
Graphics Processing Units

Graphics Processing Units (GPUs) are coprocessors that traditionally perform the rendering of 2-dimensional
and 3-dimensional graphics information for display on a screen. In particular computer games request more
and more realistic real-time rendering of graphics data and so GPUs became more and more powerful highly
parallel specialist computing units. It did not take long until programmers realized that this computational
power can also be used for tasks other than computer graphics. For example already in 1990 Lengyel, Re-
ichert, Donald, and Greenberg used GPUs for real-time robot motion planning [43]. In 2003 Harris introduced
the term general-purpose computations on GPUs (GPGPU) [28] for such non-graphics applications running
on GPUs. At that time programming general-purpose computations on GPUs meant expressing all algorithms
in terms of operations on graphics data, pixels and vectors. This was feasible for speed-critical small programs
and for algorithms that operate on vectors of floating-point values in a similar way as graphics data is typically
processed in the rendering pipeline.

The programming paradigm shifted when the two main GPU manufacturers, NVIDIA and AMD, changed
the hardware architecture from a dedicated graphics-rendering pipeline to a multi-core computing platform,
implemented shader algorithms of the rendering pipeline in software running on these cores, and explic-
itly supported general-purpose computations on GPUs by offering programming languages and software-
development toolchains.

This chapter first gives an introduction to the architectures of these modern GPUs and the tools and
languages to program them. Then it highlights several applications of GPUs related to information security
with a focus on applications in cryptography and cryptanalysis.

1 An introduction to modern GPUs

Graphics processing units have evolved to coprocessors of a size larger than typical CPUs. While CPUs use
large portions of the chip area for caches, GPUs use most of the area for arithmetic logic units (ALUs). The
main concept that both NVIDIA and AMD GPUs use to exploit the computational power of these ALUs is
executing a single instruction stream on multiple independent data streams (SIMD) [23]. This concept is
known from CPUs with vector registers and instructions operating on these registers. For example, a 128-bit
vector register can hold four single-precision floating-point values; an addition instruction operating on two
such registers performs four independent additions in parallel. Instead of using vector registers, GPUs use
hardware threads that all execute the same instruction stream on different sets of data. NVIDIA calls this
approach to SIMD computing “single instruction stream, multiple threads (SIMT)”. The number of threads
required to keep the ALUs busy is much larger than the number of elements inside vector registers on CPUs.
GPU performance therefore relies on a high degree of data-level parallelism in the application.

To alleviate these requirements on data-level parallelism, GPUs can also exploit task-level parallelism by
running different independent tasks of a computation in parallel. This is possible on all modern GPUs through
the use of conditional statements. Some recent GPUs support the exploitation of task-level parallelism also
through concurrent execution of independent GPU programs. Each of the independent tasks again needs to
involve a relatively high degree of data-level parallelism to make full use of the computational power of the
GPU, but exploitation of task-level parallelism gives the programmer more flexibility and extends the set of
applications that can make use of GPUs to accelerate computations.

The remainder of this section gives an overview of the hardware architectures of modern GPUs, introduces
the relevant programming languages, and discusses typical performance bottlenecks and GPU benchmarking
issues. The section focuses on NVIDIA GPUs because most of the implementations of subsequent sections
target these GPUs.
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1.1 NVIDIA GPUs

In 2006 NVIDIA introduced the Compute Unified Device Architecture. Today all of NVIDIA’s GPUs are CUDA
GPUs. CUDA is not a computer architecture in the sense of a definition of an instruction set and a set of
architectural registers; binaries compiled for one CUDA GPU do not necessarily run on all CUDA GPUs. More
specifically, NVIDIA defines different CUDA compute capabilities to describe the features supported by CUDA
hardware. The first CUDA GPUs had compute capability 1.0. In 2011 NVIDIA released GPUs with compute
capability 2.1, which is known as “Fermi” architecture. Details about the different compute capabilities are
described in [50, Appendix F].

A CUDA GPU consists of multiple so-called streaming multiprocessors (SMs). The threads executing a GPU
program, a so-called kernel, are grouped in blocks. Threads belonging to one block all run on the same multi-
processor but one multiprocessor can run multiple blocks concurrently. Blocks are further divided into groups
of 32 threads called warps; the threads belonging to one warp are executed in lock step, i.e., they are synchro-
nized. As a consequence, if threads inside one warp diverge via a conditional branch instruction, execution
of the different branches is serialized. On GPUs with compute capability 1.x all streaming multiprocessors
must execute the same kernel. Compute capability 2.x supports concurrent execution of different kernels on
different streaming multiprocessors.

Each streaming multiprocessor contains several so-called CUDA cores, 8 per SM in compute capability
1.x , 32 per SM in compute capability 2.0 and 48 per SM in compute capability 2.1. One could think that
for example a reasonable number of threads per SM is 8 for compute-capability-1.x GPUs or 48 for compute-
capability-2.1 GPUs. In fact it needs many more threads to fully utilize the ALUs; the reason is that concurrent
execution of many threads on one SM is used to hide arithmetic latencies and up to some extent also memory-
access latencies. For compute capability 1.x NVIDIA recommends to run at least 192 or 256 threads per SM.
To fully utilize the power of compute-capability-2.x GPUs even more threads need to run concurrently on
one SM. For applications that involve a very high degree of data-level parallelism it might now sound like
a good idea to just run as many concurrent threads as possible. The problem is that the register banks are
shared among threads; the more threads are executed the fewer registers are available per thread. Finding
the optimal number of threads running concurrently on one streaming multiprocessor is a crucial step to
achieve good performance.

