
Usable assembly language for GPUs:
a success story

Daniel J. Bernstein∗, Hsieh-Chung Chen†, Chen-Mou Cheng‡, Tanja Lange§,
Ruben Niederhagen¶§, Peter Schwabe‖¶, Bo-Yin Yang¶

∗ Department of Computer Science
University of Illinois at Chicago

851 S. Morgan Street, Chicago, IL 60607-7053, USA
Email: djb@cr.yp.to
† Harvard University
Email: kc@crypto.tw

‡ Department of Electrical Engineering
National Taiwan University

1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
Email: doug@crypto.tw

§ Department of Mathematics and Computer Science
Eindhoven University of Technology

Den Dolech 2, 5600 MB Eindhoven, Netherlands
Email: tanja@hyperelliptic.org

¶ Institute of Information Science
Academia Sinica

No 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
Email: by@crypto.tw, ruben@polycephaly.org

‖ Research Center for Information Technology Innovation
Academia Sinica

No 128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
Email: peter@cryptojedi.org

Abstract—The NVIDIA compilers nvcc and ptxas leave the
programmer with only very limited control over register alloca-
tion, register spills, instruction selection, and instruction schedul-
ing. In theory a programmer can gain control by writing an entire
kernel in van der Laan’s cudasm assembly language, but this
requires tedious, error-prone tracking of register assignments.

This paper introduces a higher-level assembly language,
qhasm-cudasm, that allows much faster programming while pro-
viding the same amount of control over the GPU. This language
has been used successfully to build a 90000-machine-instruction
kernel for a computation described in detail in the paper, the
largest public cryptanalytic project in history. The best GTX
295 speed that has been obtained for this computation with nvcc
and ptxas is 25 million iterations per second; the best GTX 295
speed that has been obtained with qhasm-cudasm is 63 million
iterations per second.

I. INTRODUCTION

Decades of advances in the design of optimizing com-
pilers have reduced, but have not eliminated, the need for
some performance-critical functions to be written in assembly
language. For high-performance implementations in C it is

common practice to write the critical parts in assembly.
This paper introduces a new assembly language

qhasm-cudasm for programming Graphics Processing Units
(GPUs), specifically NVIDIA’s Tesla-architecture GPUs.
There is no analogue to assembly in CUDA, NVIDIA’s
standard GPU programming toolkit. NVIDIA’s “PTX” is
labelled as an assembly language, but it is in fact compiled
and hides too many machine details to be usable for writing
cutting-edge code. We started from van der Laan’s cudasm,
a true assembly language for Tesla GPUs; we completely
redesigned the syntax for readability and incorporated
a powerful register allocator from qhasm [3], ultimately
obtaining a usable assembly language for GPUs.

We have used qhasm-cudasm successfully to produce highly
optimized code for a major cryptanalytic computation, the
“ECC2K-130” computation, an order of magnitude larger than
the RSA-768 factorization announced in [11]. This paper
describes this implementation in detail as a case study for
qhasm-cudasm. Finishing the computation in two years with
the fastest CPU software developed would require 1595 quad-

core (3.2 GHz AMD Phenom II X4 955) PCs, but would
require just 534 GTX 295 graphics cards with our software,
or just 229 cost-optimized PCs each having a quad-core CPU
and two GTX 295 graphics cards.

Our software was optimized for and tested on a GTX 295
graphics card containing two 1.242GHz G200b GPUs. We
later tried the same software on the T10 GPUs (in Tesla S1070-
500 units) in TeraGrid’s Lincoln cluster, similar GPUs in the
NCF/SARA cluster, and the FX 5800 GPUs in TeraGrid’s
Longhorn cluster; documentation indicates that these GPUs
have essentially the same microarchitecture as the GTX 295,
except for small differences in clock speed, and as expected we
saw very similar cycle counts. Of course, assembly languages
need to be redone for each new architecture, but massive
speedups are ample justification for this effort.

A. Cores and multiprocessors

Each of the targeted GPUs contains 30 “multiprocessors”;
each multiprocessor contains 8 “streaming processors” and
a few auxiliary units; each “streaming processor” performs,
typically, one 32-bit operation per cycle. Warning: NVIDIA
documentation often refers to each “streaming processor” as a
“core.” We find that terminology misleading: GPU multipro-
cessors are much more closely analogous to CPU cores, and
GPU streaming processors are much more closely analogous
to CPU ALUs. In this paper we refer to multiprocessors
as cores and streaming processors as ALUs.

This paper describes a computation running on one core of
a GPU. Cycle counts in the paper are cycle counts for a single
GTX 295 core. Of course, to make full use of the GPU we
actually run 30 independent computations on the 30 cores of
the GPU, i.e., 60 independent computations on the GTX 295.

B. Threads

There is an additional level of parallelism within each GPU
core: the core runs many threads of computation simultane-
ously. The number of threads is chosen by the programmer,
but is limited by various resources shared among threads.

There are many cycles of latency between successive op-
erations in a thread, and standard advice is to run at least
192 threads per core to hide this latency. For several reasons
we chose to run only 128 threads per core in the particular
computation discussed in this paper. The penalty for using only
128 threads turns out to be quite small: experiments show that
128 threads performing arithmetic operations in registers can
keep all of the ALUs busy in a GPU core, and that occasional
loads and stores from “shared memory” can be handled by
the “special function units” in the GPU core without slowing
down the ALUs. One important reason to limit the number of
threads, although not the only reason, is that all threads on a
core have to share a total of 16384 registers; 128 threads are
each given 128 registers (minus a few special registers), and
we make good use of those registers. A smaller number of
threads would linearly reduce the ALU utilization and would
not provide more registers per thread: the hardware does not
allow one thread to address more than 128 registers.

