and 64-bit amd64 programs; both types of
programs are supported by the CPU (an Intel Core 2 Duo), the operating system (64-bit
Ubuntu), and the compiler (gcc). NaCl automatically compiles itself for each ABI: inside
build/katana, NaCl creates both

• a 64-bit lib/amd64/libnacl.a accompanied by header files
include/amd64/crypto_auth.h, include/amd64/crypto_stream.h, etc., and

• a 32-bit lib/x86/libnacl.a accompanied by include/x86/crypto_auth.h,
include/x86/crypto_stream.h, etc.

The NaCl header files are created dynamically as part of the compilation process, reflecting
machine-specific optimizations, and can vary from one ABI to another.

NaCl creates an ABI-independent program bin/okabi that prints the list of supported
ABIs: for example, amd64 and x86. NaCl also creates bin/okc-amd64 to print the list of C
compilers supporting the amd64 ABI, bin/okc-x86 to print the list of C compilers supporting
the x86 ABI, etc.

[TO DO:] NaCl’s header files and compiled code can be installed in appropriate system
locations so that applications can include <crypto_auth.h>, link with -lnacl, etc. Beware
that current operating systems have many incompatible, and generally deficient, mechanisms
of handling multiple ABIs, making multiple-ABI support rather difficult for libraries and for
applications.

Rather than relying on the system to have an installation of NaCl, applications can include
the NaCl source code as part of the application source code. The applications can then use

9
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okabi, okc-amd64, etc. to automatically try all ABIs and compilers and to select the fastest
option.



Chapter 4

Internals

Are you contributing code to NaCl? Here’s some advice on how to write your code.

4.1 Language choice

All NaCl functions are distributed as C implementations, often with assembly-language im-
plementations as extra options. C++ and Python are handled as wrappers around the C
implementations.

There are an increasing number of cases where the C implementations and assembly-
language implementations are automatically generated from code that was actually written
in another language, such as CAO or qhasm. This automatic generation takes place as part
of creating the NaCl distribution, not as part of installing NaCl.

4.2 Naming conventions: an example

The reference SHA-512 implementation in NaCl is crypto_hash/sha512/ref/hash.c, which
defines a crypto_hash function as follows:

#include "crypto_hash.h"

int crypto_hash(unsigned char *out,

const unsigned char *in,unsigned long long inlen)

{

...

}

An accompanying file crypto_hash/sha512/ref/api.h says

#define CRYPTO_BYTES 64

to indicate that this function produces a 64-byte hash.
The NaCl compilation scripts automatically create crypto_hash.h with various macros,

including the following:

#define crypto_hash crypto_hash_sha512

#define crypto_hash_sha512 crypto_hash_sha512_ref

11
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#define crypto_hash_BYTES crypto_hash_sha512_BYTES

#define crypto_hash_sha512_BYTES crypto_hash_sha512_ref_BYTES

#define crypto_hash_sha512_ref_BYTES 64

#define crypto_hash_PRIMITIVE "sha512"

#define crypto_hash_IMPLEMENTATION crypto_hash_sha512_IMPLEMENTATION

#define crypto_hash_sha512_IMPLEMENTATION "crypto_hash/sha512/ref"

This means that hash.c actually defines a crypto_hash_sha512_ref function. Normally, as
an implementor, you don’t have to think about this; but if you avoid including crypto_hash.h

(for example, because you’re actually writing hash.s instead of hash.c) then you should make
sure to define crypto_hash_sha512_ref.

4.3 Multiple implementations of the same primitive

To add another SHA-512 implementation, create another subdirectory of
crypto_hash/sha512. For example, you might choose crypto_hash/sha512/core2 for
an implementation optimized for the Core 2. Inside that subdirectory, create an api.h file
that defines CRYPTO_BYTES, and a .c file that defines crypto_hash.

You can use names other than hash.c. You can split your code across sev-
eral files *.c defining various auxiliary functions; the files will be automatically com-
piled together. You can use external names prefixed by the implementation name:
for example, crypto_hash/sha512/core2 can define crypto_hash_sha512_core2_iv,
crypto_hash_sha512_core2_expand, etc.

4.4 Branches

Do not use secret data to control a branch. In particular, do not use the memcmp function
to compare secrets. Instead use crypto_verify_16, crypto_verify_32, etc., which perform
constant-time string comparisons.

4.5 Array lookups

Do not use secret data as an array index.
Early plans for NaCl would have allowed exceptions to this rule inside primitives specif-

ically labelled vulnerable, in particular to allow fast crypto_stream_aes128vulnerable,
but subsequent research showed that this compromise was unnecessary.

4.6 Dynamic memory allocation

Do not use malloc, calloc, sbrk, etc. in C NaCl.

4.7 Thread safety

Do not use global variables (i.e., static variables or variables defined outside functions) in C
NaCl.



13

4.8 Alignment

Do not assume that the input arrays or output arrays have any particular alignment. If you
want to use, e.g., an aligned 16-byte load instruction for speed, check at the top of your
function that the input array is properly aligned, and have a (slower) fallback in case the
input array is not properly aligned.

4.9 Specific integer sizes

If you want a 32-bit integer, use crypto_int32 after #include <crypto_int32.h>. This
is more portable than int32_t from inttypes.h, and more portable than int32_t

from stdint.h. Similar comments apply to crypto_int8, crypto_int16, crypto_int32,
crypto_int64, crypto_uint8, crypto_uint16, crypto_uint32, crypto_uint64.
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Chapter 5

Validation and verification

It is essential for cryptographic libraries to compute exactly the functions that they are meant
to compute, and for those functions to be secure. A signature-checking library is a security
disaster if it has a bug that accepts invalid signatures, for example, or if the signature system
that it implements is 512-bit RSA.

Part II of this document specifies NaCl’s default mechanism for public-key authenticated
encryption, and along the way specifies NaCl’s default mechanisms for scalar multiplication
(Curve25519), secret-key authenticated encryption, secret-key encryption (Salsa20), and one-
time authentication (Poly1305). The same part includes a complete step-by-step example of
authenticated encryption, independent implementations testing each step, detailed security
notes, and references to the relevant literature.

The NaCl compilation scripts test known outputs of each primitive for many different
message lengths, test consistency of different functions supported by the same primitive (for
example, crypto_stream_xor matches crypto_stream), and test memory safety in several
ways.
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Chapter 6

Public-key authenticated
encryption: crypto_box

6.1 C++ interface

C++ NaCl provides a crypto_box_keypair function callable as follows:

#include "crypto_box.h"

std::string pk;

std::string sk;

pk = crypto_box_keypair(&sk);

The crypto_box_keypair function randomly generates a secret key and a corresponding
public key. It puts the secret key into sk and returns the public key. It guarantees that sk has
crypto_box_SECRETKEYBYTES bytes and that pk has crypto_box_PUBLICKEYBYTES bytes.

C++ NaCl also provides a crypto_box function callable as follows:

#include "crypto_box.h"

std::string pk;

std::string sk;

std::string n;

std::string m;

std::string c;

c = crypto_box(m,n,pk,sk);

The crypto_box function encrypts and authenticates a message m using the sender’s se-
cret key sk, the receiver’s public key pk, and a nonce n. The crypto_box function re-
turns the resulting ciphertext c. The function raises an exception if sk.size() is not
crypto_box_SECRETKEYBYTES or if pk.size() is not crypto_box_PUBLICKEYBYTES or if
n.size() is not crypto_box_NONCEBYTES.

C++ NaCl also provides a crypto_box_open function callable as follows:
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#include "crypto_box.h"

std::string pk;

std::string sk;

std::string n;

std::string c;

std::string m;

m = crypto_box_open(c,n,pk,sk);

The crypto_box_open function verifies and decrypts a ciphertext c using the receiver’s secret
key sk, the sender’s public key pk, and a nonce n. The crypto_box_open function returns
the resulting plaintext m.

If the ciphertext fails verification, crypto_box_open raises an exception. The function
also raises an exception if sk.size() is not crypto_box_SECRETKEYBYTES or if pk.size() is
not crypto_box_PUBLICKEYBYTES or if n.size() is not crypto_box_NONCEBYTES.

6.2 C interface

C NaCl provides a crypto_box_keypair function callable as follows:

#include "crypto_box.h"

unsigned char pk[crypto_box_PUBLICKEYBYTES];

unsigned char sk[crypto_box_SECRETKEYBYTES];

crypto_box_keypair(pk,sk);

The crypto_box_keypair function randomly generates a secret key and a corresponding
public key. It puts the secret key into sk[0], sk[1], ..., sk[crypto_box_SECRETKEYBYTES-1]
and puts the public key into pk[0], pk[1], ..., pk[crypto_box_PUBLICKEYBYTES-1]. It then
returns 0.

C NaCl also provides a crypto_box function callable as follows:

#include "crypto_box.h"

const unsigned char pk[crypto_box_PUBLICKEYBYTES];

const unsigned char sk[crypto_box_SECRETKEYBYTES];

const unsigned char n[crypto_box_NONCEBYTES];

const unsigned char m[...]; unsigned long long mlen;

unsigned char c[...];

crypto_box(c,m,mlen,n,pk,sk);

The crypto_box function encrypts and authenticates a message m[0], ..., m[mlen-1] using
the sender’s secret key sk[0], sk[1], ..., sk[crypto_box_SECRETKEYBYTES-1], the receiver’s
public key pk[0], pk[1], ..., pk[crypto_box_PUBLICKEYBYTES-1], and a nonce n[0], n[1],
..., n[crypto_box_NONCEBYTES-1]. The crypto_box function puts the ciphertext into c[0],
c[1], ..., c[mlen-1]. It then returns 0.



19

WARNING: Messages in the C NaCl API are 0-padded versions of messages in the
C++ NaCl API. Specifically: The caller must ensure, before calling the C NaCl crypto_box
function, that the first crypto_box_ZEROBYTES bytes of the message m are all 0. Typical
higher-level applications will work with the remaining bytes of the message; note, however,
that mlen counts all of the bytes, including the bytes required to be 0.

Similarly, ciphertexts in the C NaCl API are 0-padded versions of messages in
the C++ NaCl API. Specifically: The crypto_box function ensures that the first
crypto_box_BOXZEROBYTES bytes of the ciphertext c are all 0.

C NaCl also provides a crypto_box_open function callable as follows:

#include "crypto_box.h"

const unsigned char pk[crypto_box_PUBLICKEYBYTES];

const unsigned char sk[crypto_box_SECRETKEYBYTES];

const unsigned char n[crypto_box_NONCEBYTES];

const unsigned char c[...]; unsigned long long clen;

unsigned char m[...];

crypto_box_open(m,c,clen,n,pk,sk);

The crypto_box_open function verifies and decrypts a ciphertext c[0], ..., c[clen-1] using
the receiver’s secret key sk[0], sk[1], ..., sk[crypto_box_SECRETKEYBYTES-1], the sender’s
public key pk[0], pk[1], ..., pk[crypto_box_PUBLICKEYBYTES-1], and a nonce n[0], ...,
n[crypto_box_NONCEBYTES-1]. The crypto_box_open function puts the plaintext into m[0],
m[1], ..., m[clen-1]. It then returns 0.

If the ciphertext fails verification, crypto_box_open instead returns -1, possibly after
modifying m[0], m[1], etc.

The caller must ensure, before calling the crypto_box_open function, that the first
crypto_box_BOXZEROBYTES bytes of the ciphertext c are all 0. The crypto_box_open func-
tion ensures (in case of success) that the first crypto_box_ZEROBYTES bytes of the plaintext
m are all 0.

6.3 C precomputation interface

Applications that send several messages to the same receiver can gain speed by splitting
crypto_box into two steps, crypto_box_beforenm and crypto_box_afternm. Similarly, ap-
plications that receive several messages from the same sender can gain speed by splitting
crypto_box_open into two steps, crypto_box_beforenm and crypto_box_open_afternm.

The crypto_box_beforenm function is callable as follows:

#include "crypto_box.h"

unsigned char k[crypto_box_BEFORENMBYTES];

const unsigned char pk[crypto_box_PUBLICKEYBYTES];

const unsigned char sk[crypto_box_SECRETKEYBYTES];

crypto_box_beforenm(k,pk,sk);
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The crypto_box_afternm function is callable as follows:

#include "crypto_box.h"

const unsigned char k[crypto_box_BEFORENMBYTES];

const unsigned char n[crypto_box_NONCEBYTES];

const unsigned char m[...]; unsigned long long mlen;

unsigned char c[...];

crypto_box_afternm(c,m,mlen,n,k);

The crypto_box_open_afternm function is callable as follows:

#include "crypto_box.h"

const unsigned char k[crypto_box_BEFORENMBYTES];

const unsigned char n[crypto_box_NONCEBYTES];

const unsigned char c[...]; unsigned long long clen;

unsigned char m[...];

crypto_box_open_afternm(m,c,clen,n,k);

The intermediate data computed by crypto_box_beforenm is suitable for both
crypto_box_afternm and crypto_box_open_afternm, and can be reused for any number
of messages.

6.4 Security model

The crypto_box function is designed to meet the standard notions of privacy and third-party
unforgeability for a public-key authenticated-encryption scheme using nonces. For formal
definitions see, e.g., [2].

Distinct messages between the same {sender, receiver} set are required to have distinct
nonces. For example, the lexicographically smaller public key can use nonce 1 for its first
message to the other key, nonce 3 for its second message, nonce 5 for its third message, etc.,
while the lexicographically larger public key uses nonce 2 for its first message to the other
key, nonce 4 for its second message, nonce 6 for its third message, etc. Nonces are long enough
that randomly generated nonces have negligible risk of collision.

There is no harm in having the same nonce for different messages if the {sender, receiver}
sets are different. This is true even if the sets overlap. For example, a sender can use the same
nonce for two different messages if the messages are sent to two different public keys.

The crypto_box function is not meant to provide non-repudiation. On the contrary: the
crypto_box function guarantees repudiability. A receiver can freely modify a boxed message,
and therefore cannot convince third parties that this particular message came from the sender.
The sender and receiver are nevertheless protected against forgeries by other parties. In the
terminology of [9], crypto_box uses “public-key authenticators” rather than “public-key sig-
natures.”

Users who want public verifiability (or receiver-assisted public verifiability) should instead
use signatures (or signcryption).
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6.5 Selected primitive

crypto_box is curve25519xsalsa20poly1305, a particular combination of Curve25519,
Salsa20, and Poly1305 specified in Part II of this document. This function is conjectured
to meet the standard notions of privacy and third-party unforgeability.

6.6 Alternate primitives

NaCl supports the following public-key message-protection functions:

crypto_box_...BYTES

crypto_box PUBLICKEY SECRETKEY NONCE ZERO BOXZERO BEFORENM

[TO DO:] crypto_box_nistp256aes256gcm 64 32 8 32 0 32
crypto_box_curve25519xsalsa20poly1305 32 32 24 32 16 32

For example, a user can replace crypto_box etc. with
crypto_box_curve25519xsalsa20poly1305 etc.
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Chapter 7

Scalar multiplication:
crypto_scalarmult

7.1 C++ interface

C++ NaCl provides a crypto_scalarmult function callable as follows:

#include "crypto_scalarmult.h"

std::string p;

std::string n;

std::string q;

q = crypto_scalarmult(n,p);

This function multiplies a group element p by an integer n. It returns the resulting
group element q of length crypto_scalarmult_BYTES. The function raises an exception if
p.size() is not crypto_scalarmult_BYTES. It also raises an exception if n.size() is not
crypto_scalarmult_SCALARBYTES.

C++ NaCl also provides a crypto_scalarmult_base function callable as follows:

#include "crypto_scalarmult.h"

std::string n;

std::string q;

q = crypto_scalarmult_base(n);

The crypto_scalarmult_base function computes the scalar product of a stan-
dard group element and an integer n. It returns the resulting group element
q of length crypto_scalarmult_BYTES. It raises an exception if n.size() is not
crypto_scalarmult_SCALARBYTES.

7.2 C interface

C NaCl provides a crypto_scalarmult function callable as follows:
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#include "crypto_scalarmult.h"

const unsigned char p[crypto_scalarmult_BYTES];

const unsigned char n[crypto_scalarmult_SCALARBYTES];

unsigned char q[crypto_scalarmult_BYTES];

crypto_scalarmult(q,n,p);

This function multiplies a group element p[0], ..., p[crypto_scalarmult_BYTES-1] by an
integer n[0], ..., n[crypto_scalarmult_SCALARBYTES-1]. It puts the resulting group element
into q[0], ..., q[crypto_scalarmult_BYTES-1] and returns 0.

C NaCl also provides a crypto_scalarmult_base function callable as follows:

#include "crypto_scalarmult.h"

const unsigned char n[crypto_scalarmult_SCALARBYTES];

unsigned char q[crypto_scalarmult_BYTES];

crypto_scalarmult_base(q,n);

The crypto_scalarmult_base function computes the scalar product of a standard group ele-
ment and an integer n[0], ..., n[crypto_scalarmult_SCALARBYTES-1]. It puts the resulting
group element into q[0], ..., q[crypto_scalarmult_BYTES-1] and returns 0.

7.3 Representation of group elements

The correspondence between strings and group elements depends on the primitive imple-
mented by crypto_scalarmult. The correspondence is not necessarily injective in either
direction, but it is compatible with scalar multiplication in the group. The correspondence
does not necessarily include all group elements, but it does include all strings; i.e., every string
represents at least one group element.

7.4 Representation of integers

The correspondence between strings and integers also depends on the primitive implemented
by crypto_scalarmult. Every string represents at least one integer.

7.5 Security model

crypto_scalarmult is designed to be strong as a component of various well-known “hashed
Diffie–Hellman” applications. In particular, it is designed to make the “computational Diffie–
Hellman” problem (CDH) difficult with respect to the standard base.

crypto_scalarmult is also designed to make CDH difficult with respect to other nontrivial
bases. In particular, if a represented group element has small order, then it is annihilated by
all represented scalars. This feature allows protocols to avoid validating membership in the
subgroup generated by the standard base.
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NaCl does not make any promises regarding the “decisional Diffie–Hellman” problem
(DDH), the “static Diffie–Hellman” problem (SDH), etc. Users are responsible for hashing
group elements.

7.6 Selected primitive

crypto_scalarmult is the function crypto_scalarmult_curve25519 specified in Part II of
this document. This function is conjectured to be strong. For background see [13].

7.7 Alternate primitives

NaCl supports the following scalar-multiplication functions:

crypto_scalarmult BYTES SCALARBYTES

[TO DO:] crypto_scalarmult_nistp256 64 32
crypto_scalarmult_curve25519 32 32

For example, a user who wants to use the Curve25519 group can replace crypto_scalarmult,
crypto_scalarmult_BYTES, etc. with crypto_scalarmult_curve25519,
crypto_scalarmult_curve25519_BYTES, etc.
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Chapter 8

Secret-key authenticated
encryption: crypto_secretbox

8.1 C++ interface

C++ NaCl provides a crypto_secretbox function callable as follows:

#include "crypto_secretbox.h"

std::string k;

std::string n;

std::string m;

std::string c;

c = crypto_secretbox(m,n,k);

The crypto_secretbox function encrypts and authenticates a message m using a secret key
k and a nonce n. The crypto_secretbox function returns the resulting ciphertext c. The
function raises an exception if k.size() is not crypto_secretbox_KEYBYTES. The function
also raises an exception if n.size() is not crypto_secretbox_NONCEBYTES.

C++ NaCl also provides a crypto_secretbox_open function callable as follows:

#include "crypto_secretbox.h"

std::string k;

std::string n;

std::string c;

std::string m;

m = crypto_secretbox_open(c,n,k);

The crypto_secretbox_open function verifies and decrypts a ciphertext c using a secret key
k and a nonce n. The crypto_secretbox_open function returns the resulting plaintext m.

