
Gimli

20190927

This submission is from the following team, listed in alphabetical order:

• Daniel J. Bernstein (corresponding submitter)
• Stefan Kölbl
• Stefan Lucks
• Pedro Maat Costa Massolino
• Florian Mendel
• Kashif Nawaz
• Tobias Schneider
• Peter Schwabe
• François-Xavier Standaert
• Yosuke Todo
• Benôıt Viguier

E-mail address (preferred): authorcontact-gimli@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago,
IL 60607–7053.

Document generated with the help of lwskeleton version 20190104.

1

Contents

1 Introduction 5

2 Algorithm specification 5

2.1 Overview . 5

2.2 Formal and informal specifications . 5

2.3 Parameters . 6

2.4 Notation . 6

2.5 The Gimli state . 7

2.6 The non-linear layer . 7

2.7 The linear layer . 8

2.8 The round constants . 8

2.9 Putting it together: the Gimli permutation 8

2.10 Hashing . 9

2.11 Authenticated encryption . 10

2.12 Combining authenticated encryption with hashing 10

3 List of parameter sets 13

3.1 Parameter set hash/gimli24v1 . 13

3.2 Parameter set aead/gimli24v1 . 13

4 Design rationale 13

4.1 Vectorization . 13

4.2 Logic operations and shifts . 14

4.2.1 Bijectivity of Gimli . 15

4.3 32-bit words . 16

4.4 State size . 16

4.5 Working locally . 16

4.6 Parallelization . 17

4.7 Compactness . 17

2

4.8 Inside the SP-box: choice of words and rotation distances 18

4.9 Application to hashing . 19

4.10 Application to authenticated encryption . 20

4.11 Other applications . 21

5 Expected strength in general 22

5.1 Hashing . 22

5.1.1 Usage requirements . 22

5.1.2 Security goals . 22

5.1.3 Rationale . 22

5.2 Authenticated encryption . 22

5.2.1 Usage requirements . 22

5.2.2 Security goals . 23

5.2.3 Rationale . 23

6 Expected strength for each parameter set 23

6.1 Parameter set hash/gimli24v1 . 23

6.2 Parameter set aead/gimli24v1 . 23

7 Known attacks 24

7.1 Diffusion . 24

7.2 Differential cryptanalysis . 24

7.3 Algebraic degree and integral attacks . 27

7.4 Degree evaluation by division property . 30

7.5 Attacks against “hermetic” properties . 30

7.6 The Gimli modes . 31

7.7 Release of unverified plaintext . 32

8 Advantages and limitations 32

8.1 Overview . 32

8.2 Speed of permutations vs. speed of modes 32

3

8.3 FPGA & ASIC . 33

8.4 SP-box in assembly . 35

8.5 8-bit microcontroller: AVR ATmega . 35

8.6 32-bit low-end embedded microcontroller: ARM Cortex-M0 37

8.7 32-bit high-end embedded microcontroller: ARM Cortex-M3 37

8.8 32-bit smartphone CPU: ARM Cortex-A8 with NEON 39

8.9 64-bit server CPU: Intel Haswell . 39

References 40

A Statements 45

A.1 Statement by Each Submitter . 46

A.2 Statement by Patent (and Patent Application) Owner(s) 47

A.3 Statement by Reference/Optimized/Additional Implementations’ Owner(s) . 48

4

1 Introduction

Why isn’t AES an adequate standard for lightweight cryptography? There are several com-
mon answers: for example, people point to the energy consumption of AES, the difficulty of
protecting AES against side-channel attacks and fault attacks, and the inability of AES to
support compact implementations.

Does this mean that we should design a new standard with the smallest possible hardware
area, another new standard with the lowest possible energy consumption, etc.? The problem
with this approach is that users often need cryptosystems to communicate between two
different environments. If these two different environments are handled by two different
standards then the users will not have any satisfactory solution.

The point of Gimli is to have one standard that performs very well in a broad range of
environments. This includes many different lightweight environments. This also includes
non-lightweight environments such as software for common server CPUs, so that there will
not be a problem if (e.g.) many lightweight ASICs are all communicating with a central
server.

2 Algorithm specification

2.1 Overview

This submission includes a family “Gimli-Cipher” of authenticated ciphers. This family
includes the following recommended members, defined in detail below:

• aead/gimli24v1 (primary): Gimli-24-Cipher with 256-bit key, 128-bit nonce, 128-
bit tag.

This submission also includes a family “Gimli-Hash” of hash functions. This family includes
the following recommended members, defined in detail below:

• hash/gimli24v1 (primary): Gimli-24-Hash with 256-bit output.

These families are built on top of a family of 384-bit permutations called Gimli. This family
includes the following recommended member: Gimli-24.

2.2 Formal and informal specifications

Bhargavan, Kiefer, and Strub recently introduced a language hacspec [12] for specifying
cryptographic primitives. They wrote that “Specifications (specs) written in hacspec are

5

i

j

Figure 1: State Representation

succinct, easy to read and implement, and lend themselves to formal verification using a
variety of existing tools.”

In the rest of this section we follow the tradition of providing informal specifications. How-
ever, we also provide formal specifications of Gimli, Gimli-Hash, and Gimli-Cipher in
hacspec. These specifications are the accompanying files gimli.py, gimli_hash.py, and
gimli_cipher.py. Beware that the tag comparison in gimli_cipher.py is not performed
in constant time; it is instead written as an early-abort loop for clarity.

2.3 Parameters

The authenticated cipher Gimli-Cipher and the hash function Gimli-Hash share one
parameter: the number of rounds R in the Gimli permutation. We recommend R = 24, but
we give definitions applicable to smaller and larger values of R. Time scales linearly in R
with very little overhead.

The name Gimli-24 refers to the Gimli permutation with 24 rounds. Similar comments
apply to Gimli-24-Cipher and Gimli-24-Hash.

2.4 Notation

We denote by W = {0, 1}32 the set of bitstrings of length 32. We will refer to the elements
of this set as “words”. We use

• a⊕ b to denote a bitwise exclusive or (XOR) of the values a and b,

• a ∧ b for a bitwise logical and of the values a and b,

• a ∨ b for a bitwise logical or of the values a and b,

• a≪ k for a cyclic left shift of the value a by a shift distance of k, and

• a� k for a non-cyclic shift (i.e, a shift that is filling up with zero bits) of the value a
by a shift distance of k.

We index all vectors and matrices starting at zero. We encode words as bytes in little-endian
form.

6

x
y
z

In parallel: x← x≪ 24
y ← y≪ 9

x
y
z

In parallel: x← x⊕ (z � 1)⊕ ((y ∧ z)� 2)
y ← y ⊕ x ⊕ ((x ∨ z)� 1)
z ← z ⊕ y ⊕ ((x ∧ y)� 3)

x
y
z

In parallel: x← z
z ← x

Figure 2: The SP-box applied to a column

Small Swap Big Swap

Figure 3: The linear layer

2.5 The Gimli state

The Gimli permutation applies a sequence of rounds to a 384-bit state. The state is repre-
sented as a parallelepiped with dimensions 3× 4× 32 (see Fig. 1) or, equivalently, as a 3× 4
matrix of 32-bit words.

We name the following sets of bits:

• a column j is a sequence of 96 bits such that sj = {s0,j; s1,j; s2,j} ∈ W3

• a row i is a sequence of 128 bits such that si = {si,0; si,1; si,2; si,3} ∈ W4

Each round is a sequence of three operations: (1) a non-linear layer, specifically a 96-bit
SP-box applied to each column; (2) in every second round, a linear mixing layer; (3) in every
fourth round, a constant addition.

2.6 The non-linear layer

The SP-box consists of three sub-operations: rotations of the first and second words; a
3-input nonlinear T-function; and a swap of the first and third words. See Figure 2 for
details.

7

Algorithm 1 The Gimli permutation

Input: s = (si,j) ∈ W3×4

Output: Gimli(s) = (si,j) ∈ W3×4

for r from 24 downto 1 inclusive do
for j from 0 to 3 inclusive do

x← s0,j ≪ 24 . SP-box
y ← s1,j ≪ 9
z ← s2,j

s2,j ← x⊕ (z � 1)⊕ ((y ∧ z)� 2)
s1,j ← y ⊕ x ⊕ ((x ∨ z)� 1)
s0,j ← z ⊕ y ⊕ ((x ∧ y)� 3)

end for
. linear layer

if r mod 4 = 0 then
s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 . Small-Swap

else if r mod 4 = 2 then
s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 . Big-Swap

end if

if r mod 4 = 0 then
s0,0 = s0,0 ⊕ 0x9e377900⊕ r . Add constant

end if
end for
return (si,j)

2.7 The linear layer

The linear layer consists of two swap operations, namely Small-Swap and Big-Swap. Small-
Swap occurs every 4 rounds starting from the 1st round. Big-Swap occurs every 4 rounds
starting from the 3rd round. See Figure 3 for details of these swaps.

2.8 The round constants

There are R rounds in Gimli, numbered R,R − 1, . . . , 1. When the round number r is a
multiple of 4 (e.g., 24, 20, 16, 12, 8, 4 for R = 24), we XOR the round constant 0x9e377900⊕r
to the first state word s0,0.

2.9 Putting it together: the Gimli permutation

Algorithm 1 is pseudocode for the full Gimli permutation.

8

Algorithm 2 The absorb function.

Input: s = (si,j) ∈ W3×4,m ∈ F16
256

Output: absorb(s,m) = (si,j) ∈ W3×4

for i from 0 to 3 do
s0,i ← s0,i ⊕ touint32(m4i, . . . ,m4(i+1))

end for
s← Gimli(s)
return s

Algorithm 3 The squeeze function.

Input: s = (si,j) ∈ W3×4

Output: squeeze(s) = h ∈ F16
256

h← tobytes(s0,0)||tobytes(s0,1)||tobytes(s0,2)||tobytes(s0,3)
return h

2.10 Hashing

Gimli-Hash initializes a 48-byte Gimli state to all-zero. It then reads sequentially through
a variable-length input as a series of 16-byte input blocks.

Each full 16-byte input block is handled as follows:

• XOR the block into the first 16 bytes of the state (i.e., the top row of 4 words).

• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial) block, having b bytes where
0 ≤ b ≤ 15. This final block is handled as follows:

• XOR the block into the first b bytes of the state.

• XOR 1 into the next byte of the state, position b.

• XOR 1 into the last byte of the state, position 47.

• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained as follows:

• Output the first 16 bytes of the state.

• Apply the Gimli permutation.

• Output the first 16 bytes of the state.

9

Algorithm 4 The Gimli hash function.

Input: M ∈ {0, 1}∗
Output: Gimli-Hash(m) = h ∈ {0, 1}256

s← 0
m1, . . . ,mt ← pad(M)
for i from 1 to t do

if i = t then
s2,3 ← s2,3 ⊕ 0x01000000

end if
s← absorb(s,mi)

end for
h← squeeze(s)
s = Gimli(s)
h← h||squeeze(s)
return h

A complete description is given in Alg. 4. Note that we make use of two functions touint32()
and tobytes(). The former converts 4 bytes to a 32-bit unsigned integer in little-endian,
while tobytes() converts a 32-bit unsigned integer to 4 bytes. Further, we use pad(M) to
denote the padding of the message to full blocks.

