
FSBday:

Implementing Wagner’s generalized birthday attack

against the SHA-3⋆ round-1 candidate FSB

Daniel J. Bernstein1, Tanja Lange2, Ruben Niederhagen3, Christiane Peters2,
and Peter Schwabe2 ⋆⋆

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl, peter@cryptojedi.org

3 Lehrstuhl für Betriebssysteme, RWTH Aachen University
Kopernikusstr. 16, 52056 Aachen, Germany

ruben@polycephaly.org

Abstract. This paper applies generalized birthday attacks to the FSB
compression function, and shows how to adapt the attacks so that they
run in far less memory. In particular, this paper presents details of a
parallel implementation attacking FSB48, a scaled-down version of FSB
proposed by the FSB submitters. The implementation runs on a cluster of
8 PCs, each with only 8GB of RAM and 700GB of disk. This situation is
very interesting for estimating the security of systems against distributed
attacks using contributed off-the-shelf PCs.
Keywords: SHA-3, Birthday, FSB – Wagner, not much Memory

1 Introduction

The hash function FSB [2] uses a compression function based on error-correcting
codes. This paper describes, analyzes, and optimizes a parallelized generalized
birthday attack against the FSB compression function.

This paper focuses on a reduced-size version FSB48 which was suggested as
a training case by the designers of FSB. The attack against FSB48 has been
implemented and carried out successfully, confirming our performance analysis.
Our results allow us to accurately estimate how expensive a similar attack would
be for full-size FSB.

A straightforward implementation of Wagner’s generalized birthday attack
[12] would need 20 TB of storage. However, we are running the attack on 8
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nodes of the Coding and Cryptography Computer Cluster (CCCC) at Technische
Universiteit Eindhoven, which has a total hard-disk space of only 5.5 TB. We
detail how we deal with this restricted background storage, by applying and
generalizing ideas described by Bernstein in [6] and compressing partial results.
We also explain the algorithmic measures we took to make the attack run as
fast as possible, carefully balancing our code to use available RAM, network
throughput, hard-disk throughput and computing power.

We are to the best of our knowledge the first to give a detailed description of
a full implementation of a generalized birthday attack. We have placed all code
described in this paper into the public domain to maximize reusability of our
results. The code can be found at http://www.polycephaly.org/fsbday.

Hash-function design. This paper achieves new speed records for generalized
birthday attacks, and in particular for generalized birthday attacks against the
FSB compression function. However, generalized birthday attacks are still much
more expensive than generic attacks against the FSB hash function. “Generic
attacks” are attacks that work against any hash function with the same output
length.

The FSB designers chose the size of the FSB compression function so that
a particular lower bound on the cost of generalized birthday attacks would be
safely above the cost of generic attacks. Our results should not be taken as any
indication of a security problem in FSB; the actual cost of generalized birthday
attacks is very far above the lower bound stated by the FSB designers. It appears
that the FSB compression function was designed too conservatively, with an
unnecessarily large output length.

FSB was one of the 64 hash functions submitted to NIST’s SHA-3 compe-
tition, and one of the 51 hash functions selected for the first round. However,
FSB was significantly slower than most submissions, and was not one of the 14
hash functions selected for the second round. It would be interesting to explore
smaller and thus faster FSB variants that remain secure against generalized
birthday attacks.

Organization of the paper. In Section 2 we give a short introduction to
Wagner’s generalized birthday attack and Bernstein’s adaptation of this attack
to storage-restricted environments. Section 3 describes the FSB hash function
to the extent necessary to understand our attack methodology. In Section 4 we
describe our attack strategy which has to match the restricted hard-disk space
of our computer cluster. Section 5 details the measures we applied to make
the attack run as efficiently as possible dealing with the bottlenecks mentioned
before. We evaluate the overall cost of our attack in Section 6, and give cost
estimates for a similar attack against full-size FSB in Section 7.

Naming conventions. Throughout the paper we will denote list j on level i as
Li,j . For both, levels and lists we start counting at zero.

Logarithms denoted as lg are logarithms to the base 2.
Additions of list elements or constants used in the algorithm are additions

modulo 2.
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In units such as GB, TB, PB and EB we will always assume base 1024 instead
of 1000. In particular we give 700 GB as the size of a hard disk advertised as
750 GB.

2 Wagner’s Generalized Birthday Attack

The generalized birthday problem, given 2i−1 lists containing B-bit strings, is
to find 2i−1 elements—exactly one in each list—whose xor equals 0.

The special case i = 2 is the classic birthday problem: given two lists con-
taining B-bit strings, find two elements—exactly one in each list—whose xor
equals 0. In other words, find an element of the first list that equals an element
of the second list.

This section describes a solution to the generalized birthday problem due to
Wagner [12]. Wagner also considered generalizations to operations other than
xor, and to the case of k lists when k is not a power of 2.

2.1 The tree algorithm

Wagner’s algorithm builds a binary tree as described in this subsection starting
from the input lists L0,0, L0,1, . . . , L0,2i−1−1 (see Figure 4.1). The speed and
success probability of the algorithm are analyzed under the assumption that
each list contains 2B/i elements chosen uniformly at random.