C. Bitslicing

The particular computation targeted in this paper consists of
a series of iterations summarized in Section II. Each iteration is
a straight-line sequence of approximately 70000 bit operations.
The bit operations are two-input ANDs (the output is 1 if both
inputs are 1, otherwise 0) and two-input XORs (the output is
1 if the inputs are different, otherwise 0).

We carry out 128 independent iterations in parallel on
a single GPU core, with no communication between the
iterations. We apply each bit operation as a 128-way SIMD
operation. GPU instructions, like CPU instructions, are word-
oriented, so we adopt a standard strategy called “bitslicing”:
the 32 consecutive bits in a 32-bit register, or in a 32-bit
memory location, are from 32 separate iterations. A 128-way
XOR is then built straightforwardly from four 32-bit XORs,
and a 128-way AND is built straightforwardly from four 32-bit
ANDs.

We emphasize that these are 128 bit operations. For com-
parison, a single 32-bit instruction followed by 128 threads
in parallel is carrying out 4096 bit operations. In other words,
128-way parallelism is only 1/32nd of the parallelism required
to keep 128 threads busy. We would like to carry out many
more independent iterations in parallel, but we are limited
by the amount of shared memory available on a GPU core,
especially for multiplication; see Section IX.

II. TARGET: THE ECC2K-130 CHALLENGE

Many cryptographic implementations base their security on
the hardness of the Discrete Logarithm Problem (DLP) on
elliptic curves. Cryptanalysis, the science of breaking cryp-
tography, plays an important role in determining the hardness
of the DLP in relation to the different ways of choosing these
curves—critical information for users who want to choose
curves that balance efficiency and security.

In general, the hardness of the DLP grows with the size
of the curve and there are several types of curves that are
particularly hard to break. To give good estimates for the
cost of breaking the DLP, challenge problems are posed at
various sizes and for the different types of curves. From the
time necessary to break these challenges one can extrapolate
the costs for breaking larger systems and estimate how much
computational effort is necessary to break a real-world system;
this then translates into how much money is necessary to
buy the hardware necessary to break actual cryptographic
implementations. Of course the cost estimates depend on the
type of hardware—customized ASICs are likely to have a
better price-performance ratio than off-the-shelf PCs but also
require more specialized knowledge and come at a high initial
cost for designing and fabricating the chip. Challenges put
no restrictions on the hardware used but so far all breaks
of challenges in public-key cryptography have used standard
CPUs with ample RAM per thread, such as the Intel Core 2
or the PlayStation 3.

The computation described in this paper is part of a big
cryptanalytic project, namely the breaking of the Certicom
challenge ECC2K-130 [7]. The ECC2K-130 challenge was

posed in 1997 and remains unbroken today. Our estimates
are that about 277 bit operations are necessary to break this
challenge, which just barely brings this computation into reach
for academic teams. Full details about the challenge and the
mathematical background are described in [1]. That paper
also gives an overview of how the core part of the ECC2K-
130 computation can be implemented on various platforms,
ranging from standard CPUs to FPGAs and ASICs. The paper
contains a section on GPUs but achieves worse performance
on an entire GTX 295 than on a PlayStation 3, even though
the GTX 295 is theoretically capable of performing almost
eight times as many bit operations per second (10× as many
cores, 2× as many bit operations per cycle per core, 0.388×
the clock speed). More details on the fast implementation that
we use here to illustrate the features of qhasm-cudasm are
given in [4].

The computation is embarrassingly parallel and does not
require much communication or storage. The challenge for the
implementor is to perform as many meaningful bit operations
per cycle as possible. Unfortunately, as described in the next
section, the available compiler tools were not able to schedule
the instructions and memory accesses in a way suitable to keep
the arithmetic units of the GPU busy.

Our ECC2K-130 computation works with two representa-
tions of the finite field F2131 : a polynomial-basis representation
introduced in [5], and a standard normal-basis representation.
Multiplications naturally begin with polynomial-basis inputs
but can efficiently produce outputs in either polynomial basis
or normal basis. Squarings are most efficient in normal-basis
representation.

The computation consists of a large number of iterations,
with an essentially unlimited number of iterations to perform
in parallel. We repeat here the description of the iteration
function from [5, Section 5]. The input to an iteration is a
pair (x,y) of elements of F2131 satisfying certain conditions,
notably that x has even Hamming weight w in normal basis.
The output is another pair (x′,y′) defined by

x′ = λ
2 +λ+ x+ x2 j

,

y′ = λ(x+ x′)+ x′+ y,

where j = 3+((w/2) mod 8) and λ = (y+ y2 j
)/(x+ x2 j

).
Each iteration involves three multiplications to compute

the reciprocal of x + x2 j
, two further multiplications, four

conversions from normal basis to polynomial basis, and many
squarings and additions. See [5] for further details and analysis
of the number of bit operations per iteration. Major subroutines
in our software include ppn/ppp for a multiplication producing
normal-basis/polynomial-basis output respectively, multprep
for a basis conversion, hamming for a Hamming-weight com-
putation, add for an addition, and sq for a squaring. These
operations are described in later sections when we explain
details of their implementation in the new framework of our
usable assembly language.

III. TROUBLE WITH THE CUDA TOOLCHAIN

The hardware architecture of GPUs is expected to change
even faster than the architecture of CPUs, not only in respect
to the number of cores and sizes of caches but also in respect
to the instruction set and register file organization. However,
NVIDIA has committed to keep CUDA programs forward-
compatible, ensuring that code written today runs on new
video cards of tomorrow. NVIDIA covers a wide range of
GPUs over several generations by using layers of abstraction.

