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Abstract. In this paper we evaluate and improve different vector im-
plementation techniques of AES-based designs. We analyze how well
the T-table, bitsliced and bytesliced implementation techniques apply
to the SHA-3 finalist Grøstl. We present a number of new Grøstl im-
plementations that improve upon many previous results. For example,
our fastest ARM NEON implementation of Grøstl is 40% faster than
the previously fastest ARM implementation. We present the first Intel
AVX2 implementations of Grøstl, which require 40% less instructions
than previous implementations. Furthermore, we present ARM Cortex-
M0 implementations of Grøstl that improve the speed by 55% or the
memory requirements by 15%.

1 Introduction

Since the Advanced Encryption Standard (AES) was chosen by NIST in Octo-
ber 2000 [24], it has been used in innumerable applications. Apart from those
applications, the components of AES or its design principles are also used as
the basis for many new cryptographic algorithms. Especially the announcement
of Intel to add an AES instruction (AES-NI) to its future processors [21] has
caused an increasing amount of new AES-based designs. As a consequence, many
AES-based designs and a few more AES-inspired designs have been submitted
to the SHA-3 competition [25] initiated by NIST.

Building an AES-based design has several advantages. From a security point
of view, AES-based designs can benefit from proofs against a large class of at-
tacks. Additionally, the design and security analysis of AES is kept particularly
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simple to provide security assurance within a short amount of time. As a conse-
quence, the first single-key attack on 7 rounds of AES-128 [14] has been found
before the AES competition was finished and the number of rounds (of non-
marginal attacks) did not improve since then [13].

Aside from security analysis one of the most important criteria for the evalu-
ation of cryptographic algorithms is software performance. Various implementa-
tion techniques have been proposed for AES and AES-based designs. The perfor-
mance of AES-based designs and the best choice of implementation techniques
highly depends on the target microarchitecture. If AES-NI is available, a design
may be remarkably fast, while without AES-NI at can be quite slow. This is
especially true for AES-based hash functions which consist of a large state with
additional operations for mixing more than one AES state. This effect can be
observed for many AES-based designs submitted to the SHA-3 competition.

In this work we focus on the three main software implementation techniques
of AES-based designs: T-tables [12, Sect. 5.2], bitslicing [7] and byteslicing [1],
which are discussed in detail in Section 3. We apply all techniques to the AES-
based SHA-3 finalist Grøstl [16] and provide a number of new and improved
results. We focus on implementations using vector-instruction sets.

In Section 4 we propose the first 256-bit vector implementation of Grøstl us-
ing the Intel AVX2 instructions [11]. Since no processor using AVX2 is available,
we compare the number of instructions instead of performing a proper bench-
mark. The first AVX2 implementation is a bytesliced implementation of Grøstl-
512 which improves the number of instructions by 40% compared to the AVX
implementation. The second implementation uses the new AVX2 vpgatherqq

instructions which allows to perform parallel table lookups.

In Section 5, we present the first ARM NEON [3, Chapter A7] implemen-
tations of Grøstl by applying all three techniques of Section 3. We show that
the T-table and bitslicing approach result in equally fast implementations; byte-
slicing is slower. However, we expect that byteslicing will outperform the other
implementation techniques with the future AES instructions of ARMv8.

Finally, in Section 6 we show that vector implementations using byteslicing
can even be used efficiently in low-memory environments. We present 32-bit
bytesliced implementations of Grøstl which consume much less memory than
T-table implementations at almost the same speed.

We submitted all software presented in this paper to eBASH [4] for public
benchmarking and put it into the public domain to maximize reusability of our
results.

2 Description of Grøstl

The hash function Grøstl [15] was designed as a candidate for the SHA-3 com-
petition [26]. For the final round of the competition, Grøstl was tweaked in order
to increase its security margin. It is an iterated hash function with a compression
function built from two distinct permutations P and Q, which are based on the
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same principles as the AES round transformation. In the following, we describe
the components of the Grøstl hash function in more detail.

2.1 The Hash Function

Grøstl comes in two main variants, Grøstl-256 and Grøstl-512 which are used
for different hash-value sizes of n = 256 and n = 512 bits. The hash function first
pads the input message M and splits the message into blocks M1,M2, . . . ,Mt

of ` bits with ` = 512 for Grøstl-256, and ` = 1024 for Grøstl-512. The initial
value IV , the intermediate hash values Hi, and the permutations P and Q are
of size ` bits as well. (The exact definition of the IV can be found in [16]). The
message blocks are processed via the compression function f(Hi−1,Mi), which
accepts two `-bit inputs and outputs an `-bit value. After all t message blocks
have been processed, an output transformation Ω(Ht) is applied which outputs
the final n-bit hash value h:

H0 = IV

Hi = f(Hi−1,Mi) for 1 ≤ i ≤ t
h = Ω(Ht).

The compression function f is based on two `-bit permutations P and Q and is
defined as follows:

f(Hi−1,Mi) = P (Hi−1 ⊕Mi)⊕Q(Mi)⊕Hi−1.