If the ciphertext fails verification, crypto_secretbox_open raises an exception. The func-
tion also raises an exception if k.size() is not crypto_secretbox_KEYBYTES, or if n.size()
is not crypto_secretbox_NONCEBYTES.
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8.2 C interface

C NaCl provides a crypto_secretbox function callable as follows:

#include "crypto_secretbox.h"

const unsigned char k[crypto_secretbox_KEYBYTES];

const unsigned char n[crypto_secretbox_NONCEBYTES];

const unsigned char m[...]; unsigned long long mlen;

unsigned char c[...]; unsigned long long clen;

crypto_secretbox(c,m,mlen,n,k);

The crypto_secretbox function encrypts and authenticates a message m[0], m[1], ...,
m[mlen-1] using a secret key k[0], ..., k[crypto_secretbox_KEYBYTES-1] and a nonce n[0],
n[1], ..., n[crypto_secretbox_NONCEBYTES-1]. The crypto_secretbox function puts the
ciphertext into c[0], c[1], ..., c[mlen-1]. It then returns 0.

WARNING: Messages in the C NaCl API are 0-padded versions of messages in the C++
NaCl API. Specifically: The caller must ensure, before calling the C NaCl crypto_secretbox
function, that the first crypto_secretbox_ZEROBYTES bytes of the message m are all 0. Typical
higher-level applications will work with the remaining bytes of the message; note, however,
that mlen counts all of the bytes, including the bytes required to be 0.

Similarly, ciphertexts in the C NaCl API are 0-padded versions of messages in the
C++ NaCl API. Specifically: The crypto_secretbox function ensures that the first
crypto_secretbox_BOXZEROBYTES bytes of the ciphertext c are all 0.

C NaCl also provides a crypto_secretbox_open function callable as follows:

#include "crypto_secretbox.h"

const unsigned char k[crypto_secretbox_KEYBYTES];

const unsigned char n[crypto_secretbox_NONCEBYTES];

const unsigned char c[...]; unsigned long long clen;

unsigned char m[...];

crypto_secretbox_open(m,c,clen,n,k);

The crypto_secretbox_open function verifies and decrypts a ciphertext c[0], c[1], ...,
c[clen-1] using a secret key k[0], k[1], ..., k[crypto_secretbox_KEYBYTES-1] and a nonce
n[0], ..., n[crypto_secretbox_NONCEBYTES-1]. The crypto_secretbox_open function puts
the plaintext into m[0], m[1], ..., m[clen-1]. It then returns 0.

If the ciphertext fails verification, crypto_secretbox_open instead returns -1, possibly
after modifying m[0], m[1], etc.

The caller must ensure, before calling the crypto_secretbox_open function, that
the first crypto_secretbox_BOXZEROBYTES bytes of the ciphertext c are all 0.
The crypto_secretbox_open function ensures (in case of success) that the first
crypto_secretbox_ZEROBYTES bytes of the plaintext m are all 0.
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8.3 Security model

The crypto_secretbox function is designed to meet the standard notions of privacy and
authenticity for a secret-key authenticated-encryption scheme using nonces. For formal defi-
nitions see, e.g., [8].

Note that the length is not hidden. Note also that it is the caller’s responsibility to ensure
the uniqueness of nonces—for example, by using nonce 1 for the first message, nonce 2 for the
second message, etc. Nonces are long enough that randomly generated nonces have negligible
risk of collision.

8.4 Selected primitive

crypto_secretbox is crypto_secretbox_xsalsa20poly1305, a particular combination of
Salsa20 and Poly1305 specified in Part II of this document. This function is conjectured to
meet the standard notions of privacy and authenticity.

8.5 Alternate primitives

NaCl supports the following secret-key message-protection functions:

crypto_secretbox KEYBYTES NONCEBYTES ZEROBYTES BOXZEROBYTES

[TO DO:] crypto_secretbox_aes256gcm 32 8 32 0
crypto_secretbox_xsalsa20poly1305 32 24 32 16

For example, a user who wants to encrypt and authenticate messages with
AES-256-GCM can replace crypto_secretbox with crypto_secretbox_aes256gcm,
crypto_secretbox_KEYBYTES with crypto_secretbox_aes256gcm_KEYBYTES, etc.

Beware that some of these primitives have 8-byte nonces. For those primitives it is no
longer true that randomly generated nonces have negligible risk of collision. Callers who
are unable to count 1,2,3,..., and who insist on using these primitives, are advised to use a
randomly derived key for each message.
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Chapter 9

Secret-key encryption:
crypto_stream

9.1 C++ interface

C++ NaCl provides a crypto_stream function callable as follows:

#include "crypto_stream.h"

std::string k;

std::string n;

std::string c;

size_t clen;

c = crypto_stream(clen,n,k);

The crypto_stream function produces a clen-byte stream c as a function of a secret key k

and a nonce n. The function raises an exception if k.size() is not crypto_stream_KEYBYTES.
It also raises an exception if n.size() is not crypto_stream_NONCEBYTES.

C++ NaCl also provides a crypto_stream_xor function callable as follows:

#include "crypto_stream.h"

std::string k;

std::string n;

std::string m;

std::string c;

c = crypto_stream_xor(m,n,k);

The crypto_stream_xor function encrypts a message m using a secret key k and a nonce n.
The crypto_stream_xor function returns the ciphertext c. The function raises an exception
if k.size() is not crypto_stream_KEYBYTES. It also raises an exception if n.size() is not
crypto_stream_NONCEBYTES.

The crypto_stream_xor function guarantees that the ciphertext has the same length
as the plaintext, and is the plaintext xor the output of crypto_stream. Consequently
crypto_stream_xor can also be used to decrypt.
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9.2 C interface

C NaCl provides a crypto_stream function callable as follows:

#include "crypto_stream.h"

const unsigned char k[crypto_stream_KEYBYTES];

const unsigned char n[crypto_stream_NONCEBYTES];

unsigned char c[...]; unsigned long long clen;

crypto_stream(c,clen,n,k);

The crypto_stream function produces a stream c[0], c[1], ..., c[clen-1] as a function
of a secret key k[0], k[1], ..., k[crypto_stream_KEYBYTES-1] and a nonce n[0], n[1], ...,
n[crypto_stream_NONCEBYTES-1]. The crypto_stream function then returns 0.

C NaCl also provides a crypto_stream_xor function callable as follows:

#include "crypto_stream.h"

const unsigned char k[crypto_stream_KEYBYTES];

const unsigned char n[crypto_stream_NONCEBYTES];

unsigned char m[...]; unsigned long long mlen;

unsigned char c[...];

crypto_stream_xor(c,m,mlen,n,k);

The crypto_stream_xor function encrypts a message m[0], m[1], ..., m[mlen-1] using a
secret key k[0], k[1], ..., k[crypto_stream_KEYBYTES-1] and a nonce n[0], n[1], ...,
n[crypto_stream_NONCEBYTES-1]. The crypto_stream_xor function puts the ciphertext
into c[0], c[1], ..., c[mlen-1]. It then returns 0.

The crypto_stream_xor function guarantees that the ciphertext is the plaintext xor the
output of crypto_stream. Consequently crypto_stream_xor can also be used to decrypt.

9.3 Security model

The crypto_stream function, viewed as a function of the nonce for a uniform random key,
is designed to meet the standard notion of unpredictability (“PRF”). For a formal definition
see, e.g., [7, Section 2.3].

This means that an attacker cannot distinguish this function from a uniform random
function. Consequently, if a series of messages is encrypted by crypto_stream_xor with a
different nonce for each message, the ciphertexts are indistinguishable from uniform random
strings of the same length.

Note that the length is not hidden. Note also that it is the caller’s responsibility to ensure
the uniqueness of nonces—for example, by using nonce 1 for the first message, nonce 2 for the
second message, etc. Nonces are long enough that randomly generated nonces have negligible
risk of collision.

NaCl does not make any promises regarding the resistance of crypto_stream to “related-
key attacks.” It is the caller’s responsibility to use proper key-derivation functions.
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9.4 Selected primitive

crypto_stream is crypto_stream_xsalsa20, a particular cipher specified in Part II of this
document. This cipher is conjectured to meet the standard notion of unpredictability.

9.5 Alternate primitives

NaCl supports the following secret-key encryption functions:

crypto_stream Primitive KEYBYTES NONCEBYTES

crypto_stream_aes128ctr AES-128-CTR 16 16
[TO DO:] crypto_stream_aes256ctr AES-256-CTR 32 16

crypto_stream_salsa208 Salsa20/8 32 8
crypto_stream_salsa2012 Salsa20/12 32 8
crypto_stream_salsa20 Salsa20/20 32 8

crypto_stream_xsalsa20 XSalsa20/20 32 24

For example, a user who wants to encrypt with AES-128 can replace
crypto_stream, crypto_stream_KEYBYTES, etc. with crypto_stream_aes128ctr,
crypto_stream_aes128ctr_KEYBYTES, etc.

Beware that several of these primitives have 8-byte nonces. For those primitives it is
no longer true that randomly generated nonces have negligible risk of collision. Callers who
are unable to count 1,2,3,..., and who insist on using these primitives, are advised to use a
randomly derived key for each message.
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Chapter 10

Secret-key message authentication:
crypto_auth

10.1 C++ interface

C++ NaCl provides a crypto_auth function callable as follows:

#include "crypto_auth.h"

std::string k;

std::string m;

std::string a;

a = crypto_auth(m,k);

The crypto_auth function authenticates a message m using a secret key k. The function
returns an authenticator a. The authenticator length is always crypto_auth_BYTES. The
function raises an exception if k.size() is not crypto_auth_KEYBYTES.

C++ NaCl also provides a crypto_auth_verify function callable as follows:

#include "crypto_auth.h"

std::string k;

std::string m;

std::string a;

crypto_auth_verify(a,m,k);

The crypto_auth_verify function checks that k.size() is crypto_auth_KEYBYTES;
a.size() is crypto_auth_BYTES; and a is a correct authenticator of a message m under
the secret key k. If any of these checks fail, the function raises an exception.

10.2 C interface

C NaCl provides a crypto_auth function callable as follows:
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#include "crypto_auth.h"

const unsigned char k[crypto_auth_KEYBYTES];

const unsigned char m[...]; unsigned long long mlen;

unsigned char a[crypto_auth_BYTES];

crypto_auth(a,m,mlen,k);

The crypto_auth function authenticates a message m[0], m[1], ..., m[mlen-1] using a se-
cret key k[0], k[1], ..., k[crypto_auth_KEYBYTES-1]. The crypto_auth function puts the
authenticator into a[0], a[1], ..., a[crypto_auth_BYTES-1]. It then returns 0.

C NaCl also provides a crypto_auth_verify function callable as follows:

#include "crypto_auth.h"

const unsigned char k[crypto_auth_KEYBYTES];

const unsigned char m[...]; unsigned long long mlen;

const unsigned char a[crypto_auth_BYTES];

crypto_auth_verify(a,m,mlen,k);

The crypto_auth_verify function returns 0 if a[0], ..., a[crypto_auth_BYTES-1] is a cor-
rect authenticator of a message m[0], m[1], ..., m[mlen-1] under a secret key k[0], k[1], ...,
k[crypto_auth_KEYBYTES-1]. Otherwise crypto_auth_verify returns -1.

10.3 Security model

The crypto_auth function, viewed as a function of the message for a uniform random key, is
designed to meet the standard notion of unforgeability. This means that an attacker cannot
find authenticators for any messages not authenticated by the sender, even if the attacker has
adaptively influenced the messages authenticated by the sender. For a formal definition see,
e.g., [7, Section 2.4].

NaCl does not make any promises regarding “strong” unforgeability; perhaps one valid
authenticator can be converted into another valid authenticator for the same message. NaCl
also does not make any promises regarding “truncated unforgeability.”

10.4 Selected primitive

crypto_auth is currently an implementation of HMAC-SHA-512-256, i.e., the first 256 bits
of HMAC-SHA-512. HMAC-SHA-512-256 is conjectured to meet the standard notion of un-
forgeability.

10.5 Alternate primitives

NaCl supports the following secret-key authentication functions:
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crypto_auth Primitive BYTES KEYBYTES

crypto_auth_hmacsha256 HMAC-SHA-256 32 32
crypto_auth_hmacsha512256 HMAC-SHA-512-256 32 32

For example, a user can replace crypto_auth, crypto_auth_KEYBYTES, etc. with
crypto_auth_hmacsha256, crypto_auth_hmacsha256_KEYBYTES, etc.
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Chapter 11

Secret-key single-message
authentication: crypto_onetimeauth

11.1 C++ interface

C++ NaCl provides a crypto_onetimeauth function callable as follows:

#include "crypto_onetimeauth.h"

std::string k;

std::string m;

std::string a;

a = crypto_onetimeauth(m,k);

The crypto_onetimeauth function authenticates a message m using a secret key k, and returns
an authenticator a. The authenticator length is always crypto_onetimeauth_BYTES. The
function raises an exception if k.size() is not crypto_onetimeauth_KEYBYTES.

C++ NaCl also provides a crypto_onetimeauth_verify function callable as follows:

#include "crypto_onetimeauth.h"

std::string k;

std::string m;

std::string a;

crypto_onetimeauth_verify(a,m,k);

This function checks that k.size() is crypto_onetimeauth_KEYBYTES; a.size() is
crypto_onetimeauth_BYTES; and a is a correct authenticator of a message m under the secret
key k. If any of these checks fail, the function raises an exception.

11.2 C interface

C NaCl provides a crypto_onetimeauth function callable as follows:
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#include "crypto_onetimeauth.h"

const unsigned char k[crypto_onetimeauth_KEYBYTES];

const unsigned char m[...]; unsigned long long mlen;

unsigned char a[crypto_onetimeauth_BYTES];

crypto_onetimeauth(a,m,mlen,k);

The crypto_onetimeauth function authenticates a message m[0], m[1], ..., m[mlen-1] using
a secret key k[0], k[1], ..., k[crypto_onetimeauth_KEYBYTES-1]; puts the authenticator
into a[0], a[1], ..., a[crypto_onetimeauth_BYTES-1]; and returns 0.

C NaCl also provides a crypto_onetimeauth_verify function callable as follows:

#include "crypto_onetimeauth.h"

const unsigned char k[crypto_onetimeauth_KEYBYTES];

const unsigned char m[...]; unsigned long long mlen;

const unsigned char a[crypto_onetimeauth_BYTES];

crypto_onetimeauth_verify(a,m,mlen,k);

This function returns 0 if a[0], a[1], ..., a[crypto_onetimeauth_BYTES-1] is a correct
authenticator of a message m[0], m[1], ..., m[mlen-1] under a secret key k[0], k[1], ...,
k[crypto_onetimeauth_KEYBYTES-1]. Otherwise crypto_onetimeauth_verify returns -1.

11.3 Security model

The crypto_onetimeauth function, viewed as a function of the message for a uniform random
key, is designed to meet the standard notion of unforgeability after a single message. After
the sender authenticates one message, an attacker cannot find authenticators for any other
messages.

The sender must not use crypto_onetimeauth to authenticate more than one message
under the same key. Authenticators for two messages under the same key should be expected
to reveal enough information to allow forgeries of authenticators on other messages.

11.4 Selected primitive

crypto_onetimeauth is crypto_onetimeauth_poly1305, an authenticator specified in Part
II of this document. This authenticator is proven to meet the standard notion of unforgeability
after a single message.

11.5 Alternate primitives

NaCl supports the following secret-key single-message authentication functions:

crypto_onetimeauth Primitive BYTES KEYBYTES

crypto_onetimeauth_poly1305 Poly1305 16 32
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For example, a user can replace crypto_onetimeauth, crypto_onetimeauth_BYTES, etc. with
crypto_onetimeauth_poly1305, crypto_onetimeauth_poly1305_BYTES, etc. Furthermore,
users willing to compromise both provability and speed can replace crypto_onetimeauth

with crypto_auth or with any of the crypto_auth primitives.
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Chapter 12

Hashing: crypto_hash

12.1 C++ interface

C++ NaCl provides a crypto_hash function callable as follows:

#include "crypto_hash.h"

std::string m;

std::string h;

h = crypto_hash(m);

The crypto_hash function hashes a message m. It returns a hash h. The output length
h.size() is always crypto_hash_BYTES.

12.2 C interface

C NaCl provides a crypto_hash function callable as follows:

#include "crypto_hash.h"

const unsigned char m[...]; unsigned long long mlen;

unsigned char h[crypto_hash_BYTES];

crypto_hash(h,m,mlen);

The crypto_hash function hashes a message m[0], m[1], ..., m[mlen-1]. It puts the hash into
h[0], h[1], ..., h[crypto_hash_BYTES-1]. It then returns 0.

12.3 Security model

The crypto_hash function is designed to be usable as a strong component of DSA, RSA-PSS,
key derivation, hash-based message-authentication codes, hash-based ciphers, and various
other common applications. “Strong” means that the security of these applications, when
instantiated with crypto_hash, is the same as the security of the applications against generic
attacks. In particular, the crypto_hash function is designed to make finding collisions difficult.
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12.4 Selected primitive

crypto_hash is currently an implementation of SHA-512.
There has been considerable degradation of public confidence in the security conjectures

for many hash functions, including SHA-512. However, for the moment, there do not appear
to be alternatives that inspire satisfactory levels of confidence. One can hope that NIST’s
SHA-3 competition will improve the situation.

12.5 Alternate primitives

NaCl supports the following hash functions:

crypto_hash Primitive BYTES

crypto_hash_sha256 SHA-256 32
crypto_hash_sha512 SHA-512 64

For example, a user who wants to hash with SHA-256 can simply replace crypto_hash,
crypto_hash_BYTES, etc. with crypto_hash_sha256, crypto_hash_sha256_BYTES, etc.



Chapter 13

String comparison: crypto_verify

C NaCl provides a crypto_verify_16 function callable as follows:

#include "crypto_verify_16.h"

const unsigned char x[16];

const unsigned char y[16];

crypto_verify_16(x,y);

The crypto_verify_16 function returns 0 if x[0], x[1], ..., x[15] are the same as y[0],
y[1], ..., y[15]. Otherwise it returns -1.

This function is safe to use for secrets x[0], x[1], ..., x[15], y[0], y[1], ..., y[15]. The
time taken by crypto_verify_16 is independent of the contents of x[0], x[1], ..., x[15],
y[0], y[1], ..., y[15]. In contrast, the standard C comparison function memcmp(x,y,16)

takes time that depends on the longest matching prefix of x and y, often allowing easy timing
attacks.

C NaCl also provides a similar crypto_verify_32 function.
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Chapter 14

Signatures: crypto_sign

14.1 C++ interface

C++ NaCl provides a crypto_sign_keypair function callable as follows:

#include "crypto_sign.h"

std::string pk;

std::string sk;

pk = crypto_sign_keypair(&sk);

The crypto_sign_keypair function randomly generates a secret key and a corresponding
public key. It puts the secret key into sk and returns the public key. It guarantees that sk has
crypto_sign_SECRETKEYBYTES bytes and that pk has crypto_sign_PUBLICKEYBYTES bytes.

C++ NaCl also provides a crypto_sign function callable as follows:

#include "crypto_sign.h"

std::string sk;

std::string m;

std::string sm;

sm = crypto_sign(m,sk);

The crypto_sign function signs a message m using the sender’s secret key sk. The
crypto_sign function returns the resulting signed message sm. The function raises an ex-
ception if sk.size() is not crypto_sign_SECRETKEYBYTES.

C++ NaCl also provides a crypto_sign_open function callable as follows:

#include "crypto_sign.h"

std::string pk;

std::string sm;

std::string m;

m = crypto_sign_open(sm,pk);
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The crypto_sign_open function verifies the signature in sm using the receiver’s secret key
sk. The crypto_sign_open function returns the message m.

If the signature fails verification, crypto_sign_open raises an exception. The function
also raises an exception or if pk.size() is not crypto_sign_PUBLICKEYBYTES.