On level 0 take the first two lists L0,0 and L0,1 and compare their list elements
on their least significant B/i bits. Given that each list contains about 2B/i

elements we can expect 2B/i pairs of elements which are equal on those least
significant B/i bits. We take the xor of both elements on all their B bits and
put the xor into a new list L1,0. Similarly compare the other lists—always two
at a time—and look for elements matching on their least significant B/i bits
which are xored and put into new lists. This process of merging yields 2i−2 lists
containing each about 2B/i elements which are zero on their least significant B/i
bits. This completes level 0.

On level 1 take the first two lists L1,0 and L1,1 which are the results of
merging the lists L0,0 and L0,1 as well as L0,2 and L0,3 from level 0. Compare
the elements of L1,0 and L1,1 on their least significant 2B/i bits. As a result of
the xoring in the previous level, the last B/i bits are already known to be 0, so
it suffices to compare the next B/i bits. Since each list on level 1 contains about
2B/i elements we again can expect about 2B/i elements matching on B/i bits.
We build the xor of each pair of matching elements and put it into a new list
L2,0. Similarly compare the remaining lists on level 1.

Continue in the same way until level i − 2. On each level j we consider the
elements on their least significant (j+1)B/i bits of which jB/i bits are known to
be zero as a result of the previous merge. On level i−2 we get two lists containing
about 2B/i elements. The least significant (i−2)B/i bits of each element in both
lists are zero. Comparing the elements of both lists on their 2B/i remaining bits
gives 1 expected match, i.e., one xor equal to zero. Since each element is the
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xor of elements from the previous steps this final xor is the xor of 2i−1 elements
from the original lists and thus a solution to the generalized birthday problem.

2.2 Wagner in memory-restricted environments

A 2007 paper [6] by Bernstein includes two techniques to mount Wagner’s attack
on computers which do not have enough memory to hold all list entries. Various
special cases of the same techniques also appear in a 2005 paper [4] by Augot,
Finiasz, and Sendrier and in a 2009 paper [9] by Minder and Sinclair.

Clamping through precomputation. Suppose that there is space for lists of
size only 2b with b < B/i. Bernstein suggests to generate 2b·(B−ib) entries and
only consider those of which the least significant B − ib bits are zero.

We generalize this idea as follows: The least significant B − ib bits can have
an arbitrary value, this clamping value does not even have to be the same on all
lists as long as the sum of all clamping values is zero. This will be important if
an attack does not produce a collision. We then can simply restart the attack
with different clamping values.

Clamping through precomputation may be limited by the maximal number
of entries we can generate per list. Furthermore, halving the available storage
space increases the precomputation time by a factor of 2i.

Note that clamping some bits through precomputation might be a good idea
even if enough memory is available as we can reduce the amount of data in later
steps and thus make those steps more efficient.

After the precomputation step we apply Wagner’s tree algorithm to lists
containing bit strings of length B′ where B′ equals B minus the number of
clamped bits. For performance evaluation we will only consider lists on level 0
after clamping through precomputation and then use B instead of B′ for the
number of bits in these entries.

Repeating the attack. Another way to mount Wagner’s attack in memory-
restricted environments is to carry out the whole computation with smaller lists
leaving some bits at the end “uncontrolled”. We then can deal with the lower
success probability by repeatedly running the attack with different clamping
values.

In the context of clamping through precomputation we can simply vary the
clamping values used during precomputation. If for some reason we cannot clamp
any bits through precomputation we can apply the same idea of changing clamp-
ing values in an arbitrary merge step of the tree algorithm. Note that any solution
to the generalized birthday problem can be found by some choice of clamping
values.

Expected number of runs. Wagner’s algorithm, without clamping through
precomputation, produces an expected number of exactly one collision. However
this does not mean that running the algorithm necessarily produces a collision.

In general, the expected number of runs of Wagner’s attack is a function of
the number of remaining bits in the entries of the two input lists of the last
merge step and the number of elements in these lists.
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Assume that b bits are clamped on each level and that lists have length 2b.
Then the probability to have at least one collision after running the attack once
is

Psuccess = 1−

(

2B−(i−2)b − 1

2B−(i−2)b

)22b

,

and the expected number of runs E(R) is

E(R) =
1

Psuccess
. (2.1)

For larger values of B − ib the expected number of runs is about 2B−ib. We
model the total time for the attack tW as being linear in the amount of data on
level 0, i.e.,

tW ∈ Θ
(

2i−12B−ib2b
)

. (2.2)

Here 2i−1 is the number of lists, 2B−ib is approximately the number of runs,
and 2b is the number of entries per list. Observe that this formula will usually
underestimate the real time of the attack by assuming that all computations on
subsequent levels are together still linear in the time required for computations
on level 0.

Using Pollard iteration. If because of memory restrictions the number of
uncontrolled bits is high, it may be more efficient to use a variant of Wagner’s
attack that uses Pollard iteration [8, Chapter 3, exercises 6 and 7].

Assume that L0 = L1, L2 = L3, etc., and that combinations x0 + x1 with
x0 = x1 are excluded. The output of the generalized birthday attack will then
be a collision between two distinct elements of L0 + L2 + · · · .

