
Kummer strikes back: new DH speed records

Daniel J. Bernstein1,2, Chitchanok Chuengsatiansup2, Tanja Lange2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

c.chuengsatiansup@tue.nl, tanja@hyperelliptic.org
3 Radboud University Nijmegen

Digital Security Group
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

peter@cryptojedi.org

Abstract. This paper introduces high-security constant-time variable-base-point Diffie–Hellman soft-
ware using just 274593 Cortex-A8 cycles, 91460 Sandy Bridge cycles, 90896 Ivy Bridge cycles, or 72220
Haswell cycles. The only higher speed appearing in the literature for any of these platforms is a claim of
60000 Haswell cycles for unpublished software performing arithmetic on a binary elliptic curve.

The new speeds rely on a synergy between (1) state-of-the-art formulas for genus-2 hyperelliptic curves
and (2) a modern trend towards vectorization in CPUs. The paper introduces several new techniques for
efficient vectorization of Kummer-surface computations.

Keywords: performance, Diffie–Hellman, hyperelliptic curves, Kummer surfaces, vectorization

1 Introduction

The Eurocrypt 2013 paper “Fast cryptography in genus 2” by Bos, Costello, Hisil, and Lauter [13]
reported 117000 cycles on Intel’s Ivy Bridge microarchitecture for high-security constant-time scalar
multiplication on a genus-2 Kummer surface. This speed is publicly verifiable: the eBACS bench-
marking site [10] confirms 116944 “cycles to compute a shared secret” for the kumfp127g software
from [13] measured on a single core of h9ivy, a 2012 Intel Core i5-3210M running at 2.5GHz. The
software is not much slower on Intel’s previous microarchitecture, Sandy Bridge: eBACS reports
122728 cycles for kumfp127g on h6sandy, a 2011 Intel Core i3-2310M running at 2.1GHz.

The paper reported that this was a “new software speed record” compared to “all previous genus
1 and genus 2 implementations” of high-security constant-time scalar multiplication. Obviously the
genus-2 cycle counts shown above are better than the (unverified) claim of 137000 Sandy Bridge cycles
by Longa and Sica in [32] (Asiacrypt 2012) for constant-time elliptic-curve scalar multiplication; the
(unverified) claim of 153000 Sandy Bridge cycles by Hamburg in [28] for constant-time elliptic-curve
scalar multiplication; the 182632 cycles reported by eBACS on h9ivy for curve25519, a constant-
time implementation by Bernstein, Duif, Lange, Schwabe, and Yang [8] (CHES 2011) of Bernstein’s
Curve25519 elliptic curve [6]; and the 194120 cycles reported by eBACS on h6sandy for curve25519.

One might conclude from these figures that genus-2 hyperelliptic-curve cryptography (HECC)
solidly outperforms elliptic-curve cryptography (ECC). However, two recent papers claim better
speeds for ECC, and a closer look reveals a strong argument that one should expect HECC to have
trouble competing with ECC.

The first paper, [35] by Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez (CHES 2013 best-paper
award), is the new speed leader on eBACS for non-constant-time scalar multiplication: 77468 cycles
on h9ivy and 79508 cycles on h6sandy. The paper claims 69500 Sandy Bridge cycles; the discrepancy
has not been explained. More interesting for us is that the paper claims 114800 Sandy Bridge cycles
for constant-time scalar multiplication, narrowly beating [13].

This work was supported by the National Science Foundation under grant 1018836 and by the Netherlands Organi-
sation for Scientific Research (NWO) under grant 639.073.005 and through the Veni 2013 project 13114. Permanent
ID of this document: 1c5c0ead2524267af6b4f6d9114f10f0. Date: 2014.02.18.

2 Bernstein, Chuengsatiansup, Lange, Schwabe

The second paper, [19] by Faz-Hernández, Longa, and Sánchez, claims 92000 Ivy Bridge cycles
or 96000 Sandy Bridge cycles for constant-time scalar multiplication. This claim is not publicly
verifiable, and it is also not clear what exactly is included in this cycle count: in particular, the cycle
count seems to omit a precomputation involving the scalar. However, in DH such precomputations
are acceptable, and if the cycle count is even close to correct then it is faster than [13].

Both of these new papers, like [32], rely heavily on curve endomorphisms to eliminate many
doublings, as proposed by Gallant, Lambert, and Vanstone [21] (Crypto 2001), patented by the
same authors in [22] and [23], and expanded by Galbraith, Lin, and Scott [20] (Eurocrypt 2009).
Specifically, [35] uses a GLS curve over a binary field to eliminate 50% of the doublings, while also
taking advantage of Intel’s new pclmulqdq instruction to multiply binary polynomials; [19] uses a
GLV+GLS curve over a prime field to eliminate 75% of the doublings.

One can also use the GLV and GLS ideas in genus 2, as explored by Bos, Costello, Hisil, and Lauter
starting in [13] and continuing in [14] (CHES 2013). However, the best GLV/GLS speed reported
in [14], 92000 Ivy Bridge cycles, provides only 2105 security and is not constant time. This is less
impressive than the 116944 cycles from [13] for constant-time DH at a 2125 security level, not to
mention the 114800 cycles from [35] and the 92000 cycles from [19].

The underlying problem for HECC is easy to explain. All known HECC addition formulas are
considerably slower than the state-of-the-art ECC addition formulas at the same security level. Almost
all of the HECC options explored in [13] are bottlenecked by additions, so they were doomed from
the outset, clearly incapable of beating ECC.

