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Abstract. The current Java Card platform does not seem to allow
for fast implementations of hash-based signature schemes. While the
underlying implementation of the cryptographic primitives provided by
the API can be fast, thanks to implementations in native code or in
hardware, the cumulative overhead of the many separate API calls results
in prohibitive performance for many common applications. In this work,
we present an implementation of XMSSMT on the current Java Card
platform, and make suggestions how to improve this platform in future
versions.
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1 Introduction

Over the past years, cryptographic schemes that promise resilience against
quantum cryptanalysis have been getting more and more attention. With the
start of NIST’s Post-Quantum Standardization project [17] in 2017, the focus is
starting to shift from an academic niche towards real-world use.

The most immediate concern with respect to quantum attacks is long-term
confidentiality of data: an adversary that records ciphertext today may come
back to decrypt it later, when sufficiently large quantum computers are available.
Attacks against authentication, on the other hand, would require access to a
quantum computer today. Nevertheless, one should be careful not to dismiss work
towards practical applications of post-quantum authentication as premature. In
this work, we show that even though standardization of post-quantum signature
schemes is underway, widespread application still requires bridging serious gaps.

Perhaps the first images that come to mind when considering cryptographic
software in the real world are large data centers full of servers that terminate TLS,
full disk encryption on laptops, or intricate PKI systems. It is easy to forget that
most people carry several cryptographic devices in their pockets: smart cards.
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With estimates of over 10 billion3 “secure elements” sold globally in 2018 [7], this
is undeniably an important market.

Smart cards are often used as authentication token – in an asymmetric-key
setting, the card then stores the private key and uses it to generate signatures.
We examine a practical use case: setting up VPN connections using the popular
OpenVPN application, for which we implemented a state-of-the-art post-quantum
signature scheme. Specifically, we implement the hash-based signature scheme
XMSSMT [11,10] (described in Section 2) on the Java Card platform. XMSSMT is
a stateful signature scheme; a smart card implementation can conveniently record
this state alongside the key material, hiding the complexity of the statefulness
from the applications that use the functionality offered by the card. Section 3
describes the Java Card platform and OpenVPN use case in more detail.

We are not the first to implement hash-based signatures on a smart card. In
2013, Hülsing, Busold and Buchmann implemented a variant of XMSS on an
Infineon-produced smart card [6]; their work makes even on-card key generation
practical – something that cannot possibly be said of our implementation. This
is done by building upon earlier work [18] where so-called ‘BDS traversal’ [5] was
used on an 8-bit AVR, and expanding it to the multi-tree scheme that would later
evolve into XMSSMT . Crucially, their work uses low-level access to the underlying
hardware, which is not publicly available or portable across manufacturers.

As alluded to earlier, and as is reflected by the question in the title of this
paper, the results of this work are somewhat demoralizing. With signatures
taking just shy of a minute (and a subsequent preparation step well over a minute
and a half), for many use cases this is impractical; see Section 4.2 for a more
detailed analysis. The main contribution of this work is clearly not to present
speed records, but instead to provide a proof-of-concept and directions on how
to improve the situation. Section 4 discusses our implementation of XMSSMT ;
the issues we identify carry over into Section 5, where we provide suggestions for
future improvements that could help make hash-based signature schemes more
practical on the Java Card platform. The Java Card API has been extended in
the past to support new protocols (notably the SAC/PACE protocol used in
passports [14,3]), so we can expect future extensions when applications begin to
require support for post-quantum cryptography.

Availability of software. We place all software presented in this paper into the
public domain to maximize reusability of our results. It is available for download
at https://joostrijneveld.nl/papers/javacard-xmss.

2 XMSSMT

In [11], Hülsing, Rausch and Buchmann propose XMSSMT , the current state of
the art in (stateful) hash-based signatures. This scheme does not stand on its
own, though, as hash-based signatures go back all the way to the 1970s when
3 Half of these are SIM cards; financial and governmental applications make up most
of the remainder.
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they were first described by Merkle [16]. These schemes are characterized by their
very conservative security assumptions, relying only on the existence of a secure
one-way function; the provably minimal assumption required for any signature
scheme to exist [19].

