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Abstract

Decryption errors play a crucial role in the security of KEMs based
on Fujisaki-Okamoto because the concrete security guarantees
provided by this transformation directly depend on the probability
of such an event being bounded by a small real number. In this paper
we present an approach to formally verify the claims of statistical
probabilistic bounds for incorrect decryption in lattice-based KEM
constructions. Our main motivating example is the PKE encryption
scheme underlying ML-KEM. We formalize the statistical event
that is used in the literature to heuristically approximate ML-KEM
decryption errors and confirm that the upper bounds given in the
literature for this event are correct. We consider FrodoKEM as
an additional example, to demonstrate the wider applicability of
the approach and the verification of a correctness bound without
heuristic approximations. We also discuss other (non-approximate)
approaches to bounding the probability of ML-KEM decryption.

CCS Concepts

• Security and privacy→ Logic and verification; Cryptogra-
phy.
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1 Introduction

The transition to post-quantum cryptography (PQC) has seen an
important development in 2024 with the publication of the first
PQC standards FIPS-203 [31], FIPS-204 [32] and FIPS-205 [33] by
NIST. The standardized algorithms are called, ML-KEM, ML-DSA
and SLH-DSA, which match the Kyber, Dilithium and SPHINCS+
submissions with minor changes, respectively. These algorithms
will see large-scale deployment in the near future in many practical
applications as mitigation for the potential arrival of a quantum
computer. Key Encapsulation Mechanisms (KEM), such as ML-KEM
are arguably the most critical components in the PQC transition,
as they protect against so-called harvest now, decrypt later attacks
which allow an attacker to decrypt data exchanged today with
a future quantum computer. For this reason, ML-KEM is already
being deployed by software giants such as Google and AWS [5,
12], and the number of deployed implementations is expected to
grow fast in the near future. Another competitor in the NIST PQC
competition for KEMs is called FrodoKEM. Although not selected
by NIST for standardization, FrodoKEM’s conservative design—
its security is based on the standard Learning With Errors (LWE)
assumption, rather than the Module LWE (MLWE) assumption
used by ML-KEM—has led to endorsement of entities such as the
German Federal Office for Information Security (BSI) [23] and the
French National Agency for the Security of Information Systems
(ANSSI) [1] for adoption in the transition to PQC. Additionally,
ISO/IEC has approved its standardization in the revision of ISO/IEC
18033-2 [24].

Widely deployed cryptographic (de facto) standards such as
ML-KEM and FrodoKEM will be critical security components in
the ITC infrastructure of the coming decades, and so it is crucial
that their design is validated to the highest level of assurance. For
ML-KEM, several recent works have looked at formally verifying
both the design and efficient implementation of the standard. In
particular, Almeida et al. [4] presented formally verified proofs of
cryptographic security (IND-CCA) and correctness—the guarantee
that decapsulation inverts encapsulation—in EasyCrypt. Alterna-
tive proofs of IND-CPA security and correctness were given by
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Kreuzer [29] in Isabelle. However, in both of these works, there
is one aspect of the security and correctness claims that support
the ML-KEM design that is not formally verified: the concrete val-
ues for the probability of a failed decryption. Both works account
for the probability of a failed decryption by defining a statistical
event over the distribution of a complex noise expression, and
then proving that bounding the probability of such an event yields
an upper bound for decryption failures. However, neither work
provides a means to compute or even upper-bound this concrete
probability to a high-level of assurance. In this paper we address
this gap. We begin by recalling the importance of decryption errors
in post-quantum KEM security.

The importance of decryption errors. Unlike Diffie–Hellman and
RSA-based constructions, which typically yield perfectly correct
cryptographic constructions, lattice-based constructions often al-
low for a low probability of error in order to optimize the compro-
mise between security and performance. One might think that a
decryption error would represent only an inconvenience for practi-
cal applications, e.g., in that it would cause message transmission to
sometimes fail. However, it is well known that, when freely exposed
to an adversary, decryption errors can lead to devastating attacks
on lattice-based constructions [7, 9, 13, 14, 20–22]. Put differently,
lattice-based KEM constructions such as ML-KEM and FrodoKEM
are supported by IND-CCA security proofs where the overall bound
on an attacker’s advantage in breaking the KEM must typically ac-
count for the probability that the attacker can cause a decryption
error to occur. This means that, in order to have a concrete security
bound for the construction, one must bound the probability of a
decryption error.

Intuitively, it is easy to explainwhy this is the case. BothML-KEM
and FrodoKEM internally use the Fujisaki–Okamoto [25] trans-
formation, where IND-CCA security is achieved by having the
decapsulation algorithm check consistency of a recovered decryp-
tion result via re-encryption. Informally, decapsulation checks that
𝐶 = Enc(𝑝𝑘,𝑀 ;𝐻 (𝑀)), where 𝑀 = Dec(𝑠𝑘,𝐶) and 𝐻 (𝑀) is used
to derive all randomness required by encryption pseudo-randomly.
If the check succeeds, then decapsulation proceeds; otherwise the
ciphertext is rejected. Indeed, correct decryption and re-encryption
is taken as evidence that 𝐶 was honestly constructed by the adver-
sary starting from 𝑀 , rather than mauling another ciphertext from
which it is trying to extract information. The soundness of this tech-
nique crucially depends on the adversary not being able to exploit
decryption errors, which is why the probability of a correctness
error appears in the security bound for the IND-CCA construction.

Bounding the probability of decryption errors. Among the algo-
rithms considered for the last round of the NIST PQC competition,
four of them were very close in structure: Kyber [35], Saber [15],
FrodoKEM [30], and NTRU LPRime [8].1 All of these schemes start
from a lattice-based IND-CPA encryption scheme and then apply
the Fujisaki–Okamoto transform outlined above. However, while
NTRU LPRrime selects parameters avoiding decryption errors al-
together, the other three proposals support the soundness of their
designs and parameter choices by computing exact bounds for statis-
tical events that permit setting upper bounds for the probability of a

1FrodoKEM and NTRU LPRrime were not finalists, but kept as an alternate candidates.

decryption failure of the IND-CPA scheme—which affects, not only
the decryption failure probability of the IND-CCA scheme, but also
the corresponding security bound.2 Interestingly, the bounds for
all three schemes were computed using somewhat similar Python
scripts, which trace their origins back to the script used to bound
the failure probability of NewHope [3].3

For FrodoKEM, the computation performed by this script can be
described as follows. The IND-CPA scheme decryption procedure
of FrodoKEM recovers 𝑀′ = 𝐶2 − 𝐶1𝑆 where 𝑀′, 𝐶1 and 𝐶2 are
matrices of (binary) field elements and𝑀′ encodes a message in the
most significant bits of its entries. Here, (𝐶1,𝐶2) are produced by
the encryption procedure as𝐶1 = 𝑆 ′𝐴 + 𝐸′ and𝐶2 = 𝑆 ′𝐵 + 𝐸′′ +𝑀 ,
where matrices𝐴 and 𝐵 = 𝐴𝑆 +𝐸 are fixed by the public encryption
key, the 𝑆 matrix is the secret key, and 𝑆 ′, 𝐸, 𝐸′ and 𝐸′′ are noise
matrices sampled from distributions with very small support—every
finite field element produced by these distributions is an element
close to 0 chosen from a small set of possibilities. A straightforward
linear algebra argument shows that Decode(𝑀′) = Decode(𝑀) if
the noise expression 𝐸′′′ = 𝑆 ′𝐸 +𝐸′′−𝐸′𝑆 results in a matrix where
all entries are field elements with a small norm, i.e., they are small
enough that the entries in𝑀 and𝑀′ have the same most significant
bits. The Python script brute-force computes the probability mass
function of a coefficient in 𝐸′′′ and computes the tail probability of
a value exceeding the correctness threshold. The overall correctness
bound follows from arguing that all entries in 𝐸′′′, individually,
have the same distribution, and computing a union bound. We
note that these computations are performed using high-precision
floating-point arithmetic and result in values of the order of 2−200.

The cases of ML-KEM and Saber are slightly more intricate due
to the use of rounding, but the principle is the same. Prior to this
work, the correctness of the above simplification steps—which are
crucial to allow an efficient computation of the error—and therefore
computed bounds that support the ML-KEM standard, and the
FrodoKEM and Saber proposals have not been subject to formal
verification.

Our Contributions. Our main contribution is an EasyCrypt formal-
ization that permits connecting the formal definition of a decryption
error for a KEM construction to an efficiently computable specifi-
cation of a statistical event that provably yields an upper-bound
for this security-critical parameter. More in detail, our individual
contributions are the following.
• We provide a framework to reason in EasyCrypt about distribu-

tions over a restricted class of matrix expressions, and proving
that the relevant events related to decryption errors can be ex-
pressed as a union bound over events that can be checked for
only one of the matrix entries. We extend this result to cases
where matrix entries are expressions in a certain class of poly-
nomial rings, in which the event is checked for only one of the
polynomial coefficients. This framework reduces the problem of

2The results in this paper focus on the IND-CPA public-key encryption scheme sub-
components of the above algorithms. This means that we can talk interchangeably
about Kyber (round 3) and ML-KEM, since there is no difference in their IND-CPA
subcomponents. To avoid confusion, and because we believe this is where the interest
lies for practical applications, we will mostly refer to ML-KEM from this point onwards
when we talk about our results.
3See https://github.com/newhopecrypto/newhope-usenix/blob/master/scripts/failure.
py

https://github.com/newhopecrypto/newhope-usenix/blob/master/scripts/failure.py
https://github.com/newhopecrypto/newhope-usenix/blob/master/scripts/failure.py
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bounding the probability of decryption errors to the problem of
comparing the absolute value of a finite field element sampled
from a distribution, to a fixed threshold.