The output transformation Ω is applied to Ht to give the final hash value of size
n by computing:

Ω(Ht) = truncn(P (Ht)⊕Ht),

where truncn(x) discards all but the least significant n bits of x.

2.2 The Permutations

As mentioned above, two permutations P and Q are defined for Grøstl. To dis-
tinguish between the permutations of Grøstl-256 (` = 512) and Grøstl-512 (` =
1024) we sometimes write P` or Q`, where ` is the size of the permutations. In
each permutation, the four AES-like round transformations AddRoundConstant
(AC), SubBytes (SB), ShiftBytes (SH), and MixBytes (MB) are applied to the
state in the given order.

The permutations differ only in their size, the constants used in AC and SH,
and in their number of rounds. Grøstl-256 has 10 rounds and the 512-bit state
of permutation P512 and Q512 is viewed as an 8×8 matrix of bytes. For Grøstl-
512, 14 rounds are used and the 1024-bit state of the two permutations P1024

and Q1024 is viewed as an 8× 16 matrix of bytes.
The AddRoundConstant (AC) transformation XORs a round-dependent con-

stant to one row of the state. The constant and the row is different for P and
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Q. Additionally, a round-independent constant ff is XORed to every byte in Q
(we denote hexadecimal byte values by two-character values in sans serif font).

The SubBytes (SB) transformation applies the AES S-box to each byte of the
state. The definition of this S-box can be found in [16].

ShiftBytes (SH) cyclically rotates the bytes of row r to the left by σ[r] po-
sitions with different values for P and Q in Grøstl-256 and Grøstl-512. The
rotation values are as follows:

σ = {0, 1, 2, 3, 4, 5, 6, 7} for P in Grøstl-256,

σ = {1, 3, 5, 7, 0, 2, 4, 6} for Q in Grøstl-256,

σ = {0, 1, 2, 3, 4, 5, 6, 11} for P in Grøstl-512,

σ = {1, 3, 5, 11, 0, 2, 4, 6} for Q in Grøstl-512.

MixBytes (MB) is a linear diffusion layer, which multiplies each column A of
the state with a constant, circulant 8× 8 matrix M by computing A ← M · A.
The multiplication is performed in the finite field GF (28) using the irreducible
polynomial x8 ⊕ x4 ⊕ x3 ⊕ x ⊕ 1 (0x11B). Since the multiplication by 2 can
be carried out very efficiently using a single shift operation and a conditional
XOR, we will calculate all multiplications by combining multiplications by 2 and
additions (XOR). Moreover, optimized formulas for computing MixBytes have
been published in [1]. Using these formulas, only 48 XORs and 16 multiplications
by 2 are needed to compute MixBytes.

3 Implementation Methods for AES-based Designs

In this section we give a high-level overview on common implementation tech-
niques for AES-based designs using Grøstl-256 as an example. The main imple-
mentation techniques for AES-based designs are the T-table approach [12, Sect.
5.2], bitslicing [7], and byteslicing [1].

3.1 T-Table Approach

Daemen and Rijmen have presented a lookup-table-based approach for imple-
menting AES on 32-bit processors in [12, Sect. 5.2]. This approach is known
as the T-table approach and it can be generalized to other AES-based designs.
The idea is to combine the SubBytes, MixColumns, and ShiftRows operations into
table lookups. The size of the entries of the lookup tables matches the size of
the state columns, 32 bits for AES and 64 bits for Grøstl.

Since many current and future small-scale 32-bit processors also provide 64-
bit instructions (MMX, NEON), Grøstl can also be implemented efficiently on
these platforms using the T-table approach. Even the 32-bit ARMv6 instruction
set supports 64-bit loads which can be used for a T-table based implementation
of Grøstl as shown in [27].

In T-table implementations, each column of the Grøstl state of is stored in
a 64-bit registers. The AddRoundConstant transformation is computed through
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8 XORs on 64-bit registers. The SubBytes, ShiftBytes, and MixBytes operations
are computed through 8 table lookups from tables T0, . . . , T7 and 7 XORs per
column; for example, for column 0:

b0 =T0(a00)⊕ T1(a11)⊕ T2(a22)⊕ T3(a33)⊕
T4(a44)⊕ T5(a55)⊕ T6(a66)⊕ T7(a77).

The values aij are bytes of the input state; the tables T0, . . . , T7 contain 8-to-
64-bit lookups of the S-box together with the 8 multipliers of MixBytes. For
example, for the first table T0 we get:

T0(x) = 02 · S(x) ‖ 07 · S(x) ‖ 05 · S(x) ‖ 03 · S(x) ‖
05 · S(x) ‖ 04 · S(x) ‖ 03 · S(x) ‖ 02 · S(x)

Extracting a single byte from a word can be implemented using a bit-shift
and a logical and. Then, the computation of one column consists of only 8
table lookups, 8 XOR (7 XOR for MB, 1 XOR for AC), 8 SHIFT and 8 AND
instructions. On some platforms, single bytes aij can be extracted from 64-bit
column words aj = [a00, a10, . . . , a70]T at no cost. In this case, we can save (some
of) the SHIFT and AND instructions.