We can instead start with only 2i−2 lists L0, L2, . . . and apply the usual Wag-
ner tree algorithm, with a nonzero clamping constant to enforce the condition
that x0 6= x1. The number of clamped bits before the last merge step is now
(i− 3)b. The last merge step produces 22b possible values, the smallest of which
has an expected number of 2b leading zeros, leaving B − (i − 1)b uncontrolled.

Think of this computation as a function mapping clamping constants to the
final B− (i− 1)b uncontrolled bits and apply Pollard iteration to find a collision
between the output of two such computations; combination then yields a collision
of 2i−1 vectors.

As Pollard iteration has square-root running time, the expected number of
runs for this variant is 2B/2−(i−1)b/2, each taking time 2i−22b (cmp. (2.2)), so
the expected running time is

tPW ∈ Θ
(

2i−22B/2−(i−1)b/2+b
)

. (2.3)

The Pollard variant of the attack becomes more efficient than plain Wagner
with repeated runs if B > (i+ 2)b.
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3 The FSB Hash Function

In this section we briefly describe the construction of the FSB hash function.
Since we are going to attack the function we omit details which are necessary
for implementing the function but do not influence the attack. The second part
of this section gives a rough description of how to apply Wagner’s generalized
birthday attack to find collisions of the compression function of FSB.

3.1 Details of the FSB hash function

The Fast Syndrome Based hash function (FSB) was introduced by Augot, Fini-
asz and Sendrier in 2003. See [3], [4], and [2]. The security of FSB’s compression
function relies on the difficulty of the “Syndrome Decoding Problem” from cod-
ing theory.

The FSB hash function processes a message in three steps: First the message
is converted by a so-called domain extender into suitable inputs for the compres-
sion function which digests the inputs in the second step. In the third and final
step the Whirlpool hash function designed by Barreto and Rijmen [5] is applied
to the output of the compression function in order to produce the desired length
of output.

Our goal in this paper is to investigate the security of the compression func-
tion. We do not describe the domain extender, the conversion of the message to
inputs for the compression function, or the last step involving Whirlpool.

The compression function. The main parameters of the compression func-
tion are called n, r and w. We consider n strings of length r which are chosen
uniformly at random and can be written as an r×n binary matrix H . Note that
the matrix H can be seen as the parity check matrix of a binary linear code. The
FSB proposal [2] actually specifies a particular structure of H for efficiency; we
do not consider attacks exploiting this structure.

An n-bit string of weight w is called regular if there is exactly a single 1 in
each interval [(i− 1) nw , i nw − 1]1≤i≤w. We will refer to such an interval as a block.
The input to the compression function is a regular n-bit string of weight w.

The compression function works as follows. The matrix H is split into w
blocks of n/w columns. Each non-zero entry of the input bit string indicates
exactly one column in each block. The output of the compression function is an
r-bit string which is produced by computing the xor of all the w columns of the
matrix H indicated by the input string.

Preimages and collisions. A preimage of an output of length r of one round
of the compression function is a regular n-bit string of weight w. A collision
occurs if there are 2w columns of H —exactly two in each block—which add
up to zero.

Finding preimages or collisions means solving two problems coming from
coding theory: finding a preimage means solving the Regular Syndrome Decod-
ing problem and finding collisions means solving the so-called 2-regular Null-
Syndrome Decoding problem. Both problems were defined and proven to be
NP-complete in [4].
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Parameters. We follow the notation in [2] and write FSBlength for the version
of FSB which produces a hash value of length length. Note that the output of
the compression function has r bits where r is considerably larger than length.

NIST demands hash lengths of 160, 224, 256, 384, and 512 bits, respectively.
Therefore the SHA-3 proposal contains five versions of FSB: FSB160, FSB224,
FSB256, FSB384, and FSB512. We list the parameters for those versions in Ta-
ble 7.1.

The proposal also contains FSB48, which is a reduced-size version of FSB
and the main attack target in this paper. The binary matrix H for FSB48 has
dimension 192×3 ·217; i.e., r equals 192 and n is 3 ·217. In each round a message
chunk is converted into a regular 3 · 217-bit string of Hamming weight w = 24.
The matrix H contains 24 blocks of length 214. Each 1 in the regular bit string
indicates exactly one column in a block of the matrix H . The output of the
compression function is the xor of those 24 columns.

A pseudo-random matrix. In our attack against FSB48 we consider a pseudo-
random matrix H which we constructed as described in [2, Section 1.2.2]: H
consists of 2048 submatrices, each of dimension 192×192. For the first submatrix
we consider a slightly larger matrix of dimension 197 × 192. Its first column
consists of the first 197 digits of π where each digit is taken modulo 2. The
remaining 191 columns of this submatrix are cyclic shifts of the first column.
The matrix is then truncated to its first 192 rows which form the first submatrix
of H . For the second submatrix we consider digits 198 up to 394 of π. Again we
build a 197× 192 bit matrix where the first column corresponds to the selected
digits (each taken modulo 2) and the remaining columns are cyclic shifts of the
first column. Truncating to the first 192 rows yields the second block matrix of
H . The remaining submatrices are constructed in the same way.

We emphasize that this is one possible choice for the matrix H . The attack
described in our paper does not make use of the structure of this particular
matrix. We use this construction in our implementation since it is also contained
in the FSB reference implementation submitted to NIST by the FSB designers.