• We propose an approach to connect EasyCrypt specifications
of probability bounds as above to OCaml computations that are
guaranteed by construction to provide a concrete upper bound.
We then build on this feature to compute upper bounds for de-
cryption failure probabilities for FrodoKEM and ML-KEM. The
algorithm has a reasonable execution time, whenever the dis-
tributions have a simple description and small enough support.
On a modest personal machine, the more costly computations
we performed for FrodoKEM take a few hours to complete. Our
results can be seen as a formally verified implementation of the
Python scripts used to obtain the upper bounds presented in the
NIST post-quantum submissions.

• We show that, for FrodoKEM, our EasyCrypt development per-
mits connecting the formal definition of correctness to a fully
concrete correctness bound, where all statistical terms can be
computed: our correctness theorem relates the adversary’s advan-
tage in winning the correctness game for the KEM to a descrip-
tion of the computation required to determine the probability
value, which is then carried out in OCaml. As a side contribu-
tion, we give a computer-verified security proof for the IND-CPA
component of FrodoKEM that goes down to a variant of the
standard LWE problem (rather than MLWE as in ML-KEM [10]
or LWR as in Saber [27]). This proof is similar in structure to
those given in [4, 27, 29] but, to the best of our knowledge, such
a proof had not been previously verified. In particular, our proof
includes a hybrid argument that reduces the LWE problem to
the multi-instance LWE problem required for FrodoKEM.

• We revisit the formally verified correctness proofs for ML-KEM
in [4, 29] and resolve one of the proof goals left for future work:
formally verifying that the simplified (heuristic) computations for
the correctness bounds given in the documentation that suported
this algorithm in the NIST PQC competition are correct. This
shows the generality of our method and extends the formal
verification results for ML-KEM [4] to cover all the correctness
claims that supported it in the NIST competition. We also provide
a new (more conservative) bound for ML-KEM decryption errors
that can be justified under the MLWE assumption, i.e., we prove
that this bound is correct unless MLWE can be broken.4

Related Work. Two previous works presented formally verified
proofs of security and correctness for ML-KEM [4, 29]. Although
these works covered security and correctness guarantees, none of
them addressed the problem of proving that the concrete bounds
for decryption failures claimed for the construction hold. We are
not aware of prior work formally verifying any of the FrodoKEM
security and correctness claims.

The impact of decryption failures in lattice-based KEM security
has been studied in the literature from two perspectives: a provable
security perspective, and an attack perspective. In this work we
are interested in the provable security perspective, i.e., how one
can obtain a concrete (formally verified) bound for the decryption

4Proving the claim that the heuristic bound, which is computed over a simplified
distribution, applies to ML-KEM is an open problem. Our new bound provably applies,
but it is significantly larger than the heuristic one.

error probability that is relevant for the setting of parameters of
lattice-based KEMs. Our results confirm that, for FrodoKEM this is
easy to do, whereas for ML-KEM obtaining a formal proof comes
at a cost of significantly overestimating the probability.5

Alternatively, Hövelmanns, Hülsing, and Majenz [26] observe
that the notion of cryptographic correctness (i.e., absence of de-
cryption failures) used in Fujisaki-Okamoto security proofs may be
too strong, in that it requires the bound to hold against an adver-
sary that learns the secret key. The authors propose an alternative
(weaker) definition that removes this requirement, but fundamen-
tally modifies the way in which decryption failures are estimated:
one needs to bound the difference in probability of failure with
respect to another key pair. We are not aware of concrete bounds
computed for these definitions, but it is an interesting direction
for future work to formally verify their correctness. In this work
we therefore work with the more standard (stronger) notion of
decryption failure probability and study how bounds can formally
verified for ML-KEM and FrodoKEM.

A sequence of works[13, 14, 16, 18, 19] studies the potential of
exploiting decryption failures in lattice-based schemes, and Saber
and Kyber in particular, in both single and multi-target scenarios.
These works also investigate how to obtain good estimates for de-
cryption failure probabilities, and various estimation techniques are
proposed to deal with correlations between rounding noise across
coefficients. In particular, these works point out that assuming inde-
pendence across coefficients may be overly optimistic. We work in
the simpler setting of single-key attack models, and consider only
the most basic technique for approximate probability estimation
in ML-KEM, which consists of assuming that all rounding errors
across coefficients are independent. This was the approach used
in the Kyber submission to NIST. We leave it as an interesting di-
rection for future work to formally verify the correctness of other
approximate estimation techniques. The impact of decryption fail-
ures in other families of cryptographic constructions have also been
studied, e.g. in [36] for code-based cryptography, but these analyses
are so far out of reach of our formal framework.

Structure of this paper. In Section 2 we provide some necessary
background on ML-KEM, FrodoKEM, and EasyCrypt. Then in Sec-
tion 3 and in Section 4 we describe the proofs that were formally
verified in EasyCrypt. Finally, in Section 5 we discuss our approach
to computing upper bounds in a formally verified way, and present
our results for ML-KEM and FrodoKEM.

Access to development. The EasyCrypt and OCaml code described
in this paper are submitted as supplementary material.

2 Preliminaries

We now briefly discuss the mechanized reasoning tools we use
for our proofs and give an overview of the IND-CPA encryption
schemes that underlie the FrodoKEM and ML-KEM constructions,
which is all that we need to present our work on formally verifying
the correctness bounds for both schemes. The cryptographic defi-
nitions used are standard and we try to keep as our presentation

5We do not exclude that a better provably secure bound can be established using
different techniques, but we leave this as an open problem.
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Game COR:
1: (𝑝𝑘, 𝑠𝑘) ←$GenO ( )
2: 𝑚 ←$AO (𝑝𝑘, 𝑠𝑘)
3: 𝑐 ←$ EncO (𝑝𝑘,𝑚)
4: return (𝑚 ≠

DecO (𝑠𝑘, 𝑐))

Game IND-CPA:
1: (𝑝𝑘, 𝑠𝑘) ←$GenO ( )
2: (𝑚0,𝑚1, 𝑠𝑡) ←$AO1 (𝑝𝑘)
3: 𝑏 ←$ {0, 1}
4: 𝑐∗ ←$ EncO (𝑝𝑘,𝑚𝑏 )
5: 𝑏′ ←$AO2 (𝑐

∗, 𝑠𝑡)
6: return 𝑏′ = 𝑏

Figure 1: Correctness and Security of a PKE in the Random

Oracle Model.

Algorithm 1 K-PKE.Gen(): key generation

Ensure: Secret key sk ∈ R𝑘𝑞 and public key pk ∈ R̂𝑞
𝑘 × {0, 1}256

1: 𝑑 ←$ {0, 1}256

2: (𝜌, 𝜎) ← G(𝑑)
3: Â← Parse(XOF(𝜌))
4: s, e← CBD𝜂1 (PRF(𝜎)) ⊲ s, e ∈ R𝑘𝑞
5: ŝ← NTT(s)
6: ê← NTT(e)
7: t̂← Âŝ + ê
8: return sk = ŝ and pk = (t̂, 𝜌)

of the constructions close to the specifications of the algorithms
found in the literature [30, 35].

2.1 Public-Key Encryption

Syntax. A public-key encryption scheme consists of three algo-
rithms PKE = (Gen, Enc,Dec) and a finite message spaceM. The
key generation algorithm Gen outputs a key pair (𝑝𝑘, 𝑠𝑘). The
encryption algorithm Enc, on input 𝑝𝑘 and a message 𝑚 ∈ M,
outputs a ciphertext 𝑐 ←$ Enc(𝑝𝑘,𝑚). The decryption algorithm
Dec, on input 𝑠𝑘 and a ciphertext 𝑐 , outputs either a message
𝑚 ← Dec(𝑠𝑘, 𝑐) ∈ M or a special symbol ⊥∉M.

Correctness. Correctness of a PKE is defined as in Figure 1 (left).
We give the definition in the Random Oracle Model, as this is what
we are going to use. Note that the adversary gets the secret key as an
input. We say a PKE is 𝛿-correct if, for all (possibly computationally
unbounded) adversariesA placing at most 𝑞 queries to the random
oracle, we have that Pr[CORAPKE ⇒ 1] ≤ 𝛿 (𝑞).

Security. In this paper we are only considering IND-CPA security.
We define the IND-CPA game as in Figure 1 (right), and the IND-
CPA advantage function of an adversary A = (A1, 𝐴2) against
PKE as

AdvIND-CPAPKE (A) = | Pr[IND-CPAAPKE ⇒ 1] − 1/2| .

2.2 The IND-CPA PKE underlying ML-KEM

We give a high-level algorithmic description of K-PKE, the IND-
CPA-secure public-key encryption scheme underlying ML-KEM, in
Algorithms 1 to 3. For a more implementation-oriented description
that operates on byte arrays, see [31, Algs. 12–14].

Algorithm 2 K-PKE.Enc(pk,𝑚): encryption

Require: Public key pk = (t̂, 𝜌) ∈ R𝑘𝑞 × {0, 1}256, message𝑚 ∈
{0, 1}256

Ensure: Ciphertext 𝑐 ∈ R𝑘
𝑑𝑢
× R𝑑𝑣

1: 𝑟 ←$ {0, 1}256

2: Â← Parse(XOF(𝜌))
3: r← CBD𝜂1 (PRF(𝑟 )) ⊲ r ∈ R𝑘𝑞
4: e1, 𝑒2 ← CBD𝜂2 (PRF(𝑟 )) ⊲ e1 ∈ R𝑘𝑞 , 𝑒2 ∈ R𝑞
5: r̂← NTT(r)
6: u← NTT−1 (Â𝑇 r̂) + e1
7: 𝑣 ← NTT−1 (t̂𝑇 r̂) + 𝑒2 + ToPoly(𝑚)
8: c1 ← Compress𝑞 (u, 𝑑𝑢 )
9: 𝑐2 ← Compress𝑞 (𝑣, 𝑑𝑣)
10: return 𝑐 = (c1, 𝑐2)

Algorithm 3 K-PKE.Dec(sk, 𝑐): decryption

Require: Secret key sk = ŝ ∈ R𝑘𝑞 and ciphertext 𝑐 = (c1, 𝑐2) ∈
R𝑘
𝑑𝑢
× R𝑑𝑣

Ensure: Message𝑚 ∈ {0, 1}256

1: ũ← Decompress𝑞 (c1, 𝑑𝑢 )
2: 𝑣 ← Decompress𝑞 (𝑐2, 𝑑𝑣)
3: 𝑚 ← ToMsg(𝑣 − NTT−1 (ŝ𝑇NTT(ũ)))
4: return𝑚

ML-KEM works in the ring R𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛 + 1) with 𝑞 = 3329
and 𝑛 = 256. The core operations are on small-dimension vec-
tors and matrices over R𝑞 ; the dimension depends on the param-
eter 𝑘 , which is different for different parameter sets of ML-KEM:
ML-KEM-512 (NIST security level 1) uses𝑘 = 2,ML-KEM-768 (NIST
security level 3) uses 𝑘 = 3, and ML-KEM-1024 (NIST security level
5) uses 𝑘 = 4. We denote elements in R𝑞 with regular lower-case
letters (e.g., 𝑣); vectors over R𝑞 with bold-face lower-case letters
(e.g., u), and matrices over R𝑞 with bold-face upper-case letters
(e.g., A).