Aside from registers, each thread also has access to various memory domains. Each streaming multipro-
cessor has several KB of fast shared memory accessible by all threads on this multiprocessor. This memory is
intended to exchange data between the threads of a thread block, latencies are as low as for register access
but throughput depends on access patterns. The shared memory is organized in 16 banks. If two threads
within the same half-warp (16 threads) load from or store to different addresses on the same memory bank
in the same instruction, these requests are serialized. Such requests to different addresses on the same mem-
ory bank are called bank conflicts, for details see [50, Section 5.3.2.3]. Graphics cards also contain several
hundred MB up to a few GB of device memory. Each thread has a part of this device memory dedicated as so-
called local memory. Another part of the device memory is global memory accessible by all threads. Access to
device memory has a much higher latency than access to shared memory or registers. For details on latencies
and throughput see [50, Sections 5.3.2.1 and 5.3.2.2]. Additionally, each thread has cached read-only access
to constant memory and texture and surface memory. Loads from constant cache are efficient if all threads
belonging to a half-warp load from the same address; if two threads within the same half-warp load from
different addresses in the same instruction, throughput decreases by a factor equal to the number of different
load addresses. Another decision (aside from the number of threads per SM) that can have huge impact on
performance is what data is kept in which memory domain. Access from threads to different memories is
depicted in Figure 1.1.

Communication between CPU and GPU is done by transferring data between the host memory and the
GPU device memory or by mapping page-locked host memory into the GPU’s address space. Asynchronous
data transfers between page-locked host memory and device memory can overlap with computations on the
CPU. For some CUDA devices since compute capability 1.1 they can also overlap with computations on the
GPU. For details on data transfers to and from NVIDIA GPUs see [50, Sections 3.4 and 3.5]. Since CUDA
4.0 NVIDIA simplifies data exchange between host memory and device memory of Fermi GPUs by supporting
a unified virtual address space. For details see [50, Sections 3.2.7 and 3.3.9]. The unified virtual address
space is particularly interesting in conjunction with peer-to-peer memory access between multiple GPUs.
This technique makes it possible to access the memory of one GPU directly from another GPU without data
transfers through host memory. For details see [50, Sections 3.2.6.4 and 3.2.6.5].
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Figure 1: Access to different memories from threads on NVIDIA CUDA devices. Light-red memories are fast;
dark-red memories are parts of device memory with high-latency access.

1.2 AMD GPUs

The hardware and software technologies that allow programmers to use AMD GPUs for general-purpose
computations are called AMD Accelerated Parallel Processing (APP) formerly known as ATI Stream. For a
detailed description of the architecture and the programming environment see [3].

Each APP device consists of multiple so-called compute units, each compute unit contains multiple stream
cores, which, in turn, contain multiple processing elements. Multiple instances of a GPU program (kernel)
are executed concurrently on different data, one such instance of a kernel is called a work-item. Multiple
work-items are executed by all stream cores of one compute unit in lock step, one such group of work items
executed together is called wavefront. The number of work-items in a wavefront is hardware dependent. The
programmer decides how many work-items are scheduled to one compute unit in a so-called workgroup. Best
performance is obtained if this number is a multiple of the size of a wavefront.

In principle different compute units can execute different kernels concurrently. However, the number of
different kernels running on one APP device may be limited. All stream cores of one compute element exe-
cute the same instruction sequence consisting of very-large-instruction-word (VLIW) arithmetic instructions,
control-flow instructions and memory load and store instructions. The up to four or five (depending on the
device) instructions inside a VLIW instruction word are co-issued to the processing elements.

Similar to NVIDIA GPUs, AMD GPUs have various memories with different visibility to work-items and
different latencies and throughputs. The private memory is specific to each work-item and is kept in a register
file with very fast access. Work-items inside one workgroup, i.e. running on the same compute unit, can
communicate through local memory. This “local memory” is not a part of the device memory as on NVIDIA
GPUs. In fact it is very similar to what NVIDIA calls shared memory, a relatively small memory with fast access
for efficient exchange of data between work-items. Access to local memory is about an order of magnitude
faster than access to device memory. Furthermore all work-items executing in one context have access to the
global device memory and cached read-only access to a part of the device memory called constant memory.
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Figure 2: Access to different memories from work-items on AMD APP devices. Light-red memories are fast;
dark-red memories are parts of device memory with high-latency access.

Access from work-items to different memories is depicted in Figure 1.2.
Communication with the host is done through DMA transfers between host and device memory. Compu-

tation on both the CPU and the GPU can overlap with DMA transfers.

1.3 Programming GPUs in high-level languages

With the CUDA architecture NVIDIA introduced language extensions to the C programming language that
allowed to write programs that are partially executed on the GPU. The resulting programming language is
called “C for CUDA”. Note that depending on the compute capability some restrictions apply for the part of the
program that is executed by the GPU, for example compute capability 1.x does not support recursive function
calls. For details on C for CUDA see [50].

The first software-development tool that AMD offered for general-purpose computation on GPUs was
called Close-to-Metal (CTM) which gave low-level access to the native instruction set of the GPU. High-level-
language support was first offered in the ATI Stream SDK v1 with the ATI Brook+ language, which is based
on BrookGPU developed at Stanford University [14].

Both solutions, C for CUDA and Brook+ could only be used to implement software for the respective
manufacturer’s GPUs. As a more portable approach both NVIDIA and AMD now also support the OpenCL
programming language and API developed by the Khronos group. This programming language is designed
for development of software for parallel computations on arbitrary heterogeneous systems. Two versions of
the language have been released, OpenCL 1.0 in November 2008 [26] and OpenCL 1.1 in June 2004 [27].