2.11 Authenticated encryption

Gimli-Cipher initializes a 48-byte Gimli state to a 16-byte nonce followed by a 32-byte
key. It then applies the Gimli permutation.

Gimli-Cipher then handles each block of associated data, including exactly one final non-
full block, in the same way as Gimli-Hash.

Gimli-Cipher then handles each block of plaintext, including exactly one final non-full
block, in the same way as Gimli-Hash. Whenever a plaintext byte is XORed into a state
byte, the new state byte is output as ciphertext.

After the final non-full block of plaintext, the first 16 bytes of the state are output as an
authentication tag.

See Algorithm 5 for an algorithm for authenticated encryption, and Algorithm 6 for an
algorithm for verified decryption.

2.12 Combining authenticated encryption with hashing

Pairs of (authenticated cipher, hash function):

• aead/gimli24v1 with hash/gimli24v1.

10

Algorithm 5 The Gimli AEAD encryption process.

Input: M ∈ {0, 1}∗, A ∈ {0, 1}∗, N ∈ F16
256, K ∈ F32

256

Output: Gimli-Cipher-encrypt(M,A,N,K) = C ∈ {0, 1}∗, T ∈ F32
256

Initialization
s← 0
for i from 0 to 3 do

s0,i ← touint32(N4i|| . . . ||N4i+3)
s1,i ← touint32(K4i|| . . . ||K4i+3)
s2,i ← touint32(K16+4i|| . . . ||K16+4i+3)

end for
s← Gimli(s)
Processing AD
a1, . . . , as ← pad(A)
for i from 1 to s do

if i == s then
s2,3 ← s2,3 ⊕ 0x01000000

end if
s← absorb(s, ai)

end for
Processing Plaintext
m1, . . . ,mt ← pad(M)
for i from 1 to t do

ki ← squeeze(s)
ci ← ki ⊕mi

if i == t then
s2,3 ← s2,3 ⊕ 0x01000000

end if
s← absorb(s,mi)

end for
C ← c1|| . . . ||ct
T ← squeeze(s)
return C, T

11

Algorithm 6 The Gimli AEAD decryption process.

Input: C ∈ {0, 1}∗, T ∈ F16
256, A ∈ {0, 1}∗, N ∈ F16

256, K ∈ F32
256

Output: Gimli-Cipher-decrypt(C, T,A,N,K) = M ∈ {0, 1}∗
Initialization
s← 0
for i from 0 to 3 do

s0,i ← touint32(N4i|| . . . ||N4i+3)
s1,i ← touint32(K4i|| . . . ||K4i+3)
s2,i ← touint32(K16+4i|| . . . ||K16+4i+3)

end for
s← Gimli(s)
Process AD
a1, . . . , as ← pad(A)
for i from 1 to s do

if i == s then
s2,3 ← s2,3 ⊕ 0x01000000

end if
s← absorb(s, ai)

end for
Process Ciphertext
c1, . . . , ct ← pad(C)
for i from 1 to t do

ki ← squeeze(s)
mi ← ki ⊕ ci
if i == t then

s2,3 ← s2,3 ⊕ 0x01000000

end if
s← absorb(s,mi)

end for
M ← m1|| . . . ||mt

T ′ ← squeeze(s)
if T == T ′ then

return M
else

return ⊥
end if

12

Common design components across these pairs: The authenticated cipher and the hash func-
tion use exactly the same Gimli permutation. In unified hardware providing authenticated
encryption, verified decryption, and hashing, the hardware area for this permutation (in-
cluding computations and storage) is entirely shared. There is very little work outside the
permutation. Similar comments apply to software.

3 List of parameter sets

3.1 Parameter set hash/gimli24v1

Gimli-Hash with 24 rounds.

3.2 Parameter set aead/gimli24v1

Gimli-Cipher with 24 rounds.

4 Design rationale

This section explains how we arrived at the Gimli design.

We started from the well-known goal of designing one unified cryptographic primitive suit-
able for many different applications: collision-resistant hashing, preimage-resistant hashing,
message authentication, message encryption, etc. We found no reason to question the “new
conventional wisdom” that a permutation is a better unified primitive than a block cipher.
Like Keccak, Ascon [17], etc., we evaluate performance only in the forward direction, and
we consider only forward modes; modes that also use the inverse permutation require extra
hardware area and do not seem to offer any noticeable advantages.

Where Gimli departs from previous designs is in its objective of being a single primitive that
performs well on every common platform. We do not insist on beating all previous primitives
on all platforms simultaneously, but we do insist on coming reasonably close. Each platform
has its own hazards that create poor performance for many primitives; what Gimli shows
is that all of these hazards can be avoided simultaneously.

4.1 Vectorization

On common Intel server CPUs, vector instructions are by far the most efficient arithmetic/-
logic instructions. As a concrete example, the 12-round ChaCha12 stream cipher has run at
practically the same speed as 12-round AES-192 on several generations of Intel CPUs (e.g.,
1.7 cycles/byte on Westmere; 1.5 cycles/byte on Ivy Bridge; 0.8 cycles/byte on Skylake),

13

despite AES hardware support, because ChaCha12 takes advantage of the vector hardware
on the same CPUs. Vectorization is attractive for CPU designers because the overhead of
fetching and decoding an instruction is amortized across several data items.

Any permutation built from (e.g.) common 32-bit operations can take advantage of a 32b-bit
vector unit if the permutation is applied to b blocks in parallel. Many modes of use of a
permutation support this type of vectorization. But this type of vectorization creates two
performance problems. First, if b parallel blocks do not fit into vector registers, then there is
significant overhead for loads and stores; vectorized Keccak implementations suffer exactly
this problem. Second, a large b is wasted in applications where messages are short.

Gimli, like Salsa and ChaCha, views its state as consisting of 128-bit rows that naturally fit
into 128-bit vector registers. Each row consists of a vector of 128/w entries, each entry being
a w-bit word, where w is optimized below. Most of the Gimli operations are applied to
every column in parallel, so the operations naturally vectorize. Taking advantage of 256-bit
or 512-bit vector registers requires handling only 2 or 4 blocks in parallel.

4.2 Logic operations and shifts

Gimli’s design uses only bitwise operations on w-bit words: specifically, and, or, xor,
constant-distance left shifts, and constant-distance rotations.

There are tremendous hardware-latency advantages to being able to carry out w bit oper-
ations in parallel. Even when latency is not a concern, bitwise operations are much more
energy-efficient than integer addition, which (when carried out serially) uses almost 5w bit
operations for w-bit words. Avoiding additions also allows “interleaved” implementations as
in Keccak, Ascon, etc., saving time on software platforms with word sizes below w.

On platforms with w-bit words there is a software cost in avoiding additions. One way to
quantify this cost is as follows. A typical ARX design is roughly balanced between addition,
rotation, and xor. NORX [3] replaces each addition a + b with a similar bitwise operation
a ⊕ b ⊕ ((a ∧ b) � 1), so 3 instructions (add, rotate, xor) are replaced with 6 instructions;
on platforms with free shifts and rotations (such as the ARM Cortex-M4), 2 instructions are
replaced with 4 instructions; on platforms where rotations need to be simulated by shifts (as
in typical vector units), 5 instructions are replaced with 8 instructions. On top of this near-
doubling in cost, the diffusion in the NORX operation is slightly slower than the diffusion
in addition, increasing the number of rounds required for security.

The pattern of Gimli operations improves upon NORX in three ways. First, Gimli uses
a third input c for a ⊕ b ⊕ ((c ∧ b) � 1), removing the need for a separate xor operation.
Second, Gimli uses only two rotations for three of these operations; overall Gimli uses 19
instructions on typical vector units, not far behind the 15 instructions used by three ARX
operations. Third, Gimli varies the 1-bit shift distance, improving diffusion compared to
NORX and possibly even compared to ARX.

We searched through many combinations of possible shift distances (and rotation distances)

14

in Gimli, applying a simple security model to each combination. Large shift distances throw
away many nonlinear bits and, unsurprisingly, turned out to be suboptimal. The final Gimli
shift distances (2, 1, 3 on three 32-bit words) keep 93.75% of the nonlinear bits.

4.2.1 Bijectivity of Gimli

The bijectivity of the SP-box is not easy to see. If we exclude the swapping and the rotations
(which are trivially bijective), we can unroll SP over the first bits:

f0 =

x′0 ← x0

y′0 ← y0 ⊕ x0

z′0 ← z0 ⊕ y0

f1 =

x′1 ← x1 ⊕ z0

y′1 ← y1 ⊕ x1 ⊕ (x0 ∨ z0)

z′1 ← z1 ⊕ y1

f2 =

x′2 ← x2 ⊕ z1 ⊕ (y0 ∧ z0)

y′2 ← y2 ⊕ x2 ⊕ (x1 ∨ z1)

z′2 ← z2 ⊕ y2

and

fn =

x′n ← xn ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)

y′n ← yn ⊕ xn ⊕ (xn−1 ∨ zn−1)

z′n ← zn ⊕ yn ⊕ (xn−3 ∧ zn−3)

Thus:

f−1
0 =

x0 ← x′0 = x′0
y0 ← y′0 ⊕ x0 = y′0 ⊕ x′0
z0 ← z′0 ⊕ y0 = z′0 ⊕ y′0 ⊕ x′0

f−1
1 =

x1 ← x′1 ⊕ z0 = x′1 ⊕ z0

y1 ← y′1 ⊕ x1 ⊕ (x0 ∨ z0) = y′1 ⊕ x′1 ⊕ z0 ⊕ (x0 ∨ z0)

z1 ← z′1 ⊕ y1 = z′1 ⊕ y′1 ⊕ x′1 ⊕ z0 ⊕ (x0 ∨ z0)

f−1
2 =

x2 ← x′2 ⊕ z1 ⊕ (y0 ∧ z0) = x′2 ⊕ z1 ⊕ (y0 ∧ z0)

y2 ← y′2 ⊕ x2 ⊕ (x1 ∨ z1) = y′2 ⊕ x′2 ⊕ z1 ⊕ (y0 ∧ z0)⊕ (x1 ∨ z1)

z2 ← z′2 ⊕ y2 = z′2 ⊕ y′2 ⊕ x′2 ⊕ z1 ⊕ (y0 ∧ z0)⊕ (x1 ∨ z1)

and

f−1
n =

xn ← x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)

yn ← y′n ⊕ x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)⊕ (xn−1 ∨ zn−1)

zn ← z′n ⊕ y′n ⊕ x′n ⊕ zn−1 ⊕ (yn−2 ∧ zn−2)⊕ (xn−1 ∨ zn−1)⊕ (xn−3 ∧ zn−3)

SP−1 is fully defined by recurrence. SP is therefore bijective.

15

4.3 32-bit words

Taking w = 32 is an obvious choice for 32-bit CPUs. It also works well on common 64-bit
CPUs, since those CPUs have fast instructions for, e.g., vectorized 32-bit shifts. The 32-bit
words can also be split into 16-bit words (with top and bottom bits, or more efficiently with
odd and even bits as in “interleaved” Keccak software), and further into 8-bit words.