3.2 Bytesliced Implementation

Another option to implement AES-based designs is a byte-wise parallel compu-
tation of columns [1]. This works especially well if we have a larger state and
a platform, where we can compute many columns in parallel. In Grøstl, all
round transformations except ShiftBytes and AddRoundConstant apply exactly
the same computation to each column of the Grøstl state independently. There-
fore, we can use a single-instruction-multiple-data (SIMD) approach to compute
these identical operations on more than one column at the same time. The state
is stored in row ordering. Using w-bit registers, w/8 columns can be computed
in parallel.

A requirement for this approach to be efficient is that all round transforma-
tions of Grøstl can be parallelized using only a few w-bit SIMD instructions.
AddRoundConstant and MixBytes can be computed in parallel simply using basic
ALU instructions. For ShiftBytes we need a byte-shuffling instruction or some
mask-and-rotate instructions. The most difficult round transformation to paral-
lelize is the 8-bit table lookup of SubBytes. However, using the Intel AES New
Instructions extension (AES-NI) [21] or the vector-permute (vperm) approach
by Hamburg [19], parallel AES S-box table lookups can be performed efficiently.
Moreover, the fastest Grøstl implementation [4] is a bytesliced implementation
using AES-NI.

In a bytesliced implementation, we need to use a row-ordering of the Grøstl

state. However, the input bytes of the message are mapped to the Grøstl state
in column-ordering. The column-ordering is a benefit for T-table based imple-
mentations but a drawback for bytesliced implementations. To reduce the state-
transformation cost, the internal state is kept in row-ordering throughout the
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whole computation. Then, we only need to transform each input message block
and the hash-function output at the very end (the IV can be stored already
in row-ordering). Transforming the input message from column-ordering to row-
ordering corresponds to transposing the state matrix of the input message block.

3.3 Bitsliced Implementation

Bitslicing is an implementation technique proposed by Biham to improve the
performance of DES [7]. Currently, the fastest software implementation of AES
(without AES-NI) uses bitslicing [23]. Therefore, bitslicing is also a promising
approach for other AES-based designs. Bitslicing works particularly well if the
same operations can be performed many times in parallel. In AES, this is the
case if multiple blocks are encrypted using a parallel mode of operation. Since
the hash function Grøstl has a large state with many independent columns,
bitslicing can be applied efficiently as well.

In general, bitslicing mimics hardware implementations in software. The data
is transposed and, for example, a 32-bit value is stored in 32 registers, one bit
per register. With this bitsliced representation of data we can simulate hardware
gates with the corresponding bit-logical instructions. To use all m bits of a
register, the same stream of operations is computed on m independent data
streams in parallel. Registers of width m are used as vector registers with m
1-bit entries.

The AES S-boxes are computed using their algebraic structure (inversion
in F2) as it is also done in efficient hardware implementations [8, 10]. With
minor modifications, the formulas underlying these hardware implementations
are also used for bitslicing. More specifically, Käsper and Schwabe use 128
XOR/AND/OR instructions and 35 MOV (register to register) instructions
in [23]. The MOV instructions are required because in the SSE instruction set
the output of an instruction has to overwrite one of the inputs. With 3-operand
instructions (as provided by AVX and NEON) and 16 registers, the AES S-box
can be implemented using only 128 Boolean instructions. Although this is much
slower than a table lookup for a single AES S-box computation, the high degree
of parallelism (128 independent computations) often lets bitsliced implementa-
tions achieve higher speeds than table lookups.

The AES implementation by Käsper and Schwabe needs to process 8 blocks
in parallel to achieve the required level of parallelism. In Grøstl-256 we can
compute all 128 AES S-boxes of P and Q in parallel without the need for multi-
ple blocks. However, ShiftBytes is more difficult to implement in this case. Note
that for the S-box, it does not matter in which order the bytes are stored in
registers. Therefore, we can choose a bitsliced state which fits the linear opera-
tions ShiftBytes and MixBytes best. By storing the Grøstl-256 bitsliced state as
shown in Fig.1, we get an efficient implementation using 128-bit ARM NEON
instructions (see Sect. 5.2).
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P Q

q0bit0:

r0 r0

q1bit1:

r1 r1

q2bit2:

r2 r2

q3bit3:

r3 r3

q4bit4:

r4 r4

q5bit5:

r5 r5

q6bit6:

r6 r6

q7bit7:

r7 r7

c0 c0c1 c1c2 c2c3 c3c4 c4c5 c5c6 c6c7 c7

Fig. 1: Data organization of the bitsliced state for Grøstl-256 in 128-bit NEON
q registers.

4 Implementing Grøstl using AVX2

The Intel AVX2 instruction set is an extension of the AVX instruction set and
will be released by Intel for new processors in 2013 [22]. AVX2 provides a num-
ber of additions which can improve the efficiency of AES-based designs. AVX2
extends the functionality of integer-vector instructions to 256 bits. Furthermore,
new gather instructions have been added, which provide new possibilities to
implement parallel T-table lookups in AES-based designs.