Today the recommended way to program NVIDIA GPUs is using either C for CUDA [50] or OpenCL for
CUDA [51]. AMD recommends OpenCL as high-level programming language for their GPUs in their latest
Accelerated Parallel Processing SDK [3].

The compilation process is very similar for all of the high-level languages. In a first step the compiler
separates the parts of the program that run on the CPU from the parts that run on the GPU. The CPU part is
further compiled using native C or C++ compilers for the respective host architecture. The GPU part is first
translated to an intermediate low-level language. For NVIDIA this language is called PTX, for AMD it is called
IL. The advantage of this intermediate language is that it is somewhat device independent. More specifically,
PTX code is compatible across minor revisions of the compute capability; IL code is forward compatible. The
GPU driver contains a just-in-time compiler for this intermediate language. Code that needs to run on GPUs
with different hardware capabilities can thus be translated only to intermediate language, final compilation
to binary code is performed by the respective driver. This last compilation step can also be done offline to
produce binaries for a specific GPU architecture.
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1.4 Programming GPUs in assembly

Most software today is written in high-level languages, but some areas of computing still employ hand-
optimized assembly routines to achieve best performance. One of these areas is high-performance computing
– in computations that run for weeks or months even small performance gains are typically worth the effort
of implementing parts of the software in assembly. Now that GPUs explicitly support applications in high-
performance computing one would expect that the manufacturers also provide assemblers. However, this is
not the case. Until the CUDA 4.0 toolkit was released in May 2011, NVIDIA offered neither an assembler nor
a disassembler for their GPUs, an assembler is still not provided by NVIDIA. To fill this gap, van der Laan
reverse-engineered the binary format and developed the cubin utilities [57] consisting of the disassembler
decuda and the assembler cudasm.

For the Fermi GPUs (compute capability 2.0 and 2.1) NVIDIA includes the cuobjdump disassembler in
the CUDA 4.0 toolkit. An assembler for Fermi GPUs is being developed by the asfermi project [33].

AMD documents the instruction-set architecture of their recent GPUs, for example in [2] for the Radeon
R600 series, in [5] for the Radeon R700 series, and in [4] for the Evergreen series. AMD does not document
the complete ELF format of the binaries and does not provide an assembler for their GPUs. Similar to NVIDIA,
community projects work on assemblers that support different families of AMD GPUs [53] [48].

1.5 GPU performance bottlenecks

What makes GPUs a very interesting computing platform for many algorithms is their pure computing power.
For example, an NVIDIA GTX 295 graphics card containing two GT200b GPUs can dispatch a total of 745
billion single-precision floating-point operations per second. For comparison, all 4 cores of a 2.4 GHz Intel
Core 2 Quad CPU can dispatch a total of 57.6 billion single-precision floating-point operations, more than one
order of magnitude less. One might thus expect that GPUs speed up computations by a factor of 10 or more,
but as the examples in the following sections show this is not the case for many applications. The reason is
that in order to make use of the computational power of GPUs, applications need to fulfill two conditions:

• The degree of data-level parallelism required to keep hundreds of threads busy is much larger than the
degree of data-level parallelism that is required for the SIMD implementations of current CPUs. For
example, keeping 192 threads on each of the 60 multiprocessors of 2 GPUs on an NVIDIA GTX 295
graphics card busy needs 11520 independent data streams. Keeping the 4 cores of a CPU busy working
on 128-bit vector registers needs just 16 such independent streams. Less data-level parallelism typi-
cally requires multiple threads to work on the same data which involves communication and thread
synchronization overhead.

• GPU performance depends on memory-access patterns much more than CPU performance does. The
reason is that GPUs spend most of their chip area on ALUs while CPUs spend a large part of the chip area
on fast caches that reduce load and store latencies. Computations that can keep the active set of data in
the available registers benefit from the large computational power of the ALUs but the high latencies of
device-memory loads and stores typically incur huge performance penalties in applications that cannot.
Some applications can use the shared memory on NVIDIA GPUs or the local memory on AMD GPUs as
cache, Fermi GPUs make this easy by using a configurable amount of shared memory as transparent
cache. If the same data is required by all threads this is indeed a very good solution. However, if each
thread requires different data in cache (for example register content temporarily spilled to memory) the
amount of shared memory per thread is typically too small. Compilers therefore use device memory for
register spills. Another way to deal with high memory latencies is to run more threads and thus hide
the latencies. Note that this comes at the price of a smaller number of registers per thread and even
higher requirements on data-level parallelism.

Another potential bottleneck is data transfer between host memory and device memory. All modern
graphics cards are connected through PCI Express. Throughput rates highly depend on the version of PCI
Express, and the number of lanes. For example the theoretical throughput of PCI Express 2.0 with 16 lanes
(commonly denoted x16) is 8 GB/s in both directions. The throughput obtained in practice is considerably
lower and depends on the size of data packets transmitted over the bus. For details see, for example, [20].
More serious than throughput limitations can be the latency incurred by data transfers over PCI Express,
at least for applications that require frequent communication and cannot interleave communication with
computations.

With these limitations in mind it is interesting to see that GPU advertisements and also various scientific
papers claim speedups by a factor of 100 and more of software running on a GPU compared to software
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running on a CPU. In most of the cases a careful look at how these speedups were achieved reveals that the
CPU implementation is far from state of the art—for example it does not use the SIMD computing capabilities
of modern CPUs—and the CPU implementation is not set up to run on multiple cores.