As research is progressing and the need for post-quantum cryptography is
becoming more urgent, standardization efforts are starting to take shape. This
is not only limited to the aforementioned project by NIST, but also ISO and
the IETF have shown interest. The latter is relevant in particular, since at the
time of writing a ‘Request For Comments’ describing XMSS and XMSSMT [10]
has just been published. Our implementation is compatible with XMSSMT as
specified in RFC 8391, and we refer to this document for a detailed technical
specification. We limit the description in this section to that which is required as
a preliminary for the discussions in the remainder of this paper.

2.1 WOTS+

Before describing XMSSMT , it is useful to separately define WOTS+ [9], a variant
of the Winternitz One-Time Signature (WOTS) scheme.

Parameters. WOTS+ is a one-time signature scheme: a private key must not
be used to sign more than one n-byte message, where n is a parameter defined
at the time of key generation. Additionally, a parameter w signifies a trade-off
between signature size and computation time.

To describe the resulting scheme, we use derived values `1, `2 and `, defined
as `1 := d 8n

log2(w)e, `2 := b log2(`1·(w−1))
log2(w) c+ 1, and ` := `1 + `2. For the remainder

of this paper, we fix the parameters4 n = 32 and w = 16. This leads to `1 = 64
and `2 = 3, and thus ` = 67.

Keys. A WOTS+ private key consists of ` random values of n bytes. In practice,
these are derived from an n-byte seed using a pseudo-random generator. The
corresponding public key is derived by applying a so-called chaining function F
to the values in private key w − 1 times. The result consists of the ` chain heads
(i.e. the last computed nodes) of n bytes each.

This public key can be compressed to an n-byte value by interpreting the `
heads as leaf nodes of a hash tree. Note that this tree is almost a binary tree;
this so-called `-tree is constructed by hashing two neighboring nodes to construct
a parent node on a higher layer, and simply raising the last node to the next
layer if the number of nodes on that layer is odd. The root of this tree is the de
facto WOTS+ public key, and we will refer to it as such.

Signatures. Assuming an n-byte messagem, this is split into `1 chunks of log2(w)
bits, which are interpreted as integers m1 to m`1 . The chaining function F is then
applied mi times to the i-th value of the private key, and the output is included
4 One could consider w = 4, to speed up the computation at the cost of additional
signature size. While the RFC [10] does not specify a specific parameter set, it does
explicitly mention w = 4 as an option for this purpose.
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as part of the signature. Given a message m and such outputs, verification means
completing the chains by applying the chaining function an additional w−1−mi

times and checking that these values combine to form the public key.
The careful reader will have noticed two issues: there were ` (and not `1) chain

heads that make up the public key, and given a signature on a message m, it is
easy to forge a signature for some messages m′ by simply applying the chaining
function m′i−mi times5. To remedy this, WOTS+ signatures include a checksum,
computed by signing the base-w representation of C = Σ`1

i=1(w − 1 −mi), i.e.
(C1, . . . , C`2). This prevents forgery, since an increase in any mi results in a
decrease in C and thus at least one Cj .
Functions. In the above description, we have left the chaining function F
unspecified, and have not defined how the hash tree is constructed. These functions
are instantiated using a tweaked variant of SHA-256 in the parameter sets we
consider in this work6. To ensure collision resilience and to mitigate multi-function
and multi-target attacks [13], each application of this function not only hashes
the above-described input, but additionally includes a domain separator, a unique
‘address’ and a key, as well as applying a mask.

For ease of exposition, we omit the specifics of these constructions here, and
only touch upon the relevant aspects in Section 5.

2.2 Hash trees
Having established WOTS+ as a one-time signature scheme, we now expand this
into the many-time signature scheme XMSS [4]. In essence, XMSS consists of
many instances of WOTS+ and a hash tree to authenticate them.
Keys. Consider a binary hash tree of height h, i.e., a tree with 2h leaf nodes.
We associate a WOTS+ key pair with each leaf, allowing for 2h signatures. The
XMSS private key simply provides a seed from which to generate the WOTS+