14.2 C interface

C NaCl provides a crypto_sign_keypair function callable as follows:

#include "crypto_sign.h"

unsigned char pk[crypto_sign_PUBLICKEYBYTES];

unsigned char sk[crypto_sign_SECRETKEYBYTES];

crypto_sign_keypair(pk,sk);

The crypto_sign_keypair function randomly generates a secret key and a corresponding
public key. It puts the secret key into sk[0], sk[1], ..., sk[crypto_sign_SECRETKEYBYTES-1]
and puts the public key into pk[0], pk[1], ..., pk[crypto_sign_PUBLICKEYBYTES-1]. It then
returns 0.

C NaCl also provides a crypto_sign function callable as follows:

#include "crypto_sign.h"

const unsigned char sk[crypto_sign_SECRETKEYBYTES];

const unsigned char m[...]; unsigned long long mlen;

unsigned char sm[...]; unsigned long long smlen;

crypto_sign(sm,&smlen,m,mlen,sk);

The crypto_sign function encrypts and authenticates a message m[0], ..., m[mlen-1] using
the sender’s secret key sk[0], sk[1], ..., sk[crypto_sign_SECRETKEYBYTES-1], puts the
length of the signed message into smlen and puts the signed message into sm[0], sm[1], ...,
sm[smlen-1]. It then returns 0.

WARNING: The maximal length of the signed message sm is mlen+crypto_sign_BYTES.
The caller must allocate at least mlen+crypto_sign_BYTES bytes for sm.

C NaCl also provides a crypto_sign_open function callable as follows:

#include "crypto_sign.h"

const unsigned char pk[crypto_sign_PUBLICKEYBYTES];

const unsigned char sm[...]; unsigned long long smlen;

unsigned char m[...]; unsigned long long mlen;

crypto_sign_open(m,&mlen,sm,smlen,pk);

The crypto_sign_open function verifies the signature in sm[0], ..., sm[smlen-1] us-
ing the receiver’s public key pk[0], pk[1], ..., pk[crypto_sign_PUBLICKEYBYTES-1], The
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crypto_sign_open function puts the length of the message into mlen and puts the message
into m[0], m[1], ..., m[mlen-1]. It then returns 0. The caller has to ensure that smlen bytes
are allocated for m.

If the signature fails verification, crypto_sign_open instead returns -1, possibly after
modifying m[0], m[1], etc.

14.3 Security model

The crypto_sign function is designed to meet the standard notion of unforgeability for a
public-key signature scheme under chosen-message attacks.

14.4 Selected primitive

crypto_sign is crypto_sign_edwards25519sha512batch, a particular combination of
Curve25519 in Edwards form and SHA-512 into a signature scheme suitable for high-speed
batch verification. See Chapter 25 for more details. This function is conjectured to meet the
standard notion of unforgeability under chosen-message attacks; it is also conjectured to meet
the standard notion of non-malleability.

14.5 Alternate primitives

NaCl supports the following public-key signature functions:

crypto_sign_...

crypto_sign PUBLICKEYBYTES SECRETKEYBYTES BYTES

[TO DO:] crypto_sign_nistp256sha512ecdsa 64 64 64
crypto_sign_edwards25519sha512batch 32 64 64

For example, a user who wants to encrypt and authenticate messages with the NIST
P-256 curve using SHA-512 and the ECDSA algorithm can replace crypto_sign with
crypto_sign_nistp256sha512ecdsa.
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Part II:

NaCl for cryptographers
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Chapter 15

Overview of cryptography in NaCl

The following chapters comprehensively document the cryptography used in NaCl.
The most fundamental operation in a cryptographically protected network protocol is

public-key authenticated encryption. The sender, Alice, has a packet of data to send
to the receiver, Bob. Alice scrambles the packet using her own secret key and Bob’s public
key. Bob unscrambles the packet using his secret key and Alice’s public key. An attacker
monitoring the network is unable to understand the scrambled packet; an attacker modifying
network packets is unable to change the packet produced by Bob’s unscrambling.

With typical cryptographic libraries, public-key authenticated encryption takes several
steps. Here is a typical series of steps:

• Generate a random AES key.

• Use the AES key to encrypt the packet.

• Hash the encrypted packet using SHA-256.

• Read Alice’s RSA secret key from “wire format.”

• Use Alice’s RSA secret key to sign the hash.

• Read Bob’s RSA public key from wire format.

• Use Bob’s public key to encrypt the AES key, hash, and signature.

• Convert the encrypted key, hash, and signature to wire format.

• Concatenate with the encrypted packet.

NaCl provides a high-level function crypto_box that does everything in one step, converting
a packet into a boxed packet that is protected against espionage and sabotage. Programmers
can use lower-level functions but are encouraged to use crypto_box.

In particular, crypto_box_curve25519xsalsa20poly1305 is a specific high-speed high-
security combination of the Curve25519 elliptic-curve-Diffie–Hellman function, the Salsa20
stream cipher, and the Poly1305 message-authentication code. This combination is designed
for universal use and is shipped in NaCl as the default definition of crypto_box.

The following chapters specify exactly what this combination does: i.e., exactly how the
boxed packet produced by crypto_box_curve25519xsalsa20poly1305 relates to the inputs.
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The specification is expressed as a step-by-step procedure for Alice to encrypt and authenticate
a packet; NaCl might compute the boxed packet in a different way but produces exactly the
same results. Three of the steps are packet-independent precomputation:

• Chapter 16: Alice creates a 32-byte secret key a and a 32-byte public key A. These keys
can be reused for other packets to Bob, for packets to other receivers, and for packets
sent back from the receivers.

• Chapter 16, continued: Bob creates a 32-byte secret key b and a 32-byte public key B.
These keys can be reused for other packets from Alice, for packets from other senders,
and for packets sent back to the senders.

• Chapter 19: Alice, using Alice’s secret key a and Bob’s public key B, computes a 32-byte
secret k. Bob can compute the same secret using Bob’s secret key b and Alice’s public
key A.

The remaining three steps are specific to one packet:

• Chapter 21: Alice, using a 24-byte nonce (unique packet number) n that will never be
reused for other packets to (or from) Bob, expands the shared secret k into a long stream
of secret bytes. Bob, given the nonce, can compute the same stream.

• Chapter 23: Alice uses the long stream, except for the first 32 bytes, to encrypt the
packet m.

• Chapter 23, continued: Alice uses the first 32 bytes of the long stream to compute an
authenticator of the encrypted packet.

Each chapter includes security notes and pointers to the relevant literature.
This part also contains, in Chapters 17, 18, 20, 22, and 24, a complete step-by-step example

to illustrate the specification. The intermediate results are printed by various C NaCl programs
shown here.

This part also contains several tests showing that C NaCl is producing the same results
as independent programs in other languages. Some of the tests rely on scripts using the Sage
computer-algebra system [32], and some of the tests rely on Python scripts contributed by
Matthew Dempsky. This part can be used as a starting point for more comprehensive NaCl
validation and verification.

In these chapters, a byte is an element of {0, 1, . . . , 255}. NaCl works with all keys, packets,
etc. as strings of bytes. For example, the set of 32-byte strings is the set {0, 1, . . . , 255}32.



Chapter 16

Secret keys and public keys

Alice’s secret key is a string a ∈ {0, 1, . . . , 255}32. Alice’s public key is a string
Curve25519(ClampC(a), 9) ∈ {0, 1, . . . , 255}32. Similarly, Bob’s secret key is a string b ∈
{0, 1, . . . , 255}32, and Bob’s public key is Curve25519(ClampC(b), 9) ∈ {0, 1, . . . , 255}32.

This chapter defines the functions ClampC and Curve25519 and the constant 9. Many of
the definitions here are copied from [13, Section 2]; in particular, Curve25519 here is the same
as the Curve25519 function defined in [13].

Chapter 17 gives an example of a secret key and corresponding public key that Alice might
choose. Chapter 18 gives an example of a secret key and corresponding public key that Bob
might choose. These examples are reused in subsequent chapters.

The base field and the elliptic curve. Define p = 2255 − 19. This integer is prime:

sage: p=2^255-19

sage: p.is_prime()

True

Define Fp as the prime field Z/p = Z/(2255 − 19). Note that 2 is not a square in Fp:

sage: p=2^255-19

sage: k=GF(p)

sage: k(2).is_square()

False

Define Fp2 as the field (Z/(2255 − 19))[
√

2]. Define a2 = 486662. Note that a22 − 4 is not a
square in Fp:

sage: p=2^255-19

sage: k=GF(p)

sage: a2=486662

sage: (k(a2)^2-4).is_square()

False

Define E as the elliptic curve y2 = x3 + a2x
2 + x over Fp, and define E(Fp2) as the group

of points of E with coordinates in Fp2 . Readers not familiar with elliptic curves can find a
self-contained definition of E(Fp2) in [13, Appendix A].

Define X0 : E(Fp2)→ Fp2 as follows: X0(∞) = 0; X0(x, y) = x.
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The Curve25519 function. Write s 7→ s for the standard little-endian bijection
from

{
0, 1, . . . , 2256 − 1

}
to {0, 1, . . . , 255}32. In other words, for each integer s ∈{

0, 1, . . . , 2256 − 1
}

, define

s = (s mod 256, bs/256c mod 256, . . . ,
⌊
s/25631

⌋
mod 256).

For example, the constant 9 is (9, 0, 0, . . . , 0) ∈ {0, 1, . . . , 255}32.
The set of Curve25519 secret keys is, by definition, {0, 8, 16, 24, . . . , 248} ×

{0, 1, . . . , 255}30 × {64, 65, 66, . . . , 127}. If n ∈ 2254 + 8
{

0, 1, 2, 3, . . . , 2251 − 1
}

then n is a
Curve25519 secret key; and every Curve25519 secret key can be written as n for a unique
n ∈ 2254 + 8

{
0, 1, 2, 3, . . . , 2251 − 1

}
.

Now the function

Curve25519 : {Curve25519 secret keys} × {0, 1, . . . , 255}32 → {0, 1, . . . , 255}32

is defined as follows. Fix an integer n ∈ 2254 + 8
{

0, 1, 2, 3, . . . , 2251 − 1
}

and an integer q ∈{
0, 1, . . . , 2256 − 1

}
. By [13, Theorem 2.1] there is a unique integer s ∈

{
0, 1, . . . , 2255 − 20

}
such that X0(nQ) = s for all Q ∈ E(Fp2) such that X0(Q) = q mod 2255 − 19. Finally,
Curve25519(n, q) is defined as s.

The ClampC function. The function

ClampC : {0, 1, . . . , 255}32 → {Curve25519 secret keys}

maps (a0, a1, . . . , a30, a31) to (a0− (a0 mod 8), a1, . . . , a30, 64 + (a31 mod 64)). In other words,
ClampC clears bits (7, 0, . . . , 0, 0, 128) and sets bit (0, 0, . . . , 0, 0, 64).

Specialization of Curve25519 for secret keys. Note that 93 + a2 · 92 + 9 = 39420360:

sage: a2=486662

sage: 9^3+a2*9^2+9

39420360

If n ∈ 2254 + 8
{

0, 1, 2, 3, . . . , 2251 − 1
}

then Curve25519(n, 9) = s, where s is the unique

integer in
{

0, 1, . . . , 2255 − 20
}

such that X0(n(9,±
√

39420360)) = s. Consequently, if Alice’s
secret key a satisfies ClampC(a) = n, then Alice’s public key is s.

The range of n implies that n(9,±
√

39420360) 6=∞, so∞ could be omitted from the defi-
nition of X0 for purposes of computing secret keys. However, Alice also applies Curve25519 to
network inputs, as discussed in subsequent chapters, and there are several ways that attacker-
chosen inputs can lead to the ∞ case.

ECDLP security notes. The following notes assume additional familiarity with elliptic
curves.

Write Q = (9,
√

39420360). The choice of square root is not relevant here. This point Q is
in the subgroup E(Fp) of E(Fp2):

sage: p=2^255-19

sage: k=GF(p)

sage: k(39420360).is_square()

True



57

Furthermore, Q has p1th multiple equal to ∞ in E(Fp), where p1 is the prime number 2252 +
27742317777372353535851937790883648493:

sage: p=2^255-19

sage: k=GF(p)

sage: p1=2^252+27742317777372353535851937790883648493

sage: p1.is_prime()

True

sage: E=EllipticCurve([k(0),486662,0,1,0])

sage: Q=[k(9),sqrt(k(39420360))]

sage: p1*E(Q)

(0 : 1 : 0)

Consequently all multiples of Q are in the subgroup of E(Fp) of order p1.
If Alice’s secret key a is a uniform random 32-byte string then ClampC(a) is a uniform

random Curve25519 secret key; i.e., n, where n/8 is a uniform random integer between 2251

and 2252 − 1. Alice’s public key is nQ compressed to the x-coordinate (as recommended in
[28, page 425, fourth paragraph] in 1986). Note that n is not a multiple of p1; this justifies
the statement above that nQ 6=∞.

The problem of finding Alice’s secret key from Alice’s public key is exactly the elliptic-
curve 251-bit-discrete-logarithm problem for the subgroup of E(Fp) of order p1 ≈ 2252. The
curve E meets all of the standard security criteria, as discussed in detail in [13, Section 3].
The fastest known attacks use, on average, about 2125 additions in E(Fp), and have success
chance degrading quadratically as the number of additions decreases.

It is standard in the literature to restrict attention to uniform random secret keys. What
if the key distribution is not uniform? The answer depends on the distribution. For exam-
ple, a key derived from an 8-byte string can be found by brute-force search in roughly 264

operations; and a key derived in an extremely weak way from a 16-byte string, for example
by concatenating a 16-byte public constant, can also be found in roughly 264 operations. On
the other hand, it is easy to prove that slightly non-uniform keys have essentially full secu-
rity. Furthermore, we are not aware of any feasible attacks against 32-byte keys of the form
(s,MD5(s)), where s is a uniform random 16-byte string; none of the weaknesses of MD5
seem relevant here. Constructions of this type allow secret-key compression and might merit
further study if there are any applications where memory is filled with secret keys.
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Chapter 17

Example of the sender’s keys

The following program uses C NaCl to compute the public key corresponding to a particular
secret key:

#include <stdio.h>

#include "crypto_scalarmult_curve25519.h"

unsigned char alicesk[32] = {

0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a

} ;

unsigned char alicepk[32];

main()

{

int i;

crypto_scalarmult_curve25519_base(alicepk,alicesk);

for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");

printf("0x%02x",(unsigned int) alicepk[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

The secret key bytes 0xc7,0x6e,... embedded into the program were copied from output of
od -t x1 /dev/urandom head -2—. The output of the program is the corresponding public
key:

0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a

,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4

,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a
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The remaining chapters of Part II will reuse this example, assuming that Alice’s keys are the
particular secret key and public key shown here.

Testing: Sage vs. scalarmult_curve25519_base. A short Sage script clamps Alice’s secret
key shown above, converts the result to an integer n, computes n(9,

√
39420360) in E(Fp),

and checks that the resulting x-coordinate matches the public key computed by C NaCl:

sage: sk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

....: ,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

....: ,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

....: ,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]

sage: clampsk=sk

sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)

sage: clampsk[31]=64+(clampsk[31]%64)

sage: n=sum(clampsk[i]*256^i for i in range(32))

sage: p=2^255-19

sage: k=GF(p)

sage: E=EllipticCurve([k(0),486662,0,1,0])

sage: s=lift((n*E([k(9),sqrt(k(39420360))]))[0])

sage: pk=[0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

....: ,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a

....: ,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4

....: ,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a]

sage: s == sum(pk[i]*256^i for i in range(32))

True

Testing: Python vs. scalarmult_curve25519_base. This Python script, contributed by
Matthew Dempsky, includes self-contained Curve25519 functions independent of the Sage
implementation of elliptic curves:

P = 2 ** 255 - 19

A = 486662

def expmod(b, e, m):

if e == 0: return 1

t = expmod(b, e / 2, m) ** 2 % m

if e & 1: t = (t * b) % m

return t

def inv(x):

return expmod(x, P - 2, P)

# Addition and doubling formulas taken

# from Appendix D of "Curve25519:

# new Diffie-Hellman speed records".

def add((xn,zn), (xm,zm), (xd,zd)):

x = 4 * (xm * xn - zm * zn) ** 2 * zd
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z = 4 * (xm * zn - zm * xn) ** 2 * xd

return (x % P, z % P)

def double((xn,zn)):

x = (xn ** 2 - zn ** 2) ** 2

z = 4 * xn * zn * (xn ** 2 + A * xn * zn + zn ** 2)

return (x % P, z % P)

def curve25519(n, base):

one = (base,1)

two = double(one)

# f(m) evaluates to a tuple

# containing the mth multiple and the

# (m+1)th multiple of base.

def f(m):

if m == 1: return (one, two)

(pm, pm1) = f(m / 2)

if (m & 1):

return (add(pm, pm1, one), double(pm1))

return (double(pm), add(pm, pm1, one))

((x,z), _) = f(n)

return (x * inv(z)) % P

def unpack(s):

if len(s) != 32:

raise ValueError(’Invalid Curve25519 argument’)

return sum(ord(s[i]) << (8 * i) for i in range(32))

def pack(n):

return ’’.join([chr((n >> (8 * i)) & 255) for i in range(32)])

def clamp(n):

n &= ~7

n &= ~(128 << 8 * 31)

n |= 64 << 8 * 31

return n

def crypto_scalarmult_curve25519(n, p):

n = clamp(unpack(n))

p = unpack(p)

return pack(curve25519(n, p))

def crypto_scalarmult_curve25519_base(n):

n = clamp(unpack(n))

return pack(curve25519(n, 9))

After this script the extra commands
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sk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]

n=’’.join([chr(sk[i]) for i in range(32)])

pk=[0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a

,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4

,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a]

s=’’.join([chr(pk[i]) for i in range(32)])

print s == crypto_scalarmult_curve25519_base(n)

print True.



Chapter 18

Example of the receiver’s keys

The following program uses C NaCl to compute the public key corresponding to another
secret key:

#include <stdio.h>

#include "crypto_scalarmult_curve25519.h"

unsigned char bobsk[32] = {

0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb

} ;

unsigned char bobpk[32];

main()

{

int i;

crypto_scalarmult_curve25519_base(bobpk,bobsk);

for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");

printf("0x%02x",(unsigned int) bobpk[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

As in the previous chapter, the secret key bytes embedded into the program were copied from
output of od -t x1 /dev/urandom head -2—. The output of the program is the correspond-
ing public key:

0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37

,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d

,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f
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The remaining chapters of Part II will reuse this example, assuming that Bob’s keys are the
particular secret key and public key shown here.

Testing: Sage vs. scalarmult_curve25519_base. A short Sage script clamps Bob’s secret
key shown above, converts the result to an integer n, computes n(9,

√
39420360) in E(Fp),

and checks that the resulting x-coordinate matches the public key computed by C NaCl:

sage: sk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

....: ,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

....: ,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

....: ,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]

sage: clampsk=sk

sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)

sage: clampsk[31]=64+(clampsk[31]%64)

sage: n=sum(clampsk[i]*256^i for i in range(32))

sage: p=2^255-19

sage: k=GF(p)

sage: E=EllipticCurve([k(0),486662,0,1,0])

sage: s=lift((n*E([k(9),sqrt(k(39420360))]))[0])

sage: pk=[0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

....: ,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37

....: ,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d

....: ,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f]

sage: s == sum(pk[i]*256^i for i in range(32))

True

Testing: Python vs. scalarmult_curve25519_base. After the Python script shown in
Chapter 17, the extra commands

sk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]

n=’’.join([chr(sk[i]) for i in range(32)])

pk=[0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37

,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d

,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f]

s=’’.join([chr(pk[i]) for i in range(32)])

print s == crypto_scalarmult_curve25519_base(n)

print True.