In these descriptions, XOF is an extendable output function that
in ML-KEM is instantiated with SHAKE-128 [34]. Parse interprets
outputs of XOF as sequence of 12-bit unsigned integers and runs re-
jection sampling to obtain coefficients that look uniformly random
modulo 𝑞. CBD𝜂 denotes sampling coefficients from a centered bi-
nomial distribution with parameter 𝜂;6 extension from coefficients
to (vectors of) polynomials is done by sampling each coefficient
independently from CBD𝜂 . For example, both ML-KEM-768 and
ML-KEM-1024 use 𝜂1 = 𝜂2 = 2. The sampling routine is parame-
terized by a pseudorandom function PRF𝑘 with key 𝑘 . NTT is the
number-theoretic transform of a polynomial in R𝑞 . Both input and
output ofNTT can be written as a sequence of 256 coefficients in Z𝑞
and typical implementations perform the transform inplace. How-
ever, output coefficients do not have any meaning as a polynomial
in R𝑞 . We therefore denote the output domain as R̂𝑞 ; we apply
the same notation for elements in R̂𝑞 , e.g., 𝑢 = NTT(𝑢). Applica-
tion of NTT to vectors and matrices over R𝑞 is done element-wise.

6This means we have 𝐵 (𝑛, 𝑝 ) with 𝑝 = 1/2, 𝑛 = 2𝜂 and expected value shifted to 0.
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Compress𝑞 compresses elements in R𝑞 (or R𝑘𝑞 ) by rounding co-
efficients to a smaller modulus 2𝑑𝑣 (or 2𝑑𝑢 ). For ML-KEM-768 we
have 𝑑𝑣 = 4 and 𝑑𝑢 = 10. For ML-KEM-1024 we have 𝑑𝑣 = 5 and
𝑑𝑢 = 11. Decompress𝑞 is an approximate inverse of Compress𝑞 .
For an integer 𝑥 ∈ [0..3329), these functions are defined as:

Compress𝑞 (𝑥, 𝑑) = ⌊(2𝑑/𝑞) · 𝑥⌉ mod 2𝑑

Decompress𝑞 (𝑥, 𝑑) = ⌊(𝑞/2𝑑 ) · 𝑥⌉ .

ToPoly maps 256-bit strings to elements in R𝑞 by mapping a zero
bit to a zero coefficient and mapping a one bit to a 𝑞

2 coefficient;
ToMsg rounds coefficients to bits to recover a message from a noisy
version of a polynomial generated by ToPoly.

2.3 The IND-CPA PKE underlying FrodoKEM

FrodoKEM is based on the algebraically unstructured LWEproblem.
It uses an error distribution that closely approximates a wide Gauss-
ian distribution, parameterized to guarantee that the best known
attacks on the resulting LWE instance require a computational effort
that is well beyond the one mandated by the target security level.
In addition, FrodoKEM is designed with simplicity in mind [2], as
evidenced by: (1) its use of integer modulo 𝑞 ≤ 216, which is always
a power of 2; (2) the main operations in the scheme consisting of
simple matrix-vector multiplications, unlike the more complex op-
erations in systems based on algebraically structured LWE variants;
and (3) its straightforward encoding of secret bits by multiplying by
𝑞/2𝐵 (for 𝐵 bits), avoiding the complex bandwidth-saving optimiza-
tions required by some Ring-LWE-based and Module-LWE-based
schemes.

FrodoKEM is parameterized by the pseudorandom function
(PRF) used to generate the public matrix A. Two options are avail-
able for generating A: AES-128 and SHAKE-128.

2.3.1 Technical description of FrodoKEM.. We give a high-level
description of the IND-CPA PKE scheme underlying FrodoKEM
in Algorithm 4, Algorithm 5 and Algorithm 6. FrodoKEM works
under a quotient ring Z𝑞 and the main operations are on matrices
over Z𝑞 , where FrodoKEM-640 uses 𝑞 = 215 while FrodoKEM-
976 and FrodoKEM-1344 use 𝑞 = 216. Gen generates a pseudo-
random matrix A either by SHAKE128 or AES128. The SHA-3-
derived extendable output function SHAKE is either SHAKE128 or
SHAKE256 determined by the parameter set (FrodoKEM-640 uses
SHAKE128 and FrodoKEM-976, FrodoKEM-1344 use SHAKE256).
The SampleMatrix function samples an 𝑛1-by-𝑛2 matrix with each
entry sampled from the error distribution 𝜒 , which is a discrete and
symmetric distribution centered at zero and closely approximating a
moderately wide Gaussian distribution (denoted as 𝜒FrodoKEM−640,
𝜒FrodoKEM−976, 𝜒FrodoKEM−1344 for the 3 NIST security levels re-
spectively).

The Encode function encodes a bit string into a matrix and the
Decode function decodes a matrix into a bit string using the follow-
ing encoding and decoding functions, given 2𝐵 ≤ 𝑞 and 0 ≤ 𝑘 < 2𝐵 :

Encode(𝑘) = 𝑘 · 𝑞/𝑥𝐵 Decode(𝑐) = ⌊𝑐 · 2𝐵/𝑞⌉ mod 2𝐵

Algorithm 4 FrodoPKE.Gen(): key generation

Ensure: Key pair (pk, sk) ∈ ({0, 1}𝑙𝑒𝑛seedA × Z𝑛×𝑛̄𝑞 ) × Z𝑛×𝑛̄𝑞

1: seedA ←$ {0, 1}𝑙𝑒𝑛seedA

2: A← Gen(seedA)
3: seedSE ←$ {0, 1}𝑙𝑒𝑛seedSE

4: (r(0) , ..., r(2𝑛𝑛̄−1) ) ← SHAKE(0𝑥5𝐹 | |seedSE, 2𝑛𝑛 · 𝑙𝑒𝑛𝜒 )
5: S𝑇 ← SampleMatrix((r(0) , ..., r(𝑛𝑛̄−1) ), 𝑛, 𝑛,𝑇𝜒 )
6: E← SampleMatrix((r(𝑛𝑛̄) , ..., r(2𝑛𝑛̄−1) ), 𝑛, 𝑛,𝑇𝜒 )
7: B = AS + E
8: return (pk, sk) ← ((seedA,B), S𝑇 )

Algorithm 5 FrodoPKE.Enc(pk, 𝜇): encryption

Require: Public key pk = (seedA,B) ∈ {0, 1}𝑙𝑒𝑛seedA × Z𝑛×𝑛̄𝑞 and
message 𝜇 ∈ M

Ensure: Ciphertext c = (C1,C2) ∈ Z𝑚̄×𝑛𝑞 × Z𝑚̄×𝑛̄𝑞

1: A← Gen(𝑠𝑒𝑒𝑑𝐴)
2: seedSE ←$ {0, 1}𝑙𝑒𝑛seedSE

3: (r(0) , ..., r(2𝑛𝑛̄−1) ) ← SHAKE(0𝑥96| |seedSE, (2𝑚̄𝑛+𝑚̄𝑛) ·𝑙𝑒𝑛𝜒 )
4: S′ ← SampleMatrix((r(0) , ..., r(𝑚̄𝑛−1) ), 𝑚̄, 𝑛,𝑇𝜒 )
5: E′ ← SampleMatrix((r(𝑚̄𝑛) , ..., r(2𝑚̄𝑛−1) ), 𝑚̄, 𝑛,𝑇𝜒 )
6: E′′ ← SampleMatrix((r(2𝑚̄𝑛) , ..., r(2𝑚̄𝑛+𝑚̄𝑛̄−1) ), 𝑚̄, 𝑛,𝑇𝜒 )
7: B′ = S′A + E′
8: V′ = S′B + E′′
9: return c← (C1,C2) = (B′,V + Encode(𝜇))

Algorithm 6 FrodoPKE.Dec(sk, c): decryption
Require: Ciphertext c = (C1,C2) ∈ Z𝑚̄×𝑛𝑞 × Z𝑚̄×𝑛̄𝑞 and secret key

sk = S𝑇 ∈ Z𝑛̄×𝑛𝑞

Ensure: Decrypted message 𝜇′ ∈ M
1: M = C2 − C1S
2: return message 𝜇′ ← Decode(M)

2.4 The EasyCrypt proof assistant

EasyCrypt7 [6] is a proof assistant for formalizing proofs of cryp-
tographic properties. Its primary feature is the Probabilistic Re-
lational Hoare Logic (pRHL), which we use throughout to prove
equivalences between games. pRHL is designed to support reason-
ing about equivalences of probabilistic programs while reasoning
only locally (within oracles) and without reasoning about the dis-
tribution of specific variables—essentially keeping track only of
the fact that variables in one program are distributed identically to
variables in the other, but not keeping track of what that distribu-
tion may be. This logic has proved highly expressive for the bulk
of cryptographic proof work. However, some steps require more
global reasoning (about the entire execution) or keeping track of
the distribution of individual variables. Logical rules to support
such reasoning steps are implemented in EasyCrypt, but are often
unwieldy to apply in concrete context. The EasyCrypt team has,
over the years, developed a number of generic libraries that abstract
those more complex reasoning rules into “game transformations” or
7https://easycrypt.info

https://easycrypt.info
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equivalence results that can be instantiated as part of other proofs.
Our proof makes use, in particular, of the Hybrid theory, which
provides a formalized and generic argument for bounding the dis-
tance between two games that differ only in one oracle, but where
the transition must be done query-by-query for the purpose of the
proof. We also rely on the PROM theory, which provides a generic
argument, initially intended to apply to programmable random
oracles, that encapsulates the widely used argument that one can
move the sampling of a value that is independent of the adversary’s
view.