Despite these misleading comparisons found in many places, GPUs are very powerful computing devices
and with careful optimization GPUs can speed up many computations considerably compared to the same
computations running on a CPU. The following sections give examples of applications of GPU computing in
information security and try to put the performance numbers in a meaningful perspective in comparison to
state-of-the-art CPU implementations.

2 GPUs as cryptographic coprocessors

Cryptographic computations such as encryption and decryption, hashing, signature generation, and signature
verification rely on high performance in software for many applications. Furthermore most of the algorithms
involved can be implemented in relatively small code size and it is feasible to hand-optimize code on the
assembly level. This is why for example AES and RSA encryption were among the algorithms that were
implemented using shader instructions of the graphics rendering pipeline of traditional GPUs [29] [62] [47].

In 2006, before CUDA was introduced by NVIDIA, Cook and Keromytis published a book on cryptography
on graphics cards [21]. This book claims that using GPUs for cryptography has two additional advantages
aside from speeding up computations:

• The authors suggest that GPU implementations may be more resistant to (at least existing) side-channel
attacks. They do not claim that GPU implementations are inherently protected against any side-channel
attacks that work against CPU implementations. In fact, there is no immediate reason to believe that
GPUs generally offer better protection against any side channel attacks than CPUs. Certainly one of the
most relevant class of attacks, namely cache-timing attack (see, e.g, [56]) will not work on GPUs that
have uncached access to memory, but at least the most recent NVIDIA GPUs use part of their shared
memory as transparent cache for access to the GPU’s main memory [49].

• Chapter 3 of [21] describes a video-streaming service that uses GPUs to decrypt video data that shall
only be displayed but never be stored or modified. The system uses the GPU as “the only trusted
component in a spyware-safe system”.

This idea starts from the assumption that GPUs and graphics drivers are more trustworthy than the
operating system for computations involving sensitive data such as cryptographic keys. This is a dan-
gerous assumption to make, attackers controlling the operating system can also exchange the graphics
driver, there is not even a guarantee that any code really runs on the GPU.

When using GPUs for cryptographic computations one should keep in mind that GPUs and graphics drivers
are not designed for computations on sensitive data and should be used for such computations only with
precaution. For instance, on various graphics cards it is possible for a computing kernel to read out parts of
the memory content left behind by a previously executed kernel. Keeping cryptographic keys in these parts
of the memory can be used to speed up computations – for example a key can be expanded once and be
left in constant memory for all subsequent kernel launches as suggested in [52]. On the other hand this can
also be a serious security threat in multi-user environments if one user manages to launch a GPU kernel that
reads out the key of another user. In environments where data in GPU memory can be protected, for example
on a single-user server, or with careful protections to avoid memory readout, modern GPUs can be used as
powerful cryptographic coprocessors for throughput-oriented applications.

2.1 AES on GPUs

In particular the possibility to implement the Advanced Encryption Standard (AES), the most widely used
symmetric encryption algorithm, on GPUs has attracted a lot of attention. AES is a block cipher with supported
key sizes of 128, 192 and 256 bits and a block size of 128 bits. Most implementations focus on AES with 128-
bit keys. In this setting the key is first expanded into 11 round keys K0, . . . , K11. Each 128-bit input block
(state) is then transformed in 10 rounds, each round involving one of the 11 round keys. The first round
key K0 is xored to the block before the first round. The most common implementation technique for AES,
described in [22, Section 5.2.1], operates on 32-bit words and uses 4 lookup tables T0, T1, T2, and T3 of size
1 KB (256 32-bit words) each. The 128-bit state is represented as 4 such 32-bit words. The operations of one
round of AES in C notation is given in Listing 2.1.
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Listing 1 One round of AES encryption in C, the 128-bit input state is in 32-bit unsigned integers y0, y1, y2,
y3, the output state is in 32-bit unsigned integers z0, z1, z2, z3; the 128-bit round key is in 32-bit unsigned
integers k0, k1, k2, k3.

z0 = T0[ y0 >> 24 ] ^ T1[(y1 >> 16) & 0xff] \
^ T2[(y2 >> 8) & 0xff] ^ T3[ y3 & 0xff] ^ k0;

z1 = T0[ y1 >> 24 ] ^ T1[(y2 >> 16) & 0xff] \
^ T2[(y3 >> 8) & 0xff] ^ T3[ y0 & 0xff] ^ k1;

z2 = T0[ y2 >> 24 ] ^ T1[(y3 >> 16) & 0xff] \
^ T2[(y0 >> 8) & 0xff] ^ T3[ y1 & 0xff] ^ k2;

z3 = T0[ y3 >> 24 ] ^ T1[(y0 >> 16) & 0xff] \
^ T2[(y1 >> 8) & 0xff] ^ T3[ y2 & 0xff] ^ k3;

To achieve the required degree of parallelism, GPU implementations of AES typically either consider
many independent streams that are encrypted in parallel or they use a parallel mode of operation such as
ECB or CTR that allows to encrypt blocks of a single stream independently. The most important decision
to make for high-performance AES encryption on GPUs is how to use the available memory domains. CPU
implementations store lookup tables and expanded keys in RAM, after some rounds of AES the tables will
be in level-1 cache and lookups are fast. On most GPUs a straight-forward adaptation of this approach—
placing tables and expanded keys in device memory—will incur high latency penalties because access to
device memory is uncached (except for NVIDIA Fermi GPUs where part of the shared memory is used as
transparent cache). A better approach is to place the lookup tables in the fast shared memory of NVIDIA
GPUs or the local memory of AMD GPUs. Recall that loads from shared memory on NVIDIA GPUs can be as
fast as register access but that throughput and latency depend on the access pattern. AES table lookups have
an unpredictable access pattern, so one must expect penalties due to memory-bank conflicts. One solution to
avoid these penalties is to store multiple copies of the lookup tables in the fast memory such that each entry
is available on each memory bank. If shared memory is not large enough to hold these copies of the tables,
it may still be possible to store copies of only one of the tables and obtain entries of the other tables through
rotations (see, e.g., [22, Section 5.2.1]). The best combination of optimization techniques depends on the
target GPU.