We briefly recap the normal compilation process supported
by NVIDIA. The programmer writes software in a C-like
language, either CUDA or OpenCL. The NVIDIA compiler
nvcc compiles this software into instructions for a pseudo-
machine called PTX (“parallel thread execution”). The second-
stage NVIDIA compiler ptxas (normally invoked implicitly
by nvcc) reads PTX code and produces actual GPU machine
language in an undocumented format called .cubin. The
CUDA driver loads the .cubin file onto a GPU and runs it.
The .cubin format was text before CUDA 3.0, but was then
replaced by a binary format requiring less parsing.

Writing software in CUDA or OpenCL, or in the interme-
diate language PTX, allows the software to be easily adapted
to new hardware generations: in principle one should be able
to simply recompile the software for a new GPU. However,
this convenience does not seem to be compatible with our
goal of high performance. Most of the GPU clusters that we
have access to have the same Tesla architecture, increasing the
value of optimizations targeting that architecture.

Since the PTX instruction definition is not very far from the
actual instruction set of the Tesla-architecture GPUs, one could
reasonably hope that using register variables in PTX followed
by assembling to binary by ptxas from the NVIDIA toolchain
would give the necessary control over the resources of a GPU.
Unfortunately, we encountered major drawbacks of ptxas,
including bad run-time performance, excessive compilation
times, and sometimes complete failures to produce binary
code.

A critical problem: Apparently the register allocator of
ptxas was not designed for large kernels; the intended target
applications are graphics shaders and small computing kernels.
When the kernel is large, the allocation “leaks” (allocates too
many) registers even when we explicitly generate code to be
runnable within a smaller number of registers. Execution is
often drastically slowed down when the compiler spills values
to “local memory”; spilling values to “shared memory” is often
even worse, preventing us from launching as many threads as
we would like.

It is possible to code around the deficiencies of ptxas.
However, the cost is significant in run time and programmer
time. In our initial implementation work, we were forced
after several months and much pulling of hair to employ
a simple “schoolbook” method of implementing our critical
multiplication subroutine, instead of any of the more advanced
methods such as those mentioned in [1]. The end result was
an overall performance hit of around 50%.

In many other cases the only workaround is to split the
computation into several kernels which are executed one
after another. This introduces additional overhead for kernel
invocation. An ideal program would need to have as large
kernels as possible to be handled by ptxas to avoid as much
invocation overhead as possible. This would require much
effort and experimentation on ideal kernel sizes.

We take a different approach, replacing ptxas by a tool
that is able to handle large kernels without penalty. The
next section introduces our new qhasm-cudasm tool. Beyond
the basic benefit of supporting large kernels, qhasm-cudasm
introduces a new input language that gives the programmer
much more control over the hardware than PTX does, while
at the same time achieving higher readability.

IV. cudasm, qhasm, AND qhasm-cudasm

This section describes the existing cudasm and qhasm
assembly-language tools, and our new qhasm-cudasm assem-
bly language.

A. cudasm

In 2007 van der Laan reverse-engineered the machine lan-
guage of the NVIDIA GPUs. He released a decuda disas-
sembler, translating each machine instruction into a readable
format (somewhat similar to NVIDIA’s documented PTX
format, although the machine language turned out to be more
complicated than PTX). Shortly afterwards he released a
cudasm assembler. See [14].

Our experience is that decuda is by far the easiest way to
figure out what ptxas is doing wrong. Anecdotal evidence
suggests that decuda became moderately popular among se-
rious programmers for exactly this reason. However, cudasm
attracted far less attention. One paper [8] reported a successful
application of decuda and cudasm to manually rewrite a small
section of ptxas output, but said that this was “tedious” and
hampered by cudasm bugs: “we must extract minimum region
of binary code needed to be modified and keep remaining
binary code unchanged . . . implementation of cudasm is not
entirely complete, it is not a good idea to write whole assembly
manually and rely on cudasm.”

We fixed various bugs in cudasm: for example, we found
that memory offsets were sometimes silently ignored. Our
fixed version of cudasm is capable of generating a fully
functional 90000-GPU-instruction kernel for our software, and
in fact is exactly what we use to generate all of the kernels
that we are now running. However, writing these kernels in
the cudasm input language would have been an extremely
time-consuming job; we actually wrote our software in a new
language, as discussed below.

B. qhasm

Years ago, one of the authors of this paper (Bernstein) tried
very hard to convince gcc to emit his desired sequence of
floating-point instructions for a performance-critical crypto-
graphic application on an x86 CPU. Unfortunately, the x86
architecture had (at the time) only 8 floating-point registers;

gcc expected to keep one of those registers in reserve for stack
management; and trying to fit this particular application into
7 registers, rather than 8, seemed to irreparably compromise
performance. He resorted to writing the same function in x86
assembly language; this required manually maintaining a chart
of the floating-point values in each register, and redoing the
chart several times to accommodate changes in the code.

The same author subsequently developed a higher-level
assembly language, qhasm, to give him the same control as a
traditional x86 assembly language with far less programming
time. Many cryptographic speed records were set by software
written in qhasm; see, e.g., [2], [6], and [9].

There are several differences between qhasm and a tra-
ditional assembly language. The most visible difference is
the choice of syntax: qhasm uses readable C-like syntax
such as d = c + 3, while a traditional assembler might use
lea 3(%ecx),%edx. The most important difference, however,
is that qhasm includes a very fast, very smart register allocator,
mapping an unlimited stream of programmer-selected names
to the small number of registers provided by a CPU. The
programmer still controls the selection of instructions, still
controls the order of instructions, and still controls which
values remain in registers, but qhasm handles the tedious task
of assigning registers. The programmer can easily specify a
register assignment but almost never has to.

C. qhasm-cudasm

To bring the same level of assembly-language usability to
GPUs we have built a new qhasm-cudasm language, reusing
the qhasm register allocator to generate code that can be
fed as input to our fixed version of cudasm. We wrote our
new ECC2K-130 software in qhasm-cudasm; see subsequent
sections of this paper for details.