Chapter 19

Shared secret

At this point Alice has a secret key a ∈ {0, 1, . . . , 255}32 and a public key A =
Curve25519(ClampC(a), 9) ∈ {0, 1, . . . , 255}32. Similarly, Bob has a secret key b and a public
key B = Curve25519(ClampC(b), 9).

Assume that Alice knows Bob’s public key from a previous secure channel—for example,
from meeting privately with Bob. Similarly assume that Bob knows Alice’s public key. There
is no hope of security if the previous channel allows forgeries: for example, if an attacker can
replace Bob’s public key with the attacker’s public key then Alice will end up encrypting a
packet to the attacker instead of to Bob.

Alice computes Curve25519(ClampC(a), B) from her secret key a and Bob’s public key
B. Bob computes Curve25519(ClampC(b), A) from his secret key b and Alice’s public key
A. The definition of Curve25519 immediately implies that Curve25519(ClampC(a), B) =
Curve25519(ClampC(b), A), so at this point Alice and Bob have computed the same 32-byte
string.

In the next step, described in Chapter 21, Alice will convert this 32-byte shared secret k
into a 32-byte string HSalsa20(k, 0), which is then used to encrypt and authenticate packets.
Bob similarly uses HSalsa20(k, 0) to verify and decrypt the packets. No other use is made of
k. One can thus view HSalsa20(k, 0) as the shared secret rather than k.

Security notes beyond ECDLP. An attacker who can solve the elliptic-curve discrete-
logarithm problem can figure out Alice’s secret key from Alice’s public key, and can then
compute the shared secret the same way Alice does; or figure out Bob’s secret key from Bob’s
public key, and can then compute the shared secret the same way Bob does.

Computing the shared secret from the two public keys—the “Diffie–Hellman problem”—
is widely conjectured to be as difficult as computing discrete logarithms. There are weak
theorems along these lines, stating that (for typical elliptic curves) a reliable algorithm to
solve the Diffie–Hellman problem can be converted into a discrete-logarithm algorithm costing
about ten thousand times as much.

It is much easier to compute some information about the 32-byte string k. There are
only p1 ≈ 2251 possibilities for k, and the set of possibilities for k is an easy-to-recognize
set: for example, the last bit of k is always 0. However, HSalsa20(k, 0) is conjectured to be
indistinguishable from HSalsa20(k′, 0) where k′ is a uniform random Curve25519 output.

It is often conjectured that the “decision Diffie–Hellman problem” is hard: i.e., that k is
indistinguishable from k′. However, this DDH conjecture is overkill. What matters is that
HSalsa20(k, 0) is indistinguishable from HSalsa20(k′, 0).
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Alice can reuse her secret key and public key for communicating with many parties. Some
of those parties may be attackers with fake public keys—32-byte strings that are not of the
form Curve25519(ClampC(. . . ), 9). The corresponding points can be in the “twist group”
E(Fp2) ∩ ({∞} ∪ (Fp ×

√
2Fp)); even if the points are in E(Fp), they can be outside the

subgroup of order p1. If the points have small order then they can reveal Alice’s secret n
modulo that order. Fortunately, E(Fp) has order 8p1 by the Hasse–Weil theorem, and the
twist group has order 4p2 where p2 is the prime number

2253 − 55484635554744707071703875581767296995 = (p+ 1)/2− 2p1.

The following Sage transcript captures the relevant facts about p2:

sage: p=2^255-19

sage: p1=2^252+27742317777372353535851937790883648493

sage: p2=2^253-55484635554744707071703875581767296995

sage: p2.is_prime()

True

sage: 8*p1+4*p2-2*(p+1)

0

Consequently the only possible small orders are 1, 2, 4, and 8, and an attacker can learn
at most Alice’s n mod 8, which is always 0 by construction. See [13, Section 3] for further
discussion of active attacks and twist security.



Chapter 20

Example of the shared secret

The following program, starting from Chapter 17’s example of Alice’s secret key and Chapter
18’s example of Bob’s public key, uses C NaCl to compute the secret shared between Alice
and Bob:

#include <stdio.h>

#include "crypto_scalarmult_curve25519.h"

unsigned char alicesk[32] = {

0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a

} ;

unsigned char bobpk[32] = {

0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37

,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d

,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f

} ;

unsigned char k[32];

main()

{

int i;

crypto_scalarmult_curve25519(k,alicesk,bobpk);

for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");

printf("0x%02x",(unsigned int) k[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}
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The program produces the following output:

0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25

,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33

,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42

The following program, starting from Chapter 18’s example of Bob’s secret key and Chap-
ter 17’s example of Alice’s public key, uses C NaCl to compute the secret shared between Alice
and Bob:

#include <stdio.h>

#include "crypto_scalarmult_curve25519.h"

unsigned char bobsk[32] = {

0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb

} ;

unsigned char alicepk[32] = {

0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a

,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4

,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a

} ;

unsigned char k[32];

main()

{

int i;

crypto_scalarmult_curve25519(k,bobsk,alicepk);

for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");

printf("0x%02x",(unsigned int) k[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

This program produces the same output as the previous program.

Testing: Sage vs. scalarmult_curve25519. A short Sage script clamps Alice’s secret key,
converts the result to an integer n, clamps Bob’s secret key, converts the result to an integer
m, computes mn(9,

√
39420360) in E(Fp), and checks that the x-coordinate of the result

matches the shared secret computed by C NaCl:
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sage: alicesk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

....: ,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

....: ,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

....: ,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]

sage: clampsk=alicesk

sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)

sage: clampsk[31]=64+(clampsk[31]%64)

sage: n=sum(clampsk[i]*256^i for i in range(32))

sage: bobsk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

....: ,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

....: ,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

....: ,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]

sage: clampsk=bobsk

sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)

sage: clampsk[31]=64+(clampsk[31]%64)

sage: m=sum(clampsk[i]*256^i for i in range(32))

sage: p=2^255-19

sage: k=GF(p)

sage: E=EllipticCurve([k(0),486662,0,1,0])

sage: s=lift((m*n*E([k(9),sqrt(k(39420360))]))[0])

sage: shared=[0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

....: ,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25

....: ,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33

....: ,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

sage: s == sum(shared[i]*256^i for i in range(32))

True

Testing: Python vs. scalarmult_curve25519. After the Python script shown in Chapter
17, the extra commands

alicesk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]

a=’’.join([chr(alicesk[i]) for i in range(32)])

bobpk=[0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37

,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d

,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f]

b=’’.join([chr(bobpk[i]) for i in range(32)])

shared=[0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25

,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33

,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

s=’’.join([chr(shared[i]) for i in range(32)])

print s == crypto_scalarmult_curve25519(a,b)

print true, and the extra commands
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bobsk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]

b=’’.join([chr(bobsk[i]) for i in range(32)])

alicepk=[0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a

,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4

,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a]

a=’’.join([chr(alicepk[i]) for i in range(32)])

shared=[0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25

,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33

,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

s=’’.join([chr(shared[i]) for i in range(32)])

print s == crypto_scalarmult_curve25519(b,a)

print true.
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Nonce and stream

At this point Alice and Bob have a shared secret k ∈ {0, 1, . . . , 255}32. This secret can be
used to protect a practically infinite sequence of packets exchanged between Alice and Bob.

Alice and Bob assign to each packet a nonce n ∈ {0, 1, . . . , 255}24: a unique message
number that will never be reused for other packets exchanged between Alice and Bob. For
example, the nonce can be chosen as a simple counter: 0 for Alice’s first packet, 1 for Bob’s
first packet, 2 for Alice’s second packet, 3 for Bob’s second packet, 4 for Alice’s third packet,
5 for Bob’s third packet, etc. Choosing the nonce as a counter followed by (e.g.) 32 random
bits helps protect some protocols against denial-of-service attacks. In many applications it is
better to increase the counter to, e.g., the number of nanoseconds that have passed since a
standard epoch in the local clock, so that the current value of the counter does not leak the
traffic rate. Note that “increase” does not mean “increase or decrease”; if the clock jumps
backwards, the counter must continue to increase.

Alice uses the shared secret k to expand the nonce n into a long stream. Specifically, Alice
computes a first-level key HSalsa20(k, 0); uses the first 16 bytes n1 of the nonce to compute a
second-level key HSalsa20(HSalsa20(k, 0), n1); and uses the remaining 8 bytes n2 of the nonce
to compute a long stream Salsa20(HSalsa20(HSalsa20(k, 0), n1), n2). This stream is then used
to encrypt and authenticate the packet, as described in subsequent chapters.

This chapter defines HSalsa20 and Salsa20. Many of the definitions here are copied from
the original Salsa20 specification [12]. Chapter 22 gives an example of nonce expansion, start-
ing from the key examples used in Chapters 18, 17, and 20.

Words. A word is an element of
{

0, 1, . . . , 232 − 1
}

.
The sum of two words u, v is u + v mod 232. The sum is denoted u + v; there is no risk

of confusion. For example, 0xc0a8787e + 0x9fd1161d = 0x60798e9b.
The exclusive-or of two words u, v, denoted u ⊕ v, is the sum of u and v with carries

suppressed. In other words, if u =
∑

i 2iui and v =
∑

2ivi then u⊕v =
∑

i 2i(ui +vi−2uivi).
For example, 0xc0a8787e⊕ 0x9fd1161d = 0x5f796e63.

For each c ∈ {0, 1, 2, 3, . . .}, the c-bit left rotation of a word u, denoted u <<< c, is the
unique nonzero word congruent to 2cu modulo 232−1, except that 0<<<c = 0. In other words,
if u =

∑
i 2iui then u<<<c =

∑
i 2i+c mod 32ui. For example, 0xc0a8787e<<<5 = 0x150f0fd8.

The quarterround function. If y = (y0, y1, y2, y3) ∈
{

0, 1, . . . , 232 − 1
}4

then
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quarterround(y) ∈
{

0, 1, . . . , 232 − 1
}4

is defined as (z0, z1, z2, z3) where

z1 = y1 ⊕ ((y0 + y3)<<< 7),

z2 = y2 ⊕ ((z1 + y0)<<< 9),

z3 = y3 ⊕ ((z2 + z1)<<< 13),

z0 = y0 ⊕ ((z3 + z2)<<< 18).

The rowround function. If y = (y0, y1, y2, y3, . . . , y15) ∈
{

0, 1, . . . , 232 − 1
}16

then

rowround(y) ∈
{

0, 1, . . . , 232 − 1
}16

is defined as (z0, z1, z2, z3, . . . , z15) where

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3),

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4),

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9),

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14).

The columnround function. If x = (x0, x1, . . . , x15) ∈
{

0, 1, . . . , 232 − 1
}16

then

columnround(x) ∈
{

0, 1, . . . , 232 − 1
}16

is defined as (y0, y1, y2, y3, . . . , y15) where

(y0, y4, y8, y12) = quarterround(x0, x4, x8, x12),

(y5, y9, y13, y1) = quarterround(x5, x9, x13, x1),

(y10, y14, y2, y6) = quarterround(x10, x14, x2, x6),

(y15, y3, y7, y11) = quarterround(x15, x3, x7, x11).

Equivalent formula: (y0, y4, y8, y12, y1, y5, y9, y13, y2, y6, y10, y14, y3, y7, y11, y15) =
rowround(x0, x4, x8, x12, x1, x5, x9, x13, x2, x6, x10, x14, x3, x7, x11, x15).

The doubleround function. If x ∈
{

0, 1, . . . , 232 − 1
}16

then doubleround(x) ∈{
0, 1, . . . , 232 − 1

}16
is defined as rowround(columnround(x)).

The littleendian function. If b = (b0, b1, b2, b3) ∈ {0, 1, 2, 3, . . . , 255}4 then littleendian(b) ∈{
0, 1, . . . , 232 − 1

}
is defined as b0 + 28b1 + 216b2 + 224b3. More generally, if b =

(b0, b1, . . . , b4k−1) ∈ {0, 1, . . . , 255}4k then littleendian(b) ∈
{

0, 1, . . . , 232 − 1
}k

is defined as

(b0 + 28b1 + 216b2 + 224b3, b4 + 28b5 + 216b6 + 224b7, . . . ).

Note that littleendian is invertible.

The HSalsa20 function. The function

HSalsa20 : {0, 1, . . . , 255}32 × {0, 1, . . . , 255}16 → {0, 1, . . . , 255}32

is defined as follows.
Fix k ∈ {0, 1, . . . , 255}32 and n ∈ {0, 1, . . . , 255}16. Define (x0, x1, . . . , x15) ∈{

0, 1, . . . , 232 − 1
}16

as follows:

• (x0, x5, x10, x15) = (0x61707865, 0x3320646e, 0x79622d32, 0x6b206574); in other
words, (x0, x5, x10, x15) is the Salsa20 constant.
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• (x1, x2, x3, x4, x11, x12, x13, x14) = littleendian(k); and

• (x6, x7, x8, x9) = littleendian(n).

Define (z0, z1, . . . , z15) = doubleround10(x0, x1, . . . , x15). Then HSalsa20(k, n) =
littleendian−1(z0, z5, z10, z15, z6, z7, z8, z9).

The Salsa20 expansion function. The function

Salsa20 : {0, 1, . . . , 255}32 × {0, 1, . . . , 255}16 → {0, 1, . . . , 255}64

is defined as follows.
Fix k ∈ {0, 1, . . . , 255}32 and n ∈ {0, 1, . . . , 255}16. Define (x0, x1, . . . , x15) ∈{

0, 1, . . . , 232 − 1
}16

as follows:

• (x0, x5, x10, x15) is the Salsa20 constant;

• (x1, x2, x3, x4, x11, x12, x13, x14) = littleendian(k); and

• (x6, x7, x8, x9) = littleendian(n).

Define (z0, z1, . . . , z15) = doubleround10(x0, x1, . . . , x15). Then Salsa20(k, n) =
littleendian−1(x0 + z0, x1 + z1, . . . , x15 + z15).

The Salsa20 streaming function. The function

Salsa20 : {0, 1, . . . , 255}32 × {0, 1, . . . , 255}8 → {0, 1, . . . , 255}2
70

is defined as follows: Salsa20(k, n) = Salsa20(k, n, 0), Salsa20(k, n, 1), . . . . Here b means the
8-byte string (b mod 256, bb/256c mod 256, . . .).

Security notes. ECRYPT, a consortium of European research organizations, issued a Call
for Stream Cipher Primitives in November 2004, and received 34 submissions from 97 cryp-
tographers in 19 countries. In April 2008, after two hundred papers and several conferences,
ECRYPT selected a portfolio of 4 software ciphers and 4 lower-security hardware ciphers.

Bernstein submitted Salsa20. Later he suggested the reduced-round variants Salsa20/12
and Salsa20/8 (replacing doubleround10 with doubleround6 and doubleround4 respectively)
as higher-speed options for users who value speed more highly than confidence. Four attack
papers by fourteen cryptanalysts ([20], [23], [33], and [4]) culminated in a 2184-operation
attack on Salsa20/7 and a 2251-operation attack on Salsa20/8. The eSTREAM portfolio rec-
ommended Salsa20/12: “Eight and twenty round versions were also considered during the
eSTREAM process, but we feel that Salsa20/12 offers the best balance, combining a very nice
performance profile with what appears to be a comfortable margin for security.”

The standard (“PRF”) security conjecture for Salsa20 is that the Salsa20 output blocks,
for a uniform random secret key k, are indistinguishable from independent uniform random
64-byte strings. This conjecture implies the analogous security conjecture for HSalsa20: by [16,
Theorem 3.3], any attack against HSalsa20 can be converted into an attack against Salsa20
having exactly the same effectiveness and essentially the same speed.

This conjecture also implies an analogous security conjecture for the cascade (n1, n2) 7→
Salsa20(HSalsa20(HSalsa20(k, 0), n1), n2): by [16, Theorem 3.1], any q-query attack against
the cascade can be converted into an attack against Salsa20 having at least 1/(2q + 1) as
much effectiveness and essentially the same speed.
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A Curve25519 output k is not a uniform random 32-byte string, but any attack against a
uniform random Curve25519 output can be converted into an attack against a uniform random
32-byte string having at least 1/32 as much effectiveness and essentially the same speed—and
therefore an attack against Salsa20 having at least 1/(64q + 32) as much effectiveness and
essentially the same speed.



Chapter 22

Example of the long stream

The following program starts from Chapter 20’s example of a shared secret k and uses C NaCl
to compute the first-level key k1 = HSalsa20(k, 0):

#include <stdio.h>

#include "crypto_core_hsalsa20.h"

unsigned char shared[32] = {

0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25

,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33

,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42

} ;

unsigned char zero[32] = { 0 };

unsigned char c[16] = {

0x65,0x78,0x70,0x61,0x6e,0x64,0x20,0x33

,0x32,0x2d,0x62,0x79,0x74,0x65,0x20,0x6b

} ;

unsigned char firstkey[32];

main()

{

int i;

crypto_core_hsalsa20(firstkey,zero,shared,c);

for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");

printf("0x%02x",(unsigned int) firstkey[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

The program prints the following output:
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0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

The following program starts from this k1 example and a sample nonce prefix n1, and uses
C NaCl to compute the second-level key k2 = HSalsa20(k1, n1):

#include <stdio.h>

#include "crypto_core_hsalsa20.h"

unsigned char firstkey[32] = {

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

} ;

unsigned char nonceprefix[16] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

} ;

unsigned char c[16] = {

0x65,0x78,0x70,0x61,0x6e,0x64,0x20,0x33

,0x32,0x2d,0x62,0x79,0x74,0x65,0x20,0x6b

} ;

unsigned char secondkey[32];

main()

{

int i;

crypto_core_hsalsa20(secondkey,nonceprefix,firstkey,c);

for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");

printf("0x%02x",(unsigned int) secondkey[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

The program prints the following output:

0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88

,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9

,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4
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The following program starts from this k2 example and an example of a nonce suffix n2,
and uses C NaCl to print (in binary format) the first 4194304 bytes of Salsa20(k2, n2):

#include <stdio.h>

#include "crypto_core_salsa20.h"

unsigned char secondkey[32] = {

0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88

,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9

,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4

} ;

unsigned char noncesuffix[8] = {

0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

unsigned char c[16] = {

0x65,0x78,0x70,0x61,0x6e,0x64,0x20,0x33

,0x32,0x2d,0x62,0x79,0x74,0x65,0x20,0x6b

} ;

unsigned char in[16] = { 0 } ;

unsigned char outputblock[64];

main()

{

int i;

for (i = 0;i < 8;++i) in[i] = noncesuffix[i];

do {

do {

crypto_core_salsa20(outputblock,in,secondkey,c);

for (i = 0;i < 64;++i) putchar(outputblock[i]);

} while (++in[8]);

} while (++in[9]);

return 0;

}

662b9d0e3463029156069b12f918691a98f7dfb2ca0393c96bbfc6b1fbd630a2 is the SHA-256
checksum of the output.