3 Analysis of K-PKE
All the results stated in this section are formally verified in Easy-
Crypt. Our proofs are conducted over the simplified specification
of the PKE shown in Figure 2. We factor out the encoding and de-
coding of ring elements (and vectors thereof) to operators ★_encd
and ★_decd. For public keys and secret keys, these operators are
simply assumed to form a bijection, which was formally proved
in [4], and implies that they play no role in the security and correct-
ness analyses. For ciphertexts and messages, we will see that the
definitions of encoding and decoding vary with different variants
of ML-KEM. However, one can express all results generically so as
to cover all variants, and only deal with a full instantiation when
a computation of a probability is needed. We assume an arbitrary
distribution SD over seeds, and consider the case where all the
ring elements are sampled from the same binomial distribution B
(shown as B𝑘 when applied to vectors).8 Finally, the matrix A is
taken as the output of a random oracle.

We justify the simplifications in this specification as follows. In
practice, the sampling procedure for A is public, so there is really
no way to argue that A has a distribution that looks uniform to
an adversary. However, modeling sampling procedure as a random
oracle allows formally relating the security of ML-KEM to the stan-
dard MLWE problem, and it is aligned with the intuition of using
SHA-3-based rejection sampling to compress A into a small seed.
In our analysis we will also take B to be the binomial distribution,
rather than the SHA-3-based sampling procedure used in practice.
It was proved in [4] that this procedure generates noise that is
computationally close to the binomial distribution if the specific
variant of SHA-3 used in that process is a secure PRF—and this
holds statistically in the random oracle model. To summarize: our
results rely heavily on the random oracle heuristic to justify that
the distributions over which we perform the computations are good
approximations of those occurring in ML-KEM. Nevertheless, the
simplifications we introduce in this way are natural and they are
aligned with prior analyses of ML-KEM [11].

3.1 Security analysis

We have formally verified a security proof of the K-PKE alternative
to that given in [4]. The difference in this formalization is that we
establish a direct connection to the standard MLWE assumption,
which we are able to do because we model the sampling of A as
coming from a random oracle. We do not claim any novelty here,
but we present the result because the intuition helps understand

8This means our proof doesn’t strictly cover ML-KEM-512, but it can be easily extended
to do so.

the need for and difficulties associated to building a reduction to
MLWE when reasoning about correctness in the rest of the section.

The proof is carried out in the random oracle model (ROM) in
two steps. We first define the MLWE problem in the ROM in the
natural way: the adversary has access to a random oracle mapping
a seed to a matrix A, and receives as challenge a vector t = As + e
and a random seed 𝑠𝑑 that was used by the challenger to retrieve
A from the random oracle. A simple reduction permits proving
that distinguishing t from a vector sampled uniformly at random
amounts is equivalent to the standard MLWE problem where A is
given directly to the adversary a part of the challenge: the reduction
just lazily simulates the RO itself, programming A in the point
defined by 𝑠𝑑 .

The IND-CPA proof then proceeds in two hops justified using
MLWE in the ROM. The first hop replaces the t vector in the public
key with a uniform vector. The second hop uses the fact that t can
now be seen as an extra row in an MLWE challenge matrix and
replaces both MLWE samples computed in the ciphertext (u, ⟨t, r⟩ +
𝑒2) with uniform values. Both steps are justified by reductions
that receive an MLWE challenge and construct for the adversary a
perfect interpolation between the two games involved in the hop:
if the reduction is given an MLWE sample, the adversary is run in
the game on the left, and otherwise it is run in the game on the
right. In the final game it is clear that all information about the
message is information-theoretically hidden from the adversary, as
this is masked by a value sampled uniformly and independently at
random. So the probability of correctly guessing the challenge bit
𝑏 is exactly 1/2. Combining all the proof steps, we can express the
security of the K-PKE in the ROM in terms of the standard MLWE
problem.

3.2 Correctness Analysis

The proof of correctness first rearranges the correctness game in
Figure 1 instantiatedwith the K-PKE into the form shown in Figure 3
(left). A simple algebraic argument permits showing that the noise
that remains added to the message𝑚 is given by the expression
assigned to 𝑛̃ in the figure, and ⌊𝑞/4⌋−1 is the maximum noise value
above which a decoding error can occur in the message recovery.
Note that the noise expression includes two terms c𝑢 and 𝑐𝑣 that
capture the inaccuracy introduced by encoding ciphertexts via
rounding to a smaller noise: these are expressed as additive noise,
each of them defined as the difference between the original value
and the decoded value.

Our goal is to provide an upper-bound for the probability that the
noise threshold is exceeded in at least one of the 256 coefficients in 𝑛̃.
The way that this is typically done in the literature is to argue that,
although the joint distribution of all 256 coefficients is complex, the
distribution of each coefficient individually can actually be proven
to be the same. Moreover, this distribution is simple enough that
one can just exhaustively compute the probability mass function
over all elements in the support to obtain an exact upperbound
for the probability 𝜖 of one coefficient in 𝑛̃ exceeding the noise
threshold. A union bound then permits obtaining a final bound of
256 · 𝜖 .

As we will see in the next section, this argument applies directly
in the case of FrodoKEM, because the noise expression nicely
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Algorithm GenO ( ):
1: 𝑠𝑑 ←$SD
2: A← O(𝑠𝑑)
3: s, e←$B𝑘
4: t← As + e
5: 𝑝𝑘 ← pk_encd(t, 𝑠𝑑)
6: 𝑠𝑘 ← sk_encd(s)
7: return (𝑝𝑘, 𝑠𝑘)

Algorithm EncO (𝑝𝑘,𝑚):
1: (t, 𝑠𝑑) ← pk_decd(𝑝𝑘)
2: A← O(𝑠𝑑)
3: r, e1 ←$B𝑘
4: 𝑒2 ←$B
5: u← A⊤r + e1
6: 𝑣 ← ⟨t, r⟩ +𝑒2 +m_encd(𝑚)
7: 𝑐 ← c_encd(u, 𝑣)
8: return 𝑐

Algorithm DecO (𝑠𝑘, 𝑐):
1: s← sk_decd(𝑠𝑘)
2: (u, 𝑣) ← c_decd(𝑐)
3: 𝑚 ← m_decd(𝑣 − ⟨s, u⟩)
4: return𝑚

Figure 2: Abstract specification of K-PKE.

Game CORML-KEM:
1: 𝑠𝑑 ←$SD
2: s, e←$B𝑘
3: r, e1 ←$B𝑘
4: 𝑒2 ←$B
5: A← O(𝑠𝑑)
6: t← As + e
7: 𝑝𝑘 ← pk_encd(t, 𝑠𝑑)
8: 𝑠𝑘 ← sk_encd(s)
9: 𝑚 ←$AO (𝑝𝑘, 𝑠𝑘)
10: u← A⊤r + e1
11: 𝑣 ← ⟨t, r⟩ + 𝑒2 +m_encd(𝑚)
12: (c𝑢 , 𝑐𝑣) ← c_decd(c_encd(u, 𝑣)) − (u, 𝑣)
13: 𝑛̃ ← ⟨e, r⟩ − ⟨s, e1⟩ − ⟨s, c𝑢⟩ + 𝑒2 + 𝑐𝑣
14: return ∥𝑛̃∥∞ > ⌊𝑞/4⌋ − 1

Game CORheuristic
ML-KEM:

1:
2: s, e←$B𝑘
3: r, e1 ←$B𝑘
4: 𝑒2 ←$B
5:
6:
7:
8:
9:
10: u←$U(𝑅𝑘𝑞 )
11: 𝑣 ←$U(𝑅𝑞)
12: (c𝑢 , 𝑐𝑣) ← c_decd(c_encd(u, 𝑣)) − (u, 𝑣)
13: 𝑛̃ ← ⟨e, r⟩ − ⟨s, e1⟩ − ⟨s, c𝑢⟩ + 𝑒2 + 𝑐𝑣
14: return ∥𝑛̃∥∞ > ⌊𝑞/4⌋ − 1

Figure 3: Rearranged correctness experiment for ML-KEM (left).

Heuristic approximation (right)

decomposes into summations and products of values independently
sampled from distributions with small support. However, in the
case of ML-KEM there is a problem: the distribution of the noise is
affected by c𝑢 and 𝑐𝑣 , which break this convenient behavior of the
noise expression. We now consider three alternatives to addressing
this problem.

3.2.1 Heuristic approximation. The solution proposed in [11] and
used in the Kyber submission to the NIST competition simply as-
sumes that one can take the probability of the event defined in the
experiment in Figure 3 (right) as an upper-bound for the correctness
error. The assumption here is that (u, 𝑣) are taken to be values sam-
pled uniformly at random and independently from everything else
in the noise expression. This immediately allows brute-forcing the
probability computation: what is crucial here is that the distribution
of the error introduced by rounding each ciphertext coefficient is
independent from other coefficients, which allows deriving a simple
(computable) description of the final noise distribution.