private keys; the WOTS+ public keys are then derived by applying the chaining
function, as described above. Then, by computing a binary hash tree on top of
the WOTS+ public keys, one derives the XMSS public key: the root node of the
tree.
Signatures. By the above construction, it is straight-forward to see that an
XMSS signature mostly consists of a WOTS+ signature, complemented by an
index to indicate which WOTS+ private key was used. However, the verifier does
not hold the corresponding WOTS+ public key required to verify the signature.
Instead they compute what the WOTS+ public key should be, based on the
presented signature – note that this process is exactly the same as verifying a
WOTS+ signature, omitting actual comparison to the public key. This effectively
gives the verifier one leaf node in the hash tree. To compare to the root node (i.e.
the XMSS public key), the verifier requires nodes along the path to the root of
the tree. This path is referred to as the ‘authentication path’, and it can be seen
that the signer must include h additional nodes. See Figure 1.
5 This requires that m′

i ≥ mi for all i, but this is sufficiently likely even for random m.
6 A common and often more natural instantiation relies on the Keccak-based SHAKE [2]
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Fig. 1. The authentication path to authenticate the fifth leaf is shown in grey. [12]

The state. When introducing the notion of many WOTS+ key pairs linked to
one XMSS public key, it is crucial to prevent re-using these one-time key pairs.
Conceptually, this is trivially accomplished by iterating through the leaf nodes
sequentially. It is important to remark, however, that this implies maintaining a
persistent and changing state across different signing operations. Depending on
the specific usage scenario, this may or may not be a problem – it adds complexity
in settings where a key is used by multiple processes or needs to be kept in sync
across servers, but is not a concern when a key is embedded in a single system.
The latter scenario describes the use case discussed in this paper. In [6], the
authors demonstrate that there is a strong synergy between this property and
achieving forward security (but this is not part of the ‘standard’ XMSS scheme).

2.3 Chaining trees

In order to be able to perform many signatures using the same public key, one
could instantiate XMSS with a large tree. This comes at a considerable cost, as the
signer needs to compute all leaf nodes when generating a signature. Specialized
tree traversal algorithms [5] move a large part of this cost to the key generation,
but it remains a limiting factor. This is mitigated in XMSSMT , the multi-tree
variant of XMSS. As the name suggests, this scheme makes use of a structure of
trees.

On the bottom layer, a WOTS+ key pair is used to sign the message. Along
with the WOTS+ signature, the signer supplies an authentication path to the
root of that subtree. Rather than interpreting this root as the public key, it is
signed using a WOTS+ leaf of a new tree, one layer ‘above’ the current layer.
This signature is authenticated by a path leading to the next root node, et cetera.

Considering d layers of trees of height h/d, this allows for 2h signatures
while only requiring h/d leafs on each layer to be computed to construct the
authentication path (as well as opening up a whole new range of time-memory
trade-offs with tree traversal [5]).

Note that this trade-off leads to increased signature sizes. While an XMSS
signature consists roughly of a WOTS+ signature (i.e. 67 · 32 bytes) and a
number of intermediate nodes (say, 20 · 32 bytes), an XMSSMT signature consists
of multiple WOTS+ signatures. For the sake of simplicity, we now consider
XMSSMT to be a direct generalization of XMSS, i.e. XMSS is the specific class
of instances where d = 1.
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3 Java Card platform and limitations

Java Card defines a standardized, vendor-independent programming platform for
multi-application smart cards produced by different manufacturers. While the
specification is controlled by Oracle, many of the large smart-card manufacturers7

collaborate in the ‘Java Card Forum’ [8] in defining the platform. The platform
has proven popular, with over 20 billion cards sold at the time of its twentieth
anniversary in 2016 [20]. Java Card is often found in SIM cards and passports.

As the name suggests, Java Card is based on Java, but with many language
features restricted due to the limited resources. This shows prominently in the
limited availability of types – a Java Card platform is only required to support
8-bit bytes and 16-bit shorts. Similarly, Java Card inherits the class-based
object-oriented style of Java, but using objects is discouraged because of size
constraints; moreover, garbage collection is optional for Java Card.

The APIs for Java and Java Card differ vastly. The Java Card API is ex-
tremely limited, but does provide a range of high-level methods for standard
cryptographic use cases (e.g. signature generation, key storage, block encryption).
This enables developers to quickly construct applets to perform basic crypto-
graphic operations. The implementation of the API is left to the smart-card
manufacturer, allowing implementations in native code or directly in hardware.
This is crucial for performance: the Java Card VM introduces considerable over-
head, so implementing cryptographic primitives in Java Card bytecode would be
unacceptably slow. Still, considerable overhead remains when calling these API
functions, and this turns out to be a recurring theme in the rest of this paper.