Not only the decision about location and layout of the lookup tables is important, also handling of the
round keys influences performance. This is relatively easy if one big stream is encrypted in a parallel mode of
operation. In this case all threads use the same key and it can be stored in constant memory. Unlike lookups
from the tables, the round keys are accessed in a completely predictable pattern; they are broadcasted to all
threads which is exactly what the constant memory is made for. The situation is different for the encryption
of many independent streams under different keys. If each thread needs different round keys, there is not
enough fast memory on most GPUs to store all these round keys. Instead of loading round keys from slow
device memory it may be a better choice to expand the key on the fly. Again, the best solution highly depends
on the specific target GPU.

A completely different approach to implement AES is bitslicing. This technique was first introduced for the
Data Encryption Standard (DES) by Biham in [12] and has also been used for various AES implementations
[45, 41, 37]. The idea of this technique is transposition of data: Instead of storing a 128-bit state in, e.g.,
4 32-bit registers, it uses 128 registers, 1 register per bit. This representation of data allows to simulate a
hardware implementation, logical gates become bit-logical instructions. For just one computation this is not
efficient, but if all n bits of registers are used to perform computations on n independent streams, this can be
very efficient. Note that on top of the high degree of parallelism required for GPU computations, bitslicing
requires another factor of n of parallelism, n being the register width.

Various GPU implementations of AES are described in the literature. In [63] Yang and Goodman describe
different implementations of AES for AMD GPUs. Their bitsliced implementation aims at key search so keys
need to be expanded into round keys on the fly. On an AMD HD 2900 XT GPU this implementation performs
encryption of one block under 145 million keys per second, this corresponds to a throughput of 18.5 Gbit/s.
For the lookup-table-based implementation they report an AES encryption throughput of 3.5 Gbit/s on an
AMD HD 2900 XT GPU.

The implementation by Manavski described in [44] uses a lookup-table-based approach to achieve a peak
throughput of 8.28 Gbit/s on an NVIDIA 8800 GTX graphics card (G80 GPU); to achieve this peak throughput
at least 8 MB of data need to be encrypted under the same key. This implementation exploits parallelism inside
AES, 4 threads perform the transformation of one 128-bit block. Harrison and Waldron report a throughput
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of 15.423 Gbit/s in [30] for their lookup-table based implementation of AES on an NVIDIA G80 GPU. This
peak performance is achieved for input messages of ≥ 65 MB, overhead from data transfers to and from the
GPU is not included in the benchmarks. Both the implementation in [44] and the implementation in [30]
achieve a significantly lower throughput when data transfers are included in the benchmarks: 2.5 Gbit/s for
[44] and 6.9 Gbit/s for [30].

Two more recent papers report speeds beyond 30 Gbit/s on NVIDIA GPUs. Osvik, Bos, Stefan, and Can-
right in [52] describe an implementation of AES with 128-bit keys that achieves 30.9 Gbit/s throughput on
one GPU of an NVIDIA GTX 295 graphics card (containing 2 GT200b GPUs). The implementation interleaves
data transfers with computations by using page-locked host memory. Interleaving data transfers with ker-
nel execution was not possible for the GPUs used for benchmarking in [44] and [30]. This throughput is
achieved for encryption under one key in constant memory but the paper also describes an implementation
with on-the-fly key schedule suitable for key-search applications, that achieves a throughput of 23.8 Gbit/s.
Jang, Han, Han, Moon, and Park present a GPU-accelerated SSL proxy in [36]. For the AES implementation
included in this proxy they report 32.8 Gbit/s on an NVIDIA GTX 285 graphics card (GT200b GPU), not in-
cluding data transfers. They also report detailed performance numbers of AES encryption in the non-parallel
CBC mode for different numbers of independent streams on an NVIDIA GTX 580 graphics card (GF110 GPU).

Note that these high throughputs of AES on GPUs can only be achieved by performing AES encryption
on thousands of blocks in parallel. This amount of data-level parallelism can certainly be found for some
database applications or when writing large amounts of data to an encrypted hard disk. The encryption of
typically small Internet packages in applications that do not just need high throughput but also low latency
will still do better with a CPU-based approach, not only when using CPUs that support AES in hardware. For
example the bitsliced implementation for Intel processors presented in [37] encrypts 1500-byte packets in
7.27 cycles per byte on a 2668 MHz Intel Core i7 920 CPU. This corresponds to a throughput of more than
11.7 Gbit/s on 4 cores.