The core of qhasm-cudasm is a GPU machine-description
file, currently 2818 lines; many of those lines are automatically
generated from a shorter script. What follows is a typical line
from that file, split into five lines here for readability:

r = y + t:
>r=low32:
<y=low32:
<t=low32:
asm/add.b32 >r, <y, <t:

This line says that if r and y and t have been declared to be
low32 registers then the qhasm-cudasm instruction r = y +
t reads y, reads t, writes r (eliminating any previous value),
and corresponds to the cudasm instruction add.b32 r, y, t.
Another line (with dots here for brevity) specifies the set of
64 low32 registers:

:name:low32:$r0:$r1:...:$r63:

The reader might be wondering how each thread can have
access to nearly 128 registers (as mentioned earlier) if there
are only 64 registers listed here. The answer is that there are
60 extra high32 registers:

:name:high32:$r64:$r65:...:$r123:

These are distinguished in qhasm-cudasm because they are
distinguished in the GPU machine language: typical instruc-
tions can use high32 in the first operand, or in the second
operand, but not in the third operand.

We developed the machine-description file at the same time
as writing code for the ECC2K-130 computation. We often
changed syntax to improve readability or to avoid common
error patterns. We added new instructions whenever we needed
them:

r = s[p+m] if e signed<:
<e=cond:
inplace>r=high32:
<p=offset:
<r=high32:
#m:
asm/@<e.lt mov.b32 <r, s[<p+#m]:

This example is a predicated 32-bit load from shared memory
into a high32 register. The output value r can depend on the
input value r, and the user can rely on it being assigned to the
same register; this is what inplace>r=high32 accomplishes.
#m indicates an immediate constant. The register changes to
the contents of the load if the signed< bit is set in the e
predicate register.

We added an extra layer of preprocessing in front of
qhasm-cudasm, using Ward’s m5 macro preprocessor [15]. An
m5 script is, except for some syntactic sugar, an awk program
that prints another program; each of our m5 scripts is a program
that prints a qhasm-cudasm program.

We are using qhasm-cudasm for new applications, and are
continuing to add instructions to the machine-description file.
We are also building scripts to automate larger portions of the
generation of the machine-description file.

D. Engineering a new implementation
For a typical function in the ECC2K-130 computation, such

as add (described in the next section), we wrote a series of
three implementations. The first implementation consisted of
• a simple C++ implementation add.cpp of a
paralleladd function operating on data in CPU
memory; and

• a test driver addtest.cpp calling paralleladd.
The second implementation consisted of
• CUDA code for sharedadd in add.cu, operating on data

in shared memory;
• CUDA code for kerneladd in kadd.cu, operating on

data in global memory by copying from global memory
to shared memory and calling sharedadd;

• CUDA code for paralleladd, also in kadd.cu, operat-
ing on data in CPU memory by copying from the CPU
to the GPU and then calling kerneladd; and

• the same test driver addtest.cpp.
The third implementation consisted of
• qhasm-cudasm code for sharedadd in add.mq;
• qhasm-cudasm code for kerneladd in kadd.mq, inlining
sharedadd by including add.mq;

• the same CUDA code for paralleladd in kadd.cu,
calling kerneladd; and

• the same test driver addtest.cpp.
Testing each version with the same test driver allowed typical
bugs to be caught quickly.

It is common practice in GPU programming to implement
functions twice, once in C and once in CUDA, with the same
test driver; it is common practice in assembly-language pro-
gramming to implement functions twice, once in C and once
in assembly, with the same test driver. Our split between the
first and second implementations followed the first practice,
and our split between the second and third implementations
imitated the second practice.

While working on the qhasm-cudasm versions we wrote a
“big-kernel” implementation of the ECC2K-130 main loop.
We wrote this main loop as a series of operations such as

xshift = rˆ2
xshift += r
d = global_Nd[j]
xshift += d
multprep r

in an ad-hoc language (not to be confused with
qhasm-cudasm). We wrote a translator that converted
this ad-hoc language to CUDA, replacing (e.g.) xshift
+= r with an appropriate call to the sharedadd function
defined in add.cu, and replacing d = global_Nd[j] with
an appropriate copy from global memory to shared memory.
This CUDA implementation was extremely slow, and took
an extremely long time for NVIDIA’s tools to compile,
but allowed the main loop to be tested independently of
qhasm-cudasm.

We then wrote a translator that converted the same main
loop to qhasm-cudasm code, automatically inlining individual
qhasm-cudasm functions such as the sharedadd function de-
fined in add.mq. Some data-flow misdeclarations had slipped
past the individual tests and forced too many registers to be
allocated in the main loop; in retrospect this could have been
caught earlier by an extension to qhasm-cudasm, but in any
case it was easy to diagnose and fix. This implementation took
much less time to compile than the CUDA version and was
much faster.

Afterwards we focused on optimizing various functions,
producing the details described in subsequent sections. The
third implementation described above was still in place,
so any changes in add.mq were automatically tested by
addtest.cpp. We also set up further scaffolding to measure
time spent in various parts of the software, guiding our
subsequent optimizations.

V. SCHEDULING INSTRUCTIONS: add AND cadd

The simplest arithmetic operation in the ECC2K-130 com-
putation is an addition in a field of size 2131: in other words,
a XOR of two 131-bit input vectors, producing a 131-bit
output vector. In our software this operation is called add.
A “conditional” variant of the same operation, cadd, has an

extra input bit that masks the second input vector: whenever
a mask bit is 0, cadd simply copies the corresponding input
bit from the first input, ignoring the second input.

As discussed earlier, we actually perform 128 independent
computations in parallel. The add function actually takes two
131× 128-bit input matrices (each stored in bitsliced row-
major form as 131 consecutive 128-bit vectors), and produces
an output matrix of the same size. The cadd function actually
takes an extra 128-bit vector that masks the second input
matrix.