An important consideration is the limited amount of memory. Typical Java
Cards have in the order of tens of KiB persistent memory (EEPROM or Flash),
but the transient (RAM) memory is typically only a few KiB, which is a seri-
ous bottleneck. Memory sizes can vary significantly between cards, so memory
requirements should be carefully taken into account when developing applications.

Java Card is compatible with the ISO 7816 standard. This means that
communication is done using APDUs (Application Protocol Data Units). These
traditionally support a payload of up to 256 bytes, although recent cards support
extended-length APDUs allowing longer payloads.

In this work, we focus on compatibility with Java Card version 2.2.2 to 3.0.4.

3.1 Considerations for the OpenVPN use case

This work was done as part of a project involving a Java Card applet to provide
authentication when establishing a VPN connection, tightly integrated into
OpenVPN. The projected benefit of this was twofold: increased security and
increased usability. Smart cards typically provide much more secure storage of the
key material. By selecting the Java Card platform, the cross-platform applet can
be easily combined with existing deployed systems. The tight integration with
7 At the time of writing, the Java Card Forum consists of Gemalto, Giesecke & Devrient,
IDEMIA, Infineon, jNet ThingX, NXP Semiconductors and STMicroelectronics [8]
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OpenVPN aims to improve the user experience: we avoid third-party middleware
(which would be required for the use of more generic solutions, such as hardware
tokens relying on standards like PKCS#11) and store the configuration files for
OpenVPN on the card to simplify the setup process for the user.

This use case implies a set of assumptions and limitations. There is some
margin in terms of signing time, as signing operations are fairly infrequent
and users would expect some latency when establishing a connection. More
importantly, the required throughout is low: after signing once, typical usage
scenarios suggest a period of time during which the card is connected and powered,
but not used to produce a new signature. Furthermore, we note that key generation
can be done during issuance, and even outside of the card (assuming a secure
issuance environment – this is a reasonable assumption given that initialization
also involves, e.g., PIN codes). In principle, there is a nice match between
these properties and the XMSSMT signature scheme. There are many time-
memory trade-offs that can be flexibly tweaked, and there is ample opportunity
for precomputation either during key generation or idle time. However, it is
important to reiterate that memory (in particular the fast RAM) is a scarce
resource on the card. The next section details these trade-offs.

4 Implementation

When designing a smart card application, it is important to consider natural
‘commands’ that divide up and structure the computation. For a traditional
RSA-2048 or ECC signature, signing a message could be a single command with
a single APDU as response. For XMSSMT , signatures are several kilobytes in size
and must be spread out over multiple 256-byte response APDUs. This behavior
is typical for hash-based signatures on small devices [12]; they are too large to
comfortably fit in RAM but are very sequential in their construction, strongly
suggesting an interface where the signature is streamed out incrementally.

There is much repetition of small subroutines to be found in the scheme.
After initializing the signing routine by computing a message digest, a signature
consists of a sequence of WOTS+ signatures and authentication paths. Internally,
the WOTS+ signatures can be decomposed further into their separate chains.
The ` = 67 chains split naturally into 8 sets of 8 chains for the `1 = 64 message
digest chains, and `2 = 3 chains for the checksum. For hashes of 32 bytes and
h/d ≤ 8, authentication paths within a subtree fit into one response APDU, and
choosing h/d > 8 is not realistic on this platform because of resource constraints8.
In order to reduce the latency of signature generation, we ensure that all relevant
leaf nodes for the authentication path in each subtree on each layer are available
in memory. We address this later in this section, and for now only note that
maintaining this invariant introduces a preparation step after a signature is
produced (and thus: a leaf node is consumed).

8 This would imply either computing or storing hundreds of WOTS+ leaf nodes per
tree layer.
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Figure 2 represents these states visually. Note that each state is triggered by
a command APDU, of which only the initial command contains auxiliary data
(i.e. the message). These have been omitted for simplicity.

init WOTS+

chains
checksum

auth
path

prepare

8x

dx

2hx

m

R, index 8x 8 nodes 3 nodes h/d nodes

Fig. 2. State diagram of the signing routine.