Taking w = 16 or w = 8 would lose speed on 32-bit CPUs that do not have vectorized
16-bit or 8-bit shifts. Taking w = 64 would interfere with Gimli’s ability to work within a
quarter-state for some time (see below), and we do not see a compensating advantage.

4.4 State size

On common 32-bit ARM microcontrollers, there are 14 easily usable integer registers, for a
total of 448 bits. The 512-bit states in Salsa20, ChaCha, NORX, etc. produce significant
load-store overhead, which Gimli avoids by (1) limiting its state to 384 bits (three 128-bit
vectors), i.e., 12 registers, and (2) fitting temporary variables into just 2 registers.

Limiting the state to 256 bits would provide some benefit in hardware area, but would
produce considerable slowdowns across platforms to maintain an acceptable level of security.
For example, 256-bit sponge-based hashing at a 2100 security level would be able to absorb
only 56 message bits (22% of the state) per permutation call, while 384-bit sponge-based
hashing at the same security level is able to absorb 184 message bits (48% of the state)
per permutation call, presumably gaining more than a factor of 2 in speed, even without
accounting for the diffusion benefits of a larger state. It is also not clear whether a 256-bit
state size leaves an adequate long-term security margin against multi-user attacks (see [18])
and quantum attacks; more complicated modes can achieve high security levels using small
states, but this damages efficiency.

One of the SHA-3 requirements was 2512 preimage security. For sponge-based hashing this
requires at least a 1024-bit permutation, or an even larger permutation for efficiency, such as
Keccak’s 1600-bit permutation. This requirement was based entirely on matching SHA-512,
not on any credible assertion that 2512 preimage security will ever have any real-world value.
Gimli is designed for useful security levels, so it is much more comparable to, e.g., 512-bit
Salsa20, 400-bit Keccak-f [400] (which reduces Keccak’s 64-bit lanes to 16-bit lanes), 384-bit
C-Quark [4], 384-bit SPONGENT-256/256/128 [13], 320-bit Ascon, and 288-bit Photon-
256/32/32 [19].

4.5 Working locally

On the popular low-end ARM Cortex-M0 microcontroller, many instructions can access only
8 of the 14 32-bit registers. Working with more than 256 bits at a time incurs overhead to
move data around. Similar comments apply to the 8-bit AVR microcontroller.

16

Gimli performs many operations on the left half of its state, and separately performs many
operations on the right half of its state. Each half fits into 6 32-bit registers, plus 2 temporary
registers.

It is of course necessary for these 192-bit halves to communicate, but this communication
does not need to be frequent. The only communication is Big-Swap, which happens only
once every 4 rounds, so we can work on the same half-state for several rounds.

At a smaller scale, Gimli performs a considerable number of operations within each column
(i.e., each 96-bit quarter-state) before the columns communicate. Communication among
columns happens only once every 2 rounds. This locality is intended to reduce wire lengths
in unrolled hardware, allowing faster clocks.

4.6 Parallelization

Like Keccak and Ascon, Gimli has degree just 2 in each round. This means that, during an
update of the entire state, all nonlinear operations are carried out in parallel: a nonlinear
operation never feeds into another nonlinear operation.

This feature is often advertised as simplifying and accelerating masked implementations. The
parallelism also has important performance benefits even if side channels are not a concern.

Consider, for example, software using 128-bit vector instructions to apply Salsa20 to a single
512-bit block. Salsa20 chains its 128-bit vector operations: an addition feeds into a rotation,
which feeds into an xor, which feeds into the next addition, etc. The only parallelism possible
here is between the two shifts inside a shift-shift-or implementation of the rotation. A typical
vector unit allows more instructions to be carried out in parallel, but Salsa20 is unable to
take advantage of this. Similar comments apply to BLAKE [5] and ChaCha20.

The basic NORX operation a⊕b⊕ ((a∧b)� 1) is only slightly better, depth 3 for 4 instruc-
tions. Gimli has much more internal parallelism: on average approximately 4 instructions
are ready at each moment.

Parallel operations provide slightly slower forward diffusion than serial operations, but ex-
perience shows that this costs only a small number of rounds. Gimli has very fast backward
diffusion.

4.7 Compactness

Gimli is intentionally very simple, repeating a small number of operations again and again.
This gives implementors the flexibility to create very small “rolled” designs, using very little
area in hardware and very little code in software; or to unroll for higher throughput.

This simplicity creates three directions of symmetries that need to be broken. Gimli is like
Keccak in that it breaks all symmetries within the permutation, rather than (as in Salsa,
ChaCha, etc.) relying on attention from the mode designer to break symmetries. Gimli puts

17

more effort than Keccak into reducing the total cost of asymmetric operations.

The first symmetry is that rotating each input word by any constant number of bits produces
a near-rotation of each output word by the same number of bits; “near” accounts for a few
bits lost from shifts. Occasionally (after rounds 24, 20, 16, etc.) Gimli adds an asymmetric
constant to entry 0 of the first row. This constant has many bits set (it is essentially the
golden ratio 0x9e3779b9, as used in TEA), and is not close to any of its nontrivial rotations
(never fewer than 12 bits different), so a trail applying this symmetry would have to cancel
many bits.

The second symmetry is that each round is identical, potentially allowing slide attacks.
This is much more of an issue for small blocks (as in, e.g., 128-bit block ciphers) than for
large blocks (such as Gimli’s 384-bit block), but Gimli nevertheless incorporates the round
number r into the constant mentioned above. Specifically, the constant is 0x93e77900⊕ r.
The implementor can also use 0x93e77900 + r since r fits into a byte, or can have r count
from 0x93e77918 down to 0x93e77900.

The third symmetry is that permuting the four input columns means permuting the four
output columns; this is a direct effect of vectorization. Occasionally (after rounds 24, 20,
16, etc.) Gimli swaps entries 0, 1 in the first row, and swaps entries 2, 3 in the first row,
reducing the symmetry group to 8 permutations (exchanging or preserving 0, 1, exchanging
or preserving 2, 3, and exchanging or preserving the halves). Occasionally (after rounds 22,
18, 14, etc.) Gimli swaps the two halves of the first row, reducing the symmetry group to
4 permutations (0123, 1032, 2301, 3210). The same constant distinguishes these 4 permuta-
tions.

We also explored linear layers slightly more expensive than these swaps. We carried out fairly
detailed security evaluations of Gimli-MDS (replacing a, b, c, d with s⊕ a, s⊕ b, s⊕ c, s⊕ d
where s = a⊕ b⊕ c⊕ d), Gimli-SPARX (as in [16]), and Gimli-Shuffle (with the swaps as
above). We found some advantages in Gimli-MDS and Gimli-SPARX in proving security
against various types of attacks, but it is not clear that these advantages outweigh the costs,
so we opted for Gimli-Shuffle as the final Gimli.

4.8 Inside the SP-box: choice of words and rotation distances

The bottom bit of the T-function adds y to z and then adds x to y. We could instead add
x to y and then add the new y to z, but this would be contrary to our goal of parallelism;
see above.

After the T-function we exchange the roles of x and z, so that the next SP-box provides
diffusion in the opposite direction. The shifted parts of the T-function already provide
diffusion in both directions, but this diffusion is not quite as fast, since the shifts throw away
some bits.

We originally described rotations as taking place after the T-function, but this is equivalent
to rotation taking place before the T-function (except for a rotation of the input and output

18

of the entire permutation). Starting with rotation saves some instructions outside the main
loop on platforms with rotated-input instructions; also, some applications reuse portions of
inputs across multiple permutation calls, and can cache rotations of those portions. These
are minor advantages but there do not seem to be any disadvantages.

Rotating all three of x, y, z adds noticeable software cost and is almost equivalent to rotating
only two: it merely affects which bits are discarded by shifts. So, as mentioned above, we
rotate only two. In a preliminary Gimli design we rotated y and z, but we found that
rotating x and y improves security by 1 round against our best integral attacks; see below.

This leaves two choices: the rotation distance for x and the rotation distance for y. We
found very little security difference between, e.g., (24, 9) and (26, 9), while there is a notice-
able speed difference on various software platforms. We decided against “aligned” options
such as (24, 8) and (16, 8), although it seems possible that any security difference would be
outweighed by further speedups.

4.9 Application to hashing

Gimli-Hash uses the well-known sponge mode [10, 9], the simplest way to hash using a
permutation. A generic sponge with a 16-byte rate and a 32-byte capacity has 2128 security
against a broad class of attacks.

By default, Gimli-Hash provides a fixed-length output of 32 bytes (the concatenation of two
16-byte blocks). However, Gimli-Hash can be used as an “extendable one-way function”
(XOF). To generate n bytes of output,

• concatenate dn/16e blocks of 16 bytes, where each block is obtained by extracting the
first 16 bytes of the state and then applying the Gimli permutation, and then

• truncate the resulting 16dn/16e bytes to n bytes.

Note that Gimli-Hash applies the Gimli permutation with one empty input block, if the
input length is a multiple of 16. The seemingly obvious alternative would be to have a 3-way
fork after each block, e.g.:

• xor 0 into the capacity part after each non-final block,

• xor 1 into the capacity part after a full final block (i.e., if the size of the final block is
exactly 16 bytes), and

• xor 2 into the capacity part after each partial final block (with an extra 1 at the end
of the block).

This three-way fork saves one call of the permutation if the message length is a multiple of 16.
However, the 2-way fork that we use has a performance benefit for lightweight applications.

19

Imagine a tiny device reading one byte (or even one bit) at a time, and at some point having
the read instead say “end of data”. With the 2-way fork, the device can handle each byte
as follows:

• xor the byte into the state at the current position,

• increase the current position, and

• if the current position would exceed the end of the block, apply the permutation and
set the current position back to the first byte.

Whenever the device receives an “end of data”, it can immediately xor 1 into the state at
the current position and apply the permutation.

With a 3-way fork, the device instead must delay calling the permutation at the end of each
block until it knows whether the data is finished or not. If another byte arrives, the device
must buffer that byte, perform the permutation, and then xor that byte into the block. This
complicates the handling of every block.

We conclude that the two-way fork in Gimli-Hash is better suited for lightweight cryp-
tosystems than the three-way fork, even though the three-way fork does save one application
of the Gimli permutation for 1/16 of all message lengths.

4.10 Application to authenticated encryption

Gimli-Cipher uses the well-known duplex mode [11], the simplest way to encrypt using
a permutation. Duplexing reads an input the same way as sponge hashing: each 16-byte
message block m is added into the first block x of the state, changing this block of the state
to m + x. Duplexing also outputs m + x as a block of ciphertext.

We opted for a 256-bit key. This does not mean that we endorse the pursuit of (e.g.) a
2224 security level; it means that we want to reduce concerns about multi-target attacks,
quantum attacks, etc.

NIST has recommended that 256-bit keys be accompanied by a 2224 single-key pre-quantum
security level. We have considered various ways to accommodate this recommendation. For
example, one can add 16 of the key bytes (which can be shared with the existing key bytes,
as in single-key Even–Mansour) into each 16-byte ciphertext block. However, this requires
the state storing the key to be accessed for each block, rather than just at the beginning
of processing a message. In the absence of any explanation of any real-world relevance of
security levels above 2128, we have opted to avoid this complication.