Testing: core_salsa20 vs. stream_salsa20. The following program has the same output
as the previous program, but uses crypto_stream_salsa20 to generate the entire output
stream at once:

#include <stdio.h>

#include "crypto_stream_salsa20.h"
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unsigned char secondkey[32] = {

0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88

,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9

,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4

} ;

unsigned char noncesuffix[8] = {

0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

unsigned char output[4194304];

main()

{

int i;

crypto_stream_salsa20(output,4194304,noncesuffix,secondkey);

for (i = 0;i < 4194304;++i) putchar(output[i]);

return 0;

}

Testing: core_salsa20 vs. stream_xsalsa20. The following program has the same output
as the previous two programs, but uses crypto_stream_xsalsa20 to generate the entire
output stream starting from the first-level key k1 and the complete nonce n = (n1, n2):

#include <stdio.h>

#include "crypto_stream_xsalsa20.h"

unsigned char firstkey[32] = {

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

unsigned char output[4194304];

main()

{

int i;

crypto_stream_xsalsa20(output,4194304,nonce,firstkey);
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for (i = 0;i < 4194304;++i) putchar(output[i]);

return 0;

}

Testing: Python vs. core_hsalsa20. The following Python script, based in part on a script
contributed by Matthew Dempsky, computes HSalsa20(k, 0) and compares the result to the
k1 computed by C NaCl:

import struct

def rotate(x, n):

x &= 0xffffffff

return ((x << n) | (x >> (32 - n))) & 0xffffffff

def step(s, i, j, k, r):

s[i] ^= rotate(s[j] + s[k],r)

def quarterround(s, i0, i1, i2, i3):

step(s, i1, i0, i3, 7)

step(s, i2, i1, i0, 9)

step(s, i3, i2, i1, 13)

step(s, i0, i3, i2, 18)

def rowround(s):

quarterround(s, 0, 1, 2, 3)

quarterround(s, 5, 6, 7, 4)

quarterround(s, 10, 11, 8, 9)

quarterround(s, 15, 12, 13, 14)

def columnround(s):

quarterround(s, 0, 4, 8, 12)

quarterround(s, 5, 9, 13, 1)

quarterround(s, 10, 14, 2, 6)

quarterround(s, 15, 3, 7, 11)

def doubleround(s):

columnround(s)

rowround(s)

def hsalsa20(n,k):

n=’’.join([chr(n[i]) for i in range(16)])

n = struct.unpack(’<4I’, n)

k=’’.join([chr(k[i]) for i in range(32)])

k = struct.unpack(’<8I’, k)

s = [0] * 16

s[::5] = struct.unpack(’<4I’, ’expand 32-byte k’)

s[1:5] = k[:4]
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s[6:10] = n

s[11:15] = k[4:]

for i in range(10): doubleround(s)

s = [s[i] for i in [0,5,10,15,6,7,8,9]]

return struct.pack(’<8I’,*s)

k = [0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25

,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33

,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

n = [0] * 16

expected=[0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89]

expected = ’’.join([chr(expected[i]) for i in range(32)])

print hsalsa20(n,k) == expected

The script prints True.
The following extra commands compute HSalsa20(k1, n1), where n1 is the nonce prefix

shown above, and compare the result to the k2 computed by C NaCl:

k=[0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89]

n=[0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6]

expected = [0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88

,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9

,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4]

expected = ’’.join([chr(expected[i]) for i in range(32)])

print hsalsa20(n,k) == expected

These commands print True.

Testing: Python vs. stream_salsa20. The following Python script, based in part on a
script contributed by Matthew Dempsky, computes the first 4194304 bytes of Salsa20(k2, n2),
for the sample k2, n2 shown above:

import struct

import sys

def rotate(x, n):



81

x &= 0xffffffff

return ((x << n) | (x >> (32 - n))) & 0xffffffff

def step(s, i, j, k, r):

s[i] ^= rotate(s[j] + s[k],r)

def quarterround(s, i0, i1, i2, i3):

step(s, i1, i0, i3, 7)

step(s, i2, i1, i0, 9)

step(s, i3, i2, i1, 13)

step(s, i0, i3, i2, 18)

def rowround(s):

quarterround(s, 0, 1, 2, 3)

quarterround(s, 5, 6, 7, 4)

quarterround(s, 10, 11, 8, 9)

quarterround(s, 15, 12, 13, 14)

def columnround(s):

quarterround(s, 0, 4, 8, 12)

quarterround(s, 5, 9, 13, 1)

quarterround(s, 10, 14, 2, 6)

quarterround(s, 15, 3, 7, 11)

def doubleround(s):

columnround(s)

rowround(s)

def rounds(s, n):

s1 = list(s)

while n >= 2:

doubleround(s1)

n -= 2

for i in range(16): s[i] = (s[i] + s1[i]) & 0xffffffff

o = struct.unpack(’<4I’, ’expand 32-byte k’)

def block(i, n, k):

i = i / 64

i = (i & 0xffffffff, i >> 32)

s = [0] * 16

s[::5] = o

s[1:5] = k[:4]

s[6:10] = n + i

s[11:15] = k[4:]

rounds(s, 20)

return struct.pack(’<16I’, *s)
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def print_salsa20(l, n, k):

n = struct.unpack(’<2I’, n)

k = struct.unpack(’<8I’, k)

for i in xrange(0, l, 64):

sys.stdout.write(block(i, n, k)[:l-i])

k=[0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88

,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9

,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4]

k = ’’.join([chr(k[i]) for i in range(32)])

n=[0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37]

n = ’’.join([chr(n[i]) for i in range(8)])

print_salsa20(4194304,n,k)

The output is the same as the 4194304-byte output from the C NaCl program shown earlier.

Testing: Salsa20 specification vs. core_salsa20. The following program uses C NaCl to
compute the first Salsa20 example in [12, Section 9]:

#include <stdio.h>

#include "crypto_core_salsa20.h"

unsigned char k[32] = {

1, 2, 3, 4, 5, 6, 7, 8

, 9, 10, 11, 12, 13, 14, 15, 16

,201,202,203,204,205,206,207,208

,209,210,211,212,213,214,215,216

} ;

unsigned char in[16] = {

101,102,103,104,105,106,107,108

,109,110,111,112,113,114,115,116

} ;

unsigned char c[16] = {

101,120,112, 97,110,100, 32, 51

, 50, 45, 98,121,116,101, 32,107

} ;

unsigned char out[64];

main()

{

int i;
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crypto_core_salsa20(out,in,k,c);

for (i = 0;i < 64;++i) {

if (i > 0) printf(","); else printf(" ");

printf("%3d",(unsigned int) out[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

The output of the program is

69, 37, 68, 39, 41, 15,107,193

,255,139,122, 6,170,233,217, 98

, 89,144,182,106, 21, 51,200, 65

,239, 49,222, 34,215,114, 40,126

,104,197, 7,225,197,153, 31, 2

,102, 78, 76,176, 84,245,246,184

,177,160,133,130, 6, 72,149,119

,192,195,132,236,234,103,246, 74

matching the output shown in [12, Section 9].

Testing: core_salsa20 vs. core_hsalsa20. The following program uses C NaCl to compute
HSalsa20 on a sample input:

#include <stdio.h>

#include "crypto_core_hsalsa20.h"

unsigned char k[32] = {

0xee,0x30,0x4f,0xca,0x27,0x00,0x8d,0x8c

,0x12,0x6f,0x90,0x02,0x79,0x01,0xd8,0x0f

,0x7f,0x1d,0x8b,0x8d,0xc9,0x36,0xcf,0x3b

,0x9f,0x81,0x96,0x92,0x82,0x7e,0x57,0x77

} ;

unsigned char in[16] = {

0x81,0x91,0x8e,0xf2,0xa5,0xe0,0xda,0x9b

,0x3e,0x90,0x60,0x52,0x1e,0x4b,0xb3,0x52

} ;

unsigned char c[16] = {

101,120,112, 97,110,100, 32, 51

, 50, 45, 98,121,116,101, 32,107

} ;

unsigned char out[32];

main()

{
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int i;

crypto_core_hsalsa20(out,in,k,c);

for (i = 0;i < 32;++i) {

printf(",0x%02x",(unsigned int) out[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

Here is the output of the program:

,0xbc,0x1b,0x30,0xfc,0x07,0x2c,0xc1,0x40

,0x75,0xe4,0xba,0xa7,0x31,0xb5,0xa8,0x45

,0xea,0x9b,0x11,0xe9,0xa5,0x19,0x1f,0x94

,0xe1,0x8c,0xba,0x8f,0xd8,0x21,0xa7,0xcd

The following program uses C NaCl to compute Salsa20 on the same sample input, and
then converts the Salsa20 output to HSalsa20 output:

#include <stdio.h>

#include "crypto_core_salsa20.h"

unsigned char k[32] = {

0xee,0x30,0x4f,0xca,0x27,0x00,0x8d,0x8c

,0x12,0x6f,0x90,0x02,0x79,0x01,0xd8,0x0f

,0x7f,0x1d,0x8b,0x8d,0xc9,0x36,0xcf,0x3b

,0x9f,0x81,0x96,0x92,0x82,0x7e,0x57,0x77

} ;

unsigned char in[16] = {

0x81,0x91,0x8e,0xf2,0xa5,0xe0,0xda,0x9b

,0x3e,0x90,0x60,0x52,0x1e,0x4b,0xb3,0x52

} ;

unsigned char c[16] = {

101,120,112, 97,110,100, 32, 51

, 50, 45, 98,121,116,101, 32,107

} ;

unsigned char out[64];

void print(unsigned char *x,unsigned char *y)

{

int i;

unsigned int borrow = 0;

for (i = 0;i < 4;++i) {

unsigned int xi = x[i];

unsigned int yi = y[i];
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printf(",0x%02x",255 & (xi - yi - borrow));

borrow = (xi < yi + borrow);

}

}

main()

{

crypto_core_salsa20(out,in,k,c);

print(out,c);

print(out + 20,c + 4); printf("\n");

print(out + 40,c + 8);

print(out + 60,c + 12); printf("\n");

print(out + 24,in);

print(out + 28,in + 4); printf("\n");

print(out + 32,in + 8);

print(out + 36,in + 12); printf("\n");

return 0;

}

This program produces the same output as the previous program.
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Chapter 23

Plaintext, ciphertext, and
authenticator

To encrypt a packet m ∈ {0, 1, . . . , 255}{0,1,...,2
70−32} using the packet’s nonce n ∈

{0, 1, . . . , 255}24 and the shared secret k ∈ {0, 1, . . . , 255}32, Alice xors the packet with part
of the long stream computed in the previous chapter. Alice then uses a different part of the
long stream to authenticate the ciphertext. Alice’s boxed packet is the authenticator followed
by the ciphertext.

Specifically, write the nonce n as (n1, n2) with n1 ∈ {0, 1, . . . , 255}16 and n2 ∈
{0, 1, . . . , 255}8, and write Salsa20(HSalsa20(HSalsa20(k, 0), n1), n2) as (r, s, t, . . . ) where
r, s ∈ {0, 1, . . . , 255}16 and len t = lenm. Define c = m ⊕ t ∈ {0, 1, . . . , 255}lenm and
a = Poly1305(ClampP(r), c, s) ∈ {0, 1, . . . , 255}16. The boxed packet is then (a, c) ∈
{0, 1, . . . , 255}16+lenm.

This chapter defines Poly1305 and ClampP. Some of the definitions here are copied from
the original Poly1305 specification [11]; Poly1305(r, c, s) here is Poly1305r(c, s) in the notation
of [11].

The ClampP function. The function

ClampP : {0, 1, . . . , 255}16 → {0, 1, . . . , 255}16

maps (r0, r1, . . . , r15) to

(r0, r1, r2, r3 mod 16,

r4 − (r4 mod 4), r5, r6, r7 mod 16,

r8 − (r8 mod 4), r9, r10, r11 mod 16,

r12 − (r12 mod 4), r13, r14, r15 mod 16).

The Poly1305 function. Fix ` ∈
{

0, 1, . . . , 270 − 32
}

, fix c ∈ {0, 1, . . . , 255}`, fix
R ∈

{
0, 1, . . . , 2128 − 1

}
, and fix S ∈

{
0, 1, . . . , 2128 − 1

}
. Write q = d`/16e. Write c as

(c[0], c[1], . . . , c[`− 1]). Define C1, C2, . . . , Cq ∈
{

1, 2, 3, . . . , 2129
}

as follows: if 1 ≤ i ≤ b`/16c
then

Ci = c[16i− 16] + 28c[16i− 15] + 216c[16i− 14] + · · ·+ 2120c[16i− 1] + 2128;
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if ` is not a multiple of 16 then

Cq = c[16q − 16] + 28c[16q − 15] + · · ·+ 28(` mod 16)−8c[`− 1] + 28(` mod 16).

In other words: Pad each 16-byte chunk of the ciphertext to 17 bytes by appending a 1. If
the ciphertext has a final chunk between 1 and 15 bytes, append 1 to the chunk, and then
zero-pad the chunk to 17 bytes. Either way, treat the resulting 17-byte chunk as an unsigned
little-endian integer.

Now Poly1305(R, c, S) = A where

A = (((C1R
q + C2R

q−1 + · · ·+ CqR
1) mod 2130 − 5) + S) mod 2128.

Here A means the 16-byte string (A mod 256, bA/256c mod 256, . . .); R and S are defined in
the same way.

Security notes. The constructions in this chapter—xor for encryption and Poly1305 for
authentication—are provably secure. If the attacker cannot distinguish the stream (r, s, t)
from a uniform random string then the attacker learns nothing about the original packet m,
aside from its length, and has negligible chance of replacing the boxed packet (a, c) with a
different packet (a′, c′) that satisfies a′ = Poly1305(ClampP(r), c′, s). Of course, this guarantee
says nothing about an attacker who can distinguish (r, s, t) from a uniform random string—
for example, an attacker who uses a quantum computer to break elliptic-curve cryptography
has as much power as Alice and Bob.

A security proof for Poly1305 appears in [11]. The proof shows that if packets are lim-
ited to L bytes then the attacker’s success chance for a forgery attempt (a′, c′) is at most
8dL/16e/2106. Here are some of the critical points in the proof: 2130 − 5 is prime; ClampP(r)
is uniformly distributed among 2106 possibilities; and distinct strings c produce distinct poly-
nomials C1x

q + C2x
q−1 + · · ·+ Cqx

1 modulo 2130 − 5.
What happens if an attacker is astonishingly lucky and succeeds at a forgery attempt?

Presumably this success will be visible from the receiver’s behavior. The attacker can then,
by polynomial root-finding, easily determine ClampP(r) and s, or at worst a short list of
possibilities for ClampP(r) and s, allowing the attacker to generate “re-forgeries” (a′′, c′′)
under the same nonce. However, if the receiver follows the standard practice of insisting on a
strictly increasing sequence of nonces, then the receiver will reject all of these “re-forgeries,”
as pointed out in 2005 by Nyberg, Gilbert, and Robshaw and independently in 2006 by Lange.
See [30] and [15, Section 2.5].

If r were reused from one nonce to another, with s generated anew for each nonce, then
the first forgery would still be difficult (as pointed out by Wegman and Carter in [37, Section
4]), but after seeing a successful forgery the attacker would be able to generate “re-forgeries”
under other nonces. If >100-bit security were scaled down to much lower security then the
attacker could reasonably hope for this situation to occur. Many authentication systems in
the literature have this problem. The following comment appears in [10, Section 8] and was
already online in 2000:

Some writers claim that forgery probabilities around 1/232 are adequate for most
applications. The attacker’s cost of 232 forgery attempts, they say, is much larger
than the attacker’s benefit from forging a single message. Unfortunately, even if all
attackers acted on the basis of rational economic analyses, this argument would
be wrong, because it wildly underestimates the attacker’s benefit. In a typical
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authentication system, as soon as the attacker is lucky enough to succeed at a
few forgeries, he can immediately figure out enough secret information to let him
forge messages of his choice. (This does not contradict the information-theoretic
security expressed by Theorem 8.2; the attacker is gaining information from the
receiver, not from the sender.) It is crucial for the forgery probability to be so
small that attackers have no hope.

(Emphasis added.) Detailed explanations of various re-forgery attacks appeared in [27], [25],
and [19].

Attacks of that type do not apply to Poly1305 as used in NaCl. There is a new Poly1305
key (r, s) for each nonce; the standard security conjecture for Salsa20 implies that the keys
(r, s) for different nonces are indistinguishable from independent uniform random keys. More
importantly, the>100-bit security level of Poly1305 prevents forgery attempts from succeeding
in the first place.
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Chapter 24

Example of the plaintext,
ciphertext, and authenticator

The following program starts from Chapter 17’s example of Alice’s secret key a Chapter 18’s
example of Bob’s public key B, Chapter 22’s example of a nonce n, and a sample 131-byte
packet, and uses C NaCl to compute the corresponding boxed packet:

#include <stdio.h>

#include "crypto_box_curve25519xsalsa20poly1305.h"

unsigned char alicesk[32] = {

0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45

,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a

,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a

} ;

unsigned char bobpk[32] = {

0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37

,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d

,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

// API requires first 32 bytes to be 0

unsigned char m[163] = {

0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0
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, 0, 0, 0, 0, 0, 0, 0, 0

,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5

,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b

,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4

,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc

,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a

,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29

,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4

,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31

,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d

,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57

,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a

,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde

,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd

,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52

,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40

,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64

,0x5e,0x07,0x05

} ;

unsigned char c[163];

main()

{

int i;

crypto_box_curve25519xsalsa20poly1305(

c,m,163,nonce,bobpk,alicesk

);

for (i = 16;i < 163;++i) {

printf(",0x%02x",(unsigned int) c[i]);

if (i % 8 == 7) printf("\n");

}

printf("\n");

return 0;

}

The program prints a 147-byte boxed packet:

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5

,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce

,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4

,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a

,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b

,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72

,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2

,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
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,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a

,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae

,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea

,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda

,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde

,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3

,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6

,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74

,0xe3,0x55,0xa5

The following program starts from Chapter 18’s example of Bob’s secret key b, Chapter
17’s example of Alice’s public key A, Chapter 22’s example of a nonce n, and the 147-byte
boxed packet shown above, and uses C NaCl to open the box:

#include <stdio.h>

#include "crypto_box_curve25519xsalsa20poly1305.h"

unsigned char bobsk[32] = {

0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6

,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd

,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb

} ;

unsigned char alicepk[32] = {

0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a

,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4

,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

// API requires first 16 bytes to be 0

unsigned char c[163] = {

0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5

,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce

,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4

,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a

,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
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,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72

,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2

,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38

,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a

,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae

,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea

,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda

,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde

,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3

,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6

,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74

,0xe3,0x55,0xa5

} ;

unsigned char m[163];

main()

{

int i;

if (crypto_box_curve25519xsalsa20poly1305_open(

m,c,163,nonce,alicepk,bobsk

) == 0) {

for (i = 32;i < 163;++i) {

printf(",0x%02x",(unsigned int) m[i]);

if (i % 8 == 7) printf("\n");

}

printf("\n");

}

return 0;

}

The program prints the original 131-byte packet:

,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5

,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b

,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4

,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc

,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a

,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29

,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4

,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31

,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d

,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57

,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a

,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde

,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd

,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52

,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40
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,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64

,0x5e,0x07,0x05

Testing: box vs. secretbox. The following program computes the same 147-byte boxed
packet, but starts from the first-level key k1 computed in Chapter 22:

#include <stdio.h>

#include "crypto_secretbox_xsalsa20poly1305.h"

unsigned char firstkey[32] = {

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

// API requires first 32 bytes to be 0

unsigned char m[163] = {

0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5

,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b

,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4

,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc

,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a

,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29

,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4

,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31

,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d

,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57

,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a

,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde

,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd

,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52

,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40

,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64

,0x5e,0x07,0x05

} ;
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unsigned char c[163];

main()

{

int i;

crypto_secretbox_xsalsa20poly1305(

c,m,163,nonce,firstkey

);

for (i = 16;i < 163;++i) {

printf(",0x%02x",(unsigned int) c[i]);

if (i % 8 == 7) printf("\n");

}

printf("\n");

return 0;

}

The following program opens the same box, again starting from the first-level key k1:

#include <stdio.h>

#include "crypto_secretbox_xsalsa20poly1305.h"

unsigned char firstkey[32] = {

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

// API requires first 16 bytes to be 0

unsigned char c[163] = {

0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5

,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce

,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4

,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a

,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b

,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72

,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2

,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
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,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a

,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae

,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea

,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda

,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde

,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3

,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6

,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74

,0xe3,0x55,0xa5

} ;

unsigned char m[163];

main()

{

int i;

if (crypto_secretbox_xsalsa20poly1305_open(

m,c,163,nonce,firstkey

) == 0) {

for (i = 32;i < 163;++i) {

printf(",0x%02x",(unsigned int) m[i]);

if (i % 8 == 7) printf("\n");

}

printf("\n");

}

return 0;

}

Testing: secretbox vs. stream. The following program starts from the first-level key k1
shown above, computes the first 163 bytes of the corresponding stream as in Chapter 22,
skips the first 32 bytes, and xors the remaining bytes with the 131-byte packet shown above:

#include <stdio.h>

#include "crypto_stream_xsalsa20.h"

unsigned char firstkey[32] = {

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;
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unsigned char m[163] = {

0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0

,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5

,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b

,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4

,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc

,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a

,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29

,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4

,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31

,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d

,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57

,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a

,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde

,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd

,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52

,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40

,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64

,0x5e,0x07,0x05

} ;

unsigned char c[163];

main()

{

int i;

crypto_stream_xsalsa20_xor(c,m,163,nonce,firstkey);

for (i = 32;i < 163;++i) {

printf(",0x%02x",(unsigned int) c[i]);

if (i % 8 == 7) printf("\n");

}

printf("\n");

return 0;

}

This program prints

,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce

,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4

,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a

,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b

,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72

,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
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,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38

,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a

,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae

,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea

,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda

,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde

,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3

,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6

,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74

,0xe3,0x55,0xa5

matching the final 131 bytes of the 147-byte boxed packet shown above.