Indices. As it is crucial that the smart card cannot be coerced into re-using a
leaf, the first operation should be incrementing the state index. Because Java
Card does not guarantee a native 32-bit integer type, all indices are stored as
tuples of two shorts, interpreted as 15-bit unsigned values (effectively ignoring
the high bit). As a consequence, atomic increments are not possible without use
of expensive transactions, and special care has to be taken in case of overflows –
the conservative approach skips 215 leafs in case of card tear9, rather than rolling
back. Similar considerations apply when deriving indices of ‘next’ and ‘previous’
nodes during state generation. As we have limited h/d previously, internal tree
indices can be represented with a single short.

WOTS+ leaf generation. To generate a WOTS+ leaf, an `-tree must be
computed over the heads of all chains. As memory is limited, the natural choice
here is to use the treehash algorithm [16, Section 7]. Since ` = 67 is not a power
of 2, bringing the tree out of balance, there are some special cases to consider. As
the value of ` is constant for all parameters we account for, this can be simplified
by manually handling these special cases after performing treehash. Altogether,
this ensures that we require only 416 bytes of RAM for intermediate results when
deriving a WOTS+ public key.

State (re)generation. At least one WOTS+ computation needs to be performed
whenever a message is signed: exactly when signing the message digest. Without
proper state management, however, one would be required to compute d · 2h/d

WOTS+ leafs to derive the authentication paths. Instead, we keep a persistent
array of the leaf nodes of the current tree on each of the d layers. If the secret
key is generated off-card, the leaf nodes of the first trees can be preloaded;
alternatively, they can be computed during issuance. Similarly, the d− 1 WOTS+

signatures that join the subtrees together can also be precomputed and cached.
9 The physical attack of interrupting the power supply to the card, e.g., by removing
it from the reader
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By keeping an additional array of such nodes and signatures for the ‘next’ tree
on every layer10 and computing one new node whenever one is consumed, it can
be easily seen that we are guaranteed to always have all leafs available before
they are consumed. Note that this introduces an imbalance in signing time cost
(as consuming indices that introduce new nodes on multiple layers adds linear
leaf generation cost), but that this computation be performed after outputting
a signature. Careful administration is required to guarantee that this is not
neglected. Intuitively, one might consider decoupling the signing and preparation
step, and allow the signature routine to effectively consume the nodes up to the
point at which they were prepared. While this is certainly possible, the involved
bookkeeping is more complicated than it may seem at first: memory requirements
imply re-using arrays, the leafs currently in use cannot be overwritten, and
the next layer of leafs needs to be completed precisely when switching to the
next subtree. Verifying these conditions combines poorly with the convoluted
arithmetic on tuples of shorts that represent indices.

4.1 Hash functions

Performance is dominated by the cost of a call to the chaining function in WOTS+

and the hash function in the binary trees. In essence, these functions consist of
many applications of SHA-256 to small arrays of data (i.e. 32 to 128 bytes) and
some xor operations. This is not a particularly common pattern of operations in
traditional cryptography – a signature operation typically requires just one hash
function call to digest the message, often negligible in the overall performance of
the signing operation. Note also that there is significant cost associated with a
single call to a hash function that is constant in the length of the input, likely
representing the overhead of the function call, as shown in Table 1.

AES-based hashing. Instead of using a cryptographic hash function as a
building block for the described functions, a block cipher can be used to construct
a similar primitive using common constructions such as Davies-Meyer and Matyas-
Meyer-Oseas (the latter being used in [6]). Some care would need to be taken to
transform these to a security level equivalent to the second pre-image resistance
derived from SHA-256 in the context of XMSSMT . This would break compatibility
with the RFC [10], but in principle this is not unsurmountable.

Some Java Cards appear to be equipped with an AES implementation in
hardware, speeding up its performance significantly. This is evidenced by an even
larger unbalance between constant and variable costs: encrypting large blocks
of data is only marginally more costly than smaller blocks, as shown in Table 2.
The base cost of a single call to AES is still significant, however, putting the
performance in the same ballpark as SHA-256 on short inputs. Note that these
numbers cannot be directly compared to the cost of SHA-256 as listed in Table 1,
as multiple iterations of AES would be required for one compression block.
10 This is only required on layers where there is still a ‘next’ tree, which is trivially false

for the top-most tree.
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Table 1. 1000 iterations of SHA-256