We have also considered a mode called “Beetle”, which is argued in [14] to achieve quanti-
tatively higher security than duplexing. Beetle uses the key only at the beginning, and it
involves only slightly more computation than duplexing:

20

• View the plaintext block as two halves: (m0,m1).

• View the first state block as (x0, x1).

• Output the ciphertext block (m0 + x0,m1 + x1), as in duplexing.

• Replace the first state block with (m0 + x1,m1 + x1 + x0).

However, in environments that communicate (say) 1 bit at a time, it is not clear how to
fit the Beetle mode into as little space as the duplex mode. The duplex mode allows each
plaintext bit to be read, added into the state, output as a ciphertext bit with no further
latency, and then forgotten, with a small (7-bit) counter keeping track of the position inside
the block.

4.11 Other applications

A strong and small permutation, such as Gimli, has plenty of applications beyond the
proposed Gimli-Hash and Gimli-Cipher. As an illustration, we explain how one can
build independent hash functions for b-bit outputs, similarly to SHA-512/b, instead of one
single extendable output function (XOF) for all output sizes.

A generic disadvantage of the XOF concept is that if one computes two hashes of different
lengths from the same input, the shorter hash is just a prefix of the longer one. This may
not matter for typical applications of an XOF, but in some hash applications, this can be
really bad. E.g., if one uses the hash function to derive secret keys K1 = Hashk(X) and
K2 = Hash`(X) of lengths k and ` > k from the same input X, one expects k-bit security,
while the security level can acually drop down to `− k < k, for ` < 2k.

Thus, for applications where this XOF-property is undesirable or dangerous, we propose a
parameterized

Gimli-Hash` (for ` ∈ {0, 232 − 1}).

The approach is the same as for the SHA-512/(8`) family of hash functions: Use the hash
length parameter ` to define the initialization value or the initial state, then run the hash
algorithm, and finally truncate the output to the given number of bytes:

1. Write ` as a 32-bit (i.e., 4-byte) number. As elsewhere in the Gimli specs, use little-
endian form. Define the 48-byte initial state by the four bytes of `, followed by 44
all-zero bytes.

2. Perform the Gimli-Hash as specified above.

3.a) If ` > 0, generate ` output bytes.

21

3.b) The case ` = 0 indicates the XOF mode. In that case, generate as many output bytes
as required.

Note that the Gimli-Hash, as defined in Section 2.10, is identical to the special case of
using Gimli-Hash0 to generate 32 output bytes.

5 Expected strength in general

5.1 Hashing

5.1.1 Usage requirements

Each hash call is assumed to process at most 264 bytes.

5.1.2 Security goals

The hash function is designed for collision resistance, preimage resistance, second-preimage
resistance, and resistance against length-extension attacks.

See Section 6 for quantitative goals for specific parameter sets.

5.1.3 Rationale

See Section 7 for an analysis of known attacks.

5.2 Authenticated encryption

5.2.1 Usage requirements

Each cipher call is assumed to process at most 264 bytes of plaintext and at most 264 bytes
of associated data. Each key is assumed to process a total of at most 280 bytes of data. The
total number of legitimate user keys is assumed to be at most 280. Foreseeable applications
fit comfortably below these limits.

Keys are assumed to be chosen independently and uniformly at random.

By definition, a nonce is used at most once for each key: i.e., it is used with this key for
only one (plaintext, associated data) pair. This rule is important because all ciphers lose
security when public message numbers are not nonces, i.e., when public message numbers
repeat. (Often the public message numbers are incorrectly called “nonces” even in this case,

22

and the repetition of numbers is then called “nonce misuse”.) Some ciphers try to compete
regarding the amount of damage done in this situation:

• The minimum possible damage is revealing patterns of repeated plaintexts with the
same key and the same associated data.

• The maximum possible damage is a complete loss of confidentiality and integrity.

For this submission, the damage is intermediate. On the positive side, variations in the
associated data have the same effect as variations in the public message numbers. On the
negative side, when public message numbers and associated data repeat, the ciphertexts
reveal the longest common prefix of plaintexts, and the xor of the block containing the first
difference.

5.2.2 Security goals

The authenticated cipher is designed to protect confidentiality of plaintexts (under adaptive
chosen-plaintext attacks) and integrity of ciphertexts (under adaptive forgery attempts).

See Section 6 for quantitative goals for specific parameter sets.

5.2.3 Rationale

See Section 7 for an analysis of known attacks.

6 Expected strength for each parameter set

6.1 Parameter set hash/gimli24v1

Security 2128 against all attacks.

6.2 Parameter set aead/gimli24v1

Security 2128 against all attacks.

23

7 Known attacks

7.1 Diffusion

As a first step in understanding the security of reduced-round Gimli, we consider the fol-
lowing two minimum security requirements:

• the number of rounds required to show the avalanche effect for each bit of the state.

• the number of rounds required to reach a state full of 1 starting from a state where only
one bit is set. In this experiment we replace bitwise exclusive or (XOR) and bitwise
logical and by a bitwise logical or.

Given the input size of the SP-box, we verify the first criterion with the Monte-Carlo method.
We generate random states and flip each bit once. We can then count the number of bits
flipped after a defined number of rounds. Experiments show that 10 rounds are required for
each bit to change on the average half of the state (see tables in the original Gimli paper).

As for the second criterion, we replace the T-function in the SP-box by the following opera-
tions:

x′ ← x ∨ (z � 1) ∨ ((y ∨ z)� 2)

y′ ← y ∨ x ∨ ((x ∨ z)� 1)

z′ ← z ∨ y ∨ ((x ∨ y)� 3)

By testing the 384 bit positions, we prove that a maximum of 8 rounds are required to fill
up the state.

7.2 Differential cryptanalysis

To study Gimli’s resistance against differential cryptanalysis we use the same method as
has been used for NORX [2] and Simon [23] by using a tool-assisted approach to find the
optimal differential trails for a reduced number of rounds. In order to enable this approach
we first need to define the valid transitions of differences through the Gimli round function.

The non-linear part of the round function shares similarities with the NORX round function,
but we need to take into account the dependencies between the three lanes to get a correct
description of the differential behavior of Gimli. In order to simplify the description we will
look at the following function which only covers the non-linear part of Gimli:

x′ ← y ∧ z

f(x, y, z) : y′ ← x ∨ z

z′ ← x ∧ y

(1)

where x, y, z ∈ W . For the Gimli SP-box we only have to apply some additional linear
functions which behave deterministically with respect to the propagation of differences. In

24

Table 1: The optimal differential trails for a reduced number of rounds of
Gimli.

Rounds 1 2 3 4 5 6 7 8

Weight 0 0 2 6 12 22 36 52

the following we denote (∆x,∆y,∆z) as the input difference and (∆x′ ,∆y′ ,∆z′) as the output
difference. The differential probability of a differential trail T is denoted as DP(T) and we
define the weight of a trail as w = − log2(DP(T)).

Lemma 1 (Differential Probability) For each possible differential through f it holds that

∆x′ ∧ ¬(∆y ∨∆z) = 0

∆y′ ∧ ¬(∆x ∨∆z) = 0

∆z′ ∧ ¬(∆x ∨∆y) = 0

(∆x ∧∆y ∧ ¬∆z) ∧ ¬(∆x′ ⊕∆y′) = 0

(∆x ∧ ¬∆y ∧∆z) ∧ (∆x′ ⊕∆z′) = 0

(¬∆x ∧∆y ∧∆z) ∧ ¬(∆y′ ⊕∆z′) = 0

(∆x ∧∆y ∧∆z) ∧ ¬(∆x′ ⊕∆y′ ⊕∆z′) = 0.

(2)

The differential probability of (∆x,∆y,∆z)
f−→ (∆x′ ,∆y′ ,∆z′) is given by

DP((∆x,∆y,∆z)
f−→ (∆x′ ,∆y′ ,∆z′)) = 2−2·hw(∆x∨∆y∨∆z). (3)

A proof for this lemma is given in Proof 1. We can then use these conditions together with
the linear transformations to describe how differences propagate through the Gimli round
functions. For computing the differential probability over multiple rounds we assume that
the rounds are independent. Using this model we then search for the optimal differential
trails with the SAT/SMT-based approach [2, 23].

We are able to find the optimal differential trails up to 8 rounds of Gimli (see Table 1).
After more rounds this approach failed to find any solution in a reasonable amount of time.
The 8-round differential trail is given in Table 3 in Proof 1.

In order to cover more rounds of Gimli we restrict our search to a good starting difference
and expand it in both directions. As the probability of a differential trail quickly decreases
with the Hamming weight of the state it is likely that any high probability trail will contain
some rounds with very low Hamming weight. In Table 2, we show the results when starting
from a single bit difference in any of the words. Interestingly, the best trails match the
optimal differential trails up to 8 rounds given in Table 1.

Using the optimal differential for 7 rounds we can construct a 12-round differential trail
with probability 2−188 (see Table 4 in Proof 1). If we look at the corresponding differential,
this means we do not care about any intermediate differences; many trails might contribute

25

Table 2: The optimal differential trails when expanding from a single bit
difference in any of the words.

Rounds 1 2 3 4 5 6 7 8 9

r = 0 0 2 6 14 28 58 102
r = 1 0 0 2 6 12 26 48 88
r = 2 - 0 2 6 12 22 36 66 110
r = 3 - - 8 10 14 32 36 52 74
r = 4 - - - 26 28 32 38 52 74

to the probability. In the case of our 12-round trail we find 15800 trails with probability
2−188 and 20933 trails with probability 2−190 contributing to the differential. Therefore, we
estimate the probability of the differential to be ≈ 2−158.63.

Proof 1 (Proof of Lemma 1) We want to show how to compute the set of valid differen-
tials for a given input difference

{(∆x′ ,∆y′ ,∆z′) : f(x, y, z)⊕ f(x⊕∆x, y ⊕∆y, z ⊕∆z) = (∆x′ ,∆y′ ,∆z′)}. (4)

It is sufficient to look at the case where W is F2 as there is no interaction between different
coordinates in f . The output differences for f are given by

∆x′ = (y ∧ z)⊕ (y ⊕∆y ∧ z ⊕∆z)

∆y′ = (x ∨ z)⊕ (x⊕∆x ∨ z ⊕∆z)

∆z′ = (x ∧ y)⊕ (x⊕∆x ∧ y ⊕∆y).

(5)

If the input difference (∆x,∆y,∆z) = (0, 0, 0), then the output difference is clearly (0, 0, 0)
as well. We can split the remaining cases in three groups

Case 1 (∆x,∆y,∆z) = (1, 0, 0). This simplifies Equation 5 to

∆x′ = (y ∧ z)⊕ (y ∧ z) = 0

∆y′ = (x ∨ z)⊕ (¬x ∨ z) = −z
∆z′ = (x ∧ y)⊕ (¬x ∧ y) = y.

(6)

and gives us the set of possible output differences

(∆x′ ,∆y′ ,∆z′) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}. (7)

In a similar way we can find the differentials for the other cases with a single bit difference
which gives us the first three conditions in Lemma 1.