This section describes our implementations of add and
cadd. These functions are only small parts of the ECC2K-130
computation, but they are a useful starting point to illustrate
the capabilities of qhasm-cudasm.

A. Predicate registers

Our 128 threads handle a vector of 131× 128 = 524× 32
bits as 128× 32 bits, then 128× 32 bits, then 128× 32 bits,
then 128×32 bits, and finally 12×32 bits.

For the last 12×32 output bits, only 12 of the 128 threads
are active. Each thread compares its “thread ID” (between 0
and 127) to the constant 12, and temporarily deactivates itself
unless the thread ID is smaller than 12.

The GPU hardware has four special “predicate registers” in
each thread (in addition to other registers) to store the results
of such comparisons. Our ECC2K-130 software sets up one
of these registers as follows:

cond tid12
tid12 tid - $(const(12))

A typical GPU instruction allows one input from “con-
stant memory”; qhasm-cudasm converts $(const(12)) into
a constant-memory location, and arranges for that location to
contain the integer 12. The line cond tid12 declares tid12 as
a predicate register; tid12 tid - $(const(12)) compares
tid to 12 and puts the result of the comparison into tid12.

To save time inside functions such as add we perform
this particular comparison once in the caller, rather than
performing it again each time the function is called. This
means that one of the four predicate registers is reserved long-
term for tid12, but tid12 is used frequently enough to justify
this.

B. Shared-memory offsets

Each GPU core has 16384 bytes of “shared memory.” A
typical GPU instruction allows one input from shared memory.
Reading shared memory is often as fast as reading a register,
although it can trigger some additional bottlenecks. Shared
memory has two advantages over registers: first, it allows
threads to quickly communicate with each other; second,
shared-memory indices can be variables, while register num-
bers are always constant.

The GPU hardware has four special “offset registers” in
each thread to store indices into shared memory. In our
ECC2K-130 software the caller sets up an offset register before
calling add, cadd, etc.:

offset tid4off
tid4off = tid << 2

Here offset tid4off declares tid4off to be one of the
offset registers, and tid4off = tid << 2 performs a shift
by 2, i.e., a multiplication by 4. Note that a shift of a general-
purpose register can put its output into an offset register.

C. How the add function works

Our m5 function add(to,from) prints code that reads two
inputs from shared memory, XORs the inputs, and writes
the output on top of the first input. The input addresses are
to and from; the output address is to. This code is not a
machine-level function requiring call and ret instructions;
it is inlined into the code generated by the caller, just like a
macro expansion.

The add function begins by loading the first input:

syncthreads
new @x4
@x0 = s[tid4off + $to]
@x1 = s[tid4off + $(to + 512)]
@x2 = s[tid4off + $(to + 1024)]
@x3 = s[tid4off + $(to + 1536)]
@x4 = s[tid4off + $(to + 2048)] if tid12 signed<

Here $ starts a compile-time computation; if to happens to
be 4000, for example, then the fourth line above is converted
into @x1 = s[tid4off + 4512].

Recall that the tid12 predicate register compared the thread
ID to 12. The predicate if tid12 signed< skips the instruc-
tion on the same line unless the thread ID is smaller than 12.
Note that each predicate register actually has four different
comparison bits, allowing a variety of different predicates:
signed<, signed<=, etc.

Two aspects of the above code help the qhasm register
allocator manage data flow. First, @ creates (at the m5 level) a
register name specific to this function call, avoiding accidental
data flow between function calls. Second, new @x4 informs the
register allocator that there is no data flow from any previous
use of the @x4 register. This is not necessary for @x0, @x1,
@x2, @x3: a register written by a non-predicated assignment
has value independent of its previous value.

The add function continues by loading the second input:

new @y4
@y0 = s[tid4off + $from]
@y1 = s[tid4off + $(from + 512)]
@y2 = s[tid4off + $(from + 1024)]
@y3 = s[tid4off + $(from + 1536)]
@y4 = s[tid4off + $(from + 2048)] if tid12 signed<

The function then computes and stores the results:

@x0 ˆ= @y0
@x1 ˆ= @y1
@x2 ˆ= @y2
@x3 ˆ= @y3
@x4 ˆ= @y4

s[tid4off + $to] = @x0
s[tid4off + $(to + 512)] = @x1
s[tid4off + $(to + 1024)] = @x2
s[tid4off + $(to + 1536)] = @x3
s[tid4off + $(to + 2048)] = @x4 if tid12 signed<

The cadd function is similar but includes two extra instruc-
tions to load the mask and five extra AND instructions.

One can sometimes merge a load instruction and an XOR
instruction into a single load-and-XOR instruction. However,
the load-and-XOR instruction requires the immediate value
used in the address computation to be in the range from −128
to 127, while the immediate values in the code shown above
are almost never in this range. We subsequently experimented
with rearranging the responsibilities of threads, assigning the
first thread to the first 5×32 bits, the second thread to the next
5×32 bits, etc., so that each load address would be just 4 bytes
after the previous rather than 512 bytes after the previous. This
saved five instructions but cost four instructions to initialize
two new offset registers; competition for offset registers meant
that we could not keep these two offset registers longer
than the function call. We plan to experiment further with
eliminating this cost by more comprehensively rearranging
our data structures, interleaving several 131×128-bit matrices
with each other.

D. Performance

One can crudely model a GPU core as following 8 instruc-
tions per cycle. This model suggests that 128 threads would
follow the 21 instructions shown above (10 loads, 5 stores, 5
XORs, 1 synchronization) in 336 cycles, and would follow the
28 cadd instructions in 448 cycles.