Testing: secretbox vs. onetimeauth. The following program starts from the first-level key
k1 shown above and prints the first 32 bytes of the corresponding stream:

#include <stdio.h>

#include "crypto_stream_xsalsa20.h"

unsigned char firstkey[32] = {

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7

,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2

,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

} ;

unsigned char nonce[24] = {

0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6

,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

unsigned char rs[32];

main()

{

int i;

crypto_stream_xsalsa20(rs,32,nonce,firstkey);

for (i = 0;i < 32;++i) {

printf(",0x%02x",(unsigned int) rs[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

The output of the program is a Poly1305 key (r, s):

,0xee,0xa6,0xa7,0x25,0x1c,0x1e,0x72,0x91

,0x6d,0x11,0xc2,0xcb,0x21,0x4d,0x3c,0x25
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,0x25,0x39,0x12,0x1d,0x8e,0x23,0x4e,0x65

,0x2d,0x65,0x1f,0xa4,0xc8,0xcf,0xf8,0x80

The following program starts from this Poly1305 key (r, s) and the 131-byte suffix c of the
boxed packet shown above, and uses C NaCl to compute Poly1305(ClampP(r), c, s):

#include <stdio.h>

#include "crypto_onetimeauth_poly1305.h"

unsigned char rs[32] = {

0xee,0xa6,0xa7,0x25,0x1c,0x1e,0x72,0x91

,0x6d,0x11,0xc2,0xcb,0x21,0x4d,0x3c,0x25

,0x25,0x39,0x12,0x1d,0x8e,0x23,0x4e,0x65

,0x2d,0x65,0x1f,0xa4,0xc8,0xcf,0xf8,0x80

} ;

unsigned char c[131] = {

0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce

,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4

,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a

,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b

,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72

,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2

,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38

,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a

,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae

,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea

,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda

,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde

,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3

,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6

,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74

,0xe3,0x55,0xa5

} ;

unsigned char a[16];

main()

{

int i;

crypto_onetimeauth_poly1305(a,c,131,rs);

for (i = 0;i < 16;++i) {

printf(",0x%02x",(unsigned int) a[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}
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The program prints

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5

,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

matching the first 16 bytes of the boxed packet shown above.

Testing: C++ vs. onetimeauth. The following C++ program starts from the same
Poly1305 key (r, s) and the same c as above, and uses GMP (through GMP’s C++ inter-
face) to compute Poly1305(ClampP(r), c, s):

#include <stdio.h>

#include <gmpxx.h>

void poly1305_gmpxx(unsigned char *out,

const unsigned char *r,

const unsigned char *s,

const unsigned char *m,unsigned int l)

{

unsigned int j;

mpz_class rbar = 0;

for (j = 0;j < 16;++j) {

mpz_class rj = r[j];

if (j % 4 == 3) rj = r[j] % 16;

if (j == 4) rj = r[j] & 252;

if (j == 8) rj = r[j] & 252;

if (j == 12) rj = r[j] & 252;

rbar += rj << (8 * j);

}

mpz_class h = 0;

mpz_class p = (((mpz_class) 1) << 130) - 5;

while (l > 0) {

mpz_class c = 0;

for (j = 0;(j < 16) && (j < l);++j)

c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);

m += j; l -= j;

h = ((h + c) * rbar) % p;

}

for (j = 0;j < 16;++j)

h += ((mpz_class) s[j]) << (8 * j);

for (j = 0;j < 16;++j) {

mpz_class c = h % 256;

h >>= 8;

out[j] = c.get_ui();

}

}

unsigned char rs[32] = {
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0xee,0xa6,0xa7,0x25,0x1c,0x1e,0x72,0x91

,0x6d,0x11,0xc2,0xcb,0x21,0x4d,0x3c,0x25

,0x25,0x39,0x12,0x1d,0x8e,0x23,0x4e,0x65

,0x2d,0x65,0x1f,0xa4,0xc8,0xcf,0xf8,0x80

} ;

unsigned char c[131] = {

0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce

,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4

,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a

,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b

,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72

,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2

,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38

,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a

,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae

,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea

,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda

,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde

,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3

,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6

,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74

,0xe3,0x55,0xa5

} ;

unsigned char a[16];

main()

{

int i;

poly1305_gmpxx(a,rs,rs + 16,c,131);

for (i = 0;i < 16;++i) {

printf(",0x%02x",(unsigned int) a[i]);

if (i % 8 == 7) printf("\n");

}

return 0;

}

The program prints

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5

,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

matching the output of the previous program.



Chapter 25

Signatures

This chapter briefly describes the crypto_sign_edwards25519sha512batch signature system
supported by NaCl.

The system parameters are an elliptic curve in twisted Edwards form −x2+y2 = 1+dx2y2

over the finite field Fp, where p = 2255−19 and d is chosen such that the curve is birationally
equivalent to Curve25519; a point P ∈ E(Fp) of prime order p1; and a cryptographic hash
function H, which is chosen to be SHA-512.

The long term secret key of user A is a tuple of integers (a1, a2); the corresponding public
key is PA = a1P . The second part of the secret key is used in nonce generation.

To sign message m, user A first computes a message-dependent nonce k = H(a2||m) and
then computes R = kP . The compressed representation r of R consists of the y-coordinate
of R and one bit of the x coordinate to distinguish R from −R. The signature consists of
(r, s) = (r,H(r||m)k + a1), where the second part is computed modulo p1.

To verify that a signature (r, s) on a message m belongs to the user with public key PA

the recipient decompresses r into a point R on the Edwards curve, computes h = H(r||m)
and checks whether hR+ PA equals sP . If so, the signature is accepted as valid; otherwise it
is rejected as invalid. Signatures from A are accepted as valid since sP = (H(r||m)k+a1)P =
H(r||m)(kP ) + a1P = hR+ PA.

Signature verification is computed more efficiently as a double scalar multiplication, check-
ing whether sP − hR equals PA. This equation lends itself to batch verification, for example
saving about a factor of 4 in verifying 100 signatures simultaneously; see [34] and [14].

This signature scheme has several efficiency and security advantages over the standard
elliptic-curve signature scheme ECDSA [26]:

• Signature generation and verification do not use inversion modulo the group order p1.
This speeds up the computation and simplifies implementations.

• Signatures can be verified in batches for higher efficiency.

• Different messages are guaranteed to receive different, and unpredictable, nonces.

• All uses of H are randomized, so collisions in H have no obvious impact on security.

• There is no obvious malleability of signatures. NaCl does not promise strong unforge-
ability (non-malleability) for signatures in general, but this feature might be useful if
there are any applications of strong unforgeability.
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Part III:

Networking in NaCl: the CurveCP
protocol
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Chapter 26

Introduction to networking

Sending data through the Internet is like sending it through the radio (and often is actually
sending it through the radio). An attacker who sets up a radio nearby can spy on everything
that you’re sending, and on everything that you’re receiving. Some, perhaps most, of the data
you send and receive is public, but the attacker can also see all the private information.

The attacker doesn’t have to be physically close to you. He could be halfway around the
world. He simply has to have control over one computer on the same network as yours, or on
the same network as the computer you’re talking to, or on any network in between. Do you
really think that these hundreds of computers are all trustworthy and secure and not spying
on your communication?

Furthermore, the attacker can forge packets of data that look like they come from you, or
from whichever site you’re talking to. With slightly more effort the attacker can spy on each
packet as you’re sending it, quickly substitute a modified version of the packet, and prevent
the receiver from seeing the original packet.

26.1 NaCl and CurveCP

CurveCP is a new networking protocol described in the following chapters. CurveCP is similar
to TCP but uses high-speed high-security elliptic-curve cryptography to protect every packet
against espionage, corruption, and sabotage. NaCl’s networking component is a complete
implementation of CurveCP.
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Chapter 27

Confidentiality and integrity

The CurveCP client and CurveCP server encrypt and authenticate each packet, scrambling the
packet in a way that only they can create and only they can understand. This cryptographic
protection provides confidentiality against espionage and integrity against corruption and
forgery. CurveCP also provides some availability against sabotage; this is discussed in the
next chapter.

The client and server administrators don’t meet secretly to share an encryp-
tion/authentication key. The server has a long-term public key S visible to everyone; the
client uses this key S to encrypt data for the server and to verify data from the server. The
client also has a long-term public key C visible to the server; the server uses that key C to
encrypt data for the client and to verify data from the client.

27.1 Does CurveCP provide server authentication?

Yes. The client verifies every packet from the server using the server’s long-term public key, or
using a short-term public key that the long-term key has securely vouched for. Attackers can-
not pretend to be the server; forged packets labelled as being from the server are immediately
recognized and discarded.

27.2 Does CurveCP provide client authentication?

Yes. The client’s long-term public key securely vouches for a short-term public key, and the
server verifies every packet from the client using that short-term public key. Attackers cannot
pretend to be the client; forged packets labelled as being from the client are immediately
recognized and discarded.

27.3 Does CurveCP stop replay attacks?

Yes. If the attacker makes copies of a legitimate client’s Hello packets then the attacker will
receive server Cookie packets without affecting the server state; these Cookie packets do not
leak information and will be rejected by the legitimate client. If the attacker makes copies of
other client packets then the copies will be rejected by this server and by other servers. If the
attacker makes copies of server packets then the copies will be rejected by this client and by
other clients.
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27.4 Does CurveCP stop man-in-the-middle attacks?

Yes. The client knows the server’s long-term public key in advance, before making a CurveCP
connection. Servers that differentiate between clients know the clients’ long-term public keys
in advance. An attacker is then unable to

• fool the client into encrypting data to the attacker rather than the server;

• fool the server into accepting data from the attacker and thinking it comes from the
client;

• fool the server into sending responses to the attacker rather than the client; or

• fool the client into accepting data from the attacker and thinking it comes from the
server.

CurveCP’s encryption mechanism is tied tightly and securely to its client/server identification
and authentication mechanisms. An attacker with full control over every packet between
the client and server can compromise availability but cannot compromise confidentiality or
integrity.

27.5 Does CurveCP provide forward secrecy?

Yes. Two minutes after a connection is closed, both the client and the server are unable to
understand (or verify) what was sent through the network. Of course, the client and server
might have stored copies of the plaintext on disk, but that isn’t CurveCP’s fault.

CurveCP also provides forward secrecy for the client’s long-term public key. Two minutes
after a connection is closed, the server is unable to extract the client’s long-term public key
from the network packets that were sent to that server, and is unable to verify the client’s
long-term public key from the network packets.

Here’s how the forward secrecy works. At the beginning of a connection, the CurveCP
server generates a short-term public key S’ and short-term secret key s’, supplementing its
long-term public key S and long-term secret key s. Similarly, the CurveCP client generates
its own short-term public key C’ and short-term secret key c’, supplementing its long-term
public key C and long-term secret key c. Almost all components of CurveCP packets are in
cryptographic boxes that can be opened only by the short-term secret keys s’ and c’. The
only exceptions are as follows:

• Packets from the client contain, unencrypted, the short-term public key C’. This public
key is generated randomly for this CurveCP connection; it is tied to the connection but
does not leak any other information.

• The first packet from the client contains a cryptographic box that can be opened by c’
and by s (not s’; the client does not know S’ at this point). However, this box contains
nothing other than constant padding.

• The first packet from the server contains a cryptographic box that can be opened by
c’ and by s. However, this box contains nothing other than the server’s short-term
public key S’, which is generated randomly for this CurveCP connection, and a cookie,
discussed below.
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• The second packet from the client contains a cookie from the server. This cookie is
actually a cryptographic box that can be understood only by a “minute key” in the
server. Two minutes later the server has discarded this key and is unable to extract any
information from the cookie.

At the end of the connection, both sides throw away the short-term secret keys s’ and c’.

27.6 Does CurveCP provide options to disable encryption and
to disable authentication?

No. CurveCP’s server authentication is always active and cannot be disabled. CurveCP’s
client authentication is always active and cannot be disabled. CurveCP’s encryption is always
active and cannot be disabled. CurveCP’s forward secrecy is always active and cannot be
disabled. CurveCP has nothing analogous to IPsec’s separation between AH and ESP, and
nothing analogous to HTTPS renegotiation.

The lack of options in CurveCP simplifies the protocol and prevents a wide range of design
and implementation mistakes. Compare the following quotes:

Ferguson and Schneier, 2003: Our main criticism of IPsec is its complexity. IPsec
contains too many options and too much flexibility; there are often several ways of
doing the same or similar things. This is a typical committee effect. Committees
are notorious for adding features, options, and additional flexibility to satisfy vari-
ous factions within the committee. As we all know, this additional complexity and
bloat is seriously detrimental to a normal (functional) standard. However, it has
a devastating effect on a security standard. ... When both encryption and authen-
tication are provided, IPsec performs the encryption first, and authenticates the
ciphertext. In our opinion, this is the wrong order. ... Authentication should thus
be applied to the plaintext (as it is in SSL [FKK96]), and not to the ciphertext.
... An Attack on IPsec ... Clearly, the authentication property has been violated.

Degabriele and Paterson, 2010: IPsec allows a huge amount of flexibility in the
ways in which its component cryptographic mechanisms can be combined to build
a secure communications service. This may be good for supporting different secu-
rity requirements but is potentially bad for security. We demonstrate the reality of
this by describing efficient, plaintext-recovering attacks against all configurations
of IPsec in which integrity protection is applied prior to encryption – so-called
MAC-then-encrypt configurations. ... For concreteness, we study the common use
case of using IPsec to build a simple site-to-site VPN. We describe practical attacks
against all MAC-then-encrypt configurations of IPsec for this common application,
including the most natural configurations as well as more “exotic” ones.

Ferguson and Schneier break an encrypt-then-MAC configuration for IPsec and recommend
MAC-then-encrypt. Degabriele and Paterson show that IPsec’s MAC-then-encrypt options
are completely insecure. The only point of agreement between the authors is that committee-
induced flexibility is a disaster for security.
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27.7 Does CurveCP provide client address authentication?

No. IP addresses are not secure in any meaningful sense, and CurveCP does not attempt
to make them secure. Servers that distinguish between clients must do so on the basis of
long-term client public keys, not IP addresses.

27.8 Does CurveCP protect against traffic analysis?

No. An attacker can see the Internet destination, exact timing, and approximate length of
each packet that you send. CurveCP is not a substitute for an anonymizing network such as
Tor, although of course it can be used to protect links inside an anonymizing network.

Don’t underestimate the amount of interesting information that the attacker can deduce
from traffic analysis! For example, Song, Wagner, and Tian showed in 2001 that the timing
of password packets in ssh leaks several bits of information about a typical password.



Chapter 28

Availability

CurveCP takes several steps to improve Internet availability, i.e., to make denial-of-service
attacks more difficult.

28.1 The problem, part 1: availability is more than integrity

Alice sends data to Bob: web pages, email messages, etc. What data does Bob think Alice
has sent?

Integrity (“the truth and nothing but the truth”) means that all of the data that Bob
thinks Alice sent was, in fact, sent to Bob by Alice, not by an attacker.

Availability (“the truth, the whole truth, and nothing but the truth”) means that the data
that Bob thinks Alice sent is exactly the data that Alice actually sent to Bob: nothing more
and nothing less.

For example, an attacker can abort an SSH connection or an HTTPS connection by forging
a single TCP Reset packet. The user sees an error message such as “Connection closed by
remote host” or “Connection reset by peer.” The user isn’t receiving bad data from the
attacker, but also isn’t receiving good data from the legitimate server. This is not a violation
of integrity but it is a violation of availability.

As another example, PGP-encrypting and PGP-signing an email message protects confi-
dentiality and integrity: an attacker who steals the email message won’t understand it and
can’t replace it with a different message. But PGP does nothing to protect availability: the
email has silently disappeared! Retroactively checking integrity can’t restore availability.

28.2 The problem, part 2: availability is quantitative

Alice and Bob can communicate through a completely hostile network, filled with billions of
attack computers, and still be assured of the confidentiality and integrity of their data. Modern
cryptographic techniques reach levels of confidentiality and integrity that are infeasible to
break.

The same is not true for availability. For example, a large botnet sending a flood of packets
will overwhelm the network between Alice and Bob, preventing communication between Alice
and Bob; or a malicious ISP can simply refuse to deliver packets from Alice to Bob; or an
attacker with physical access to the network can cut a cable. These attacks do not violate
confidentiality or integrity, but they do violate availability.
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Internet designers can nevertheless strive to improve availability by increasing the cost of
denying service and decreasing the amount of communication affected by denial of service.
CurveCP takes several steps in this direction.

Beware that there are also serious denial-of-service problems in many other layers of
Internet communication, including the physical layer (especially 802.11) and the routing layer
(BGP). CurveCP eliminates several denial-of-service problems in the transport layer (TCP),
but much more work has to be done.

28.3 Unauthenticated packets

Let’s look at Bob copying a tiny file through SSH. Measurements show that SSH uses a total
of 40 packets back and forth to set up the connection and copy the file.

An attacker eavesdropping on the network watches Bob set up the connection. After (say)
20 packets the attacker forges a TCP Reset packet, or a regular TCP packet containing bogus
data. Bob’s connection dies. Bob has not yet received any of the legitimate data. If Bob tries
again, the attacker breaks that connection too. The attacker is sending only a tiny fraction
as much data as Bob is sending, and is still preventing Bob from communicating.

CurveCP is different. CurveCP authenticates and verifies each packet. If a bogus packet
arrives, CurveCP simply discards the packet and waits for the legitimate packet.

An attacker can, at somewhat higher cost, prevent the legitimate packet from being deliv-
ered. But CurveCP handles this in the same way as other network failures: it recognizes that
data is missing and retransmits the data. To stop communication the attacker has to stop
essentially all of the legitimate packets; this is considerably more expensive for the attacker
than forging an occasional packet, so the number of victims is reduced.

28.4 Predictable retransmission times

An attacker who watches the client send a few packets in a typical TCP connection can
easily predict when the client will send its next packet. The attacker can stop that packet by
briefly flooding the network at that moment. The attacker can also predict when TCP will
try retransmitting the packet, and can stop that retransmission with another carefully timed
flood. This is less expensive than flooding the network continuously.

CurveCP adds some randomness to its packet-transmission schedule. This randomness
gives each packet a chance of fitting through the holes in any part-time flood pattern chosen
by the attacker.