data (bytes) 32 64 128 256

runtime (seconds) 3.94 5.83 8.02 12.40

Table 2. 1000 iterations of AES-128 in ECB mode

data (bytes) 16 32 64 128 256 1024

runtime (seconds) 2.97 3.30 3.96 5.30 7.97 23.87

There is another avenue to explore when relying on AES as a primitive, as
the Java Card API supports a range of modes of operation for AES. Combining
this with the fact that we process a large amount of data at once suggests
opportunities for parallel data streams; encrypting a large data stream using
AES in ECB mode is functionally equivalent to performing independent AES
encryption in parallel – under the same key. This last restriction is crucial, as a
message-dependent block is used as key, ruling out precisely the constructions
available to turn AES into a compression function. Other modes of operation
suffer a similar faith. As a result, there is no clear way to exploit the available
AES implementation for parallel data streams.

4.2 Memory usage and benchmarks

This section outlines the performance when running the applet on a Java Card.
For this, we performed measurements and ran tests on NXP-produced JCOP
cards, as well as a card of unclear origin (ICFabricator=0005). While this is
somewhat indicative of relative performance, we note that measurements may
vary wildly when comparing different cards by different manufacturers. Tables 1
and 2 give the individual benchmarks for the primitives on the cards we used.

For a WOTS+ signature operation with the parameters described in Sec-
tion 2.1, we measure an average time of approximately 33 seconds. In the best
case, the preparation step requires one WOTS+ key generation, which requires
approximately a minute.

When we consider a realistic parameter set, where h = 20 and d = 4, i.e. sub-
trees with 32 leaf nodes, we notice that the cost of authentication path generation
starts to come into play. In particular, the access to nodes stored in persistent
memory makes this more costly than a back-of-the-envelope computation would
predict11. For these parameters, a signature takes roughly 54 seconds in the best
case: every 32nd signature adds an additional WOTS+ signature generation, every
256th signature adds two WOTS+ signatures, et cetera. Similarly, preparation
takes 85 seconds in the best case. Varying to d = 5 results in a slightly shorter
11 A WOTS+ signature costs 536 applications of the chaining function on average,

versus 63 hash function calls in the tree.
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signing time, coming in at 50 seconds in the best case (but more frequently
requires new WOTS+ signatures).

Besides a small number of bytes to store the keys and index, the requirements
on persistent memory follow from the storage of WOTS+ signatures and leaf
nodes: 32·`·(d−1) bytes for the WOTS+ signatures, and 32·(2·d−1)·2 h

d bytes for
the leaf nodes. For d = 4, this comes down to 6432 + 7168 = 13600 = 13.28KiB.
Similarly, for d = 5, this adds up to 8576+4608 = 13.18KiB. Note that increasing
d also increases signature size by additional WOTS+ signatures, but decreasing
d while maintaining h = 20 sharply increases the memory requirements for node
storage, as well as the cost of (off-card) key generation.

Considering the signing states described in Section 4, in particular in Figure 2,
it can be easily seen that the signature is output in stages as computation pro-
gresses. With the WOTS+ chain computation taking up most of the computation,
splitting this over eight APDUs levels out communication costs.

5 Java Card API recommendations and considerations

In the previous section, we touched upon several issues with implementing
XMSSMT (and hash-based signatures in general) using the current Java Card
API (i.e. version 3.0.5 or below). This section discusses potential extensions to
improve support for hash-based signatures. In the past the Java Card API has
been extended to support new cryptographic algorithms12. If and when hash-
based signatures become widely used in the future, one would expect extensions
of the API for this, either as proprietary extensions of manufactures or ultimately
as extensions of the standard.

An important design choice in such an API is the level of abstraction. One
can opt for low-level methods providing more fine-grained (i.e. more primitive)
operations, or for higher levels of abstractions, where the API methods provide
bigger building blocks, or possibly even a complete signatures scheme13. Below
we present four alternatives with an increasing level of abstraction.

Generally speaking, a more fine-grained API is likely to be easier to implement
for manufacturers and offers more flexibility to applet developers. On the other
hand, higher level, more monolithic API methods make it easier for developers
that are less versed in the relevant cryptography to make the correct choices,
allow for faster implementation in hardware, and enable manufacturers to provide
more comprehensive side-channel countermeasures. Also, an API implementation
may need memory to record state between API calls and scratchpad memory to
record temporary results. Given that transient memory is extremely scarce, it is
not acceptable that API methods need large amounts of RAM.
12 For example, version 3.0.5 introduces support for SAC/PACE [14,3], a protocol used

in electronic passports.
13 For example, in the case of the PACE protocol, the choice has been made not to

provide a generic API method for elliptic curve point addition, which would enable
applet developers to implement PACE, but rather to provide more higher-level
operations to directly provide PACE as primitive.
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Another factor to take into consideration when making an abstraction level
trade-off is the fact that standardization efforts are still ongoing, and a high-level
API leads to less agility to account for future scheme changes.