Case 2 (∆x,∆y,∆z) = (1, 1, 0). This simplifies Equation 5 to

∆x′ = (y ∧ z)⊕ (¬y ∧ z) = z

∆y′ = (x ∨ z)⊕ (¬x ∨ z) = −z
∆z′ = (x ∧ y)⊕ (¬x ∧ ¬y) = ¬(x⊕ y).

(8)

26

giving the set of possible output differences

(∆x′ ,∆y′ ,∆z′) ∈ {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}. (9)

Again we can derive the other two cases in a similar way, giving us conditions 4-6 in
Lemma 1.

Case 3 (∆x,∆y,∆z) = (1, 1, 1). This simplifies Equation 5 to

∆x′ = (y ∧ z)⊕ (¬y ∧ ¬z) = ¬(y ⊕ z)

∆y′ = (x ∨ z)⊕ (¬x ∨ ¬z) = ¬(x⊕ y)

∆z′ = (x ∧ y)⊕ (¬x ∧ ¬y) = ¬(x⊕ y).

(10)

giving the set of possible output differences

(∆x′ ,∆y′ ,∆z′) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. (11)

This corresponds to the last condition in Lemma 1.

As in all but the (0, 0, 0) cases the size of the set of possible output differences is 4 the
probability of any differential transition is 2−2. ut

.

7.3 Algebraic degree and integral attacks

Since the algebraic degree of the round function of Gimli is only 2, it is important how the
degree increases by iterating the round function. We use the (bit-based) division property [31,
32] to evaluate the algebraic degree, and the propagation search is assisted by mixed integer
linear programming (MILP) [35]. See Section 7.4.

We first evaluated the upper bound of the algebraic degree on r-round Gimli, and the result
is summarized as follows.

rounds 1 2 3 4 5 6 7 8 9

2 4 8 16 29 52 95 163 266

When we focus on only one bit in the output of r-round Gimli, the increase of the degree
is slower than the general case. Especially, the algebraic degree of z0 in each 96-bit value is
lower than other bits because z0 in rth round is the same as x6 in (r − 1)th round. All bits
except for z0 is mixed by at least two bits in (r − 1)th round. Therefore, we next evaluate
the upper bound of the algebraic degree on four z0 in r-round Gimli, and the result is
summarized as follows.

27

Table 3: Optimal differential trail for 8-round Gimli.

Round s∗,0 s∗,1 s∗,2 s∗,3 Weight

0
0x80404180 0x00020100 - -

180x80002080 - - -
0x80002080 0x80010080 - -

1
0x80800100 - - -

80x80400000 - - -
0x80400080 - - -

2
0x80000000 - - -

00x80000000 - - -
0x80000000 - - -

3
- - - -

0- - - -
0x80000000 - - -

4
0x00800000 - - -

2- - - -
- - - -

5
- - - -

40x00000001 - - -
0x00800000 - - -

6
0x01008000 - - -

60x00000200 - - -
0x01000000 - - -

7
- - - -

140x01040002 - - -
0x03008000 - - -

8
0x02020480 - - -

-0x0a00040e - 0x06000c00 -
0x06010000 - 0x00010002 -

28

Table 4: A 12-round differential trail for Gimli with probability 2−188 ex-
panding the optimal 7-round differential trail.

Round s∗,0 s∗,1 s∗,2 s∗,3 Weight

0
0x04010100 0x80010380 0x06010100 0x80100C00

46- 0x40010180 0x02000000 0x40100400
0x02008080 0x40010180 0x03018080 0x40104400

1
- 0x80020080 - 0x80210180

24- 0x00060080 - 0x40200080
- 0x00070480 - 0x00318400

2
- 0x00003100 - 0x80401180

20- 0x00000100 - 0x80000180
- 0x80000980 - 0x80000980

3
- - - 0x80800100

8- - - 0x80400000
- - - 0x80400080

4
- - - 0x80000000

0- - - 0x80000000
- - - 0x80000000

5
- - - -

0- - - -
- - - 0x80000000

6
- - - 0x00800000

2- - - -
- - - -

7
- - - -

4- - - 0x00000001
- - - 0x00800000

8
- - - 0x01008000

6- - - 0x00000200
- - - 0x01000000

9
- - 0x00010002 -

14- - - 0x01040002
- - - 0x03008000

10
- - - 0x020A0480

24- - 0x02000400 0x0A000402
- - 0x00010002 0x0A010000

11
0x02020104 0x02000100 - -

40- - 0x00080004 0x14010430
- - 0x00020004 0x1E081480

12
- - 0x00000A00 0xB00A0910

-0x04020804 0x00020004 0x10001800 0x02186078
0x02020104 0x02000100 0x00040008 0x3C102900

29

rounds 1 2 3 4 5 6 7 8 9 10 11

1 2 4 8 15 27 48 88 153 254 367

In integral attacks, a part of the input is chosen as active bits and the other part is chosen
as constant bits. Then, we have to evaluate the algebraic degree involving active bits. From
the structure of the round function of Gimli, the algebraic degree will be small when 96
entire bits in each column are active. We evaluated two cases: the algebraic degree involving
si,0 is evaluated in the first case, and the algebraic degree involving si,0 and si,1 is evaluated
in the second case. Moreover, all z0 in 4 columns are evaluated, and the following table
summarizes the upper bound of the algebraic degree in the weakest column in every round.

rounds 3 4 5 6 7 8 9 10 11 12 13 14

active 0 0 0 4 8 15 28 58 89 95 96 96 96
columns 0 and 1 0 0 7 15 30 47 97 153 190 191 191 192

The above result implies that Gimli has 11-round integral distinguisher when 96 bits in si,0
are active and the others are constant. Moreover, when 192 bits in si,0 and si,1 are active
and the others are constant, Gimli has 13-round integral distinguisher.

7.4 Degree evaluation by division property

The division property is normally used to search for integral distinguishers. Evaluation of the
algebraic degree, which we use in this paper, is kind of a reverse use of the division property.
Assume that the MILP modelM in which the propagation rules of the division property for
Gimli are described, and ~x and ~y denote MILP variables corresponding to input and output
of Gimli, respectively. In the normal use of the division property, ~x has a specific value. To
be precise, xi = 1 when the ith bit of the input is active, and xi = 0 otherwise. Then, we
check the feasibility that ~y = ~ej, where ~ej is 384-dimensional unit vector whose jth element
is 1. If it is impossible then the jth bit is balanced.

In the reverse use, we constrain ~y and maximize
∑384

i=1 xi by MILP. For example, we constrain∑384
i=1 yi = 1 and maximize

∑384
i=1 xi by using MILP. Suppose the maximized value is d in

r-round Gimli. Then, in other words, if
∑384

i=1 xi = d + 1, it is impossible that
∑384

i=1 yi = 1.
From this it follows that the algebraic degree of r-round Gimli is at most d. If we focus on
a specific bit in the output, e.g., the jth bit, we constrain ~y = ~ej and maximize

∑384
i=1 xi by

using MILP. Moreover, if the algebraic degree involving active bits chosen by attackers is
evaluated, we maximize

∑
i∈S xi, where S is chosen by attackers. This strategy allows us to

efficiently evaluate the algebraic degree in several scenarios.

7.5 Attacks against “hermetic” properties

After the initial Gimli paper, Hamburg posted a note called “Cryptanalysis of 22 1/2 rounds
of Gimli”. We issued the following statement in response.

30

To achieve high security with the best possible efficiency on a broad range of platforms,
Gimli works locally with portions of its internal state for a few rounds before the portions
communicate. As an analogy, a Feistel cipher achieves high security with just 4 communi-
cation steps between halves of the state when the computations on half-states are strong
enough.

In a paper titled “Cryptanalysis of 22 1/2 rounds of Gimli”, Hamburg claims to “show”
that this is “dangerous”, that Gimli’s “slow diffusion is a serious weakness”, etc.

However, Hamburg’s specific claim is that his “attack” takes “2138.5 work” and “2129 bits
of memory”. This is more hardware and more time than a naive brute-force attack against
Hamburg’s 192-bit key.

Specifically, a cluster of 280 brute-force key-search units would cost billions of times less than
Hamburg’s “attack” and would find the key millions of times faster. Replacing the cipher
with another 192-bit cipher, such as AES-192, would not stop this brute-force attack.

Applying the “golden collision” techniques of 1996 van Oorschot–Wiener would allow mem-
ory to be reduced in Hamburg’s “attack”, but at a huge cost in time, again making the
attack more expensive than a naive brute-force attack against the 192-bit key.

Furthermore, there are actually many users with many keys. Brute force gains far more
from this than Hamburg’s “attack” does, making the actual gap even larger than the above
analysis indicates.

Furthermore, Hamburg’s “attack” is against an artificial, ad-hoc mode that we would not
recommend, that we did not recommend, and that, as far as we know, has never appeared
before. Most importantly, the standard practice established by Salsa20 and ChaCha20 is for
stream-cipher (“PRF”) users to add key words to positions selected to maximize diffusion
for the underlying permutation, whereas Hamburg adds key words to positions selected to
minimize diffusion.

Finally, Hamburg’s “attack” will not be feasible in the foreseeable future, even with quantum
computers. Even if the “attack” were extended to the full 24 rounds, it would not contradict
any security claims made in the Gimli paper.

7.6 The Gimli modes

Gimli-Hash uses the well-known sponge mode [10] and profits from the extensive literature
on sponges, in particular the results on its indifferentiability in [9].

Gimli-Cipher uses the well-known duplex mode [11]. AEAD modes using the duplex
construction have also received considerable attention from the research community, and
several security proofs have been provided for different parameter choices [1, 11, 15, 22].

We encourage analysis of reduced-round variants of Gimli-Hash and Gimli-Cipher. Since
the round counter decreases from 24 through 1, the natural R-round generalization has the
round counter decreasing from R through 1. However, we also encourage analysis of the

31

initial rounds. We suggest the terminology “last 3 rounds” for round counters 3, 2, 1, and
“first 3 of 24 rounds” for round counters 24, 23, 22.

Liu, Isobe, and Meier [24] have presented attacks on reduced-round versions of Gimli-Hash:
the last 4 rounds, the first 5 of 24 rounds, and an example of a collision for the first 3 of 24
rounds.

7.7 Release of unverified plaintext

The damage caused by release of unverified plaintext depends on the application and can be
very large. To avoid this damage, each decryption device must buffer the plaintext that it
is producing, until it receives and verifies the authenticator.

Consequently, if the smallest device used in an application can buffer only B bytes, then
the application must keep all plaintexts below B bytes. To transmit longer messages, the
application must split the messages into separately authenticated plaintexts.

To protect an application that incorrectly ignores error messages from decryption, our soft-
ware clears the plaintext buffer when the authenticator is invalid. The pattern of valid au-
thenticators might be secret in some applications; to prevent timing attacks in this scenario,
our software takes the time to rewrite the plaintext buffer whether or not the authenticator
is valid.

8 Advantages and limitations

8.1 Overview

What distinguishes Gimli from other permutations is its cross-platform performance. Gimli
is designed for energy-efficient hardware and for side-channel-protected hardware and for
microcontrollers and for compactness and for vectorization and for short messages and for
a high security level.