The GPU has a cycle counter. This counter is labelled as
halfclock in qhasm-cudasm, because it actually counts once
every two cycles. The cycle counter shows that the cadd
instructions plus the cycle-counting time actually take 644
cycles, while our CUDA implementation of the same function
takes 1106 cycles. An inspection of the machine-language
code produced by nvcc and ptxas shows several sources of
inefficiency, such as excessive use of offset registers. We could
try to tweak our CUDA code, hoping for better output from
nvcc and ptxas, but writing the code in qhasm-cudasm is
less effort.

VI. HANDLING MEMORY CONFLICTS: sq AND csq

The ECC2K-130 computation involves 8 different sq oper-
ations. Each of these operations takes as input one 131×128
bit matrix and applies a fixed permutation to the rows of the
input matrix to produce again a 131×128 bit matrix as output.
What is different in these 8 sq operations is the permutation
applied to the rows. Each matrix row is stored in 4 successive
32-bit integers, so that one sq operation requires 4 ·131 = 524
load instructions and another 524 store instructions.

This sq operation takes 5 load instructions and 5 store
instructions issued to 128 threads; here two instructions (one
load and one store) are conditional depending on the thread
ID. However, the performance of 128 concurrent load or store

operations performed by 128 threads is highly dependent on
the addresses of the data loaded or stored.

Shared memory is organized into 16 “banks” of memory:
16 consecutive 32-bit words are spread across the banks, one
per bank. The 128 threads are organized into 4 “warps”; each
warp is divided into 2 “half-warps”. The 16 threads of one
half-warp can execute a load operation of the sq operation in
one cycle only if they all load from different memory banks.
If two or more threads within the same half-warp load from
or store to different addresses on the same memory bank in
the same instruction, these requests are serialized.

We first group every four adjacent threads and let them
operate on the four 32-bit words of one matrix row. Four such
groups form a half-warp. We try to assign the 131 rows to
such groups in a way that avoids all memory-bank conflicts.

We use a lookup table in constant memory to assign the
131 rows to 32 thread groups. Each entry of this lookup table
requires only one byte; we pack 4 lookup-table entries into
one 32-bit value.

The memory-bank restrictions also hold for storing the data,
so avoiding memory-conflicts only for loading may yield bank
conflicts when storing the data at the locations given by the
fixed row permutation. We implemented a tool that uses a
greedy approach to compute two lookup tables, one for loading
and one for storing, that avoid almost all bank conflicts. These
tables are linked through the permutation given by the sq
operation.

Four of the sq operations are used very frequently, so we
load the packed 20 load and 20 store positions from constant
memory once at the beginning of the computation and then
keep them in long-term registers:

sqseq_tmp = tid uint32>> 2
sqseq_pos = sqseq_tmp << 2

low32 sqseq_in0
low32 sqseq_in1
low32 sqseq_in2
low32 sqseq_in3
low32 sqseq_in4
sqseq_in0 = c0[sqseq_pos + 0]
sqseq_in1 = c0[sqseq_pos + 128]
sqseq_in2 = c0[sqseq_pos + 256]
sqseq_in3 = c0[sqseq_pos + 384]
sqseq_in4 = c0[sqseq_pos + 512]

low32 sqseq_out0
low32 sqseq_out1
low32 sqseq_out2
low32 sqseq_out3
low32 sqseq_out4
sqseq_out0 = c0[sqseq_pos + $(0+1048)]
sqseq_out1 = c0[sqseq_pos + $(128+1048)]
sqseq_out2 = c0[sqseq_pos + $(256+1048)]
sqseq_out3 = c0[sqseq_pos + $(384+1048)]
sqseq_out4 = c0[sqseq_pos + $(512+1048)]

Extracting one of the 4 packed positions from a 32-bit
integer requires (at most) one shift and one mask instruction.
For example, the following code extracts one position from
sqseq_out0:

@p0 = sqseq_out0 uint32>> 4
@p0 &= $(const(4080))

Similar comments apply to csq, a conditional version of sq.

VII. REDUCING SERIALIZATION: hamming

The hamming operation takes as input a 131× 128 bit
matrix, computes the Hamming weight (sum of bits) for each
column of the matrix, and stores the binary representation of
the Hamming weight in the first bits of each column.

Adding up all bits in order is a completely serial process,
but we obtain some parallelization by changing the order of
additions. The basic operation takes three input vectors a, b,
and c and computes two output vectors bot and top so that
for each position i it holds that a[i] + b[i] + c[i] = top[i] ·
2+ bot[i]. It is possible to schedule 32 such operations in
parallel under some conditions on the addresses modulo 16.
This means that in the first step a total of 3×32 = 96 vectors
can be handled, leading to 32 resulting vectors on level 1 (top)
and 32+(131−96) = 67 results on level 0 (bot). In the next
step results on level 2 can be computed by using vectors on
level 1 as inputs; we carefully arrange vector positions so that
in the same instruction results on level 1 and 0 are computed.

The computation is composed of two routines, FULLAD-
DER(x,in0,in1,in2,out0,out1,threads) and HALFAD-
DER(x,in0,in1,out0,out1,threads). The core of the FUL-
LADDER routine consists of the following code:

syncthreads
@todo tid - $(const(4 * threads))
new @a
new @b
new @c
@a=s[tid4off + $(x + 16*in0)] if @todo signed<
@b=s[tid4off + $(x + 16*in1)] if @todo signed<
@c=s[tid4off + $(x + 16*in2)] if @todo signed<
@sum=@a ˆ @b
@aandb=@a & @b
@candsum=@c & @sum
@bot=@sum ˆ @c
@top=@aandb ˆ @candsum
s[tid4off + $(x + 16*out0)]=@bot if @todo signed<
s[tid4off + $(x + 16*out1)]=@top if @todo signed<

The core of the HALFADDER routine consists of the following
code:

syncthreads
@todo tid - $(const(4 * threads))
new @a
new @b
@a=s[tid4off + $(x + 16*in0)] if @todo signed<
@b=s[tid4off + $(x + 16*in1)] if @todo signed<

@bot=@a ˆ @b
@top=@a & @b
s[tid4off + $(x + 16*out0)]=@bot if @todo signed<
s[tid4off + $(x + 16*out1)]=@top if @todo signed<

Overall we use 19 FULLADDER stages and 2 HALFADDER
stages.