5.1 Parallel hashing

Performance of hash-based signatures is completely dependent on the ability to
efficiently compute many hash digests over small amounts of data. While this
can be sped up by implementing the hash function in hardware, Section 4.1
illustrates that this is only part of the solution. More critically, the execution
time depends on being able to exploit the extreme levels of parallelism that are
inherent to hash-based signatures. Here parallelism does not necessarily imply
parallel execution, but rather independent parallel data streams.

The current interface to hash functions is provided in the form of the
MessageDigest class. After instantiating an object for a specific digest function,
say SHA-256, a user can add additional data by calling the update(byte[]
inBuff, short inOffset, short inLength) method, and obtain the final di-
gest by calling doFinal(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset).

We propose duals of these methods, following an almost identical API:
updateParallel(byte[] inBuff, short inOffset, short inBlockLength,
short numberOfBlocks), and doFinalParallel(byte[] inBuff, short
inOffset, short inBlockLength, short numberOfBlocks, byte[] outBuff,
short outOffset). Here, inBuff provides numberOfBlocks sequential inputs
of inBlockLength bytes, and output is written to outBuff analogously.

Providing an inconsistent number of inputs (i.e. different numberOfBlocks) for
update and doFinal calls could be treated as an error but it may be beneficial to
instead fix the numberOfBlocks at the time of construction of the MessageDigest
object. For hash-based signatures this decision is equivalent, as the relevant
hash function calls all require arguments of the same form. Both options have
serious effects on the underlying implementations, as these modifications suggest
maintaining a (runtime-determined) number of intermediate hash function states.
If this proves to be infeasible, a natural restriction would be to drop the parallel
updateParallel method14. While this reduces flexibility for the applet developer,
in particular when memory is constrained and rearranging input is costly, this
allows underlying hardware to sequentially process each instance of the hash
function without maintaining a variable-length intermediate state in addition to
the caller-provided input and output buffers. This does not contradict the goal
of achieving a speedup through internal parallelism, as the majority of the cost
can be attributed to the Java stack on top of the underlying implementation
(see Section 4.1 and 4.2). As a result, implementations that would support a
parallel update method would still likely opt for a sequential underlying hashing
primitive to reduce area cost.
14 It is also possible to reach a similar invariance by fixing numberOfBlocks, but this

still requires multiple hash-function intermediate states in transient memory.
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5.2 Complete WOTS+ chains

Rather than providing a narrow API that allows a developer to efficiently make use
of the underlying hash function primitive, the parallelism can be made transparent
to the implementer through a more abstract API: computing WOTS+ chains
and authentication paths.

In the WOTS+ chains, there is a lot of opportunity for shared execution.
Besides the natural ‘horizontal’ parallelism across many chains (which would be
the primary candidate for optimizations discussed in the previous subsection,
5.1), there is potential gain in coupling the ‘vertical’ computations that take
place during WOTS+ public key and signature generation. On top of the benefits
achieved from only passing through the Java stack once, rather than repeatedly
for every application of the chaining function, the input to many of the underlying
SHA-256 compression function calls overlaps significantly. In particular, for a
single WOTS+ key pair, the input to the first compression call is completely
identical across all 16 ·67 = 1072 calls of the chaining function. Note that this is a
consequence of the specific instantiation of the compression function in XMSSMT

as defined in [10], however, and does not immediately carry over to other function
designs (in particular, the SPHINCS+ proposal [1] to the NIST standardization
project [17] does not benefit from this).

Such an API goes beyond a straight-forward parameter for the hash function
specifying the number of iterations, as the iterated function is not simply SHA-
256, but rather the address- and key-aware chaining function. Furthermore, to
make it effective for WOTS+ signature generation, it would require specifying
the length of each individual chain, as well as a variable number of chains (as an
entire WOTS+ signature will likely not fit in RAM on most Java Cards).