The following subsections report the performance of Gimli for several target platforms. See
Tables 5 and 6 for cross-platform overviews of hardware and software performance.

8.2 Speed of permutations vs. speed of modes

We emphasize that the performance analysis below focuses primarily on permutation speed,
the cycles for the Gimli permutation per byte of the state. Both Gimli-Hash and
Gimli-Cipher use three times as many cycles per byte, since they use simple sponge and
duplex modes, handling only 128 bits of input per 384-bit permutation call.

For example, on a 3.5GHz Intel Haswell CPU core, measuring our gimli24v1/sse software

32

with gcc 5.4.0 and do-part from SUPERCOP shows 31544 cycles to hash 2048 bytes, 32460
cycles to encrypt 2048 bytes, and 33544 cycles to decrypt 2048 bytes. Using Gimli to instead
build a block cipher in Even–Mansour mode, and top of this a stream cipher in counter mode,
would process three times as many bytes per Gimli call, and would also allow multiple blocks
to be handled in parallel on this CPU. There are also many fast choices of authenticators.

We recommend simple sponge and duplex modes for lightweight applications. Applications
using other modes also benefit from the cross-platform performance of the Gimli permuta-
tion. It is natural to factor performance analysis into (1) analysis of permutation speed and
(2) analysis of mode speed.

8.3 FPGA & ASIC

We designed and evaluated three main architectures to address different hardware applica-
tions. These different architectures are a tradeoff between resources, maximum operational
frequency and number of cycles necessary to perform the full permutation. Even with these
differences, all 3 architectures share a common simple communication interface which can
be expanded to offer different operation modes. All this was done in VHDL and tested in
ModelSim for behavioral results, synthesized and tested for FPGAs with Xilinx ISE 14.7. In
case of ASICs this was done through Synopsis Ultra and Simple Compiler with 180nm UMC
L180, and Encounter RTL Compiler with ST 28nm FDSOI technology.

The first architecture, depicted in Figure 4, performs a certain number of rounds in one clock
cycle and stores the output in the same buffer as the input. The number of rounds it can
perform in one cycle is chosen before the synthesis process and can be 1, 2, 3, 4, 6, or 8.
In case of 12 or 24 combinational rounds, optimized architectures for these cases were done,
in order to have better results. The rounds themselves are computed as shown in Figure 5.
In every round there is one SP-box application on the whole state, followed by the linear
layer. In the linear layer, the operation can be a small swap with round constant addition,
a big swap, or no operation, which are chosen according to the two least significant bits of
the round number. The round number starts from 24 and is decremented by one in each
combinational round block.

input_output
buffer

combinational rounds

384

384

8

8

input
output round

number

5

5

Figure 4: Round-based architecture

Besides the round and the optimized half and full combinational architectures, the other one
is a serial-based architecture illustrated in Figure 6. The serial-based architecture performs
one SP-box application per cycle, through a circular-shift-based architecture, therefore taking

33

Parallel2SP-box

-1

Big2swap Small2swap
2222and
round2const.

384 5

384 5

state round_number

combinational
round

combinational2round

new_state new_round_number

384 5
new_state new_round_number

combinational2round

384 5

new_state new_round_number

combinational
rounds

1,2,3,4,
6,82or212

Figure 5: Combinational round in round-based architecture

in total 4 cycles. In case of the linear layer, it is still executed in one cycle in parallel. The
reason of not being done in a serial based manner, is because the parallel version cost is very
low.

All hardware results are shown in Table 5. In case of FPGAs the lowest latency is the one
with 4 combinational rounds in one cycle, and the one with best Resources×Time/State is
the one with 2 combinational rounds. For ASICs the results change as the lowest latency
is the one with full combinational setting, and the one with best Resources×Time/State is
the one with 8 combinational rounds for 180nm and 4 combinational rounds for 28nm. This
difference illustrates that each technology can give different results, making it difficult to
compare results on different technology.

Hardware variants that do 2 or 4 rounds in one cycle appear to be attractive choices, de-
pending on the application scenario. The serial version needs 4.5 times more cycles than the
1-round version, while saving around 28% of the gate equivalents (GE) in the 28nm ASIC
technology, and less in the other ASIC technology and FPGA. If resource constraints are
extreme enough to justify the serial version then it would be useful to develop a new version
optimized for the target technology, for better results.

To compare the Gimli permutation to other permutations in the literature, we synthesized
all permutations with similar half-combinational architectures, taking exactly 2 cycles to
perform a permutation. The permutations that were chosen for comparison were selected
close to Gimli in terms of size, even though in the end the final metric was divided by the
permutation size to try to “normalize” the results.

34

input_output
buffer

8

8

input
output

round
number

SP
box32 32

Big5swap Small5swap
5555and
round5const.

384

384
-1

5
5

Figure 6: Serial-based architecture

The best results in Resources×Time/State are from 24-round Gimli and 12-round Ascon-
128, with Ascon slightly more efficient in the FPGA results and Gimli more efficient in
the ASIC results. Both permutations in all 3 technologies had very similar results, while
Keccak-f [400] is worse in all 3 technologies. The permutations SPONGENT-256/256/128,
Photon-256/32/32 and C-Quark have a much higher resource utilization in all technologies.
This is because they were designed to work with little resources in exchange for a very high
response time (e.g., SPONGENT is reported to use 2641 GE for 18720 cycles, or 5011 GE for
195 cycles), therefore changing the resource utilization from logic gates to time. Gimli and
Ascon are the most efficient in the sense of offering a similar security level to SPONGENT,
Photon and C-Quark, with much lower product of time and logic resources.

8.4 SP-box in assembly

We now turn our attention to software. Subsequent subsections explain how to optimize
Gimli for various illustrative examples of CPUs. As a starting point, we note that one can
efficiently apply the Gimli SP-box to three 32-bit registers x, y, z using just two temporary
registers u, v. The order of operations is shown in the original Gimli paper and in various
Gimli implementations.

8.5 8-bit microcontroller: AVR ATmega

The AVR architecture provides 32 8-bit registers (256 bits). This does not allow the full
384-bit Gimli state to stay in the registers: we are forced to use loads and stores in the
main loop.

To minimize the overhead for loads and stores, we work on a half-state (two columns) for
as long as possible. For example, we focus on the left half-state for rounds 21, 20, 19, 18,
17, 16, 15, 14. Before doing this, we focus on the right half-state through the end of round

35

Table 5: Hardware results for Gimli and competitors.
Gates Equivalent(GE). Slice(S). LUT(L). Flip-Flop(F).
* Could not finish the place and route.

Perm. State Version Cycles Resources Period Time Res.×Time/
size (ns) (ns) State

FPGA – Xilinx Spartan 6 LX75
Ascon 320 2 732 S(2700 L+325 F) 34.570 70 158.2
Gimli 384 12 2 1224 S(4398 L+389 F) 27.597 56 175.9
Keccak 400 2 1520 S(5555 L+405 F) 77.281 155 587.3
C-quark* 384 2 2630 S(9718 L+389 F) 98.680 198 1351.7
Photon 288 2 2774 S(9430 L+293 F) 74.587 150 1436.8
Spongent* 384 2 7763 S(19419 L+389 F) 292.160 585 11812.7
Gimli 384 24 1 2395 S(8769 L+385 F) 56.496 57 352.4
Gimli 384 8 3 831 S(2924 L+390 F) 24.531 74 159.3
Gimli 384 6 4 646 S(2398 L+390 F) 18.669 75 125.6
Gimli 384 4 6 415 S(1486 L+391 F) 8.565 52 55.5
Gimli 384 3 8 428 S(1587 L+393 F) 10.908 88 97.3
Gimli 384 2 12 221 S(815 L+392 F) 5.569 67 38.5
Gimli 384 1 24 178 S(587 L+394 F) 4.941 119 55.0
Gimli 384 Serial 108 139 S(492 L+397 F) 3.996 432 156.2

28nm ASIC – ST 28nm FDSOI technology
Gimli 384 12 2 35452GE 2.2672 5 418.6
Ascon 320 2 32476GE 2.8457 6 577.6
Keccak 400 2 55683GE 5.6117 12 1562.4
C-quark 384 2 111852GE 9.9962 20 5823.4
Photon 288 2 296420GE 10.0000 20 20584.7
Spongent 384 2 1432047GE 12.0684 25 90013.1
Gimli 384 24 1 66205GE 4.2870 5 739.1
Gimli 384 8 3 25224GE 1.5921 5 313.7
Gimli 384 6 4 21675GE 2.1315 9 481.2
Gimli 384 4 6 14999GE 1.0549 7 247.2
Gimli 384 3 8 14808GE 2.0119 17 620.6
Gimli 384 2 12 10398GE 1.0598 13 344.4
Gimli 384 1 24 8097GE 1.0642 26 538.5
Gimli 384 Serial 108 5843GE 1.5352 166 2522.7

180nm ASIC – UMC L180
Gimli 384 12 2 26685 9.9500 20 1382.9
Ascon 320 2 23381 11.4400 23 1671.7
Keccak 400 2 37102 22.4300 45 4161.0
C-quark 384 2 62190 37.2400 75 12062.1
Photon 288 2 163656 99.5900 200 113183.8
Spongent 384 2 234556 99.9900 200 122151.9
Gimli 384 24 1 53686 17.4500 18 2439.6
Gimli 384 8 3 19393 7.9100 24 1198.4
Gimli 384 6 4 15886 12.5100 51 2070.0
Gimli 384 4 6 11008 10.1700 62 1749.1
Gimli 384 3 8 10106 10.0500 81 2115.8
Gimli 384 2 12 7112 15.2000 183 3377.8
Gimli 384 1 24 5314 9.5200 229 3161.4
Gimli 384 Serial 108 3846 11.2300 1213 12146.0

36

18, so that the Big-Swap at the end of round 18 can feed 2 words (64 bits) from the right
half-state into the left half-state. See Figure 7 for the exact order of computation.

A half-state requires a total of 24 registers (6 words), leaving us with 8 registers (2 words)
to use as temporaries. We can therefore use the same order of operations as in Section 8.4
for each SP-box. In a stretch of 8 rounds on a half-state (16 SP-boxes) there are just a few
loads and stores.

We provide two implementations of this construction. One is fully unrolled and optimized
for speed: it runs in just 10 264 cycles, using 19 218 bytes of ROM. The other is optimized for
size: it uses just 778 bytes of ROM and runs in 23 670 cycles. Each implementation requires
about the same amount of stack, namely 45 bytes.

8.6 32-bit low-end embedded microcontroller: ARM Cortex-M0

ARM Cortex-M0 comes with 14 32-bit registers. However orr, eor, and-like instructions can
only be used on the lower registers (r0 to r7). This forces us to use the same computation
layout as in the AVR implementation. We split the state into two halves: one in the lower
registers, one in the higher ones. Then we can operate on each during multiple rounds before
exchanging them.

8.7 32-bit high-end embedded microcontroller: ARM Cortex-M3

We focus here on the ARM Cortex-M3 microprocessor, which implements the ARMv7-
M architecture. There is a higher-end microcontroller, the Cortex-M4, implementing the
ARMv7E-M architecture; but our Gimli software does not make use of any of the DSP,
(optional) floating-point, or additional saturated instructions added in this architecture.