Justifying that this assumption is reasonable seems, at first sight,
to follow from the MLWE problem: in fact, in the security proof
we described above, (u, 𝑣) and shown to be computationally close
to uniform after the two game hops we described above. However,
the same game-hopping reasoning does not directly apply here: to
transform the COR experiment we would need to build a reduction
B from MLWE, and this algorithm would need to 1) provide the
secret key to the adversary, and 2) construct its guess based on
whether the COR experiment would return true or false. We note
that, not only doesB not know the secret key s to give toA, but also
point 2) implies computing the noise expression explicitly using
the secret key s plus all ephemeral noise values not revealed by
the MLWE experiment. In Section 5 we explain how we obtain a
formally verified computed bound for the heuristic explained above
that confirms the accuracy of the claims in [11]. We conclude this
section on how one could provably bound the probability above
without the heuristic.

3.2.2 Removing the adversary. The discussion above shows that,
unless one removes the need to provide adversaryA with the secret
key, there is little hope of relying on the MLWE assumption in this

Game COR1
ML-KEM:

1: 𝑠𝑑 ←$SD
2: s, e←$B𝑘
3: r, e1 ←$B𝑘
4: 𝑒2 ←$B
5: A← O(𝑠𝑑)
6: u← A⊤r + e1
7: c𝑢 ← c_decd(c_encd(u)) − u
8: 𝑛̃1 ← ⟨e, r⟩ − ⟨s, e1⟩ + 𝑒2
9: 𝑛̃2 ← ⟨s, c𝑢⟩
10: return ∥𝑛̃1−𝑛̃2∥∞ > ⌊𝑞/4⌋−1−𝑡max

𝑐𝑣

Game COR2
ML-KEM:

1: s←$B𝑘
2: u←$U(𝑅𝑘𝑞 )
3: c𝑢 ← c_decd(c_encd(u))−u
4: 𝑛̃2 ← ⟨s, c𝑢⟩
5: return ∥𝑛̃2∥∞ > 𝑡c𝑢

Figure 4: Removing the adversary (left). Provable bound un-

der MLWE (right).

setting. However, it is clear that the adversary’s influence in the
outcome of the experiment is limited to choosing𝑚, so one can just
consider the worst case value of 𝑐𝑣 , i.e. the smallest integer 𝑡max

𝑐𝑣
such that

Pr[CORML-KEM : ∥𝑐𝑣 ∥∞ > 𝑡max
𝑐𝑣
] = 0

And redefining the experiment to output ∥𝑛̃′∥∞ > ⌊𝑞/4⌋ − 1− 𝑡max
𝑐𝑣

,
where

𝑛̃′ := ⟨e, r⟩ − ⟨s, e1⟩ − ⟨s, c𝑢⟩ + 𝑒2

We show the resulting game COR1
ML-KEM in Figure 4 (left)9. Clearly,

it is straightforward to prove that upperbounding the probability
that the (reduced) noise threshold is reached in this new experiment
also yields an upper-bound for the original experiment and there-
fore for the correctness of the K-PKE. We note that one can still
not immediately justify that u can be assumed to be uniform under
MLWE: a reduction from MLWE would still need to decide whether
the noise threshold is exceeded in order to produce a guess, and this
implies explicitly computing 𝑛̃′. Nevertheless, it is still interesting
to assess how much is lost by max-ing out the adversary’s influence
in the bound, so we also consider this case in Section 5.10

9We split the noise expression of 𝑛̃′ into two sub-expressions, because this is useful
for the discussion that follows.
10To be precise, this heuristic bound can be defined in terms of the experiment in
Figure 4 (right), considering the event returned by experiment Figure 4 (left).
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3.2.3 A provable bound. To obtain a (sub-optimal) provable bound,
we introduce two noise thresholds 𝑡 and 𝑡c𝑢 , where the latter is
allocated to the term depending on c𝑢 and the former to the re-
maining terms in the noise expression. Clearly, setting 𝑡 + 𝑡c𝑢 =

⌊𝑞/4⌋ − 1 − 𝑡max
𝑐𝑣

, the probability that the experiment returns true
can be upper-bounded by taking the union bound as follows:

Pr[COR1
ML-KEM : ⊤] ≤ Pr[COR1

ML-KEM : ∥𝑛̃1 ∥∞ > 𝑡 ] +

Pr[COR1
ML-KEM : ∥𝑛̃2 ∥∞ > 𝑡c𝑢 ] .

In other words, we can analyze the two events independently.
Furthermore, the first probability corresponding to 𝑛̃1 is already in
a form that can be computed by exhaustive evaluation: and note
that this intuitively corresponds to the probability of a decryption
error if no rounding was used by ML-KEM. On the other hand, the
term corresponding to 𝑛̃2 can now be justified using MLWE: we
introduce an additional experiment COR2

ML-KEM in Figure 4 (right)
and prove that a simple reduction to MLWE can be used to justify
that:

| Pr[COR1
ML-KEM : ∥𝑛̃2 ∥∞ > 𝑡c𝑢 ] −

Pr[COR2
ML-KEM : ∥𝑛̃2 ∥∞ > 𝑡c𝑢 ] | ≤ 𝜖LWE .

The reduction is now trivial, since it only needs to generate s
itself to check if an error occurred. Finally, we can use COR2

ML-KEM
to brute-force the probability of exceeding threshold 𝑡c𝑢 , with the
guarantee that any error significant introduced by the approxima-
tion would imply an attack on MLWE:

Pr[COR1
ML-KEM : ⊤] ≤ Pr[COR1

ML-KEM : ∥𝑛̃1 ∥∞ > 𝑡 ] +

Pr[COR2
ML-KEM : ∥𝑛̃2 ∥∞ > 𝑡c𝑢 ] + 𝜖LWE .

Note that this provable bound comes at a cost: we are over-
approximating the decryption error by declaring the adversary the
winner whenever noise terms, which could cancel each-other out
in the full noise expression, exceed individually a partial threshold.
We will see the impact in Section 5. Another way to interpret this
bound is the following: we can statistically bound the error when no
rounding is used, so we exclude this possibility with a conservative
threshold. Then, the only way that an error could occur is caused
by the rounding component and we are able to use the MLWE
assumption to formally exclude this possibility. In this analysis
we lose precision because, clearly, the summation of both noise
components could still be small enough not to cause an error, even
if one of them exceeds its threshold.

4 Analysis of FrodoKEM PKE

We now turn our attention to FrodoKEM PKE. We proceed in the
same way as we did for ML-KEM, first introducing the abstract spec-
ification over which we conducted the analysis, and then describing
the security and correctness proofs. The main difference to ML-
KEM is that, here, we can present a security proof that goes down
to the standard LWE problem and, most importantly, we can give
a functional correctness proof that doesn’t require any heuristic
approximations (except for the ROM) and yields a machine-checked
proof that the PKE decryption error probability is bound by the
numbers claimed by the designers of FrodoKEM. We believe that,

Algorithm GenO ( ):
1: 𝑠𝑑 ←$SD
2: A← O(𝑠𝑑)
3: S←$M𝑛×𝑛̄

X
4: E←$M𝑚×𝑛̄

X
5: B← AS + E
6: 𝑝𝑘 ← pk_encd(B, 𝑠𝑑)
7: 𝑠𝑘 ← sk_encd(S)
8: return (𝑝𝑘, 𝑠𝑘)

Algorithm EncO (𝑝𝑘,𝑚):
1: (B, 𝑠𝑑) ← pk_decd(𝑝𝑘)
2: A← O(𝑠𝑑)
3: S′ ←$M𝑚̄×𝑚

X
4: E′ ←$M𝑚̄×𝑛

X
5: E′′ ←$M𝑚̄×𝑛̄

X
6: U← S′A + E′
7: V← S′B + E′′ +m_encd(𝑚)
8: 𝑐 ← c_encd(U,V)
9: return 𝑐

Algorithm DecO (𝑠𝑘, 𝑐):
1: S← sk_decd(𝑠𝑘)
2: (U,V) ← c_decd(𝑐)
3: 𝑚 ← m_decd(V − US)
4: return𝑚

Figure 5: Abstract specification of FrodoKEM PKE.

even though these observations are folklore knowledge in the com-
munity, it is interesting to highlight the fact that there are provable
security costs inherent to the introduction of optimizations in the
design of post-quantum schemes. As before, all the results stated
in this section have been machine-checked in EasyCrypt.

4.0.1 The specification. The specification is given in Figure 5. We
follow very much the same approach as for ML-KEM in model-
ing the encoding and decoding operations, and the introduction
of the random oracle to sample A. The main difference is the use
of a general theory for matrices that allows fixing the dimensions
dynamically, rather than working with hardwired dimensions in
the type. This allows us to reason about the relations between vari-
ous LWE definitions and reductions involving matrices of different
dimensions, as well as distributions over matrices of different di-
mensions, in a unified context. Note in the figure the use ofM𝑎×𝑏

X
to denote the lifting of a distribution over field elements X to ma-
trices of dimension 𝑎 × 𝑏. Again, the encoding and decoding of
public and secret keys is irrelevant for our results and is treated as
an abstract bijection. Moreover, for FrodoKEM, the encoding and
decoding of ciphertexts is also a bijection, so the only encoding/de-
coding operators that need to be taken into consideration for the
correctness bound are the ones applied to the message.

4.1 Security analysis

We have formally verified a security proof of the FrodoKEM PKE.
The novelty here compared to prior machine-checked security
proofs for post-quantum PKEs is pushing the reduction down to
standard LWE, relying on the fact that we are assuming the matrix
A to be produced by a random oracle. The proof is carried out in
the random oracle model in three steps.