3.2 Attacking the compression function of FSB48

Coron and Joux pointed out in [7] that Wagner’s generalized birthday attack
can be used to find preimages and collisions in the compression function of FSB.
The following paragraphs present a slightly streamlined version of the attack of
[7] in the case of FSB48.

Determining the number of lists for a Wagner attack on FSB48. A
collision for FSB48 is given by 48 columns of the matrix H which add up to
zero; the collision has exactly two columns per block. Each block contains 214

columns and each column is a 192-bit string.
We choose 16 lists to solve this particular 48-sum problem. Each list entry

will be the xor of three columns coming from one and a half blocks. This ensures
that we do not have any overlaps, i.e., more than two columns coming from
one matrix block in the end. We assume that taking sums of the columns of H
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does not bias the distribution of 192-bit strings. Applying Wagner’s attack in a
straightforward way means that we need to have at least 2⌈192/5⌉ entries per list.
By clamping away 39 bits in each step we expect to get at least one collision
after one run of the tree algorithm.

Building lists. We build 16 lists containing 192-bit strings each being the xor
of three distinct columns of the matrix H . We select each triple of three columns
from one and a half blocks of H in the following way:

List L0,0 contains the sums of columns i0, j0, k0, where columns i0 and j0
come from the first block of 214 columns, and column k0 is picked from the
following block with the restriction that it is taken from the first half of it. Since
we cannot have overlapping elements we get about 227 sums of columns i0 and
j0 coming from the first block. These two columns are then added to all possible
columns k0 coming from the first 213 elements of the second block of the matrix
H . In total we get about 240 elements for L0,0.

We note that by splitting every second block in half we neglect several solu-
tions of the 48-xor problem. For example, a solution involving two columns from
the first half of the second block cannot be found by this algorithm. We justify
our choice by noting that fewer lists would nevertheless require more storage and
a longer precomputation phase to build the lists.

The second list L0,1 contains sums of columns i1, j1, k1, where column i1 is
picked from the second half of the second block of H and j1 and k1 come from
the third block of 214 columns. This again yields about 240 elements.

Similarly, we construct the lists L0,2, L0,3,. . . , L0,15.

For each list we generate more than twice the amount needed for a straight-
forward attack as explained above. In order to reduce the amount of data for
the following steps we note that about 240/4 elements are likely to be zero on
their least significant two bits. Clamping those two bits away should thus yield
a list of 238 bit strings. Note that since we know the least significant two bits
of the list elements we can ignore them and regard the list elements as 190-bit
strings. Now we expect that a straightforward application of Wagner’s attack to
16 lists with about 2190/5 elements yields a collision after completing the tree
algorithm.

Note on complexity in the FSB proposal. The SHA-3 proposal estimates
the complexity of Wagner’s attack as described above as 2r/ir where 2i−1 is the
number of lists used in the algorithm. This does not take memory into account,
and in general is an underestimate of the work required by Wagner’s algorithm;
i.e., attacks of this type against FSB are more difficult than claimed by the FSB
designers.

Note on information-set decoding. The FSB designers say in [2] that Wag-
ner’s attack is the fastest known attack for finding preimages, and for finding
collisions for small FSB parameters, but that another attack— information-set
decoding— is better than Wagner’s attack for finding collisions for large FSB
parameters.
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In general, information-set decoding can be used to find an n-bit string of
weight 48 indicating 48 columns of H which add up to zero. Information-set
decoding will not take into account that we look for a regular n-bit string.
The only known way to obtain a regular n-bit string is running the algorithm
repeatedly until the output happens to be regular. Thus, the running times given
in [2] provide certainly lower bounds for information-set decoding, but in practice
they are not likely to hold.

4 Attack Strategy

In this section we will discuss the necessary measures we took to mount the
attack on our cluster. We will start with an evaluation of available and required
storage.

4.1 How large is a list entry?

The number of bytes required to store one list entry depends on how we represent
the entry. We considered four different ways of representing an entry:

Value-only representation. The obvious way of representing a list entry is as
a 192-bit string, the xor of columns of the matrix. Bits we already know to be
zero of course do not have to be stored, so on each level of the tree the number
of bits per entry decreases by the number of bits clamped on the previous level.
Ultimately we are not interested in the value of the entry—we know already
that in a successful attack it will be all-zero at the end—but in the column
positions in the matrix that lead to this all-zero value. However, we will show
in Section 4.3 that computations only involving the value can be useful if the
attack has to be run multiple times due to storage restrictions.

Value-and-positions representation. If enough storage is available we can
store positions in the matrix alongside the value. Observe that unlike storage re-
quirements for values the number of bytes for positions increases with increasing
levels, and becomes dominant for higher levels.

Compressed positions. Instead of storing full positions we can save storage
by only storing, e.g., positions modulo 256. After the attack has successfully
finished the full position information can be computed by checking which of the
possible positions lead to the appropriate intermediate results on each level.

Dynamic recomputation. If we keep full positions we do not have to store the
value at all. Every time we need the value (or parts of it) it can be dynamically
recomputed from the positions. In each level the size of a single entry doubles
(because the number of positions doubles), the expected number of entries per
list remains the same but the number of lists halves, so the total amount of data
is the same on each level when using dynamic recomputation. As discussed in
Section 3 we have 240 possibilities to choose columns to produce entries of a list,
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so we can encode the positions on level 0 in 40 bits (5 bytes).