Since no processors supporting AVX2 are available yet, all our AVX2 im-
plementations have been tested using the Intel Software Development Emula-
tor [20]. Because benchmarking of those implementations is not yet possible, we
instead compare the number of instructions. Using AVX2, we show how to re-
duce the number of instructions for Grøstl by up to 40%, compared to previous
AVX or AES-NI implementations [1]. Note that a similar comparison has been
made by Gueron and Krasnov for their new AVX2 SHA-2 implementations using
parallelized message schedules [18].

4.1 Byteslicing Grøstl-512 using AVX2 and AES-NI Instructions

Using 256-bit registers of AVX2, P and Q of Grøstl-512 can be computed
completely in parallel, except for the aesenclast instruction. Note that using
AES-NI with SSE, P and Q had to be computed after each other. AVX2 also
brings a major improvement compared to AVX. Many AVX instructions used by
Grøstl-512 were only working on 128-bits (vaesenclast, vpshufb, vpcmpgtb,
vpaddb). Especially vpcmpgtb and vpaddb are used very often in the multipli-
cation by 2 of MixBytes. Hence, also many insertion and extraction instructions
were needed to process the upper 128 bits of a 256-bit register separately.
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Additionally, we have replaced the floating-point AVX instructions (vxorps,
vxorpd) by their integer AVX2 instructions (vpxor). This avoids possible penal-
ties caused by switching between integer and floating point domains [11].

To summarize our implementation, AddRoundConstant and ShiftBytes both
can be fully parallelized and need only 8 instructions each. Note that vpshufb

treats both 128-bit lanes separately. However, when storing P and Q in separate
128-bit lanes, we avoid all lane-switching penalties. In SubBytes, we need to
use two 128-bit vaesenclast instructions for each row of the state. Together
with the necessary vinserti128 and vextracti128 instructions, SubBytes of
Grøstl-512 needs 32 instructions per round.

The most expensive round transformation is MixBytes. As shown in [1],
MixBytes can be implemented using 48 XORs and 16 multiplications by 2 (MUL2).
Using the 256-bit vpblendvb instruction of AVX2, a single MUL2 computa-
tion can be implemented using only three 256-bit instructions. Together with
16 MOV/XOR instructions to load/store/copy/clear temporary values, we get
48 + 3 · 16 + 16 = 112 instructions for MixBytes. Note that other variants to cre-
ate the reduction mask in MUL2 are possible. For example, we may get a better
throughput using vpcmpgtb with vpand instead of vpblendvb once AVX2 is
available:

// ymm0 will be multiplied by 2

// ymm1 has to be all 0x1b

// ymm2 has to be all zero

// ymm3 will be lost

vpblendvb ymm3, ymm2, ymm1, ymm0

vpaddb ymm0, ymm0, ymm0

vpxor ymm0, ymm0, ymm3

// ymm0 will be multiplied by 2

// ymm1 has to be all 0x1b

// ymm2 has to be all zero

// ymm3 will be lost

vpcmpgtb ymm3, ymm2, ymm0

vpaddb ymm0, ymm0, ymm0

vandpd ymm3, ymm3, ymm1

vxorpd ymm0, ymm0, ymm3

Including an overhead of 5 instructions, we get a total of 8+8+32+112 = 165
instructions for one round of Grøstl-512. Note that previously published AVX
implementations need 271 instructions per round and the 128-bit AES-NI im-
plementation needs 338 instructions [1]. Hence, using our new AVX2 implemen-
tation of Grøstl-512 we are able to save 40% of the instructions. Furthermore,
using AVX2 instructions, we were also able to reduce the number of instructions
to transpose the input message block into bytesliced representation.

4.2 Parallel T-Table Lookups for Grøstl-256 using VPGATHERQQ

The new AVX2 instruction vpgatherqq allows to load four independent 64-bit
values from memory into one 256-bit register. Using this instruction, we have
implemented a fourfold parallel T-table implementation of Grøstl-256. We store
the Grøstl-256 state column-wise and need two 256-bit registers for each of P
and Q.

To perform the i-th T-table lookup for SubBytes and MixBytes, we first need
a vpshufb instruction to extract the i-th byte of each 64-bit word. Note that
we also use vpshufb to clear the unused bytes. To perform the actual lookups,
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vpgatherqq scales the extracted byte by a factor of 8 and adds the table address.
The scaling takes into account that we actually perform 8-to-64 bit lookups. The
table addresses are stored in 8 general-purpose registers.