VIII. BATCHING OPERATIONS: multprep ETC.

The multprep operation takes as input a 131× 128 bit
matrix and transforms this matrix in place using a particular
pattern of XORs. We first explain the transformation as a
series of operations on 128-bit vector variables c0, . . . , c130
holding the matrix rows, and then discuss parallelization of
the transformation.

The transformation starts with the short initial computation

c126ˆ=c128
c125ˆ=c129
c124ˆ=c130

and continues with 6 levels of conversion. Level 1 consists of
one computation involving 126 rows:

c62ˆ=c64
c61ˆ=c65
c60ˆ=c66
...
c0ˆ=c126

Level 2 consists of 2 computations, each involving 62 rows:

c30ˆ=c32
c29ˆ=c33
...
c0ˆ=c62

and

c94ˆ=c96
c93ˆ=c97
...
c64ˆ=c126

Level 3 consists of 4 computations, each involving 30 rows;
level 4 of 8 computations, each involving 14 rows; level 5 of
16 computations, each involving 6 rows; and level 6 of 32
computations, each involving 2 rows. The basic structure of
each of these computations on each level is XORing the upper
rows into the lower rows as shown for levels 1 and 2.

We merge levels 1 and 2 of conversion, and then assign the
resulting 125 computations to 128 threads as follows. As in
previous sections, each group of four adjacent threads operates
on the four 32-bit integers of one matrix row. We assign the
first group (threads 0, 1, 2, 3) to the operations in levels 1 and
2 on c0, c62, c64, and c126:

c62ˆ=c64
c0ˆ=c126
c64ˆ=c126
c0ˆ=c62

The actual qhasm-cudasm code consists of the following 11
instructions, where x is the starting position of the input matrix
in shared memory:

@a=s[tid4off + $(x)]
@f=s[@zoff + $(x+4*4*(62+64))]
@b=s[tid4off + $(x+4*4*64)]
@c=s[@zoff + $(x+4*4*62)]
@aˆ=@f
@cˆ=@b
@aˆ=@c
@bˆ=@f
s[tid4off + $(x)]=@a
s[tid4off + $(x+4*4*64)]=@b if @check signed<
s[@zoff + $(x+4*4*62)]=@c

Thread 1 performs the same operations on c1, c61, c65 and
c125, and so on; thread 30 performs the operations on c30,
c32, c94 and c96. In a similar way we merge levels 3 and 4
and levels 5 and 6.

Merging two consecutive levels keeps most threads busy
during the whole computation, and results in only a small
number of memory-bank conflicts for 128 threads working on
the whole matrix.

IX. MINIMIZING CODE SIZE: ppn AND ppp

The most time-consuming operation in our software is field
multiplication. This consists of a 131× 131→ 261-bit poly-
nomial multiplication, followed by a 261→ 131-bit reduction.
As mentioned earlier, field multiplication has two flavors, ppn
and ppp; these have the same polynomial multiplication but
differ in the details of the reduction.

Our polynomial-multiplication code consists of 725 instruc-
tions and uses almost all of the 16KB shared memory. See [4,
Section 5] for details of our multiplication strategy. Reduction
is similar to the multprep operation described in Section VIII
but is about twice as long.

Our main loop originally consisted of straight-line code for a
batch of B iterations, using 5B+5 multiplications. We wanted
B to be reasonably large, at least 32, so as not to notice the +5
overhead here, but we ran into a performance problem: 165
straight-line multiplications do not fit into the second-level
GPU instruction cache. The cores cannot load instructions
from global memory quickly enough to keep the ALUs busy.

To avoid this problem we reduced code size by the following
compression strategy: identify a large, contiguous, frequently
used part of the code, and convert it into a machine-level
function. Our code uses Tesla instructions call.label and
return to enter and leave the function; these instructions
manage return addresses in hardware.

We are departing here from the standard practice on GPUs,
namely to inline all code. There is no common calling con-
vention; saving registers to a stack in global memory would
be highly inefficient. We avoid register spills, and circumvent
the introduction of a calling convention, by instructing the
register allocator to find a fixed register assignment suitable
for all calls to a particular function.

The largest contiguous section of code in our kernel, and
also the largest consumer of time, is the 131-bit polyno-
mial multiplication. We put just one copy of the code into
the kernel, labeled as mult_131x131. All m5-level calls to
the multiplication—which would normally cause inlining in
the assembly code—are replaced by machine-level calls to
mult_131x131.

This mechanism for function calls goes beyond any previous
use of qhasm. It increases pressure on the register allocator and
requires us to place careful hints to the register allocator about
expired register variables. But the code works, and most of its
run time is spent on instructions that fit into the instruction
cache.

We also arranged large parts of the computation into size-B
loops, but the most natural way to do this still contained 16
multiplications. Function calls are more flexible than loops.

We further reduced code size by using half instructions.
Most instructions are encoded in 64-bit words, but some
simple instructions can be encoded in 32-bit words:

shortinsn @p0 += @slicex
shortinsn @p1 += @slicex
shortinsn @p2 += @slicex
shortinsn @p3 += @slicex

A pair of these half instructions fills up one slot of a “regular”
full instruction.