4.1.1 From LWE to Matrix LWE.. We first define the standard LWE
problem and the Matrix LWE problem. Both provide the adversary
with a challenge (A,B), and the adversary must guess whether this
challenge comes from a real or an ideal distribution. In the real
distribution, the challenge is constructed as B = AS + E where A, S
and E are matrices over some ring 𝑅𝑞 . Matrix A is sampled from
the uniform distribution, whereas S and E are sampled from some
arbitrary distributionX lifted to the appropriate matrix dimensions.
In the ideal distribution A and B are sampled independently and
uniformly at random. For the Matrix LWE problem, we have A ∈
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𝑅𝑚×𝑛𝑞 , S ∈ 𝑅𝑛×𝑛̄𝑞 , and B, E ∈ 𝑅𝑚×𝑛̄𝑞 . In the standard LWE problem
we have 𝑛 = 1, so S, B and E are column vectors. We prove the
following theorem:

Theorem 4.1. For every adversary A attacking the Matrix LWE

problem, there exists an adversary B such that:

Pr[LWE𝑚,𝑛,𝑛̄

X (A) ⇒ 1 |𝑏 = 1] − Pr[LWE𝑚,𝑛,𝑛̄

X (A) ⇒ 1 |𝑏 = 0] ≤

𝑛̄ · (Pr[LWE𝑚,𝑛,1
X (B) ⇒ 1 |𝑏 = 1] − Pr[LWE𝑚,𝑛,1

X (B) ⇒ 1 |𝑏 = 0] )

The proof follows a hybrid argument, where at each step one of
the columns of the Matrix LWE challenge is flipped from the real
distribution to the ideal distribution. This proof, which is straight-
forward on paper, required some effort to machine check. Notably,
we needed to develop a general theory of distributions over ma-
trices that permits reasoning about composing distributions over
submatrices. Once this library was in place, we first re-expressed
the Matrix LWE assumption as an experiment that samples the
column vectors of the challenge matrix B in a while loop, one at a
time—the new library allowed us to prove equivalence by induction.
From that point on, we relied on the EasyCrypt libraries for general
hybrid arguments, with extra support from the PROM theory when
we needed to argue that the crucial 𝑖-th sample involved in a hybrid
step could be pre-sampled outside of the loop—this is needed to
construct a reduction to LWE for the 𝑖-th step: the challenge sample
is given upfront, and then needs to be programmed into the 𝑖-th
loop iteration.

4.1.2 IND-CPA security in the ROM.. The second step in the proof
is to show that the Matrix LWE assumption in the ROM follows
from Matrix LWE assumption in the standard model and therefore
from LWE. This proof step is similar to the one we presented in the
previous section for MLWE. Finally, the IND-CPA security proof for
the FrodoKEM PKE follows the same structure as the one for the
K-PKE, comprising two hops. The first hop uses the Matrix LWE
assumption (in the ROM) to justify sampling matrix B in the public
key as a uniform matrix. The second hop uses the Matrix LWE
assumption (in the ROM) to justify making the ciphertext uniform.
By showing that the adversary’s advantage in the final game is 0,
and plugging in the previous results on Matrix LWE, we obtain the
following theorem for FrodoKEM.

Theorem 4.2. The FrodoKEM PKE is IND-CPA secure under the

LWE assumption in the Random Oracle Model. More precisely, for

every adversary A against FrodoKEM, there exist adversaries B1
and B2 such that:

Pr[IND-CPARO
FrodoKEM

(A) ⇒ 1 |𝑏 = 1] −
Pr[IND-CPARO

FrodoKEM
(A) ⇒ 1 |𝑏 = 0] ≤

𝑛̄ · (Pr[LWE𝑚,𝑛,1
X (B1 ) ⇒ 1 |𝑏 = 1] −

Pr[LWE𝑚,𝑛,1
X (B1 ) ⇒ 1 |𝑏 = 0] )+

𝑚̄ · (Pr[LWE𝑚,𝑛+𝑛̄,1
X (B2 ) ⇒ 1 |𝑏 = 1] −

Pr[LWE𝑚,𝑛+𝑛̄,1
X (B2 ) ⇒ 1 |𝑏 = 0] )

Again, although the proof is straightforward on paper and con-
ceptually identical to the proof for the K-PKE, there were some
machine-checking challenges we needed to overcome in order to
conclude it. In particular, the second hop in the security proof re-
quires again to reason about the distributions of sub-matrices: the

Game CORprovable
FrodoKEM:

1: S←$M𝑛×𝑛̄
X

2: E←$M𝑚×𝑛̄
X

3: S′ ←$M𝑚̄×𝑚
X

4: E′ ←$M𝑚̄×𝑛
X

5: E′′ ←$M𝑚̄×𝑛̄
X

6: (cU, cV) ← c_decd(c_encd(U,V)) − (U,V)
7: N← S′E − E′S + E′′
8: return ∃𝑖 𝑗,¬(−𝑞/2𝐵+1 ≤ N[𝑖, 𝑗] < 𝑞/2𝐵+1)

Figure 6: Provable statistical bound for FrodoKEM

public key (A,B) is now seen as a monolythic LWE public matrix
[AB], so one must reason compositionally about the distribution
of the Matrix LWE challenge, when proving that the reduction
matches the distribution of the security games over which the
hop is being carried out—in these games A and B are constructed
separately.

4.2 Correctness Analysis

We carry out our analysis of the FrodoKEM PKE correctness in
pretty much the same way as was presented for ML-KEM. However,
in this case, the analysis is much simpler. Indeed, a simple algebraic
argument allows us to show that the experiment in Figure 6 pro-
vides a provable upper-bound for the failure probability in Frodo
KEM, for any adversary. Indeed, the absence of any compression
in ciphertexts gives us a nice cancellation in the decryption pro-
cess, ending up with an error distribution that can be characterized
based only on the distributions of the noise matrices. This allows
us to formally connect the probability of a decryption failure with
a machine-checked computed probability bound for this statistical
event, as we will describe in the next section.

5 Computing formally-verified upper-bounds

In order to provide a machine-checked computation of an upper
bound for each of the statistical events defined in Section 3 and
Section 4, three steps are needed:

(1) Prove that the statistical event can be upper-bounded using a
union bound and, in some cases, reducing the problem to the
probability that a single integer modulo 𝑞 is within a prescribed
range. I.e., for ML-KEM we need to consider only the distribu-
tion of one polynomial coefficient, and in FrodoKEM we need
only consider the distribution of one matrix entry.

(2) Prove that the probability above can be computed using an
explicit functional formula over the reals, which essentially
represents the construction of the probability mass function,
followed by the computation of the tail probability.

(3) Extract the specification obtained in EasyCrypt to an OCaml
program and execute it to compute the probability upper bound.
One of the current limitations of our work is that this step is
not done automatically: we have carefully crafted an OCaml
program that syntactically closely matches the EasyCrypt spec-
ifications (with some caveats described below) and leave it as a
direction for future work to automate this process.

We now describe how we achieve these goals.
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5.1 Modular reasoning about distributions

Our formalization starts with a few basic definitions of distribution
combiners. Throughout our formal development we consider only
lossless distributions, where the summation of the probabilities of all
values in the support adds up to 1. When performing approximate
computations, this property may, of course, not be preserved.

Let D𝑖 , for 𝑖 ∈ 1, 2, . . . denote arbitrary distributions over a
ring 𝑅. Then we can define the distributions induced by addition,
subtraction, multiplication and inner products as

D1 ⊕ D2 := {𝑎 + 𝑏 |𝑎 ←$D1;𝑏 ←$𝐷2}
D1 ⊖ D2 := {𝑎 − 𝑏 |𝑎 ←$D1;𝑏 ←$𝐷2}
D1 ⊗ D2 := {𝑎 · 𝑏 : 𝑎 ←$D1;𝑏 ←$𝐷2}

⟨D1,D2⟩𝑛 :=

{
𝑛∑︁
𝑖=1

a𝑖 · b𝑖 : a←$D𝑛
1 ; b←$𝐷𝑛

2

}
⟨D1,D2⟩I𝑛 :=

{
𝑛∑︁
𝑖=1
−1𝑖∈I · a𝑖 · b𝑖 : a←$D𝑛

1 ; b←$𝐷𝑛
2

}

Here, the last distribution is a generalization of the inner product,
where some terms are added and other terms are subtracted. This
distribution is useful to describe multiplication in the polynomial
ring underlying ML-KEM.

We note that, independently of the cardinality of the ring, if
distributionsD1 andD2 have small enough support, then the prob-
ability mass functions of the distributions resulting from a small
number of applications of these combiners can be computed by
exhaustive evaluation. In particular, this is the case whenD𝑖 is one
of the following distributions:

(1) The binomial distribution B over Z𝑞 as used in all the vari-
ants of ML-KEM.

(2) The distribution of the rounding error resulting from round-
ing a uniform element in Z𝑞 to a smaller modulus, required
to analyze the probability of error in all of the ML-KEM
variants.

(3) The distribution of the noise X over Z𝑞 used in all of the
FrodoKEM variants.

We first proved the following general result in EasyCrypt, for any
ring and any D1 and D2:

⟨D1,D2⟩𝑛 =

𝑛⊕
1
D1 ⊗ D2

This result permits computing the distribution of an inner product
using a standard double and add algorithm, starting from the prob-
ability mass function of D1 ⊗ D2 and computing the

⊕
combiner

𝑂 (lg𝑛) times.
We also define a restricted class of distributions, called good,

if they satisfy the following two requirements, which intuitively
mean that the distribution is symmetric and centered around zero

and, furthermore, that zero is not the only element in the support:11

good(D) ⇒
{

Pr[𝑥 = 0|𝑥 ←$D] < 1
∀𝑐, Pr[𝑥 = 𝑐 |𝑥 ←$D] = Pr[𝑥 = −𝑐 |𝑥 ←$D] .

Note that both B and X mentioned above satisfy this property,
which we prove in EasyCrypt, but the distribution of rounding
errors in ML-KEM does not.