2.2 Asymmetric cryptography on GPUs

Also asymmetric cryptographic primitives can be accelerated by laying off the computations from the CPU
to the GPU. As for symmetric primitives like AES one way to obtain the necessary degree of parallelism is
to consider operations on many independent messages. However, there is another source for parallelism
inherent in the algorithms. Most state-of-the art asymmetric algorithms involve operations on large integers,
for example RSA signature generation is the computation of md mod n, where m, d and n are integers of
1024 bits or larger. Arithmetic on such integers, in particular multiplication, squaring and modular reduction,
needs to be decomposed in many operations on machine words. Elliptic-curve cryptography involves modular
arithmetic on integers of smaller size—typically between 160 bits and 256 bits—but arithmetic on those
integers still decomposes into many operations on machine words. For example when using a multiplier with
32-bit output, schoolbook multiplication of two 256-bit integers requires 256 multiplications of 16-bit limbs
and 240 additions of the 32-bit multiplication outputs. Most of these operations are independent and can be
done in parallel by multiple threads. Exploiting such parallelism inside one computation has some obvious
advantages. If multiple threads process one input stream together, fewer independent input streams are
required to make use of the computational power of the GPU. This makes GPU computations attractive also
for applications that require low latency rather than high throughput. Furthermore, when multiple threads
carry out one computation together the overall amount of data involved in the computations is smaller; this
can be used to fit all data into memory domains that offer low-latency access. However, exploiting data-level
parallelism inside computations like big-integer multiplication comes with the disadvantage that it involves
overhead from thread synchronization and exchange of data between treads.

Several papers describe implementations of RSA on modern graphics cards. In [55] Szerwinski and
Güneysu describe a CUDA implementation that performs 813 modular exponentiations (RSA encryption)
of 1024-bit integers on a NVIDIA 8800 GTS graphics card. This paper furthermore reports a throughput
of 104.3 modular exponentiations for 2048-bit RSA encryption. Harrison and Waldron in [31] focus on RSA
decryption and report 5536.75 RSA-1024 decryptions per second on an NVIDIA 8800 GTX graphics card. This
computation can make use of the Chinese Remainder Theorem to perform arithmetic on half-size integers.
The RSA implementation included in the SSL proxy described in [36] can perform for example 74732 RSA-
1024 decryptions or 12044 RSA-2048 decryptions per second on an NVIDIA GTX 580 graphics card. What
is particularly interesting about this implementation is that it does not purely focus on throughput but also
needs to keep the latency low enough for the application in the SSL proxy. For RSA-1024 the latency is at
3.8 ms, for RSA-2048 it is 13.83 ms.

To put this into perspective to what is currently possible on CPUs, the eBACS benchmarking project [11]
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reports, for example, more than 11000 1024-bit integer exponentiations per second on all 6 cores of an AMD
Phenom II X6 1090T. Again, this speed does not require the large number of independent parallel computa-
tions that GPU implementations need and although it is much slower from a pure throughput perspective it
may be the better choice for applications that do not process multiple messages in parallel.

Also elliptic-curve cryptography has been implemented on GPUs. Szerwinski and Güneysu report 1412
scalar multiplications per second on the NIST P-224 elliptic curve on an NVIDIA 8800 GTS graphics card
in [55]. On the same curve but the more recent NVIDIA GTX 285 graphics card Antão, Bajard, and Sousa
report 9990 scalar multiplications per second. More than an order of magnitude slower at significantly lower
security is the implementation of scalar multiplication on an elliptic-curve over a binary field described in
[19]. Cohen and Parhi report only 96.5 scalar multiplications per second.

Elliptic-curve scalar multiplication has received more attention on CPUs, for example [10] reports 226872
cycles for a scalar multiplication on a 255-bit elliptic curve on an Intel Xeon E5620 CPU running at 2.4 GHz.
This corresponds to more than 40000 scalar multiplication per second on all four cores. Even faster speeds
for CPU implementations are reported in [34] for scalar multiplication on elliptic curves with efficiently com-
putable endomorphisms. These comparative numbers may suggest that GPU implementations of elliptic-curve
cryptography cannot compete with state-of-the-art CPU implementations, not even in throughput-oriented
applications. However, the next section describes implementations of elliptic-curve operations on GPUs for
cryptanalysis that outperform CPU implementations. The reason that there are no faster GPU implementa-
tions targeting constructive applications may be that there are simply not many applications that require only
throughput and can ignore latency.

An asymmetric cryptosystem that appears to be much better suited for implementation on GPUs than
elliptic-curve cryptography or RSA is NTRU. The central operation for encryption and decryption is convolu-
tion which can be carried out by many threads without significant communication or synchronization due to
its parallel structure. In [32] Hermans, Vercauteren, and Preneel describe an implementation of NTRU with
a set of parameters that aims at the 256-bit security level. This implementation is able to perform 218000
encryption operations per second on an NVIDIA GTX 280 graphics card (GT200 GPU).

3 GPUs in cryptanalysis

Cryptanalytical computations are in many ways similar to cryptographic computations. In many cases break-
ing a cryptographic system means executing the same or very similar computations that are used in the
constructive use of the cryptosystem. One example is brute-force key recovery of symmetric ciphers that sim-
ply performs encryption with many different keys. Another example is hash-function collision search with the
computationally most expensive part being computing hashes. An example in the cryptanalysis of asymmetric
systems is Pollard’s rho algorithm to solve the discrete logarithm problem (DLP). Again the computationally
most expensive part are the same or very similar operations in the same mathematical structures that are
involved in the legitimate use of the DLP-based system.

In three very important points cryptanalytical computations are different from cryptographic computations
and all three make them even better suited for GPUs. First they typically involve an arbitrary amount of data-
level parallelism, the same computations are carried out on huge amounts of independent data; this is exactly
the sort of computations that GPUs are best at. Second many of these computations do not care about latency,
they are purely throughput oriented. Third there is no confidential data involved that needs to be protected,
one could say that the opposite is true, revealing the confidential data is the target of the computation.

The most obvious applications of GPUs for cryptanalysis are attacks against symmetric encryption and
hash functions. Various commercial solutions for password recovery already include GPU implementations to
speed up the computations. These tools typically try out many different passwords from a given word list and
either compare with given hash values or derive symmetric keys from a list of known passphrases to recover
the content of encrypted files.