This middle ground between abstracting away the parallelism of the hash
functions but still requiring (or, indeed, allowing) the developer to puzzle together
the pieces has its upsides, but is clearly not without added complexities. We
stress that the API of such a hybrid solution needs to be carefully thought
through to be sufficiently fine-grained to provide a benefit over an all-in-one
API (as described later, in Section 5.4), yet convenient to use so that it actually
reduces boilerplate code and development overhead when compared to a more
straight-forward parallel hashing API.

5.3 WOTS+ nodes and hash trees

Another unit of abstraction is a hash tree. In XMSSMT , there are two specific
instances of hash trees: the tree in XMSS, and the `-tree in the WOTS+ nodes.

The computation of WOTS+ nodes can be hidden behind an API with relative
ease. Given its position in the hypertree and the secret seed, the only relevant
output is the root node of the `-tree, easily fitting a single APDU (and thus
appropriate as the result of a single function call). We note that in the SPHINCS+
proposal, `-trees have been eliminated altogether. It is not inconceivable that
future updates to XMSS will include the same change.
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Abstracting the hash trees in the hypertree behind a single function is some-
what more complicated. The reason for this is twofold. First and foremost,
preventing recomputation of such trees is crucial to make XMSSMT practical,
which implies carefully maintaining a state (either by storing leaf nodes, as is
done in the current implementation, or through more involved tree traversal
techniques [5]). This introduces a time/memory trade-off that strongly depends
on the parameter choice – allowing more flexibility in terms of tree height and
multi-tree depth significantly increases complexity of the underlying implementa-
tion. Secondly, as the relevant output comes in the form of an authentication path
of multiple nodes, APDU size (and thus state machine management) becomes
relevant as soon as h > 8.

Conversely, there is much to gain in terms of simplicity for the user if this is
abstracted, as this prevents the users from having to re-implement the treehash
algorithm and make complex state management decisions. We argue that this is
a crucial requirement for non-expert usage.

5.4 Complete XMSSMT signatures

At the end of the spectrum, we consider an API that abstracts away as much of
the scheme’s internals as possible. Intuitively this matches the current approach
of the Java Card API for public-key primitives; given a parameterized and keyed
object and a message, there is a single API call that produces a signature. To
allow for longer messages, an update mechanism is available similar to how
message digests work (see Section 5.1). Crucially, this is made possible by the
small size of signatures; for typical parameters, the resulting signature easily fits
in RAM and even in a single output APDU.

When considering the multiple kilobytes of a typical XMSSMT signature,
such an API suggests writing the signature to persistent memory. This requires
additional EEPROM/Flash and adds the extra cost of slow memory access.
However, this is likely to compare favorably when considering the potential for
performance improvement by implementing the entire scheme natively.

Alternatively, the API could be split up in a similar way as is done in this
implementation; we refer to the states described in Figure 2 – each state could
represent an API call. This would still require the applet developer to implement
the state machine, but makes conversion to output APDUs more natural.

Perhaps the most compelling argument for this high-level API is usability for
applet developers. XMSSMT , and tree traversal in general, is administratively
notoriously tedious, and wrongly managing indices can easily lead to degraded
security. In particular, a high-level API is required to properly abstract the state
preparation step, as this would otherwise heavily depend on implementation
choices (i.e. what part of the state is cached, and how it is iterated). Ease of use
should not be underestimated as a critical factor towards adoption in real-world
applications.
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5.5 Side-channel countermeasures

Smart cards are a common target for physical attacks. To remedy this, manufac-
turers commonly implement a wide variety of platform-specific countermeasures.
An API that abstracts away the usage of secret data is paramount for this to
be effective. This requirement aligns well with the considerations of the rest of
this section when considering the simplicity of the API exposed to the applet
developer: a fine-grained API that requires the developer to implement the over-
arching scheme creates many potential pitfalls. To illustrate, the current lack of
API required us to abuse the AESKey object to store sensitive key material in
EEPROM, extracting it into RAM before use (although more recent versions of
Java Card provide the SensitiveArray class for this purpose). Similarly, with-
out API support, the expanded WOTS+ seeds live plainly in transient memory.
While in general hash-based signatures have a history of robustness against
side-channel attacks, it is precisely this usage of the PRF that has recently been
under scrutiny [15].
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