The Cortex-M3 features 16 32-bit registers r0 to r15, with one register used as program
counter and one as stack pointer, leaving 14 registers for free use. As the Gimli state fits
into 12 registers and we need only 2 registers for temporary values, we compute the Gimli
permutation without requiring any load or store instructions beyond the initial loads of the
input and the final stores of the output.

One particularly interesting feature of various ARM instruction sets including the ARMv7-M
instruction set are free shifts and rotates as part of arithmetic instructions. More specifically,
all bit-logical operations allow one of the inputs to be shifted or rotated by an arbitrary fixed
distance for free. This was used, e.g., in [30, Sec. 3.1] to eliminate all rotation instructions in
an unrolled implementation of BLAKE. For Gimli this feature gives us the non-cyclic shifts
by 1, 2, 3 and the rotation by 9 for free. We have not found a way to eliminate the rotation
by 24. Each SP-box evaluation thus uses 10 instructions: namely, 9 bit-logical operations (6
xors, 2 ands, and 1 or) and one rotation.

From these considerations we can derive a lower bound on the amount of cycles required
for the Gimli permutation: Each round performs 4 SP-box evaluations (one on each of the

37

1 2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

. . .

Round 21

Round 20

Round 19

Round 18

1. SP-box col. 0

2. SP-box col. 1

swap word s0,0 and s0,1
3. SP-box col. 1

4. SP-box col. 1

5. SP-box col. 0

6. SP-box col. 0

store columns 0,1 ; load columns 2,3

7. SP-box col. 2

8. SP-box col. 3

swap word s0,2 and s0,3
9. SP-box col. 3

10. SP-box col. 3

11. SP-box col. 2

12. SP-box col. 2

push word s0,2, s0,3 ; load word s0,0, s0,1
13. SP-box col. 2

14. SP-box col. 2

15. SP-box col. 3

16. SP-box col. 3

swap word s0,2 and s0,3
17. SP-box col. 3

18. SP-box col. 3

19. SP-box col. 2

20. SP-box col. 2

store columns 2,3 ; load columns 0,1

pop word s0,0, s0,1
21. SP-box col. 0

22. SP-box col. 0

23. SP-box col. 1

24. SP-box col. 1

swap word s0,0 and s0,1
25. SP-box col. 1

26. SP-box col. 1

27. SP-box col. 0

28. SP-box col. 0

push word s0,0, s0,1 ; load word s0,2, s0,3
. . .

Round 24

Round 23

Round 22

Figure 7: computation order on AVR

38

columns of the state), each using 10 instructions, for a total of 40 instructions. In 24 rounds
we thus end up with 24·40 = 960 instructions from the SP-boxes, plus 6 xors for the addition
of round constants. This gives us a lower bound of 966 cycles for the Gimli permutation,
assuming an unrolled implementation in which all Big-Swap and Small-Swap operations are
handled through (free) renaming of registers. Our implementation for the M3 uses such a
fully unrolled approach and takes 1 047 cycles.

8.8 32-bit smartphone CPU: ARM Cortex-A8 with NEON

We focus on a Cortex-A8 for comparability with the highly optimized Salsa20 results of [8].
As a future optimization target we suggest a newer Cortex-A7 CPU core, which according to
ARM has appeared in more than a billion chips. Since our Gimli software uses almost purely
vector instructions (unlike [8], which mixes integer instructions with vector instructions), we
expect it to perform similarly on the Cortex-A7 and the Cortex-A8.

The Gimli state fits naturally into three 128-bit NEON vector registers, one row per vector.
The T-function inside the Gimli SP-box is an obvious match for the NEON vector instruc-
tions: two ANDs, one OR, four shifts, and six XORs. The rotation by 9 uses three vector
instructions. The rotation by 24 uses two 64-bit vector instructions, namely permutations
of byte positions (vtbl) using a precomputed 8-byte permutation. The four SP-boxes in a
round use 18 vector instructions overall.

A straightforward 4-round-unrolled assembly implementation uses just 77 instructions for the
main loop: 72 for the SP-boxes, 1 (vrev64.i32) for Small-Swap, 1 to load the round constant
from a precomputed 96-byte table, 1 to xor the round constant, and 2 for loop control (which
would be reduced by further unrolling). We handle Big-Swap implicitly through the choice
of registers in two vtbl instructions, rather than using an extra vswp instruction. Outside
the main loop we use just 9 instructions, plus 3 instructions to collect timing information
and 20 bytes of alignment, for 480 bytes of code overall.

The lower bound for arithmetic is 65 · 6 = 390 cycles: 16 arithmetic cycles for each of the
24 rounds, and 6 extra for the round constants. The Cortex-A8 can overlap permutations
with arithmetic. With moderate instruction-scheduling effort we achieved 419 cycles, just
8.73 cycles/byte. For comparison, [8] says that a “straightforward NEON implementation”
of the inner loop of Salsa20 “cannot do better than 11.25 cycles/byte” (720 cycles for 64
bytes), plus approximately 1 cycle/byte overhead. [8] does better than this only by handling
multiple blocks in parallel: 880 cycles for 192 bytes, plus the same overhead.

8.9 64-bit server CPU: Intel Haswell

Intel’s server/desktop/laptop CPUs have had 128-bit vectorized integer instructions
(“SSE2”) starting with the Pentium 4 in 2001, and 256-bit vectorized integer instructions
(“AVX2”) starting with the Haswell in 2013. In each case the vector registers appeared
in CPUs a few years earlier supporting vectorized floating-point instructions (“SSE” and

39

“AVX”), including full-width bitwise logic operations, but not including shifts. The vector-
ized integer instructions include shifts but not rotations. Intel has experimented with 512-bit
vector instructions in coprocessors such as Knights Corner and Knights Landing, and has
announced a 512-bit instruction set that includes vectorized rotations and three-input logical
operations, but we focus here on CPUs that are commonly available from Intel and AMD
today.

Our implementation strategy for these CPUs is similar to our implementation strategy for
NEON: again the state fits naturally into three 128-bit vector registers, with Gimli instruc-
tions easily translating into the CPU’s vector instructions. The cycle counts on Haswell are
better than the cycle counts for the Cortex-A8 since each Haswell core has multiple vector
units. We save another factor of almost 2 for 2-way-parallel modes, since 2 parallel copies
of the state fit naturally into three 256-bit vector registers. As with the Cortex-A8, we
outperform Salsa20 and ChaCha20 for short messages.

References

[1] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of
keyed sponge constructions using a modular proof approach. In Gregor Leander, editor,
Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 364–384. Springer, 2015.

[2] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Analysis of NORX:
investigating differential and rotational properties. In Diego F. Aranha and Alfred
Menezes, editors, Progress in Cryptology – LATINCRYPT 2014, volume 8895 of LNCS,
pages 306–324. Springer, 2014. https://eprint.iacr.org/2014/317.pdf.

[3] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX: parallel and
scalable AEAD. In Miroslaw Kutylowski and Jaideep Vaidya, editors, Computer Secu-
rity - ESORICS 2014 - 19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II, volume 8713 of Lecture
Notes in Computer Science, pages 19–36. Springer, 2014.

[4] Jean-Philippe Aumasson, Simon Knellwolf, and Willi Meier. Heavy Quark for secure
AEAD. In DIAC 2012: Directions in Authenticated Ciphers, 2012. https://131002.

net/data/papers/AKM12.pdf.

[5] Jean-Philippe Aumasson, Willi Meier, Raphael C.-W. Phan, and Luca Henzen. The
Hash Function BLAKE. Information Security and Cryptography. Springer, 2014.

[6] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoit Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos, Thomas
Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles Van Assche,
Ronny Van Keer, Löıc van Oldeneel tot Oldenzeel, and Ingo von Maurich. Compact

40

https://eprint.iacr.org/2014/317.pdf
https://131002.net/data/papers/AKM12.pdf
https://131002.net/data/papers/AKM12.pdf

Table 6: Cross-platform software performance comparison of various permu-
tations. “Hashing 500 bytes”: AVR cycles for comparability with [6]. “Per-
mutation”: Cycles/byte for permutation on all platforms. AEAD timings
from [7] are scaled to estimate permutaton timings.

Hashing 500 bytes Cycles ROM Bytes RAM Bytes

AVR ATmega
Spongent [6] 25 464 000 364 101
Keccak-f [400] [6] 1 313 000 608 96
Gimli-Hash h (this submission) small 805 110 778 44
Gimli-Hash h (this submission) fast 362 712 19 218 45

Permutation Cycles/B ROM Bytes RAM Bytes

AVR ATmega
Gimli (this submission) small 413 778 44
ChaCha20 [34] 238 – b 132
Salsa20 [21] 216 1 750 266
Gimli (this submission) fast 213 19 218 45
AES-128 [26] small 171 1 570 – b

AES-128 [26] fast 155 3 098 – b

ARM Cortex-M0
Gimli (this submission) 49 4 730 64
ChaCha20 [27] 40 – b – b

Chaskey [25] 17 414 – b

ARM Cortex-M3/M4
Spongent [13, 28] (c-ref, our measurement) 129 486 1 180 – b

Ascon [17] (opt32, our measurement) 196 – b – b

Keccak-f [400] [33] 106 540 – b

AES-128 [29] 34 3 216 72
Gimli (this submission) 21 3 972 44
ChaCha20 [20] 13 2 868 8
Chaskey [25] 7 908 – b

ARM Cortex-A8
Keccak-f [400] (KetjeSR) [7] 37.52 – b – b

Ascon [7] 25.54 – b – b

AES-128 [7] many blocks 19.25 – b – b

Gimli (this submission) single block 8.73 480 – b

ChaCha20 [7] multiple blocks 6.25 – b – b

Salsa20 [7] multiple blocks 5.48 – b – b

Intel Haswell
Gimli (this submission) single block 4.46 252 – b

NORX-32-4-1 [7] single block 2.84 – b – b

Gimli (this submission) two blocks 2.33 724 – b

Gimli (this submission) four blocks 1.77 1227 – b

Salsa20 [7] eight blocks 1.38 – b – b

ChaCha20 [7] eight blocks 1.20 – b – b

AES-128 [7] many blocks 0.85 – b – b

b no data
h Sponge construction[10] with c = 256 bits, r = 128 bits and 256 bits of output.

41

implementation and performance evaluation of hash functions in ATtiny devices. Cryp-
tology ePrint Archive: Report 2012/507, 2012. https://eprint.iacr.org/2012/507/.

[7] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of cryptographic
systems. https://bench.cr.yp.to (accessed 2017-06-25).

[8] Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems – CHES
2012, volume 7428 of LNCS, pages 320–339. Springer, 2012. https://cryptojedi.

org/papers/#neoncrypto.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indiffer-
entiability of the sponge construction. In Nigel P. Smart, editor, Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings,
volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic
sponge functions, January 2011. http://sponge.noekeon.org/CSF-0.1.pdf.

[11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the
sponge: Single-pass authenticated encryption and other applications. In Ali Miri and
Serge Vaudenay, editors, Selected Areas in Cryptography - 18th International Workshop,
SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, volume
7118 of Lecture Notes in Computer Science, pages 320–337. Springer, 2011.