The power of GPUs was also used by the winner of Engineyard’s SHA-1 programming contest: The task
was to find an input to SHA-1 that has minimal Hamming distance to a given hash value. Lange in [42]
reports that code by Bernstein is able to compute more than 328 million hashes per second on an NVIDIA
GTX 295 graphics card. Each of these hashes required computation of only one 64-byte block of input, so
this corresponds to a throughput of more than 167 Gbit/s. As a comparison, all four cores of a 2.4 GHz Intel
Core 2 Quad Q6600 CPU involved in the same computation computed 47 million hashes per second. Also the
SHA-3 candidates have been implemented on GPUs, password recovery being the most obvious application.
In [13] Bos and Stefan describe implementations of all of the SHA-3 round-2 candidates on NVIDIA GT200
GPUs. The reported throughputs reach from 0.9 Gbit/s for Cubehash 16/1 up to 36.8 Gbit/s for Blake-32
and BMW-256 on one GPU of an NVIDIA GTX 295 graphics card. Again to put this into perspective, on a
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recent CPU, the Intel Core i7-2600K, hashing with Blake-32 takes 6.68 cycles/byte [11]; this corresponds to
a throughput of 16.29 Gbit/s.

These applications in password recovery are quite straightforward, but GPUs have also been used for
cryptanalysis of asymmetric systems. One of the most famous problems closely related to the RSA cryptosys-
tem is the factorization of large numbers. A critical step inside the factorization of large RSA numbers with the
number-field sieve is the factorization of many smaller numbers using the elliptic-curve factorization method
(ECM). In [9] Bernstein, Chen, Cheng, Lange and Yang describe an implementation of ECM for 280-bit num-
bers. This implementation running on both GT200b GPUs of an NVIDIA GTX 295 graphics card outperforms a
state-of-the-art CPU implementation running on all 4 cores of an Intel Core 2 Quad Q9550 by a factor of more
than 2.8. The GPU implementation tries 400.7 curves per second, the CPU implementation 142.17 curves
per second. A much higher ECM throughput for slightly smaller numbers is reported in [8]. For example for
210-bit numbers a GTX 295 graphics card is reported to try 4928 curves per second. Although these numbers
are not as impressive as the speedups achieved by using GPUs in symmetric cryptanalysis the results show
that GPUs can also be used to speed up elliptic-curve arithmetic.

This is confirmed for elliptic curves over binary fields in [7]. As part of a large effort to solve Certicom’s
elliptic-curve discrete-logarithm-problem (ECDLP) challenge ECC2K-130 [15], [16], this paper presents an
implementation of Pollard’s rho algorithm for GT200b GPUs. On the two GPUs inside the GTX 295 graphics
card this implementation is able to perform 63 million Pollard rho iterations per second. As a comparison, the
CPU implementation computing the same iteration function described in [6] performs 22.45 million iterations
per second on all 4 cores of an Intel Core 2 Extreme Q6850 CPU.

GPUs have also been considered for solving the discrete-logarithm problem on elliptic curves over large
prime fields. The implementation described in [17] targets an ECDLP on a 109-bit prime curve and is reported
to “have generated about 320.000 points/second” on an NVIDIA 8800 GTS graphics card with a G92 GPU.
This probably means 320000 iterations per second, but it is unclear what the exact performance of the
implementation is.

4 Malware detection on GPUs

Similar to cryptographic applications, malware-detection software is expected to operate in the background
with as little influence on the system’s performance as possible. A large computational task of virus detection
is pattern matching of byte sequences found in files with known signatures of malware. This task is highly
parallel, so it is an application that can run at high speed on GPUs.

Seamans and Alexander describe an implementation of parallel virus signature matching for NVIDIA GPUs
in [54]. The authors integrated this implementation into the ClamAV virus scanner [18] and compare the
performance of this implementation running on an NVIDIA GTX 7800 graphics card to the original CPU
implementation running on an unspecified 3-GHz Intel Pentium 4 CPU; the authors do not specify the number
of CPU cores used for this comparison. The speedup obtained by running the pattern matching on the GPU
depends on the number of matches because matches need to be communicated back to the CPU. If no matches
are found the GPU implementation is 27 times faster than the CPU implementation; this factor drops to 17 at
a match rate of 1% and further to 11 at a match rate of 50%.

In [59] Vasiliadis and Ioannidis describe an implementation of virus-signature pattern matching targeting
more recent NVIDIA GPUs. Their implementation filters out clean, unsuspicious regions, it is included as a
preprocessing step into the ClamAV [18] virus scanner. The authors achieve a 100-times higher throughput
with this approach running on an NVIDIA GTX295 graphics card compared to the CPU-only virus scanner
running on 1 core of an Intel Xeon E5520 CPU. Compared to the CPU implementation running on 8 cores of
2 CPUs the speedup is still 10-fold.

The approach of using the GPU as a coprocessor for malware detection is not purely academic. In De-
cember 2009 Kaspersky announced that they incorporated an implementation of the “similarity service” for
NVIDIA Tesla cards into their infrastructure. The press release [38] does not give much detail but claims a
360-times speedup of the GPU implementation running on an NVIDIA Tesla S1070 compared to the a CPU
implementation running on a 2.6 GHz Intel Core 2 Duo processor. This comparison does not give details
about the number of CPU cores used, it also does not say whether the speedup is obtained from running the
GPU code on one or all four GPUs included in the Tesla S1070.