28.5 Blind amplification

Some protocols allow attackers anywhere on the Internet to generate a packet that will trigger
a much larger outgoing packet from the server to a victim address selected by the attacker. The
issue here isn’t the availability of that protocol; the issue is that the protocol is amplifying the
attacker’s resources, damaging availability for the rest of the Internet. The worst offender at
the moment is DNSSEC, which has set up a remote-controlled machine-gun pool containing
more than 2000 servers with amplification factors between 30 and 95 and with an overall
outgoing attack capacity estimated to be close to 50 gigabits per second. See [17].
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With CurveCP, the first incoming packet from the client is padded so that it is as large
as the outgoing packet from the server. If this padding is missing, the server won’t respond.
Subsequent packets from the client need to repeat server cookies and can’t be generated
blindly.

28.6 Non-blind amplification

Heavy amplification sometimes hurts availability even when it’s limited to attackers who can
see where the packets are going. An attacker who has seized control over a few computers on
a network can use those computers to generate a much larger flood back to the same network.

Insisting on all client packets being as large as server packets would double the network
bandwidth used by large downloads and still wouldn’t eliminate amplification: a server that
doesn’t receive client responses will retransmit packets. CurveCP nevertheless takes several
steps to reduce amplification:

• The server doesn’t retransmit its first packet, the Cookie packet. The client is responsible
for repeating its Hello packet to ask for another Cookie packet.

• The ratio between maximum and minimum packet sizes is much smaller in CurveCP
than it is in other protocols. CurveCP packets are limited to 1024 bytes of data (plus
some overhead). CurveCP never triggers packet fragmentation on standard networks.

• CurveCP backs off more quickly than TCP from a congested network, reducing the
bandwidth used by retransmissions.

28.7 Blind memory consumption

Once upon a time, TCP servers would allocate memory (inside a “TCP control-block table”)
for each incoming SYN packet. This allowed attackers to trivially fill up memory with blind
“SYN flooding”: sending a stream of SYN packets.

Phil Karn introduced a cookie exchange as the first step of the Photuris protocol (1994)
to prevent the attacker from blindly allocating memory on the server. It was later observed
that TCP servers could unilaterally apply the same technique inside TCP, with no changes
to TCP clients; these cookies are called “SYN cookies” (1996). The more general technique
of “remote storage” eliminates storage on a server in favor of storage inside the network: the
server sends data as an encrypted authenticated message to itself via the client.

A CurveCP server does not allocate memory in response to a client’s first packet, the Hello
packet. Instead it uses remote storage: it sends a Cookie packet containing a cookie that the
client cannot understand but must repeat. This packet also contains a client-comprehensible
part, the server’s short-term public key S’ for this connection, used to provide forward secrecy.

A CurveCP server does allocate memory in response to a client’s second packet, the Initiate
packet, but only if the second packet contains a valid recent cookie from the server. Blind
attackers have no way to forge these cookies, and therefore no way to allocate memory on the
server.
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28.8 Unauthenticated memory consumption

Many SSH servers are configured as high-security “public-key-only” servers. These servers
do not authorize communication from random clients; they have a list of public keys of
authorized clients (in .ssh/authorized_keys), and are willing to talk only to clients sending
data authenticated by those public keys.

An attacker can trivially fill up memory on these servers, disabling legitimate communica-
tion, by making a series of TCP connections and leaving those connections idle. SYN cookies
mean that this attack cannot be carried out blindly, so a server can try to defend itself by
imposing separate per-IP-address connection limits, but this defense is trivially subverted by
attackers who control many computers or who are eavesdropping on the network.

With CurveCP, the client’s Initiate packet contains the client’s long-term public key C
(encrypted to the server’s short-term public key S’), together with a message from C vouch-
ing for this connection (a Vouch subpacket). If a CurveCP server is not willing to talk to
unauthorized clients, it simply checks C against the list of authorized clients, and drops the
packet if C is unauthorized. Unauthorized clients therefore have no way to allocate memory
on the server.

Several servers that share a long-term key still use separate minute keys, so they don’t
understand each other’s cookies. An Initiate packet replayed to a different server is quickly
discarded.

28.9 CPU consumption

Many cryptographic protocols allow unauthenticated attackers to easily overload server CPUs
or client CPUs, preventing the CPUs from processing legitimate traffic. Of course, an attacker
can achieve the same result by flooding the network; the issue here is that many protocols
allow the attacker to overload the CPUs with a much smaller amount of traffic, reducing the
attacker’s costs and increasing the number of victims.

There are several different mistakes that lead to this type of attack:

• Poor choice of cryptographic mechanisms. For example, TCPcrypt overloads the decryp-
tion ability of a quad-core 2.66GHz Intel Xeon X5355 client with just 400 packets per
second. (TCPcrypt uses 2048-bit RSA, with security level approximately 2112.) Imagine
how much more trouble these computations would cause for a single-core 1GHz Apple
iPad!

• Poor protocol design. For example, typical implementations of TCP SACK (selective
acknowledgments) perform huge computations in response to a single forged attacker
packet.

• Poor choice of data structures. For example, many servers allow hash flooding: an at-
tacker puts a huge number of entries into a single hash-table bucket, drastically increas-
ing the time required for the server to process those entries.

CurveCP’s worst-case server CPU load is very small, and its worst-case client CPU load is very
small. CurveCP uses high-speed high-security elliptic-curve cryptography so that a typical
CPU can perform public-key operations more quickly than a typical Internet connection can
ask for those operations.



Chapter 29

Decongestion

The job of an Internet router is to forward packets from incoming network links (wires, radios,
etc.) to outgoing network links. The router first stores each packet in an internal queue in
case the outgoing link is busy. Congestion means that packets are continuing to arrive at the
router more quickly than the outgoing link can handle them. The queue length then increases;
if this persists then eventually the queue fills up and the router is forced to discard packets.

This chapter discusses the congestion-control and congestion-avoidance mechanisms in
TCP and in CurveCP. These mechanisms are handled by packet schedulers that decide when
to transmit packets and when to retransmit packets. There are actually several different
TCP packet schedulers in common use, including CUBIC (Linux), NewReno (FreeBSD),
and Compound (Microsoft). CurveCP uses a new scheduler called Chicago that decongests
routers, including routers suffering from “bufferbloat”; Chicago efficiently uses the available
bandwidth while minimizing packet loss and reducing latency for interactive applications.

29.1 Congestion-induced inefficiency

Congestion might at first seem to be a minor issue. Data is not permanently lost when packets
are lost: clients and servers send packets again and again until the packets are acknowledged.
The outgoing link will continue transmitting data at full speed—obviously the best it can
do—and eventually will transmit the lost data.

The primary problem is that each lost packet wastes time on the incoming link. A packet
sent 10 times through this link, because it was lost the first 9 times, consumes 10 times as
much space as it would otherwise have consumed, effectively reducing the bandwidth of the
incoming link by a factor of 10—a huge efficiency problem. Sometimes this reduction means
that the incoming link is overloaded, congesting the previous router and causing even more
packets to be lost.

A secondary problem is that increased queue lengths cause increased delays for packets
in the queue. This is not a bandwidth problem but it is a latency problem. Users waiting for
data (web pages, streaming video, etc.) frequently encounter long delays attributable directly
to queue congestion, often several seconds or more.

These two problems naturally classify schedulers into three categories:
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Primary
evaluation
(packet loss)

Secondary
evaluation
(latency)

Examples Summary

Bad Bad TCP schedulers
on the Internet
until the late
1980s

Senders send packets as quickly as they can.
When senders notice packet loss, they
retransmit packets at high speed, causing
further congestion and further packet loss.

Good Bad TCP schedulers
on the Internet
today: e.g.,
CUBIC (Linux),
NewReno
(FreeBSD),
Compound
(Microsoft)

Senders increase packet-sending rates until
they notice packet loss as a sign of congestion.
Senders then reduce packet-sending rates to
keep loss rates under control. To detect
increases in available network capacity (e.g.,
someone else’s download has finished), senders
continue trying higher rates, keeping queues
congested and periodically causing packet loss.

Good Good TCP Vegas,
LEDBAT (µTP
in BitTorrent),
Chicago
(CurveCP)

Senders increase packet-sending rates until
they notice packet loss or increased delays as a
sign of congestion. Senders then adapt
packet-sending rates to keep loss and delays
under control. Queue congestion is minimized.

There are many more TCP schedulers. Most of these schedulers are in the Good+Bad
line. Good+Good is obviously more desirable; the Internet’s continued use of Good+Bad is
discussed below.

29.2 Unfairness

Further problems appear when two or more flows (active connections) are competing for
bandwidth on the same link. Users expect each flow to promptly set a fair rate: half of the
link bandwidth when there are two flows, or 1/N of the link bandwidth when there are N
flows. This requires communication between the flows.

The Internet does not, in general, provide explicit communication between flows. Two flows
instead communicate implicitly. Each flow causes delays (or, more clumsily, packet losses).
Presumably this signal is visible to both flows, or at least has an equal chance of being seen by
each flow. Each flow separately adjusts its rate in response to this signal. If this adjustment
has the effect of bringing the rates closer together, and other adjustments do not have the
effect of bringing the rates farther apart, then eventually the rates will converge.

For example, many TCP schedulers use an “AIMD” adjustment mechanism that works
as follows:

• Goal: The difference R1−R2 will rapidly decrease towards 0. Here R1 and R2 are the
two flow rates.

• “Multiplicative decrease”: Each flow reduces its rate in half upon seeing a congestion
signal. This chops R1−R2 in half.

• “Additive increase”: Each flow periodically increases its rate by a constant. This does
not affect R1−R2.
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This is fair if the flows have the same idea of what “periodically” means. However, for most
TCP schedulers, “periodically” is defined by the round-trip time (RTT), producing RTT
unfairness: a flow with a faster RTT will use more of the link than a flow with a slower
RTT. Some TCP schedulers schedule “periodically” on an RTT-independent scale, such as
once per second, to avoid RTT unfairness; Chicago also does this.

Here is a much worse example, the late-comer’s advantage. TCP Vegas measures the
minimum RTT that it sees, and adjusts its rate so that the RTT is somewhat larger, say
min+delta. Here delta is not very large (large queue delays indicate congestion), but it is also
not very small (empty queues indicate an idle network). Once TCP Vegas has found a rate
that keeps the RTT stably at min+delta, it does not adjust the rate further; the RTT stays
at min+delta. Now suppose that one Vegas flow starts using an empty link, and then later a
second Vegas flow starts using the same link. The first Vegas flow sees the RTT of the empty
link as the minimum RTT, and increases its rate so that the RTT is min+delta. The second
Vegas flow then arrives, sees min+delta as the minimum RTT, and quickly pushes the RTT
up to min+2delta. The first Vegas flow interprets the increased RTT as a sign of competition
for the network, and reduces its rate so that the RTT drops below min+2delta; the second
Vegas flow then increases its rate, pushing the RTT back up to min+2delta. This continues
until the rate of the first Vegas flow has converged to essentially zero. The second Vegas flow
ends up monopolizing the link.

Widely deployed Good+Bad schedulers such as NewReno and CUBIC avoid this type of
problem by implicitly creating a synchronized congestion cycle. Each cycle begins with a
moment of maximum congestion (i.e., maximum queue length), decreases down to a lower
level of congestion, and then increases back up to maximum congestion, ending the cycle
and starting the next cycle. This congestion cycle plays a critical, and underappreciated, role
as a flow-communication mechanism: each flow recognizes maximum congestion at the same
moment (through packet loss) and, at that moment, decreases rate multiplicatively—enough
to bring the cumulative rate below the capacity of the bottleneck link, prompting the decrease
in congestion. Each flow increases rate at all other times, eventually prompting the increase
in congestion.

Like NewReno and CUBIC, but unlike Vegas, Chicago uses frequent additive increases and
occasional multiplicative decreases to create a synchronized congestion cycle. Unlike NewReno
and CUBIC, Chicago keeps track of long-term delay statistics, and explicitly recognizes cycles
that merely vary in delay, rather than requiring each cycle to end with maximum congestion
and packet loss. Chicago gradually pushes the delays down, creating short cycles where the
top and bottom of the cycle are at very low levels of congestion, drastically reducing latency
and eliminating typical congestion-induced packet loss.

29.3 Unfriendliness

Even more problems appear when two flows using different schedulers are competing for
bandwidth on the same link.

Here is a bad example, extreme unfriendliness of one TCP scheduler towards another
TCP scheduler. Suppose one flow uses a widely deployed Good+Bad scheduler such as TCP
CUBIC, while the other flow uses TCP Vegas. The CUBIC flow will increase its rate until it
causes packet loss, filling queues and creating delays. The Vegas flow will respond to the delays
by reducing its rate, while the CUBIC flow is blind to the delays. Vegas obtains bandwidth
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for brief moments after the CUBIC rate decreases multiplicatively, but in general uses only
a very small fraction of the link. To summarize, CUBIC is extremely unfriendly to Vegas.
Other Good+Bad TCP schedulers, such as NewReno, are also extremely unfriendly to Vegas.
Experiments with Vegas have almost uniformly found Vegas running at extremely low speeds
whenever there is even a single Good+Bad competitor. (The only exceptions are simulations
of old routers using very short queues.) This is obviously dissatisfying to users who try Vegas,
and appears to be a major reason for the failure of Vegas to be deployed on the Internet.

(CUBIC, NewReno, etc. are extremely unfriendly to BitTorrent’s µTP LEDBAT for simi-
lar reasons. This is advertised as a feature of BitTorrent: if a web browser begins downloading
a large web page then BitTorrent will very quickly stop using the network. However, for ex-
actly the same reason, users who try LEDBAT for web pages will find their web browsers
waiting practically forever if any other connection is using CUBIC.)

The conventional wisdom is that users will be unhappy with a new scheduler if
NewReno/CUBIC/etc. are extremely unfriendly to that scheduler or vice versa. On the other
hand, small imbalances in network usage seem much less important to users. CUBIC is some-
what unfriendly towards NewReno, for example, and doesn’t provide RTT fairness, but these
problems seem to have generated very few complaints; each connection continues to receive a
tolerable share of the bandwidth, even if not a fair share.

Chicago uses edge-triggered backoffs so that there are only a constant number of back-
offs in a typical cycle. When a Good+Bad flow runs alongside a Chicago flow, the Good+Bad
flow will not notice the delays it is creating, and will not notice Chicago backing off as a
result of those delays; but Chicago will then see that the cycle is continuing, and will continue
increasing its rate until the actual end of the cycle. Chicago, unlike Vegas, thus receives a
tolerable share of the bandwidth.

29.4 Hammering

The original TCP schedulers would begin a flow by sending every possible packet within the
receiver’s advertised window. This spike of traffic was often far more than a link could handle
in one RTT; routers would leap from zero congestion to heavy congestion.

Modern TCP schedulers instead limit their initial transmissions (and new transmissions
after some idle time) by the following algorithm. The sender transmits a single packet; then,
after an RTT, two packets; then, after another RTT, four packets; then, after another RTT,
eight packets; and so on. This pattern continues until a packet is lost; the scheduler then
begins AIMD.

This algorithm is called slow start and is widely advertised as a gentle, safe way to
discover the available bandwidth. However, slow start is actually quite dangerous: it can
reach extremely high rates, far beyond the link capacity, placing huge spikes of traffic into
router queues. If the sender continues transmitting data then the heavy congestion created
by slow start will eventually produce packet loss, but if the sender stops before this then slow
start will hammer the router queue almost as badly as the original TCP schedulers.

Chicago watches delays so that it can see when rate-doubling is beginning to create con-
gestion.
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29.5 False congestion alarms

Packets sent through wireless networks are often destroyed by radio interference. Most TCP
schedulers incorrectly treat these packet losses as signs of congestion and back off multiplica-
tively. These schedulers make poor use of the available bandwidth: they cannot transmit more
than c/

√
p packets per RTT, where c is a constant depending on the scheduler and p is the

packet-loss probability.
Chicago keeps track of long-term loss statistics the same way that it keeps track of long-

term delay statistics. The scheduler does not confuse persistent loss with congestion-induced
loss. This allows Chicago to use lossy wireless networks with reasonable efficiency.

Old TCP schedulers also misunderstood naturally occurring large delays, typically from
slow modems or from delayed acknowledgments, as timeouts. Newer TCP schedulers typi-
cally use Jacobson’s algorithm to set a timeout that takes account of variance in delays,
along with either timestamps or Karn’s algorithm to prevent miscomputation of delays
for retransmitted packets. Chicago uses similar algorithms, with explicit acknowledgment of
message IDs to prevent miscomputation of delays.
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Chapter 30

Addressing

This chapter discusses four advantages of CurveCP over TCP:

• An ISP or site administrator can easily run a huge number of CurveCP servers on a
single global IPv4 address, even if the servers are independently operated with separate
long-term public keys. This feature is provided by a simple extension mechanism in
CurveCP addresses.

• CurveCP servers are inherently anti-aliased, providing automatic virtual hosting and
fixing some of the deficiencies in the “same-origin” policy in web browsers. This feature
is provided by a simple domain-name mechanism in CurveCP addresses.

• If a site has two server addresses, and one server is down, a CurveCP client will quickly
connect to the other address.

• A CurveCP connection remains fully functional even if the client changes IP address.

CurveCP is fully compatible with existing NAT (network address translation) mechanisms;
none of the above features require clients or servers to know the global addresses of their
gateways.

30.1 Server addresses

Before a client can create a CurveCP connection, it needs to know (1) the server’s long-term
public key and (2) the server’s address. The server’s address has four components:

• 4 bytes: a global IPv4 address identifying the server gateway. The client sends CurveCP
packets through the Internet to this IPv4 address. Typically this address is statically
configured into the gateway computer by the gateway administrator, and broadcast
through DNS. (In principle, CurveCP can also be used within global address spaces
other than IPv4, but this chapter focuses on IPv4 for concreteness.)

• 2 bytes: a UDP port. The client sends CurveCP packets to this UDP port. Typically
this port is specified by a higher-level protocol using CurveCP, the same way that a
TCP port is specified by a higher-level protocol using TCP (e.g., TCP port 25 for mail
transfer through SMTP).
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• 16 bytes: an extension understood by the server gateway. The semantics of this extension
are decided by the server gateway administrator; the client simply copies the extension
without trying to understand it.

• Variable length, at most 255 bytes: the server’s domain name.

These components are typically used as follows. Packets from the client are forwarded by
Internet routers until they reach the gateway computer at this IPv4 address. Normally these
routers ignore the UDP port (and extension), except that some firewalls limit the clients that
can reach various UDP ports. Within the gateway computer, the operating-system kernel
uses the UDP port to route the packet to a CurveCP-aware program. There are two common
possibilities at this point:

• Two-level gateway-server structure: The program extracts a local IPv4 or IPv6 or MAC
or ... address from the CurveCP extension and forwards the packet accordingly to a local
server. That local server is the CurveCP server; it has the corresponding secret key and
decrypts the CurveCP packet. This last step of forwarding typically means rewriting
the packet header (NAT) to contain the server’s local address instead of the gateway’s
IPv4 address; the opposite translation happens for packets sent out to the Internet.

• Single-level structure: This program is already the CurveCP server. The server is the
gateway. The server has its own IPv4 address. No extra forwarding is necessary.

The server’s domain name is sent by the client (encrypted) inside the client’s second packet,
the Initiate packet. The server drops the Initiate packet if the domain name is wrong (i.e., does
not match the server’s locally configured domain name). If third parties set up unauthorized
domain names that are aliased to the same server then CurveCP connections to those domain
names will fail. “Virtual” servers allow several configured domain names and take different
actions for different domain names.

30.2 Client addresses

The client’s packets include (1) the client’s short-term public key and (2) the client’s address.
The client’s address has three components:

• 4 bytes: a global IPv4 address identifying the client gateway. The server sends CurveCP
packets through the Internet to this IPv4 address. Typically this address is dynamically
configured into the client, for example through a DHCP server set up by the client
gateway administrator.

• 2 bytes: a UDP port. The server sends CurveCP packets to this UDP port.

• 16 bytes: an extension understood by the client gateway. The semantics of this extension
are decided by the client gateway administrator; the server simply copies the extension
without trying to understand it. Typically this extension is dynamically configured into
the client.