[12] Karthikeyan Bhargavan, Franziskus Kiefer, and Pierre-Yves Strub. hacspec: Towards
verifiable crypto standards. In Cas Cremers and Anja Lehmann, editors, Security
Standardisation Research - 4th International Conference, SSR 2018, Darmstadt, Ger-
many, November 26-27, 2018, Proceedings, volume 11322 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2018. https://github.com/HACS-workshop/hacspec/

blob/master/doc/hacspec-ssr18-paper.pdf.

[13] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and
Ingrid Verbauwhede. SPONGENT: The design space of lightweight cryptographic hash-
ing, 2011. https://eprint.iacr.org/2011/697.

[14] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of
lightweight and secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):218–241, 2018.

[15] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex with
built-in multi-user support. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science, pages
606–637. Springer, 2017.

42

https://eprint.iacr.org/2012/507/
https://bench.cr.yp.to
https://cryptojedi.org/papers/#neoncrypto
https://cryptojedi.org/papers/#neoncrypto
http://sponge.noekeon.org/CSF-0.1.pdf
https://github.com/HACS-workshop/hacspec/blob/master/doc/hacspec-ssr18-paper.pdf
https://github.com/HACS-workshop/hacspec/blob/master/doc/hacspec-ssr18-paper.pdf
https://eprint.iacr.org/2011/697

[16] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl,
and Alex Biryukov. Design strategies for ARX with provable bounds: SPARX and
LAX. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, volume 10031 of LNCS, pages 484–513. Springer, 2016. https:

//eprint.iacr.org/2016/984.pdf.

[17] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon
v1.2. Submission to the CAESAR competition: https://competitions.cr.yp.to/

round3/asconv12.pdf, 2016.

[18] Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati. Multi-user collisions:
Applications to discrete logarithm, Even-Mansour and PRINCE. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, volume 8873 of
LNCS, pages 420–438. Springer, 2014. https://eprint.iacr.org/2013/761.pdf.

[19] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight
hash functions. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Pro-
ceedings, volume 6841 of Lecture Notes in Computer Science, pages 222–239. Springer,
2011.

[20] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. ARMed SPHINCS – computing
a 41KB signature in 16KB of RAM. In Giuseppe Persiano and Bo-Yin Yang, editors,
Public Key Cryptography – PKC 2016, volume 9614 of LNCS, pages 446–470. Springer,
2016. Document ID: c7ea17f606835ab4368235a464e1f9f6, https://cryptojedi.org/

papers/#armedsphincs.

[21] Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR microcontrollers. In Amr
Youssef and Abderrahmane Nitaj, editors, Progress in Cryptology – AFRICACRYPT
2013, volume 7918 of LNCS, pages 156–172. Springer, 2013. https://cryptojedi.

org/papers/#avrnacl.

[22] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2 c/2 security in sponge-
based authenticated encryption modes. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in
Computer Science, pages 85–104. Springer, 2014.

[23] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON block
cipher family. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, volume 9215 of LNCS, pages 161–185. Springer, 2015.
https://eprint.iacr.org/2015/145.pdf.

[24] Fukang Liu, Takanori Isobe, and Willi Meier. Preimages and collisions for up to 5-
round Gimli-Hash using divide-and-conquer methods, 2019. https://eprint.iacr.

org/2019/1080.

43

https://eprint.iacr.org/2016/984.pdf
https://eprint.iacr.org/2016/984.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://eprint.iacr.org/2013/761.pdf
https://cryptojedi.org/papers/#armedsphincs
https://cryptojedi.org/papers/#armedsphincs
https://cryptojedi.org/papers/#avrnacl
https://cryptojedi.org/papers/#avrnacl
https://eprint.iacr.org/2015/145.pdf
https://eprint.iacr.org/2019/1080
https://eprint.iacr.org/2019/1080

[25] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel,
and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for 32-bit microcon-
trollers. volume 8781 of LNCS, pages 306–323. Springer, 2014.

[26] B. Poettering. AVRAES: The AES block cipher on AVR controllers, 2003. http:

//point-at-infinity.org/avraes/.

[27] Niels Samwel and Moritz Neikes. arm-chacha20, 2016. https://gitlab.science.ru.

nl/mneikes/arm-chacha20/tree/master.

[28] Erik Schneider and Wouter de Groot. spongent-avr, 2015. https://github.com/

weedegee/spongent-avr.

[29] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4. In
Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryptology – SAC 2016,
LNCS. Springer, to appear. Document ID: 9fc0b970660e40c264e50ca389dacd49, https:
//cryptojedi.org/papers/#aesarm.

[30] Peter Schwabe, Bo-Yin Yang, and Shang-Yi Yang. SHA-3 on ARM11 proces-
sors. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptol-
ogy – AFRICACRYPT 2012, volume 7374 of LNCS, pages 324–341. Springer, 2012.
https://cryptojedi.org/papers/#sha3arm.

[31] Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth Os-
wald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, volume
9056 of LNCS, pages 287–314. Springer, 2015. https://eprint.iacr.org/2015/090.
pdf.

[32] Yosuke Todo and Masakatu Morii. Bit-based division property and application to
Simon family. In Thomas Peyrin, editor, Fast Software Encryption - 23rd Interna-
tional Conference, FSE 2016, volume 9783 of LNCS, pages 357–377. Springer, 2016.
https://eprint.iacr.org/2016/285.pdf.

[33] Gilles Van Assche and Ronny Van Keer. Structuring and optimizing Keccak software.
2016. http://ccccspeed.win.tue.nl/papers/KeccakSoftware.pdf.

[34] Rhys Weatherley. Arduinolibs, 2016. https://rweather.github.io/arduinolibs/

crypto.html.

[35] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP method
to searching integral distinguishers based on division property for 6 lightweight block
ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, volume 10031 of LNCS, pages 648–678. Springer, 2016. https:

//eprint.iacr.org/2016/857.

44

http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://github.com/weedegee/spongent-avr
https://github.com/weedegee/spongent-avr
https://cryptojedi.org/papers/#aesarm
https://cryptojedi.org/papers/#aesarm
https://cryptojedi.org/papers/#sha3arm
https://eprint.iacr.org/2015/090.pdf
https://eprint.iacr.org/2015/090.pdf
https://eprint.iacr.org/2016/285.pdf
http://ccccspeed.win.tue.nl/papers/KeccakSoftware.pdf
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html
https://eprint.iacr.org/2016/857
https://eprint.iacr.org/2016/857

A Statements

“Due to the specific requirements of the intellectual property statements as specified in Sec-
tion 2.4, e-mail submissions shall not be accepted for these statements. The statements
specified in Section 2.4 must be mailed to Dr. Kerry McKay, Information Technology Lab-
oratory, Attention: Lightweight Cryptographic Algorithm Submissions, 100 Bureau Drive –
Stop 8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930.”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

45

A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementations that I
have submitted, known as , is my own original work, or if submitted
jointly with others, is the original work of the joint submitters.

I further declare that (check at least one of the following):

� I do not hold and do not intend to hold any patent or patent application with a claim which
may cover the cryptosystem, reference implementation, or optimized implementations that I
have submitted, known as ;

� to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

, may be covered by the following U.S. and/or foreign patents:

� I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public
for review and will be evaluated by NIST, and that it might not be selected for standardization by
NIST. I further acknowledge that I will not receive financial or other compensation from the U.S.
Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed
all patents and patent applications which may cover my cryptosystem, reference implementation or
optimized implementations. I also acknowledge and agree that the U.S. Government may, during
the public review and the evaluation process, and, if my submitted cryptosystem is selected for stan-
dardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications
(e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment. I do hereby agree to provide the statements required by Sections
2.4.2 and 2.4.3, below, for any patent or patent application identified to cover the practice of my
cryptosystem, reference implementation or optimized implementations and the right to use such
implementations for the purposes of the public review and evaluation process.

I acknowledge that, during the lightweight crypto evaluation process, NIST may remove my cryp-
tosystem from consideration for standardization. If my cryptosystem (or the derived cryptosystem)
is removed from consideration for standardization or withdrawn from consideration by all submit-
ter(s) and owner(s), I understand that rights granted and assurances made under Sections 2.4.1,
2.4.2 and 2.4.3, including use rights of the reference and optimized implementations, may be with-
drawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

46

A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those
held by the submitter, the following statement must be signed by each and every owner, or
each owner’s authorized representative, of each patent and patent application identified.

I, , of ,
am the owner or authorized representative of the owner (print
full name, if different than the signer) of the following patent(s)
and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of
implementing the standard (check one):

� without compensation and under reasonable terms and conditions that are demonstrably
free of any unfair discrimination, OR

� under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination.

I further do hereby commit and agree to license such party on the same basis with respect
to any other patent application or patent hereafter granted to me, or owned or controlled by
me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring
ownership of each patent and patent application, provisions to ensure that the commitments
and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest of each patent and patent application, regardless
of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title:

Date:

Place:

47

A.3 Statement by Reference/Optimized/Additional Implementa-
tions’ Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the submit-
ted reference implementation, optimized and additional implementations and hereby grant the
U.S. Government and any interested party the right to reproduce, prepare derivative works
based upon, distribute copies of, and display such implementations for the purposes of the
lightweight cryptography public review and evaluation process, and implementation if the cor-
responding cryptosystem is selected for standardization and as a standard, notwithstanding
that the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

48

	Introduction
	Algorithm specification
	Overview
	Formal and informal specifications
	Parameters
	Notation
	The Gimli state
	The non-linear layer
	The linear layer
	The round constants
	Putting it together: the Gimli permutation
	Hashing
	Authenticated encryption
	Combining authenticated encryption with hashing

	List of parameter sets
	Parameter set hash/gimli24v1
	Parameter set aead/gimli24v1

	Design rationale
	Vectorization
	Logic operations and shifts
	Bijectivity of Gimli

	32-bit words
	State size
	Working locally
	Parallelization
	Compactness
	Inside the SP-box: choice of words and rotation distances
	Application to hashing
	Application to authenticated encryption
	Other applications

	Expected strength in general
	Hashing
	Usage requirements
	Security goals
	Rationale

	Authenticated encryption
	Usage requirements
	Security goals
	Rationale

	Expected strength for each parameter set
	Parameter set hash/gimli24v1
	Parameter set aead/gimli24v1

	Known attacks
	Diffusion
	Differential cryptanalysis
	Algebraic degree and integral attacks
	Degree evaluation by division property
	Attacks against ``hermetic'' properties
	The Gimli modes
	Release of unverified plaintext

	Advantages and limitations
	Overview
	Speed of permutations vs. speed of modes
	FPGA & ASIC
	SP-box in assembly
	8-bit microcontroller: AVR ATmega
	32-bit low-end embedded microcontroller: ARM Cortex-M0
	32-bit high-end embedded microcontroller: ARM Cortex-M3
	32-bit smartphone CPU: ARM Cortex-A8 with NEON
	64-bit server CPU: Intel Haswell

	References
	Statements
	Statement by Each Submitter
	Statement by Patent (and Patent Application) Owner(s)
	Statement by Reference/Optimized/Additional Implementations' Owner(s)