Observe that we can switch between representations during computation if
at some level another representation becomes more efficient: We can switch be-
tween value-and-position representation to compressed-positions representation
and back. We can switch from one of the above to compressed positions and we
can switch from any other representation to value-only representation.

4.2 What list size can we handle?

To estimate the storage requirements it is convenient to consider dynamic re-

computation (storing positions only) because in this case the amount of required
storage is constant over all levels and this representation has the smallest mem-
ory consumption on level 0.

As described in Section 3.2 we can start with 16 lists of size 238, each con-
taining bit strings of length r′ = 190. However, storing 16 lists with 238 entries,
each entry encoded in 5 bytes requires 20 TB of storage space.

The computer cluster used for the attack consists of 8 nodes with a storage
space of 700 GB each. Hence, we have to adapt our attack to cope with total
storage limited to 5.5 TB.

On the first level we have 16 lists and as we need at least 5 bytes per list
entry we can handle at most 5.5 · 240/24/5 = 1.1 × 236 entries per list. Some
of the disk space is used for the operating system and so a straightforward
implementation would use lists of size 236. First computing one half tree and
switching to compressed-positions representation on level 2 would still not allow
us to use lists of size 237.

We can generate at most 240 entries per list so following [6] we could clamp
4 bits during list generation, giving us 236 values for each of the 16 lists. These
values have a length of 188 bits represented through 5 bytes holding the positions
from the matrix. Clamping 36 bits in each of the 3 steps leaves two lists of length
236 with 80 non-zero bits. According to (2.1) we thus expect to run the attack
256.5 times until we find a collision.

The only way of increasing the list size to 237 and thus reduce the number
of runs is to use value-only representation on higher levels.

4.3 The strategy

The main idea of our attack strategy is to distinguish between the task of finding
clamping constants that yield a final collision and the task of actually computing
the collision.

Finding appropriate clamping constants. This task does not require storing
the positions, since we only need to know whether we find a collision with a
particular set of clamping constants; we do not need to know which matrix
positions give this collision.
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Whenever storing the value needs less space we can thus compress entries by
switching representation from positions to values. As a side effect this speeds up
the computations because less data has to be loaded and stored.

Starting from lists L0,0, . . . , L0,7, each containing 237 entries we first compute
list L3,0 (see Figure 4.1) on 8 nodes. This list has entries with 78 remaining bits
each. As we will describe in Section 5, these entries are presorted on hard disk
according to 9 bits that do not have to be stored. Another 3 bits are determined
by the node holding the data (see also Section 5) so only 66 bits or 9 bytes of
each entry have to be stored, yielding a total storage requirement of 1152 GB
versus 5120 GB necessary for storing entries in positions-only representation.

We then continue with the computation of list L2,2, which has entries of 115
remaining bits. Again 9 of these bits do not have to be stored due to presorting,
3 are determined by the node, so only 103 bits or 13 bytes have to be stored,
yielding a storage requirement of 1664 GB instead of 2560 GB for uncompressed
entries.

After these lists have been stored persistently on disk, we proceed with the
computation of list L2,3, then L3,1 and finally check whether L4,0 contains at
least one element. These computations require another 2560 GB.

Therefore total amount of storage sums up to 1152 GB + 1664 GB + 2560 GB
= 5376 GB; obviously all data fits onto the hard disk of the 8 nodes.

If a computation with given clamping constants is not successful, we change
clamping constants only for the computation of L2,3. The lists L3,0 and L2,2 do
not have to be computed again. All combinations of clamping values for lists
L0,12 to L0,15 summing up to 0 are allowed. Therefore there are a large number
of valid clamp-bit combinations.

With 37 bits clamped on every level and 3 clamped through precomputation
we are left with 4 uncontrolled bits and therefore, according to (2.1), expect 16.5
runs of this algorithm.

Computing the matrix positions of the collision. In case of success we
know which clamping constants we can use and we know which value in the lists
L3,0 and L3,1 yields a final collision. Now we can recompute lists L3,0 and L3,1

without compression to obtain the positions. For this task we decided to store
only positions and use dynamic recomputation. On level 0 and level 1 this is
the most space-efficient approach and we do not expect a significant speedup
from switching to compressed-positions representation on higher levels. In total
one half-tree computation requires 5120 GB of storage, hence, they have to be
performed one after the other on 8 nodes.

The (re-)computation of lists L3,0 and L3,2 is an additional time overhead
over doing all computation on list positions in the first place. However, this cost
is incurred only once, and is amply compensated for by the reduced data volume
in previous steps. See Section 5.2.
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Fig. 5.1. Micro-benchmarks measuring hard-disk and network throughput.

5 Implementing the Attack

The computation platform for this particular implementation of Wagner’s gen-
eralized birthday attack on FSB is an eight-node cluster of conventional desktop
PCs. Each node has an Intel Core 2 Quad Q6600 CPU with a clock rate of
2.40 GHz and direct fully cached access to 8 GB of RAM. About 700 GB mass
storage are provided by a Western Digital SATA hard disk with 20 GB reserved
for system and user data. The nodes are connected via switched Gigabit Ethernet
using Marvell PCI-E adapter cards.