Current operating-system kernels already contain facilities to automatically copy a dynam-
ically configured IPv4 address into each outgoing UDP packet, simplifying CurveCP client
software. Current kernels also assign UDP ports. Some UDP applications assign their own
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random UDP ports as a security feature (for kernels that don’t randomize UDP ports), but
this feature would be redundant for CurveCP.

Current kernels do not contain analogous facilities for extensions. Current clients read 16
bytes (binary) from the file /etc/curvecpextension, and re-read this file frequently to catch
any updates; or use 16 all-zero bytes if that file doesn’t exist.

30.3 Backup servers

An Internet server can advertise multiple IP addresses, typically the addresses of two or three
servers. If one server crashes then clients can connect to another server.

Unfortunately, a typical client will start by asking TCP to connect only to the first address.
If that server is unresponsive, TCP will spend a long time trying many SYN packets to that
address before aborting: typically 5 packets over 180 seconds. The client will then ask TCP to
connect to the second address, but the user has already given up at this point; the connection
is a failure from the user’s perspective. Typical TCP implementations don’t support a “connect
to several addresses” feature.

A CurveCP client tries a Hello packet to the first address, then a Hello packet to the
second address, etc. If one of the servers is up then the connection will succeed promptly.
This drastically reduces the impact of a single-server outage: the outage typically wastes only
1 packet and only about 1 second with CurveCP, rather than 5 packets and 180 seconds with
TCP.

Load-balancing DNS servers reduce the impact of outages in a different way, by quickly
removing the advertisements for servers that are down. However, load-balancing DNS does
not prevent failures for users who received an advertisement of a server just before that server
crashed, while CurveCP does prevent these failures. Note that neither approach prevents
failures when a server crashes in the middle of a connection.

30.4 Mobile clients

Bob has an open SSH connection from his laptop in his hotel room. He closes the laptop, checks
out of the hotel, walks down the street to an Internet cafe, opens the laptop, and acquires
a new IP address. All his open SSH connections are now unresponsive, because the server is
sending responses to the laptop’s old IP address. Bob has to close the SSH connections and
make new connections.

CurveCP supports mobile clients. If the server sees a new address attached to a verified
packet from the client, the server tries sending its response to that address. If the client
acknowledges that response from the same new address, the server switches to that address
for subsequent packets, smoothly migrating the connection to that address.

The client does not cryptographically authenticate (and in general does not have any
secure way to know) its own address. If an eavesdropping attacker takes a packet from the
client, forges a new packet with the same contents but the attacker’s address, and prevents
the original packet from reaching the server (for example, by flooding the network), then the
server will try sending its response to the attacker’s address. If the attacker then forwards
that response to the client and similarly modifies the address on the client’s acknowledgment,
then the server will send subsequent packets to the attacker’s address. However, the client
will continue sending packets from its original address, and the only way for the attacker
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to continue misdirecting the server’s packets is to continue blocking the client’s packets. An
attacker with this much power can successfully deny service, but could also have denied
service without any mobility features. Note that the attacker still cannot compromise the
confidentiality and integrity of the connection.



Chapter 31

The CurveCP packet format

This chapter describes the four different types of packets that appear in CurveCP: Hello,
Cookie, Initiate, and Message.

31.1 Connection overview

A CurveCP connection begins with a Hello packet from the client, a Cookie packet from
the server, and an Initiate packet from the client. The server is free to send any number of
Message packets after it sees the Initiate packet. The client is free to send any number of
Message packets after it sees the server’s first Message packet.

If the client does not see a Cookie packet then it will send another Hello packet. The
server sends a Cookie packet in response to each Hello packet, rather than limiting the client
to one Hello packet. Similarly, the client can send several Initiate packets.

The following diagram indicates how these packets are encrypted and summarizes the
contents of the packets. Important notation: Box[X](C→S) is a cryptographic box, encrypt-
ing and authenticating X from the client’s public key C to the server’s public key S. The
only people who can create or decipher Box[X](C→S) are the people who know the secret key
corresponding to C and the people who know the secret key corresponding to S. (Note to read-
ers familiar with BAN logic etc.: Box[X](C→S) should not be confused with the traditional
concept {X}K of something encrypted under secret key K without authentication.)
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Client to server Server to client

Hello packet:
(C’,0,Box[0’](C’→S))
where C’ is the client’s short-term public key
and S is the server’s long-term public key
and 0 is zero-padding
and 0’ is zero-padding

Cookie packet:
(Box[S’,K](S→C’))
where S’ is the server’s short-term public key
and K is a cookie

Initiate packet with Vouch subpacket:
(C’,K,Box[C,V,N,...](C’→S’))
where C is the client’s long-term public key
and V=Box[C’](C→S)
and N is the server’s domain name
and ... is a message

Message packet:
(Box[...](S’→C’))
where ... is a message

Message packet:
(C’,Box[...](C’→S’))
where ... is a message

Message packet:
(Box[...](S’→C’))
where ... is a message

Message packet:
(C’,Box[...](C’→S’))
where ... is a message

The cookie K is Box[C’,s’](t), where s’ is the secret key corresponding to S’, and t is a
secret “minute key” maintained by the server. This is a cryptographic box that can be created
and understood only by t.

31.2 Summary of the packet format

Each packet begins with an 8-byte identifier of the type of packet. If the packet happens to be
delivered to some non-CurveCP application then these bytes will prevent the non-CurveCP
application from being confused. A secondary function of this identifier is to allow, e.g., the
server to quickly distinguish Hello packets from Initiate packets.

Each packet continues with a 16-byte receiver extension and a 16-byte sender extension.
Gateways can process these extensions without parsing the rest of the packet.

Each packet from the client continues with the client’s short-term public key C’. The
server reuses this key as an identifier to index active connections.

Each packet continues with a cryptographic box (preceded by padding for Hello packets,
and preceded by the server’s cookie K for Initiate packets), as summarized in the diagram
above. A nonce is attached to each cryptographic box, preventing replays and preventing con-
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fusion between the boxes in different types of packets; the nonces are not shown in the diagram
above. A packet with an unopenable box (i.e., a box that fails cryptographic verification) is
discarded by the receiver.

31.3 Client Hello packet details

A Hello packet is a 224-byte packet with the following contents:

• 8 bytes: the ASCII bytes “QvnQ5XlH”.

• 16 bytes: the server’s extension.

• 16 bytes: the client’s extension.

• 32 bytes: the client’s short-term public key C’.

• 64 bytes: all zero.

• 8 bytes: a client-selected compressed nonce in little-endian form. This compressed nonce
is implicitly prefixed by “CurveCP-client-H” to form a 24-byte nonce.

• 80 bytes: a cryptographic box encrypted and authenticated to the server’s long-term
public key S from the client’s short-term public key C’ using this 24-byte nonce. The
64-byte plaintext inside the box has the following contents:

– 64 bytes: all zero.

Current servers enforce the 64-byte length requirement but do not enforce the all-zero re-
quirement. The all-zero bytes in this packet are an anti-amplification mechanism, ensuring
that Hello packets are as long as Cookie packets; this is why the 64-byte length requirement
is enforced. They are also an extension mechanism, allowing future protocol extensions such
as hashcash; this is why the all-zero requirement is not enforced. Clients must nevertheless
be careful to follow the all-zero requirement to avoid confusing future servers that support
extensions.

31.4 Server Cookie packet details

A Cookie packet is a 200-byte packet with the following format:

• 8 bytes: the ASCII bytes “RL3aNMXK”.

• 16 bytes: the client’s extension.

• 16 bytes: the server’s extension.

• 16 bytes: a server-selected compressed nonce in little-endian form. This compressed
nonce is implicitly prefixed by “CurveCPK” to form a 24-byte nonce.

• 144 bytes: a cryptographic box encrypted and authenticated to the client’s short-term
public key C’ from the server’s long-term public key S using this 24-byte nonce. The
128-byte plaintext inside the box has the following contents:
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– 32 bytes: the server’s short-term public key S’.

– 96 bytes: the server’s cookie.

31.5 Client Initiate packet details

An Initiate packet is a (544+M)-byte packet with the following contents, where M is a multiple
of 16 between 16 and 640:

• 8 bytes: the ASCII bytes “QvnQ5XlI”.

• 16 bytes: the server’s extension.

• 16 bytes: the client’s extension.

• 32 bytes: the client’s short-term public key C’.

• 96 bytes: the server’s cookie.

• 8 bytes: a client-selected compressed nonce in little-endian form. This compressed nonce
is implicitly prefixed by “CurveCP-client-I” to form a 24-byte nonce.

• 368+M bytes: a cryptographic box encrypted and authenticated to the server’s short-
term public key S’ from the client’s short-term public key C’ using this 24-byte nonce.
The (352+M)-byte plaintext inside the box has the following contents:

– 32 bytes: the client’s long-term public key C.

– 16 bytes: a client-selected compressed nonce in little-endian form. This compressed
nonce is implicitly prefixed by “CurveCPV” to form a 24-byte nonce.

– 48 bytes: a cryptographic box encrypted and authenticated to the server’s long-
term public key S from the client’s long-term public key C using this 24-byte nonce.
The 32-byte plaintext inside the box has the following contents:

∗ 32 bytes: the client’s short-term public key C’.

– 256 bytes: the server’s domain name, in DNS format (between 1 and 255 bytes),
zero-padded to 256 bytes.

– M bytes: a message.

31.6 Server Message packet details

A Message packet from the server is a (64+M)-byte packet with the following contents, where
M is a multiple of 16 between 16 and 1088:

• 8 bytes: the ASCII bytes “RL3aNMXM”.

• 16 bytes: the client’s extension.

• 16 bytes: the server’s extension.

• 8 bytes: a server-selected compressed nonce in little-endian form. This compressed nonce
is implicitly prefixed by “CurveCP-server-M” to form a 24-byte nonce.
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• 16+M bytes: a cryptographic box encrypted and authenticated to the client’s short-term
public key C’ from the server’s short-term public key S’ using this 24-byte nonce. The
M-byte plaintext inside the box has the following contents:

– M bytes: a message.

31.7 Client Message packet details

A Message packet from the client is a (96+M)-byte packet with the following contents, where
M is a multiple of 16 between 16 and 1088:

• 8 bytes: the ASCII bytes “QvnQ5XlM”.

• 16 bytes: the server’s extension.

• 16 bytes: the client’s extension.

• 32 bytes: the client’s short-term public key C’.

• 8 bytes: a client-selected compressed nonce in little-endian form. This compressed nonce
is implicitly prefixed by “CurveCP-client-M” to form a 24-byte nonce.

• 16+M bytes: a cryptographic box encrypted and authenticated to the server’s short-
term public key S’ from the client’s short-term public key C’ using this 24-byte nonce.
The M-byte plaintext inside the box has the following contents:

– M bytes: a message.
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Chapter 32

Messages in CurveCP

This chapter explains the format of CurveCP messages.
CurveCP messages should not be confused with CurveCP packets. Packets are copied

to and from the network and are visible to eavesdroppers. Some packets contain encrypted
authenticated messages; the contents of the messages are not visible to eavesdroppers.

CurveCP messages should also not be confused with the streams of data sent by applica-
tions that use CurveCP: a byte stream from the client to the server, and a byte stream from
the server to the client. Messages contain blocks of data from these streams, but they also
contain extra header information, for example to accommodate lost packets.

A byte stream is a string of bytes, between 0 bytes and 260− 1 bytes (allowing more than
200 gigabits per second continuously for a year), followed by either success or failure. The
bytes in an N -byte stream have positions 0,1,2,...,N -1; the success/failure bit has position N .
A message from the sender can include a block of bytes of data from anywhere in the stream;
a block can include as many as 1024 bytes. A message from the receiver can acknowledge one
or more ranges of data that have been successfully received. The first range acknowledged in a
message always begins with position 0. Subsequent ranges acknowledged in the same message
are limited to 65535 bytes. Each range boundary sent by the receiver matches a boundary of
a block previously sent by the sender, but a range normally includes many blocks.

Once the receiver has acknowledged a range of bytes, the receiver is taking responsibility
for all of those bytes; the sender is expected to discard those bytes and never send them again.
(This differs from the behavior of TCP SACK: TCP allows selective acknowledgments to be
subsequently retracted.) The sender can send the bytes again; usually this occurs because
the first acknowledgment was lost. The receiver discards the redundant bytes and generates
a new acknowledgment covering those bytes.

32.1 What are the contents of a message?

A message has the following contents:

• 4 bytes: a message ID chosen by the sender.

• 4 bytes: if nonzero, a message ID received by the sender immediately before this message
was sent.

• 8 bytes: a 64-bit unsigned integer in little-endian form, the number of bytes in the first
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range being acknowledged as part of this message. A range can include 0 bytes, in which
case it does not actually acknowledge anything.

• 4 bytes: a 32-bit unsigned integer in little-endian form, the number of bytes between
the first range and the second range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes in the second
range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes between
the second range and the third range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes in the third
range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes between
the third range and the fourth range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes in the fourth
range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes between
the fourth range and the fifth range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes in the fifth
range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes between
the fifth range and the sixth range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the number of bytes in the sixth
range.

• 2 bytes: a 16-bit unsigned integer in little-endian form, the sum of the following integers:

– D, an integer between 0 and 1024, the size of the data block being sent as part of
this message.

– SUCC, either 0 or 2048, where 2048 means that this block is known to be at the
end of the stream followed by success.

– FAIL, either 0 or 4096, where 4096 means that this block is known to be at the
end of the stream followed by failure.

• 8 bytes: a 64-bit unsigned integer in little-endian form, the position of the first byte in the
data block being sent. If D=0 but SUCC>0 or FAIL>0 then this is the success/failure
position, i.e., the total number of bytes in the stream.

• Zero-padding. This padding produces a total message length that is a multiple of 16
bytes, at least 16 bytes and at most 1088 bytes.

• D bytes: the data block being sent.



135

The zero-padding is not limited to 15 bytes; i.e., it does not necessarily produce the smallest
possible multiple of 16 bytes. Some message creators pad to a more restricted set of lengths
to reduce the amount of information that the message length reveals about the length of the
data block. Note, however, that traffic analysis continues to reveal a tremendous amount of
information.

32.2 Does CurveCP provide flow control?

Yes. Decongestion, when used properly, automatically provides flow control. The receiver
simply adds the sender’s incoming messages to a queue, without looking at the messages. The
receiver can impose whatever size limits it wants upon the queue, static or dynamic, without
notification to the sender. When the receiver is ready to handle more data, it processes the
message at the front of the queue, generating an acknowledgment if necessary.

Using decongestion to handle flow control simplifies the protocol, eliminating any need to
coordinate window updates and eliminating common mistakes such as silly-window syndrome.
It slightly reduces packet sizes and sometimes eliminates entire window-update packets. It can
slightly increase traffic on the occasions that a computer is unable to keep up with its own
network link, but decongestion automatically keeps this increase under control.

32.3 Does CurveCP allow configuration of the maximum seg-
ment size?

No. The maximum CurveCP data-block size is 1024 bytes. The maximum CurveCP message
size is 1088 bytes (or 640 bytes inside Initiate packets). The maximum CurveCP packet size,
including lower-layer overhead, is smaller than the 1280-byte datagrams allowed by IPv6 on
all networks, the 1492-byte datagrams that have always been supported by Ethernet, the
2272-byte datagrams supported by 802.11 wireless networks, etc.

CurveCP’s total packet overhead, including lower-layer overhead, is under 15% for bulk
data transfer. In theory, allowing larger packets would measurably reduce this overhead; in
practice, attempts to maximize packet size have a long and continuing history of damaging
Internet connectivity.
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Chapter 33

Message-handling programs

A traditional UNIX-style server such as ftpd handles just one network connection, reading
input from stdin and writing output to stdout. A “superserver” such as inetd or tcpserver
listens for network connections and starts a separate server process for each connection.

The CurveCP command-line tools have an extra level of modularity. The curvecpserver

superserver listens for network connections. For each connection, curvecpserver starts
the curvecpmessage message handler; curvecpmessage then starts a server such as ftpd.
Then ftpd sends a stream of data to curvecpmessage, which in turn sends messages
to curvecpserver, which encrypts and authenticates the messages and sends them in-
side network packets. At the same time curvecpclient receives network packets, verifies
and decrypts messages inside the packets, and passes the messages to curvecpmessage;
curvecpmessage sends a stream of data to ftpd. The same curvecpmessage tool is also
used by curvecpclient.

curvecpserver and curvecpclient can use programs other than curvecpmessage. Those
programs can directly generate messages in the CurveCP message format without talking to
separate tools such as ftpd; or they can support a completely different protocol that reuses
CurveCP’s cryptographic layer but transmits different kinds of messages.

This chapter explains what programmers have to do to write curvecpmessage replace-
ments that talk to curvecpserver and curvecpclient.

33.1 Incoming messages

File descriptor 8 is a pipe. Read from this pipe a length byte n, between 1 and 68, and a
16*n-byte message. Repeat. The pipe is set to non-blocking mode; be prepared for EAGAIN
and EWOULDBLOCK, even in the middle of a message.

This pipe reading must always be active. The curvecpclient and curvecpserver

programs assume that every message is read immediately. If you can’t handle a message
immediately, read it and put it onto a queue. If you don’t have queue space, throw the message
away; this shouldn’t cause trouble, since you have to be able to handle missing messages in
any case.
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33.2 Outgoing messages

File descriptor 9 is a pipe. Write to this pipe a length byte n, between 1 and 68, and a 16*n-
byte message. Repeat. The pipe is set to non-blocking mode; be prepared for EAGAIN and
EWOULDBLOCK, even in the middle of a message.

As a client, do not use length bytes above 40 until a message has arrived from the server.
(The messages inside CurveCP Initiate packets are limited to 640 bytes.)

The CurveCP server does not start until it has received a message from the client. Further-
more, the CurveCP server must receive this message within 60 seconds of the client starting
up. (The CurveCP Initiate packet is valid for only 60 seconds after the corresponding CurveCP
Cookie packet.) This does not mean that the client must start sending messages immediately,
but it does mean that waiting for more than a second to send a message is a bad idea.



Chapter 34

The CurveCP command-line tools

This chapter describes the five command-line CurveCP tools provided by NaCl.
curvecpmakekey creates a public key and a corresponding secret key. It has one argument,

the name of a directory where the keys will be stored.
curvecpprintkey prints a public key as 64 hexadecimal digits. It has one argument, the

name of the directory created by curvecpmakekey.
curvecpmessage is a generic message-handling program (see the previous chapter) that

runs existing command-line clients and servers. This program handles conversion of data into
messages and vice versa; retransmission of messages; and congestion control. The arguments
to curvecpmessage are -c followed by the name of the passive client to run, -C followed by
the name of the active client to run, or -s followed by the name of the server to run. The
difference between passive clients and active clients is that active clients send data first while
passive clients wait for the server to send data first. In the passive case, curvecpmessage
sends a blank message immediately (triggering an Initiate packet that starts the server); in
the active case, curvecpmessage waits for a second for data from the client.

curvecpclient is analogous to tcpclient. It makes a CurveCP connection to a spec-
ified server and runs a specified program. Its arguments are the server’s DNS name, the
server’s public key (in hexadecimal), the server’s IP address, the server’s UDP port, the
server’s extension (in hexadecimal), and the program to run. Typically the program to run
is curvecpmessage -c ...; for example, curvecpmessage -c multitee 0:7 6:1e0 has a
similar effect to netcat.

curvecpserver is a superserver analogous to inetd or tcpserver. It listens for CurveCP
connections and, for each connection, starts a specified program. Its arguments are the server’s
DNS name, the name of the key directory on disk, the server’s IP address (a local address
on this machine), the server’s UDP port, the server’s extension (in hexadecimal), and the
program to run. Typically the program to run is curvecpmessage -s ..., where the ... is
an existing program such as smtpd or httpd.
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