The following property is straightforward to prove in EasyCrypt
for any ring:

good(D2) ⇒ D1 ⊕ D2 = D1 ⊖ D2

good(D1) ⇒ good(D2) ⇒ good(D1 ⊕ D2)

Furthermore, if working over a field, which is the case of Z𝑞 in
ML-KEM (but not in FrodoKEM) we prove that, for any I and any
𝑛, have that:

good(D1) ⇒ good(D2) ⇒ ⟨D1,D2⟩𝑛 = ⟨D1,D2⟩I𝑛
good(D1) ⇒ good(D2) ⇒ good(⟨D1,D2⟩𝑛)

The existence of multiplicative inverses for all non-zero elements
permits showing that multiplication preserves the good property,
and the result then follows by induction.

Equipped with these general results, we can now look at how
they permit proving the correctness of simple and efficiently com-
putable formulas for the probability bounds defined in Section 3
and Section 4.

5.2 When all noise coefficients are alike

5.2.1 ML-KEM without rounding. The most elegant result can be
established for the probability defined in Section 3 as

Pr[COR1
ML-KEM : ∥𝑛̃1∥∞ > ⌊𝑞/4⌋ − 1 − 𝑡max

𝑐𝑣
− 𝑡c𝑢 ]

We recall that this is intuitively the probability that the noise ex-
pression in ML-KEM exceeds a threshold 𝑡 , if one does not consider
the rounding noise. The noise expression in this case is given by:

𝑛̃1 := ⟨e, r⟩ − ⟨s, e1⟩ + 𝑒2

Here, e, r, and s are vectors of polynomials of size 𝑘 , where each
polynomial has 256 coefficients. 𝑒2 and 𝑛̃1 are each a single polyno-
mial. Each coefficient in each of the input polynomials is sampled
independently at random from the binomial distribution B. Using
the general results above we can prove the following theorem.

Theorem 5.1. The distribution of each coefficient of 𝑛̃1 is given by

⟨B,B⟩256𝑘 ⊕ ⟨B,B⟩256𝑘 ⊕ B

Sketch. We first consider the operations over the ML-KEM
polynomial ring. Addition is done coefficient-wise, so one can easily
propagate the good property. Multiplication in the polynomial ring
can be defined, for each coefficient of the result, as a generalized
inner product over the coefficients. More precisely, if we see two
polynomials 𝑎 and 𝑏 as vectors of coefficients of size 256, and we

11This latter requirement ensures that we are actually working with non-trivial noise
distributions throughout the computation. It was recently pointed out to us that this
requirement, although intuitive, may be unnecessarily strong if the goal is only to
simplify the final probability expressions. Removing it would simplify the proofs of
preservation of good and may allow deriving more general results, e.g., for commu-
tative rings, that can be important for other use cases. This is not relevant for our
examples, but the adaptation is simple and will be considered in future work.
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slightly abuse notation, it is well known that one can write the
formula for coefficient 𝑖 of the product as:

(𝑎 · 𝑏)𝑖 = ⟨𝑎, 𝑏⟩I256 for I = {𝑘 > 𝑖 | 𝑘 ∈ [0..256)}
The EasyCrypt proof relies on this fact and the goodness of B to
derive that a coefficient of the product of two polynomials sampled
from B256 is given by ⟨B,B⟩256. The proof, for a fixed 𝑖 , is by
induction on the summation that builds the coefficient value and
relies on the general properties of distributions given above. A
second inductive proof over 𝑘 allows us to use the properties we
established for ring addition and multiplication and extend the
result to vectors of polynomials. Note that the final expression does
not use ⊖ at all, which is possible due to the propagation of the
good property throughout the whole computation. □ □

The above result has the nice property that the distribution of all
noise coefficients is the same. This means that one can use a union
bound and derive that:

Pr[COR1
ML-KEM : ∥𝑛̃1∥∞ > 𝑡] ≤

256 · Pr[ |𝑐 | > 𝑡 | 𝑐 ←$ ⟨B,B⟩256𝑘 ⊕ ⟨B,B⟩256𝑘 ⊕ B ]

where 𝑡 = ⌊𝑞/4⌋ − 1 − 𝑡max
𝑐𝑣
− 𝑡c𝑢 . (1)

5.2.2 FrodoKEM.. The case of FrodoKEM is similar to the proof
above, with the important caveat that we are working over two-
dimensional structures. For our machine-checked proof this intro-
duces additional complexity, so we developed a theory of distribu-
tions over matrices that permits seeing distributions over matrices
as distributions over lists. Using this framework, we proved a result
that is the analogue of the one presented above for the ML-KEM
polynomial ring, but expressed over the ring of matrices used by
FrodoKEM. Consider the expression for the noise matrix we ob-
tained in Section 4:

N := S′E − E′S + E′′

Here S′ is a matrix of dimensions 𝑛 × 𝑛, E has dimensions 𝑛 × 𝑛, E′
has dimensions 𝑛×𝑛, S has dimensions 𝑛×𝑛 and E′′ has dimensions
𝑛 × 𝑛.12 We prove the following theorem:

Theorem 5.2. The distribution of each coefficient of N is given by

⟨X,X⟩𝑛 ⊖ ⟨X,X⟩𝑛 ⊕ X

The proof is similar in structure to the one presented for the
ML-KEM expression, but conceptually simpler because matrix mul-
tiplication can be expressed directly using simple (rather than gen-
eralized) inner products. We cannot, however propagate the good
property from the input distribution to the inner product distribu-
tion because we are not working over a field. For this reason the
final expression of the noise distribution still uses ⊖.

Nevertheless, we still obtain the nice result that all noise coeffi-
cients are equally distributed, and so we can derive the following
upper bound for the error probability:

Pr[CORprovable
FrodoKEM : ∃𝑖 𝑗,¬(−𝑞/2𝐵+1 ≤ N[𝑖, 𝑗] < 𝑞/2𝐵+1)] ≤

𝑛2 · Pr[ ¬(−𝑞/2𝐵+1 ≤ 𝑐 < 𝑞/2𝐵+1) | 𝑐 ←$ ⟨X,X⟩𝑛 ⊖ ⟨X,X⟩𝑛 ⊕ X ]
(2)

12In comparison to the general result shown in Section 4 that applies to a PKE based on
LWE using arbitrary, yet consistent, matrix dimensions, we focus here on the concrete
case of FrodoKEM where we have 𝑛 =𝑚 and 𝑚̄ = 𝑛̄.

We note that both the results for ML-KEM and FrodoKEM are
obtained generically, and so we can use them for different variants
of each construction.

5.3 Dealing with rounding in ML-KEM

5.3.1 The provable bound. We now return to ML-KEM and assess
the impact of rounding in the analysis. Let us begin with the isolated
event associated with a rounding error in the ciphertext component
u, that we defined in Section 3 as:

Pr[COR2
ML-KEM : ∥𝑛̃2∥∞ > 𝑡c𝑢 ] where 𝑛̃2 := ⟨s, c𝑢⟩

The distribution of the error is defined as

Dc𝑢 := { c𝑢 | c𝑢 ← c_decd(c_encd(u)) − u; u←$U(𝑅𝑘𝑞 )}

For concreteness, when rounding a coefficient to 10 bits, as in
ML-KEM-768, this distribution can be defined by the following
frequency list

{(−2, 128), (−1, 1024), (0, 1024), (1, 1024), (2, 129)}

where the first element in each pair represents the element inZ𝑞 and
the second represents the number of occurrences. Probabilities can
be obtained by dividing the second elements by 3329. When round-
ing to 11 bits, as inML-KEM-1024we get {(−1, 640), (0, 2048), (1, 641)}.
So, these distributions have small support, but they do not satisfy
the good definition due to the lack of symmetry.

The implication of this is that we cannot simplify the description
of the distribution beyond the statement in the following theorem.

Theorem 5.3. The distribution of coefficient 𝑖 in 𝑛̃2 is given by

⟨B,Dc𝑢 ⟩𝑘 (𝑖+1) ⊖ ⟨B,Dc𝑢 ⟩𝑘 (255−𝑖 )

The machine-checked proof is tedious, as it requires reasoning
about the associativity of ⊕ and ⊖ when applied to general distri-
butions. Using this property we first aggregate the terms which are
added and those which are subtracted in each ring multiplication,
and then aggregate them again across the inner products of vectors
s and c𝑢 of size 𝑘 . The resulting probability distribution now de-
pends on the coefficient index, which means that the computation
of the bound cannot be simplified beyond the following summation
over all coefficients:

Pr[COR2
ML-KEM : ∥𝑛̃2∥∞ > 𝑡c𝑢 ] ≤∑255

𝑖=0 Pr[ |𝑐 | > 𝑡c𝑢 | 𝑐 ←$ ⟨B,Dc𝑢 ⟩𝑘 (𝑖+1) ⊖ ⟨B,Dc𝑢 ⟩𝑘 (255−𝑖 ) ]
(3)

The above bound, combined with the one we obtained in the
previous section and stated in Equation (1) allows us to obtain a
provably secure correctness bound for ML-KEM under the MLWE
assumption, as discussed in Section 3. However, even optimizing
for the most favorable 𝑡c𝑢 this bound is significantly worse than
the heuristic approximations that we will discuss next.
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5.3.2 The heuristic bounds. The two heuristic bounds we consider
are defined as follows.

Pr[CORheuristic
ML-KEM : ∥𝑛̃∥∞ > ⌊𝑞/4⌋ − 1] (4)

Pr[COR1
ML-KEM : ∥𝑛̃′∥∞ > ⌊𝑞/4⌋ − 1 − 𝑡max

𝑐𝑣
] (5)

where 𝑛̃ := ⟨e, r⟩ − ⟨s, e1 + c𝑢⟩ + 𝑒2 + 𝑐𝑣

𝑛̃′ := ⟨e, r⟩ − ⟨s, e1 + c𝑢⟩ + 𝑒2

The first one corresponds to assuming that both c𝑢 and 𝑐𝑣 result
from rounding uniform (vectors of) ring elements, as is done in
the original Kyber analysis [11]. In the second one we make the
assumption only for c𝑢 and max-out the 𝑐𝑣 component. The formu-
las we obtain for the noise expressions are given by the following
theorems.