We chose MPI as communication model for the implementation. This choice
has several virtues:

– MPI provides an easy interface to start the application on all nodes and to
initialize the communication paths.

– MPI offers synchronous message-based communication primitives.
– MPI is a broadly accepted standard for HPC applications and is provided

on a multitude of different platforms.

We decided to use MPICH2 [1] which is an implementation of the MPI 2.0
standard from the University of Chicago. MPICH2 provides an Ethernet-based
back end for the communication with remote nodes and a fast shared-memory-
based back end for local data exchange.

We implemented two micro-benchmarks to measure hard-disk and network
throughput. The results of these benchmarks are shown in Figure 5.1. Note
that we measure hard-disk throughput directly on the device, circumventing
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the filesystem, to reach peak performance of the hard disk. We measured both
sequential and randomized access to the disk.

The rest of this section explains how we parallelized and streamlined Wag-
ner’s attack to make the best of the available hardware.

5.1 Parallelization

Most of the time in the attack is spent on determining the right clamping con-
stants. As described in Section 4 this involves computations of several partial
trees, e.g., the computation of L3,0 from lists L0,0, . . . , L0,7 (half tree) or the
computation of L2,2 from lists L0,8, . . . , L0,11 (quarter tree). There are also com-
putations which do not start with lists of level 0; the computation of list L3,1 for
example is computed from the (previously computed and stored) lists L2,2 and
L2,3.

Lists of level 0 are generated with the current clamping constants. On every
level, each list is sorted and afterwards merged with its neighboring list giving
the entries for the next level. The sorting and merging is repeated until the final
list of the partial tree is computed.

Distributing data over nodes. This algorithm is parallelized by distributing
fractions of lists over the nodes in a way that each node can perform sort and
merge locally on two lists. On each level of the computation, each node contains
fractions of two lists. The lists on level j are split between n nodes according to
lg(n) bits of each value. For example when computing the left half-tree, on level
0, node 0 contains all entries of lists 0 and 1 ending with a zero bit (in the bits
not controlled by initial clamping), and node 1 contains all entries of lists 0 and
1 ending with a one bit.

Therefore, from the view of one node, on each level the fractions of both lists
are loaded from hard disk, the entries are sorted and the two lists are merged.
The newly generated list is split into its fractions and these fractions are sent
over the network to their associated nodes. There the data is received and stored
onto the hard disk. The continuous dataflow of this implementation is depicted
in Figure 5.2.

Presorting into parts. To be able to perform the sort in memory, incoming
data is presorted into one of 512 parts according to the 9 least significant bits
of the current sort range. This leads to an expected part size for uncompressed
entries of 640 MB (0.625 GB) which can be loaded into main memory at once to
be sorted further. The benefit of presorting the entries before storing them is:

1. We can sort a whole fraction, that exceeds the size of the memory, by sorting
its presorted parts independently.

2. Two adjacent parts of the two lists on one node (with the same presort-bits)
can be merged directly after they are sorted.

3. We can save 9 bits when compressing entries to value-only representation.
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Merge. The merge is implemented straightforwardly. If blocks of entries in both
lists share the same value then all possible combinations are generated: specifi-
cally, if a b-bit string appears in the compared positions in c1 entries in the first
list and c2 entries in the second list then all c1c2 xors appear in the output list.

5.2 Efficient implementation

Cluster computation imposes three main bottlenecks:

– the computational power and memory latency of the CPUs for computation-
intensive applications

– limitations of network throughput and latency for communication-intensive
applications

– hard-disk throughput and latency for data-intensive applications

Wagner’s algorithm imposes hard load on all of these components: a large
amount of data needs to be sorted, merged and distributed over the nodes occu-
pying as much storage as possible. Therefore, demand for optimization is primar-
ily determined by the slowest component in terms of data throughput; latency
generally can be hidden by pipelining and data prefetch.

Finding bottlenecks. Our benchmarks show that, for sufficiently large packets,
the performance of the system is mainly bottlenecked by hard-disk throughput
(cmp. Figure 5.1). Since the throughput of MPI over Gigabit Ethernet is higher
than the hard-disk throughput for packet sizes larger than 216 bytes and since
the same amount of data has to be sent that needs to be stored, no performance
penalty is expected by the network for this size of packets.

Therefore, our first implementation goal was to design an interface to the
hard disk that permits maximum hard-disk throughput. The second goal was to
optimize the implementation of sort and merge algorithms up to a level where
the hard disks are kept busy at peak throughput.

Persistent data storage. Since we do not need any caching-, journaling- or
even filing-capabilities of conventional filesystems, we implemented a throughput-
optimized filesystem, which we call AleSystem. It provides fast and direct access
to the hard disk and stores data in portions of Ales. Each cluster node has one
large unformatted data partition sda1, which is directly opened by the AleSys-
tem using native Linux file I/O. Caching is deactivated by using the open flag
O DIRECT: after data has been written, it is not read for a long time and does
not benefit from caching. All administrative information is persistently stored
as a file in the native Linux filesystem an mapped into the virtual address space
of the process. On sequential access, the throughput of the AleSystem reaches
about 90 MB/s which is roughly the maximum that the hard disk permits.