X. INSTRUCTION SCHEDULING

NVIDIA’s documentation does not suggest any real impor-
tance to the order of instructions. There are warnings regarding
large latencies for global-memory access, but there is no
documentation of the latencies of any other instructions, or
of any other interactions between nearby instructions.

We nevertheless found two ways to save time by reordering
instructions. First, given dependent instructions such as

@c ˆ= @b
@a ˆ= @c

we moved another instruction in between. If the first instruc-
tion is issued to 128 threads then it will occupy the 8 ALUs
in the core for only 16 cycles, but apparently it has a latency
of more than 16 cycles, stalling the next instruction if there is
a dependency.

Second, we tried to avoid adjacent shared-memory accesses.
There seems to be a latency of more than 16 cycles from
one shared-memory instruction to the next shared-memory
instruction, even if the instructions are not dependent.

After this round of optimization we found that our
qhasm-cudasm code was running at 63 million iterations
per second on a GTX 295, more than 4 trillion useful bit
operations per second. This is only a quarter of the maximum
theoretical capacity of a GTX 295 but it is more than twice
as fast as our best code compiled by nvcc and ptxas.

XI. CONCLUSION

In this paper, we have described a high-level assembly-
language toolchain, called qhasm-cudasm, that simultaneously

allows efficient programming and complete control over raw
GPU hardware. qhasm-cudasm programmers have full control
over instruction selection and scheduling, as well as register
allocation and spills. Furthermore, qhasm-cudasm has auto-
mated the most tedious task of register assignment while
giving the programmer the maximum degree of freedom in
software architectural exploration, allowing creative program-
ming to reach new heights of performance on the GPU. This
allowed us to build a 90000-machine-instruction kernel for
the largest cryptanalysis project in history, and a streamlined
kernel outperforming the best nvcc implementation by 148%.
We expect to be able to use the qhasm-cudasm toolchain to
set speed records for many other applications, and in fact have
already used it to almost double the speed of a computation
in quantum chemistry.

There are already several projects that aim to provide anal-
ogous features to cudasm for the latest GPUs from NVIDIA
and AMD: asfermi [10] targets NVIDIA’s Fermi architecture;
amdasm [13] targets AMD GPUs; calasm [12], from one of the
authors of this paper (Niederhagen), also targets AMD GPUs.
Future versions of our software will build upon these projects,
bringing the usability of qhasm-cudasm to all of these GPUs.

REFERENCES

[1] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner,
Joppe W. Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier van
Damme, Giacomo de Meulenaer, Luis Julian Dominguez Perez, Junfeng
Fan, Tim Güneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange,
Nele Mentens, Ruben Niederhagen, Christof Paar, Francesco Regazzoni,
Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege, and Bo-Yin
Yang. Breaking ECC2K-130. Cryptology ePrint Archive, Report
2009/541, 2009. http://eprint.iacr.org/2009/541.

[2] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In
Public Key Cryptography—PKC 2006, volume 3958 of Lecture Notes
in Computer Science, pages 207–228. Springer, 2006. http://cr.yp.to/
papers.html#curve25519.

[3] Daniel J. Bernstein. qhasm software package, 2007. http://cr.yp.to/
qhasm.html.

[4] Daniel J. Bernstein, Hsieh-Chung Chen, Chen-Mou Cheng, Tanja Lange,
Ruben Niederhagen, Peter Schwabe, and Bo-Yin Yang. ECC2K-130
on NVIDIA GPUs. In Progress in Cryptology—INDOCRYPT 2010,
volume 6498 of LNCS, pages 328–346. Springer, 2010. http://eprint.
iacr.org/2012/002/.

[5] Daniel J. Bernstein and Tanja Lange. Type-II optimal polynomial bases.
In Arithmetic of Finite Fields—WAIFI 2010, volume 6087 of Lecture
Notes in Computer Science, pages 41–61. Springer, 2010. http://eprint.
iacr.org/2010/069.

[6] Daniel J. Bernstein and Peter Schwabe. New AES software speed
records. In Progress in Cryptology—INDOCRYPT 2008, volume 5365
of Lecture Notes in Computer Science, pages 322–336. Springer, 2008.
http://eprint.iacr.org/2008/381.

[7] Certicom. Certicom ECC challenge. http://www.certicom.com/images/
pdfs/cert ecc challenge.pdf, 1997.

[8] Lung-Sheng Chien. Hand-tuned SGEMM on GT200 GPU.
http://oz.nthu.edu.tw/∼d947207/NVIDIA/SGEMM/HandTunedSgemm
2010 v1.1.pdf, 2010.

[9] Neil Costigan and Peter Schwabe. Fast elliptic-curve cryptography on
the Cell Broadband Engine. In Progress in Cryptology—AFRICACRYPT
2009, volume 5580 of Lecture Notes in Computer Science, pages 368–
385. Springer, 2009. http://eprint.iacr.org/2009/016.

[10] Yunqing Hou. asfermi: An assembler for the NVIDIA Fermi instruction
set, 2011. http://code.google.com/p/asfermi/, accessed Nov. 1, 2011.

[11] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra,
Emmanuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa,
Peter L. Montgomery, Dag Arne Osvik, Herman J. J. te Riele, Andrey
Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA

modulus. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes
in Computer Science, pages 333–350. Springer, 2010.

[12] Ruben Niederhagen. Calasm, 2011. http://www.polycephaly.org/
projects/calasm/.

[13] Ádám Rák. AMD-GPU-Asm-Disasm, 2011. https://github.com/
rakadam/AMD-GPU-Asm-Disasm/, accessed Nov. 1, 2011.

[14] Wladimir J. van der Laan. Cubin utilities. http://wiki.github.com/laanwj/
decuda/, 2007.

[15] William A. Ward, Jr. Algorithm 803: a simpler macro processor. ACM
Transactions on Mathematical Software, 26:310–319, 2000.