The vpgatherqq instruction uses a mask to determine for which 64-bit words
the lookup is performed. If the MSB of the corresponding 64-bit word is not set,
this word is left unchanged. However, vpgatherqq clears the mask after each
invocation and we have to restore the mask each time, e.g. using a vpcmpeqq

instruction. Additionally, all registers used by vpgatherqq have to be distinct.
Hence, we need 8 instructions for each of the 8 T-table lookups together with
xoring the results. Since we can save two initial xors, we get 62 instructions for
SubBytes and MixBytes per permutation and round. The code to compute the
lookup of table i of one round is given below:

// SubBytes+MixBytes (Table i)

// byte extraction

vpshufb tmp0, ymm0, [EXTR+i*256]

vpshufb tmp1, ymm1, [EXTR+i*256]

// restore gather mask

vpcmpeqq mask, mask, mask

vpcmpeqq mask, mask, mask

// 4 parallel T-table lookups

// address of table i is in ri

vpgatherqq tmp2, [8*tmp0+ri], mask

vpgatherqq tmp3, [8*tmp1+ri], mask

// xor table lookup results

vpxor ymm2, ymm2, tmp2

vpxor ymm3, ymm3, tmp3

If table lookups can be performed in parallel, ShiftBytes together with the
byte extractions can become the most costly operations in T-table implementa-
tions. Since most processors do not offer byte extraction instructions, a couple of
ALU instructions are needed. In the case of AVX2, we can us a number of byte
shuffles to compute ShiftBytes and to extract the bytes needed for the lookup.
Since the vpshufb instruction can not move bytes across 128-bit lanes, we need
additional vpermq instructions to cross lanes. To swap bytes between the two
256-bit registers storing the state, we use vpblendd which merges two vectors
at 32-bit word granularity. To compute ShiftBytes, we need 8 instructions per
permutation and round. The instructions for ShiftBytes are given below:

// pre-shuffle

vpshufb ymm0, ymm0, [SHIFT_P0]

vpshufb ymm1, ymm1, [SHIFT_P0]

// cross lanes

vpermq ymm2, ymm0, 0xd8

vpermq ymm3, ymm1, 0xd8

// combine registers

vpblendd ymm0, ymm2, ymm3, 0xaa

vpblendd ymm1, ymm3, ymm2, 0xaa

// final shuffle

vpshufb ymm0, ymm0, [SHIFT_P1]

vpshufb ymm1, ymm1, [SHIFT_P1]

Together with two instructions for AddRoundConstant we get in total, (2 +
8 + 62) · 2 = 144 instructions per round of Grøstl-256. The currently fastest
Grøstl-256 implementation uses AES-NI and needs 169 instructions per round.
However, since it is still unknown how many cycles the vpgatherqq instruction
will need to compute 4 lookups, we cannot conjecture any speed improvement.
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Table 1: Benchmark results of our NEON Grøstl implementations in cycles/byte
for long messages. We used the SUPERCOP benchmarking suite [5] and per-
formed the measurements using an ARM Cortex-A8 (Hercules eCafe).

hash function T-table 5.1 bitsliced 5.2 vperm 5.3 arm32 [29] arm11 [27]

Grøstl-256 45.8 48.5 92.0 76.9 99.4

Grøstl-512 67.0 - - 103.2 -

5 ARM NEON Implementations of Grøstl

In this section, we present three new Grøstl implementations using ARM NEON
instructions. We are focusing on the ARM Cortex A8 processor. The NEON vec-
tor instruction set is available also on other processors and the implementations
presented here will work on them as well. However, the performance may be
different from what we describe here. Each implementation corresponds to one
of the implementation techniques described in Section 3. With the T-tables and
the bitslicing approach, we get almost equally fast implementations running at
around 46 cycles/byte. The bytesliced implementation is slower since we need to
use the vperm approach to compute the AES S-box. However, once ARMv8 in-
structions with AES extensions are available [17], the bytesliced implementation
will most likely be the fastest again. Detailed benchmarking results are given in
Table 1.

The ARM NEON unit is a general-purpose SIMD (Single Instruction, Mul-
tiple Data) engine, which has its own registers and instruction set. It has 16
128-bit quadword registers (q0-q15) which can also be viewed (aliased) as 32
64-bit doubleword registers (d0-d31).

NEON on the Cortex A8 has limited dual issue capabilities. Instructions are
divided between load/store/permute instructions and data processing (ALU)
instructions. A data processing instruction can be dual issued with a load, store,
or permute instruction. For multi-cycle instructions dual issue is only performed
at the first and last cycle (see [2, Sect. 16.5.3]).

The ARMv7 core has 16 user-accessible general-purpose registers r0-r15,
and one register which holds the current program status (CPSR). Register r15

contains the program counter, r14 the link register, and r13 the stack pointer.
In ARM mode, the link register and stack pointer can also be used as a general
purpose register. One important property of the ARM processor is the built-in
barrel shifter, which can shift and rotate the last operand of an ALU instruction
at no cost. The ARM processor consists of two ALU units and one load/store
unit.

Since ARM and NEON have separate instruction queues, ARM instructions
also can be dual issued with NEON instructions. However, several restrictions
apply. First, at most 2 instructions can be executed per cycle. Second, at most
one load/store/permute can be performed per cycle. Third, moving data from
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NEON to ARM causes a penalty of at least 20 cycles, since the NEON unit lags
behind the ARM unit.