Tasks and threads. Since our cluster nodes are driven by quad-core CPUs, the
speed of the computation is primarily based on multi-threaded parallelization.
On the one side, the receive-/presort-/store, on the other side, the load-/sort-
/merge-/send-tasks are pipelined. We use several threads for sending/receiving
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data and for running the AleSystem. The core of the implementation is given by
five threads which process the main computation. There are two threads which
have the task to presort incoming data (one thread for each list). Furthermore,
sorting is parallelized with two threads (one thread for each list) and for the
merge task we have one more thread.

Memory layout. Given this task distribution, the size of necessary buffers can
be defined. The micro-benchmarks show that bigger buffers generally lead to
higher throughput. However, the sum of all buffer sizes is limited by the size of
the available RAM. For the list parts we need 6 buffers; we need two times 2×8
network buffers for double-buffered send and receive, which results in 32 network
buffers. To presort the entries double-buffered into 512 parts of two lists, we need
2048 ales.

When a part is loaded from disk, its ales are treated as a continuous field
of entries. Therefore, each ale must be completely filled with entries; no data
padding at the end of each ale is allowed. Thus, we must pick a size for the ales
which enables the ales to be completely filled independent of the varying size of
entries over the whole run of the program. Valid sizes of entries are 5, 10, 20,
and 40 bytes when storing positions and 5, 10, 13, and 9 bytes when storing
compressed entries. Furthermore, since we access the hard disk using DMA, the
size of each ale must be a multiple of 512 bytes. A multiple of a full memory
page (4096 bytes) is not mandatory.

For these reasons, the size of one ale must be a multiple of 5× 9× 13× 512.
The size of network packets does not necessarily need to be a multiple of all
possible entry sizes; if network packets happen not to be completely filled we
merely waste some bytes of bandwidth.

In the worst case, on level 0 one list containing 237 entries is distributed over
2 nodes and presorted into 512 parts; thus the size of each part should be larger
than 237/2/512 × 5 bytes = 640 MB. The actual size of each part depends on
the size of the ales since it must be an integer multiple of the ale size.

Finally, we chose a size of 220 · 5 bytes = 5 MB for the network packets
summing up to 160 MB, a size of 5 × 9× 13× 512× 5 = 1497600 bytes (about
1.4 MB) for the ales giving a memory demand of 2.9 GB for 2048 ales, and a
size of 5× 9× 13× 512× 5× 512 = 766771200 bytes (731.25 MB) for the parts
summing up to 4.3 GB for 6 parts. Overall our implementation requires about
7.4 GB of RAM leaving enough space for the operating system and additional
data as stack and the administrative data for the AleSystem.

Efficiency and further optimizations. Using our rough splitting of tasks
to threads, we reach an average CPU usage of about 60% up to 80% peak.
Our average hard-disk throughput is about 40 MB/s. The hard-disk micro-
benchmark (see Figure 5.1) shows that an average throughput between 45 MB/s
and 50 MB/s should be feasible for packet sizes of 1.25 MB. Since sorting is the
most complex task, it should be possible to further parallelize sorting to be able
to use 100% of the CPU if the hard disk permits higher data transfer. We expect
that further parallelization of the sort task would increase CPU data through-
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put on sort up to about 50 MB/s. That should suffice for maximum hard-disk
throughput.

6 Results

We have successfully carried out our FSB48 attack. This section presents (1) our
estimates, before starting the attack, of the amount of time that the attack would
need; (2) measurements of the amount of time actually consumed by the attack;
and (3) comments on how different amounts of storage would have changed the
attack time.

6.1 Cost estimates

Step one. As described before the first major step is to compute a set of clamp-
ing values which leads to a collision. In this first step entries are stored by
positions on level 0 and 1 and from level 2 on list entries consist of values.

Computation of list L3,0 takes about 32h and list L2,2 about 14h, summing
up to 46h. These computations need to be done only once.

The time needed to compute list L2,3 is about the same as for L2,2 (14h),
list L3,1 takes about 4h and checking for a collision in lists L3,0 and L3,1 on
level 4 about another 3.5h, summing up to about 21.5h. The expected value of
repetitions of these steps is 16.5 and and we thus expected them to take about
355h.

Step two. Finally, computing the matrix positions after finding a collision,
requires recomputation with uncompressed lists. We only have to compute the
entries of lists L3,0 and L3,1 until we have found the entry that yields the collision.
In the worst case this computation with uncompressed (positions-only) entries
takes 33h for each half-tree, summing up to 66h.

Total. Overall we expected to find a collision for the FSB48 compression function
using our algorithm and cluster in 467h or about 19.5 days.

6.2 Cost measurements

We ran the code described above on our cluster and were lucky: In step one
we found clamping constants after only five iterations (instead of the expected
16.5). In total the first phase of the attack took 5 days, 13 hours and 20 minutes.

Recomputation of the positions in L3,0 took 1 day, 8 hours and 22 minutes
and recomputation of the positions in L3,1 took 1 day, 2 hours and 11 minutes.
In total the attack took 7 days, 23 hours and 53 minutes.