Theorem 5.4. The (heuristic approximation) of the distribution of

coefficient 𝑖 in 𝑛̃ is given by

⟨B,B⟩256𝑘⊖(⟨B,B⊕Dc𝑢 ⟩𝑘 (𝑖+1) ⊖⟨B,B⊕Dc𝑢 ⟩𝑘 (255−𝑖 ) )⊕B⊕D𝑐𝑣

Theorem 5.5. The (heuristic approximation) of the distribution of

coefficient 𝑖 in 𝑛̃′ is given by

⟨B,B⟩256𝑘 ⊖ (⟨B,B ⊕ Dc𝑢 ⟩𝑘 (𝑖+1) ⊖ ⟨B,B ⊕ Dc𝑢 ⟩𝑘 (255−𝑖 ) ) ⊕ B

Since the distribution depends on the index of the coefficient,
the overall upper bound is obtained by computing the probability
for each 𝑖 and summing all 256 values to obtain the union bound.
In the next section we describe how we perform floating point
computations that are guaranteed to provide an upper bound for
the above mathematical quantities defined in this section. We will
conclude the section and the technical part of the paper with our
numeric results.

5.4 Computing the upper bounds.

Our formal development provides rigorous upper bounds for the
statistical events defined in Section 3 and Section 4. This devel-
opment relies on the explicit construction of discrete probability
distributions and the computation of concrete upper bounds of some
probability events defined on them. However, while EasyCrypt al-
lows for exact computations in theory, performing them in practice
within the tool is not possible.13 To overcome this limitation, we
have mirrored the constructive definitions of these distributions in
OCaml, enabling practical computation of failure probabilities. We
took care to keep the OCaml definitions syntactically as close as
possible to their EasyCrypt counterparts to ensure correctness and
maintain a strong link between the formal proofs and the numerical
computations.

This can be observed in the development provided as supple-
mentary material: the expression that describes how a probability
distribution is constructed in EasyCrypt is easy to match to the
expression that does this in OCaml. We deviated from a strict trans-
lation of the EasyCrypt computations only to introduce two opti-
mizations that are yet unverified: computing the distribution of an

13Exact computations over the reals in general remain out of reach due to constraints
such as the need for unbounded rational numbers. The particular examples that
we handle in this paper might be within reach for a powerful machine with a well
optimized implementation, but we decided to adopt a more pragmatic approach.

𝑛-fold summation of identically and independently distributed val-
ues by a double-and-add algorithm, and using memoization to avoid
the repeated computation of some intermediate results. We plan to
provide EasyCrypt proofs that these optimizations are correct in
the future.

The OCaml code then emulates the required computations over
the reals by using the MPFR library, using a precision of 500 bits and
enforcing a rounding mode toward infinity to emulate the computa-
tions over the reals. This ensures that we always overapproximate
the mass functions of the distributions, thereby guaranteeing that
the computed failure probabilities serve as a valid upper bound.

One other potential direction for future improvements is devel-
oping a robust extraction mechanism for EasyCrypt that enables
efficient computation outside its virtual machine while preserving
formal guarantees. Alternatively, implementing a more efficient
evaluator directly within EasyCrypt could make direct computa-
tions feasible without resorting to extraction to OCaml.

5.5 Results and Discussion

The results of our verified probability computations are given in
Table 1. We show in blue the results that confirm the claims in the
submissions to the NIST post-quantum competition. For FrodoKEM
these correspond to Equation (2) and they are given in the Prov-
able column—this is because we can formally connect them to the
definition of cryptographic correctness required for security proofs
of CCA security. For ML-KEM, the claims in the NIST submissions
correspond to the heuristically simplified distributions (in column
Heur. c𝑢 , 𝑐𝑣 ) captured by the bound in Equation (4), i.e., assuming
that both rounding errors c𝑢 and 𝑐𝑣 result from rounding uniform
elements.

The Provable bounds for ML-KEM have been computed as the
summation of two probabilities given by Equation (1) and Equa-
tion (3). Recall that, in the analysis, we assign a threshold of 𝑡c𝑢 to
the rounding error noise term, and a threshold of ⌊𝑞/4⌋−1−𝑡max

𝑐𝑣
−𝑡c𝑢

to the noise terms unrelated to rounding. To obtain the final bound
we tried all possible values of 𝑡c𝑢 and selected the thresholds that
provided the best upper bounds. We illustrate the observed behav-
ior in Figure 7. The optimal value for 𝑡c𝑢 is 296 in ML-KEM-768.
This corresponds to partial error probabilities of 2−81 and 2−82. The
optimal value for 𝑡c𝑢 is 240 in ML-KEM-1024. This corresponds to
partial error probabilities of 2−96 and 2−97. Finally, we also report
for ML-KEM the heuristic bound that results from max-ing out
𝑐𝑣 and assuming only that c𝑢 is computed over a uniform u. This
corresponds to Equation (5).

Remark. We emphasize that our search for a provable bound
for ML-KEM is not motivated by a belief that previously claimed
bounds are incorrect, but rather to emphasize that, so far and to
the best of our knowledge, they have not been formally justified
under MLWE in a way that is compatible with the definition of
cryptographic correctness required for CCA security proofs. The
intuition of such a proof would be that, if the simplification used to
compute the claimed heuristic bounds was wrong, then one should
be able to break MLWE. We prove that this is indeed the case,
but only when the simplification is done separately on different
noise terms, which has the cost of yielding a significantly worse
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Table 1: Results of probability computations. Provable

bounds: proved in EasyCrypt to apply to the cryptographic

definition of correctness. Heuristic (Heur.) bounds: assume

that the errors introduced by rounding one or both of the

ciphertext elements in ML-KEM are distributed as if one

rounded a uniform value. Values in blue confirm the claims

in the submissions to the NIST competition.

Algorithm Variant Provable Heur. c𝑢 , 𝑐𝑣 Heur. c𝑢
ML-KEM 768 2−80 2−164 2−158

ML-KEM 1024 2−95 2−174 2−169

FrodoKEM 640 2−138 - -
FrodoKEM 976 2−199 - -
FrodoKEM 1344 2−252 - -

Figure 7: Behavior of the provable bound (y axis) computed

for ML-KEM-768 & ML-KEM-1024 for varying values of 𝑡c𝑢
(x axis).

bound.14 The take-awaymessage is that to obtain stronger provably
secure guarantees for the current parameters one needs better
ways to estimate the probability of failure without relying on the
MLWE assumption, i.e., without assuming that rounding is applied
to uniform and independently distributed coefficients.

6 Conclusions and Future Work

Further Discussion. A natural question to ask is whether our
results somehow formally verify the implementations of the Python
scripts that were previously used to compute the correctness bounds
we corroborate. Strictly speaking this is not the case, as there are
several points in which the code we use for computations differs
from the original Python scripts. For example, the original Python
“cleans up” intermediate distributions by removing points with very
low mass, and it performs composition of distribution in different
ways than we do. We did not initially have an intuition on the
potential impact of these differences. However, the fact that our

14Indeed, according to Figure 7, our approach to obtain a justification via MLWE
cannot result in a better upper bound than the one reported in the Provable column
in Table 1.

code produces results that are close enough to the original scripts
give us good indications that they are indeed correct.

In terms of technical challenges, the main hurdle we faced was
in showing that the distribution combiners can be applied to ML-
KEM, where noise expressions are computed via polynomial ring
operations, by leveraging the cyclotomic structure of the ring. In-
deed, deriving that all coefficients in the noise expression follow a
distribution with a simple enough description that allows efficient
computation was, to the best of our knowledge, never proved in a
machine-checked setting.

Take-Away Messages. When we set out to do this work, our
primary motivation was to unambiguously formalize the claims
about correctness errors in ML-KEM, which is clearly the most
practically relevant algorithm. We have achieved this: we have
formalized the (simplified) distribution of noise that is used in
the literature supporting ML-KEM, and we have a mechanized
proof that the reported probability bounds for this distribution are
correct. This is perhaps the most important result for practice in
the immediate future.

Our secondarymotivationwas to clarifywhat the claimed bounds
for ML-KEM mean from a provable security point of view. We do
this in two ways: 1) we highlight the fact that the simplified distribu-
tion above is a heuristic approximation, i.e., that it is an assumption
that currently underlies the security of ML-KEM (this has been
already noted in the literature); and 2) we provide a worst-case
scenario for removing this assumption by using MLWE to simplify
the distribution in a way that is compatible to the provable security
results for ML-KEM. The take-away message from these results is
not that our worst-case bound is the correct one to use for parame-
ter selection, but rather that further investigation is needed on how
to bound the error probability without relying on MLWE.

To further clarify the area we decided to look at FrodoKEM
for two reasons: 1) it is also being endorsed for practical uses by
public entities and 2) its conservative design permits obtaining an
efficiently computable bound for the failure probability that can
be directly plugged into IND-CCA2 security proofs. The second
point, we believe, highlights a tradeoff between optimization and
provable security that in our opinion was not well understood in
the past.

Future Work. There are many interesting directions for future
work. Our current approach to connecting the EasyCrypt develop-
ment to OCaml code requires human intervention (and validation),
and so it is natural to consider either a fully automatic extrac-
tion mechanism, or an EasyCrypt extension that can perform such
computations directly inside the tool. Our techniques should nat-
urally extend to probability bounds computed explicitly for other
lattice-based constructions and ML-DSA in particular. Also, we did
not yet consider Saber because it seems not to have the same im-
mediate practical relevance as ML-KEM and FrodoKEM; however,
formally verifying the correctness bounds for this algorithm may
also raise interesting questions on how to deal with conditional
probabilities when simplifying the analyses of error distributions,
as discussed in [17, 28]. A more exploratory direction is to consider
concrete probability bounds claimed for other families of crypto-
graphic primitives such as code-based and multivariate polynomial
cryptography.
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