5.1 T-Table Implementation of Grøstl using NEON

Using NEON, one column of the Grøstl state can be stored in a 64-bit dou-
bleword register. This reduces the number of xors compared to a 32-bit ARM
implementation. Unfortunately, the indices used for the table lookups need to be
stored in ARM registers. Hence, we compute one Grøstl round as follows: We
load bytes of the state from memory into ARM registers and compute the table
lookup address using ARM instructions. The table lookup itself and the xors
are performed using NEON instructions. Finally, we store the result in memory
using NEON stores.

Note that the 20-cycle penalty also occurs when transferring data from NEON
to ARM through memory. We avoid this penalty by interleaving the computation
of one round of P with a round of Q, since no data dependency between the
two permutations exist. Hence, the ARM unit can continue to work on Q until
the NEON unit is finished with computing and storing the result of one P
round. Furthermore, we interleave the computation of 8 different columns of one
permutation, to hide instruction latencies.

To avoid expensive byte extractions, we load single bytes of the state into the
ARM registers using ldrb. We load bytes and compute the lookups row-by-row.
This has the additional advantage, that we can use the same table address for 8
consecutive lookups. The address for the lookup is computed using add including
a barrel shift to account for 8-to-64 bit table lookups. The actual T-table lookup
is performed using vld1.64. We reduce the number of xors by using 128-bit
veor instructions. The computation of one example row is given in Listing 1.

Equivalent code blocks are repeated 8 times for each row and round of P
and Q. Additionally, we need four 128-bit stores at the end of each round. For
AddRoundConstant we need four 128-bit loads and four veor instructions. To
summarize, the load/store instructions will be the bottleneck and we get a lower
bound of (16 · 8 + 4 + 4) · 10 · 2/64 = 42.5 cycles/byte. Using our new implemen-
tation, we get 45.9 cycles/byte on a Cortex-A8 processor.

5.2 Bitsliced Implementation of Grøstl-256 using NEON

With the representation of the bitsliced state described in Section 3.3 we need 8
loads and 8 xors for AddRoundConstant and 128 ALU instructions for SubBytes [6].
The ShiftBytes operation rotates octets of bits (of a row) by different distances.
To avoid expensive masking operations, it is most efficient to store these 8 bits
within one byte. To rotate bits within each byte, we make use of the variable shift
instruction vshl.u8. Note that the shift constants for shifting bits in bitsliced
representation are the same as for bytes in standard representation.

The multiplication by 2 of MixBytes is rather cheap in bitsliced implementa-
tions and consists of only 3 xors [23]. What remains is to xor different rows of
the non-bitsliced state to each other. Since we store bits of rows within bytes, we
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/* ROW 1 (SH+SB+MB) */ /* increase T-table address */

/* load state bytes */ /* compute lookup address */

/* T-table lookups */ /* xor results */

ldrb r0, [%[P], #9 ]; add %[T], %[T], #2048;

ldrb r1, [%[P], #17];

ldrb r2, [%[P], #25];

ldrb r3, [%[P], #33]; add r0, %[T], r0, asl #3;

ldrb r4, [%[P], #41]; add r1, %[T], r1, asl #3;

ldrb r5, [%[P], #49]; add r2, %[T], r2, asl #3;

ldrb r6, [%[P], #57]; add r3, %[T], r3, asl #3;

ldrb r7, [%[P], #1 ]; add r4, %[T], r4, asl #3;

vld1.64 d8, [r0, :64]; add r5, %[T], r5, asl #3;

vld1.64 d9, [r1, :64]; add r6, %[T], r6, asl #3;

vld1.64 d10, [r2, :64]; add r7, %[T], r7, asl #3;

vld1.64 d11, [r3, :64];

vld1.64 d12, [r4, :64]; veor q0, q0, q4;

vld1.64 d13, [r5, :64]; veor q1, q1, q5;

vld1.64 d14, [r6, :64]; veor q2, q2, q6;

vld1.64 d15, [r7, :64]; veor q3, q3, q7;

Listing 1: The computation of one row of Grøstl-256 using ARM NEON with
the T-table approach.

need to shuffle bytes of q-registers such that the corresponding bytes overlap and
can get xored. Since crossing 64-bit lanes causes additional penalties, we store
P in the lower and Q in the upper half of the 128-bit registers. Furthermore, we
store the rows such that we can overlap corresponding bytes by rotating 8-byte
blocks using the vext.8 instruction. For example, we compute bi = ai + ai+1 of
bit 0 as follows:

vext.8 d24, d4, d4, #1;

vext.8 d25, d5, d5, #1;

veor q10, q2, q12;

Note that we can dual issue vext.8 instructions with ALU instructions. In
our implementation, we are able to interleave all vext.8 instructions with the
veor instructions of MixBytes, as well as the vshl.u8 and vorr instructions of
ShiftBytes. A sample excerpt of the implementation is given in Listing 2.