Recall that the matrix used in the attack is the pseudo-randommatrix defined
in Section 3. We found that matrix positions (734, 15006, 20748, 25431, 33115,
46670, 50235, 51099, 70220, 76606, 89523, 90851, 99649, 113400, 118568, 126202,
144768, 146047, 153819, 163606, 168187, 173996, 185420, 191473 198284, 207458,
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214106, 223080, 241047, 245456, 247218, 261928, 264386, 273345, 285069, 294658,
304245, 305792, 318044, 327120, 331742, 342519, 344652, 356623, 364676, 368702,
376923, 390678) yield a collision.

6.3 Time-storage tradeoffs

As described in Section 4, the main restriction on the attack strategy was the
total amount of background storage.

If we had 10496 GB of storage at hand we could have handled lists of size
238, again using the compression techniques described in Section 4. As described
in Section 4 this would give exactly one expected collision in the last merge step
and thus reduce the expected number of required runs to find the right clamping
constants from 16.5 to 1.58. With a total storage of 20 TB we could have run a
straightforward Wagner attack without compression which would eliminate the
need to recompute two half trees at the end.

Increasing the size of the background storage even further would eventually
allow to store list entry values alongside the positions and thus eliminate the
need for dynamic recomputation. However, the performance of the attack is
bottlenecked by hard-disk throughput rather than CPU time so we don’t expect
any improvement through this measure.

On clusters with even less background storage the computation time will
(asymptotically) increase by a factor of 16 with each halving of the storage size.
For example a cluster with 2688 GB of storage can only handle lists of size 236.
The attack would then require (expected) 256.5 computations to find appropriate
clamping constants.

Of course the time required for one half-tree computation depends on the
amount of data. As long as the performance is mainly bottlenecked by hard-disk
(or network) throughput the running time is linearly dependent on the amount
of data, i.e., a Wagner computation involving 2 half-tree computations with lists
of size 238 is about 4.5 times as fast as a Wagner computation involving 18
half-tree computations with lists of size 237.

7 Scalability Analysis

The attack described in this paper including the variants discussed in Section 6
are much more expensive in terms of time and especially memory than a brute-
force attack against the 48-bit hash function FSB48.

This section gives estimates of the power of Wagner’s attack against the
larger versions of FSB, demonstrating that the FSB design overestimated the
power of the attack. Table 7.1 gives the parameters of all FSB hash functions.

A straightforward Wagner attack against FSB160 uses 16 lists of size 2127

containing elements with 632 bits. The entries of these lists are generated as
xors of 10 columns from 5 blocks, yielding 2135 possibilities to generate the
entries. Precomputation includes clamping of 8 bits. Each entry then requires
135 bits of storage so each list occupies more than 2131 bytes. For comparison,
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Number Size Bits Total

n w r of lists of lists per entry storage Time

FSB48 3× 217 24 192 16 238 190 5 · 242 5 · 242

FSB160 7× 218 112 640 16 2127 632 17 · 2131 17 · 2131

16 (Pollard) 260 630 9 · 264 9 · 2224

FSB224 221 128 896 16 2177 884 24 · 2181 24 · 2181

16 (Pollard) 260 858 13 · 264 13 · 2343

FSB256 23× 216 184 1024 16 2202 1010 27 · 2206 27 · 2206

16 (Pollard) 260 972 14 · 264 14 · 2386

32 (Pollard) 256 1024 18 · 260 18 · 2405

FSB384 23× 216 184 1472 16 2291 1453 39 · 2295 39 · 2295

32 (Pollard) 260 1467 9 · 265 18 · 2618.5

FSB512 31× 216 248 1984 16 2393 1962 53 · 2397 53 · 2397

32 (Pollard) 260 1956 12 · 265 24 · 2863

Table 7.1. Parameters of the FSB variants and estimates for the cost of generalized
birthday attacks against the compression function. Storage is measured in bytes.

the largest currently available storage systems offer a few petabytes (250 bytes)
of storage.

To limit the amount of memory we can instead generate, e.g., 32 lists of size
260, where each list entry is the xor of 5 columns from 2.5 blocks, with 7 bits
clamped during precomputation. Each list entry then requires 67 bits of storage.

Clamping 60 bits in each step leaves 273 bits uncontrolled so the Pollard
variant of Wagner’s algorithm (see Section 2.2) becomes more efficient than the
plain attack. This attack generates 16 lists of size 260, containing entries which
are the xor of 5 columns from 5 distinct blocks each. This gives us the possibility
to clamp 10 bits through precomputation, leaving B = 630 bits for each entry
on level 0.

The time required by this attack is approximately 2224 (see (2.3)). This is
substantially faster than a brute-force collision attack on the compression func-
tion, but is clearly much slower than a brute-force collision attack on the hash
function, and even slower than a brute-force preimage attack on the hash func-
tion.

Similar statements hold for the other full-size versions of FSB. Table 7.1
gives rough estimates for the time complexity of Wagner’s attack without storage
restriction and with storage restricted to a few hundred exabytes (260 entries per
list). These estimates only consider the number and size of lists being a power
of 2 and the number of bits clamped in each level being the same. The estimates
ignore the time complexity of precomputation. Time is computed according to
(2.2) and (2.3) with the size of level-0 entries (in bytes) as a constant factor.

Although fine-tuning the attacks might give small speedups compared to the
estimates, it is clear that the compression function of FSB is oversized, assuming
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that Wagner’s algorithm in a somewhat memory-restricted environment is the
most efficient attack strategy.
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