Signature matching is also one of the main performance bottlenecks of network-intrusion-detection sys-
tems. Consequently GPUs can also be used to speed up such systems. This was first described by Jacob and
Brodley who use a traditional GPGPU approach targeting the NVIDIA 6800 GT graphics card in [35]. They
conclude that with their GPU pattern-matching extension to the open-source intrusion detection system Snort
“there was no appreciable speedup in packet processing under normal-load conditions”. A more efficient
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approach targeting the NVIDIA 8600 GT graphics card is described in [58]. Vasiliadis, Antonatos, Polychron-
akis, Markatos, and Ioannidis present a GPU pattern-matching extension of Snort that increases the overall
Snort throughput capacity by a factor of 2 compared to CPU-only Snort running on a 3.4 GHz Intel Pentium
4 processor. The most comprehensive solution for intrusion detection involving GPUs to date is presented in
[61]. Vasiliadis, Polychronakis, and Ioannidis describe a Snort-based intrusion detection solution that exploits
parallelism on multiple levels. The system makes use of multiple GPUs and multiple CPU cores and copes with
a network throughput of 5.2 GBit per second. This performance number was achieved on a system with two
NVIDIA GTX 480 graphics cards and two Intel Xeon E5520 CPUs. The pure pattern-matching step reaches a
peak performance of more than 70 GBit per second on the two graphics cards.

5 Malware targeting GPUs

GPUs can not only be used to accelerate malware detection, malware itself can also use GPUs to hide from
virus scanners. In [60] Vasiliadis, Polychronakis, and Ioannidis describe an implementation of a malware
unpacker running on an NVIDIA GPU. The complete malware package consists of two parts, the unpacker
running on the GPU and the actual malware that runs on the CPU. These two parts communicate through
host memory mapped into the GPU’s address space.

Unpackers are one of the most common techniques to hide malware from scanners: The malware code
is packed or encrypted in some way and gets unpacked (decrypted) only when it is actually executed. The
advantage from the malware author’s perspective of using GPU code for the unpacker is twofold as it offers
better protection against detection by both static and dynamic malware-detection systems. Static systems
try different known unpacking techniques to recover the original malware. This becomes harder if the com-
putational power of the GPU is used for computationally more expensive unpacking algorithms. Dynamic
unpacking tools use the unpacker that is included in the malware, for example inside a sandbox or virtual
machine. At least existing dynamic tools do not support GPU binaries and would thus fail.

As a second step [60] also describes GPU-assisted run-time polymorphism on the function level. The mal-
ware binary is never fully decrypted, only the currently executed function resides in memory, when returning
from a function call the function is encrypted again and the next function context is decrypted.

The implementations are still just a proof of concept and there have been no reports of real-world malware
using the GPU to hide from scanners. Some of the claimed advantages of using the GPU to hide malware can
obviously be addressed by malware-detection tools also using the GPU. Others will require better tools for
static and dynamic analysis of GPU code. It will be interesting to see whether or how much GPUs become a
new battlefield in the everlasting fight between malware and malware detection.

6 Accessing GPUs from web applications

Software becomes more and more web centric; programs such as office suites, image-processing software, and
games, which traditionally run directly on a computer, are now implemented as applications running inside
a web browser. The most consistent implementation of this approach is Google’s Chromium OS, an operating
system that is designed to run a web browser as only application – all other software is web applications
running inside this browser.

As a consequence of higher demands for advanced graphics in web applications various technologies have
been developed to let those applications access the GPU. The most prominent three approaches are WebGL
developed initially by Mozilla and now by the Khronos group [39], Silverlight 5 developed by Microsoft [46],
and Flash 11 developed by Adobe.

All of these approaches have in common that they expose the graphics driver and hardware to software
originating from the Internet and thus from typically untrusted sources. The implications for security of this
approach have so far been discussed primarily for WebGL. In March 2011, version 1.0 of the specification of
WebGL was released by the Khronos group. Browsers supporting this specification include Mozilla’s Firefox
and Google’s Chrome. Only about two months later Forshaw publicized an article [24] that describes several
security issues in these implementations and claims that these are actually caused by design flaws in WebGL.
One of these issues is the possibility to remotely exploit vulnerabilities in the graphics driver to crash or freeze
the system. Another one is a cross-site timing attack that extracts image data processed on the GPU. A follow-
up article by Forshaw, Stone, and Jordon [25] describes an attack targeting the WebGL implementation of
Firefox. In this attack a malicious website can take screenshots of arbitrary applications running on the client
computer.
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Khronos has reacted to these articles in a WebGL security whitepaper [40] that describes approaches to
address the security issues. These approaches can not all be implemented only on the browser side but need
support on the graphics-driver side.

Even without any vulnerabilities in the framework the computational power of GPUs enables attacks
that would otherwise be infeasible. For example the JavaScript bitcoin miner of bitp.it has been discontinued
because “Javascript is just too slow to mine bitcoins” [1]. This would certainly be different with the computing
power of GPUs open to web applications. Mining bitcoins on the GPU in the background while a user is
visiting a website could on the one hand be a legitimate new way of funding websites (if the user is asked
for permission), on the other hand it would most likely also be done silently and thus become sort of a web
Trojan.

The discussion about WebGL security and more general security issues related to exposing the GPU and
the graphics driver to untrusted code from the Internet is still ongoing. On the one hand WebGL, Silverlight
5, and Flash 11 are still very young technologies and maybe some of the vulnerabilities are just teething
troubles. On the other hand the concept of letting web applications access the driver layer of a client’s
operating system flies in the face of conventional wisdom that tells us that untrusted code should be kept
as far away from any critical parts of a system as possible. The future will have to show what changes are
required to browsers, operating systems, and drivers to deal with current and future security vulnerabilities
and whether it is actually possible to establish these technologies without exposing their users to severe risks.
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