In the bitsliced representation of Grøstl-256, we have 128 ALU instructions
for SubBytes, followed by 96 vext.8 instructions which are interleaved with
the ALU instructions of ShiftBytes and MixBytes. Hence, in the first part of
one round, ALU instructions are the bottleneck, in the second part, it is load,
store, and permute instructions. Together with 8 loads and 8 veor required for
the AddRoundConstant operation (interleaved), we get a lower bound of (8 +
128 + 96) · 10/64 = 36.25 cycles/byte. In reality, our benchmark resulted in 48.5
cycles/byte, which is still about the same speed as the T-table implementation.
We are continuing to investigate the reasons for the difference between the lower
bound and our actual performance.
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vext.8 d24, d4, d4,#1;

vext.8 d25, d5, d5,#1;

vext.8 d26, d6, d6,#1; vshl.u8 q6, q14, q4; # bit6: shift left

vext.8 d27, d7, d7,#1; veor q10, q2, q12; # b2_i = a2_i + a2_{i+1}

vext.8 d24, d4, d4,#6;

vext.8 d25, d5, d5,#6; veor q11, q3, q13; # b3_i = a3_i + a3_{i+1}

vext.8 d26, d6, d6,#6; vshl.u8 q1, q9, q4; # bit1: shift left

vext.8 d27, d7, d7,#6; veor q2, q10, q12; # a2_i = b2_i + a2_{i+6}

vext.8 d24,d20,d20,#2;

vext.8 d25,d21,d21,#2; veor q3, q11, q13; # a3_i = b3_i + a3_{i+6}

vext.8 d26,d22,d22,#2; vshl.u8 q14, q14, q5; # bit6: shift right

vext.8 d27,d23,d23,#2; veor q2, q2, q12; # a2_i = a2_i + b2_{i+2}

vext.8 d24,d20,d20,#3;

vext.8 d25,d21,d21,#3; veor q3, q3, q13; # a3_i = a3_i + b3_{i+2}

vext.8 d26,d22,d22,#3; vshl.u8 q9, q9, q5; # bit1: shift right

vext.8 d27,d23,d23,#3; veor q10, q10, q12; # b2_i = b2_i + b2_{i+3}

vext.8 d4, d4, d4,#4;

vext.8 d5, d5, d5,#4; veor q11, q11, q13; # b3_i = b3_i + b3_{i+3}

vext.8 d6, d6, d6,#4; vorr q6, q6, q14; # bit6: combine SHL+SHR

vext.8 d7, d7, d7,#4; vorr q1, q1, q9; # bit1: combine SHL+SHR

Listing 2: Bitsliced implementation of Grøstl-256 using ARM NEON.

5.3 Bytesliced Vperm Implementation of Grøstl-256

The third option to implement Grøstl using NEON is a bytesliced implementa-
tion using vperm to compute the SubBytes transformation. On x86, the vperm
implementation has a similar speed as the T-table implementation. Unfortu-
nately, vector-permute or byte-shuffle instructions are more expensive using
NEON.

In vperm implementations, each byte is split into nibbles which are then used
as 4-bit indices to several 16-byte lookup tables. Four lookup tables are needed
to compute the SubBytes transformation. Using the vperm approach, the S-box
result can be multiplied by any factor without additional cost. This has been
used by all previous vperm implementations of Grøstl [1, 9]. However, if all
multipliers are computed in advance, many temporary results are needed and
also the optimized MixBytes formulas cannot be used.

In our implementation, we only compute the plain SubBytes transformation
and separately multiply by 2. The resulting NEON implementation is slightly
faster than using the previous approach. The computation of one row of SubBytes
is shown in the listing below:

// SubBytes

vand q2, q0, q8

vshr.u8 q1, q0, #4

veor q0, q2, q1

vtbl.8 d6, {d24-d25}, d2

vtbl.8 d7, {d24-d25}, d3

vtbl.8 d8, {d26-d27}, d4

vtbl.8 d9, {d26-d27}, d5

veor q3, q3, q4

vtbl.8 d4, {d24-d25}, d0
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vtbl.8 d5, {d24-d25}, d1

veor q2, q2, q4

vtbl.8 d6, {d24-d25}, d4

vtbl.8 d7, {d24-d25}, d5

veor q3, q3, q1

vtbl.8 d8, {d24-d25}, d6

vtbl.8 d9, {d24-d25}, d7

veor q4, q4, q0

vtbl.8 d0, {d28-d29}, d6

vtbl.8 d1, {d28-d29}, d7

vtbl.8 d2, {d30-d31}, d8

vtbl.8 d3, {d30-d31}, d9

veor q0, q1, q0

Note that we need two vtbl.8 to shuffle 16 bytes and each instruction costs
2 cycles since we shuffle across 64-bit lanes. Hence, 16 AES S-box lookups need
22 instructions and we get a lower bound of 28 cycles (14 vtbl.8 instructions
with 2 cycles each). For the multplication by 2 (MUL2) we obtain 7 instructions
and a lower bound of 8 cycles as follows:

// MUL2

vand q1, q0, q8

vshr.u8 q0, q0, #4

vtbl.8 d2, {d20-d21}, d2

vtbl.8 d3, {d20-d21}, d3

vtbl.8 d0, {d22-d23}, d0

vtbl.8 d1, {d22-d23}, d1

veor q0, q0, q1

AddRoundConstant needs 8 veor instructions and for ShiftBytes we can use
14 vext instructions to rotate bytes within 64-bit lanes. Additionally we have
19 load/stores of constants and temporary values. Using the optimized MixBytes
formulas with 48 veor and 16 MUL2, we get a vperm NEON implementation
for Grøstl-256 running at 92 cycles/byte.

6 Low-Memory Vector Implementation of Grøstl

On 32-bit platforms, the straight-forward way to implement Grøstl or other
AES-based designs is the T-table approach. However, this method is not very
suitable in low-memory environments since tables of a few kilobytes are needed.
In this case, a bytesliced implementation can be the better choice. If the cache is
small, it may even be faster than a T-table implementation. In this section, we
give two short examples of bytesliced implementations using very small vectors.

6.1 32-bit Bytesliced Implementation of Grøstl-256 for Cortex-M0

Since the ARM Cortex-M0 processor has only a small cache, memory access
is rather expensive. Therefore, it turned out to be more efficient to compute
MixBytes using a bytesliced implementation instead of using precomputed T-
tables. In a 32-bit bytesliced implementation, we can compute 4 columns in
parallel. Only for the SubBytes layer we need to extract bytes and perform single
S-box lookups using a small table. Since the Cortex-M0 has only 8 registers we
need to store the state in memory and process only a small fraction of the state
at once.

However, load and store instructions on the Cortex-M0 are more expensive
than ALU instructions. Therefore, we try to keep values in registers and perform
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Table 2: Benchmark results of the low-memory 32-bit vector implementation
of Grøstl-256 on an ARM Cortex-M0 processor. We have measured the speed
in cycles/byte for long messages and the memory requirements in bytes. The
evaluation using 4 · RAM + ROM has been proposed by XBX [28].

speed RAM ROM 4 · RAM + ROM
[cycles/byte] [Bytes] [Bytes] [Bytes]

bytesliced (fast) 469 344 1948 3324
bytesliced (small) 801 304 1464 2680
T-table (2kB) 406 704 6952 9768
T-table (8kB) 383 508 12630 14662

sphlib 856 792 15184 18352
8bit-c 1443 632 2796 5324
armcryptolib 17496 400 1260 2860

as many computations on them as possible. The constants for AddRoundConstant
are computed instead of storing them in memory. To compute the SubBytes layer,
we load 32-bit values of the state into registers and extract single bytes using
ALU instructions to perform the AES S-box lookup. For ShiftBytes we load two
32-bit values containing one row of the state and rotate and swap the values
inside registers.

For MixBytes we use the optimized formulas with a minimal amount of 48 xor
operations. Due to the small number of registers, we need a rather high number
of temporary variables, in-register mov instructions and memory loads. Note that
on the ARM Cortex-M0 platform, push and pop need only N + 1 cycles to push
or pop N registers to or from the stack, compared to 2 ·N instructions for loads
and stores. By computing blocks of 8 32-bit values and using push and pop, we
can significantly reduce the number of cycles needed to store temporary values.

Furthermore, we have implemented the multiplication by 2 completely within
memory. We use an MSB mask 0x80808080 to generate the value which is condi-
tionally xored to the bits determined by the irreducible polynomial 0x11b. This
method is similar to the multiplication by 2 used in the bitsliced implementation.
The following listing shows the corresponding Thumb assembly code:

// MUL2

// r5: input, output

// r6: msbmask

// r1,r2: temporary

movs r1, r0

ands r1, r6

mvns r2, r6

ands r0, r2

lsls r0, #1

lsrs r1, #7

lsls r2, r1, #1

orrs r1, r2

lsls r2, r1, #3

orrs r1, r2

eors r0, r1

We have implemented a fast and a small Thumb 32-bit bytesliced implemen-
tation for the Cortex-M0. The main difference is the use of macros and loop
unrolling to speed up the computation at the cost of more memory. The results
are given in Table 2. Additionally, we have implemented improved T-table im-
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plementations using 2kB or 8kB tables. We compare our results with previously
published T-table implementations of Grøstl-256. The results show, that in
low-memory environments, the bytesliced implementation consumes much less
memory at only slightly decreased speed.

7 Conclusions

In this work we have analyzed three different implementation techniques for
AES-based designs and presented various new and improved vector implemen-
tations of the SHA-3 finalist Grøstl. Depending on the target platform and the
available instructions, a different implementation technique may be the fastest.
For example, in the case of ARM NEON implementations we currently get the
best result using the T-table approach, while the lower bound for the bitsliced
implementation is better. Furthermore, once AES instructions of ARMv8 will
be available, the bytesliced implementation technique will most likely outper-
form the others. The case is similar for many other platforms. We hope that our
work will help implementers, but also designers of new AES-based cryptographic
primitives to find the right balance of implementation characteristics.
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