The one exception is that HECC provides an extremely fast ladder (see Section 2), built from
extremely fast differential additions and doublings, considerably faster than the Montgomery ladder
frequently used for ECC. This is why [13] was able to set DH speed records.

Unfortunately, differential additions do not allow arbitrary addition chains. Differential additions
are incompatible with standard techniques for removing most or all doublings from fixed-base-point
single-scalar multiplication, and with standard techniques for removing many doublings from multi-
scalar multiplication. As a consequence, differential additions are incompatible with the GLV+GLS
techniques mentioned above for removing many doublings from single-scalar multiplication. This is
why the DH speeds from [13] were quickly superseded by DH speeds using GLV+GLS. A recent
paper [17] (Eurocrypt 2014) by Costello, Hisil, and Smith shows feasibility of differential additions
in GLV+GLS but reports 145000 Ivy Bridge cycles for constant-time software, much slower than the
papers mentioned above.

1.1. Contributions of this paper. We show that HECC has an important compensating advantage,
and we exploit this advantage to achieve new DH speed records. The advantage is that the HECC
ladder is heavily vectorizable.

CPUs are evolving towards larger and larger vector units. A low-cost low-power ARM Cortex-A8
CPU core contains a 128-bit vector unit that every two cycles can compute two vector additions, each
producing four sums of 32-bit integers, or one vector multiply-add, producing two results of the form
ab+ c where a, b are 32-bit integers and c is a 64-bit integer. An Intel Sandy Bridge CPU core every
cycle can compute a 256-bit vector floating-point addition, producing four double-precision sums,
and at the same time a 256-bit vector floating-point multiplication, producing four double-precision
products. A new Intel Haswell CPU core can carry out two 256-bit vector multiply-add instructions
every cycle. Intel has announced future support for 512-bit vectors (“AVX-512”).

Vectorization has an obvious attraction for a chip manufacturer: the costs of decoding an instruction
are amortized across many arithmetic operations. The challenge for the algorithm designer is to
efficiently vectorize higher-level computations so that the available circuitry is performing useful
work during these computations rather than sitting idle. What we show here is how to fit HECC
with surprisingly small overhead into commonly available vector units. We claim broad applicability
of our techniques to modern CPUs, and to illustrate this we analyze all three of the microarchitectures
mentioned in the previous paragraph.

Beware that different microarchitectures often have quite different performance. A paper that ad-
vertises a “better” algorithmic idea by reporting new record cycle counts on a new microarchitecture,
not considered in the previous literature, might actually be reporting an idea that loses performance

Kummer strikes back: new DH speed records 3

on all microarchitectures. We instead emphasize HECC performance on the widely deployed Sandy
Bridge microarchitecture, since Sandy Bridge was shared as a target by the recent ECC speed-record
papers listed above. We have now set a new Sandy Bridge (and Ivy Bridge) DH speed record, demon-
strating the value of vectorized HECC. We also have DH speed records for Cortex-A8; see Section 5.

1.2. Constant time: importance and difficulty. Before stating our performance results we em-
phasize that our software is truly constant time: the time that we use to compute nP is the same
for every 251-bit scalar n and every point P . We strictly follow the rules stated by Bernstein in [6]
(PKC 2006): we avoid “all input-dependent branches, all input-dependent array indices, and other
instructions with input-dependent timings”. The importance of these data-flow requirements should
be clear from, e.g., the Tromer–Osvik–Shamir attack [40] (J. Cryptology 2010) recovering disk-
encryption keys from the Linux kernel via cache timings, the Brumley–Tuveri attack [15] (ESORICS
2011) recovering ECDSA keys from OpenSSL via branch timings, and the recent “Lucky Thirteen”
AlFardan–Paterson attack [3] (S&P 2013) recovering HTTPS plaintext via decryption timings.

Unfortunately, many of the speed reports in the literature are for cryptographic software that
does not meet the same requirements. Sometimes the software is clearly labeled as taking variable
time (for example, the ECC speed records from [35] state this quite explicitly), so it is arguably
the user’s fault for deploying the software in applications that handle secret data; but in other cases
non-constant-time software is incorrectly advertised as “constant time”.

Consider, for example, the scalar-multiplication algorithm stated in [13, Algorithm 7], which in-
cludes a conditional branch for each bit of the scalar n. The “Side-channel resistance” section of
the paper states “The main branch, i.e. checking if the bit is set (or not), can be converted into
straight-line code by masking (pointers to) the in- and output. Since no lookup tables are used,
and all modern cache sizes are large enough to hold the intermediate values . . . the algorithm (and
runtime) becomes independent of input almost for free.”

Unfortunately, the argument regarding cache sizes is erroneous, and this pointer-swapping strategy
does not actually produce constant-time software. An operating-system interrupt can occur at any
moment (for example, triggered by a network packet), knocking some or all data out of the cache
(presumably at addresses predictable to, or controllable by, an attacker—it is helpful for the attacker
that, for cost reasons, cache associativity is limited). If P0 is knocked out of cache and the algorithm
accesses P0 then it suffers a cache miss; if both P0 and P1 are subsequently knocked out of cache
and the algorithm accesses P1, P0 then it suffers two more cache misses. If, on the other hand, P0

is knocked out of cache and the algorithm accesses P1 then it does not suffer a cache miss; if both
P0 and P1 are subsequently knocked out of cache and the algorithm accesses P0, P1 then it suffers
two more cache misses. The total number of cache misses distinguishes these two examples, revealing
whether the algorithm accessed P0, P1, P0 or P1, P0, P1.

We checked the kumfp127g software from [13], and found that it contained exactly the branch
indicated in [13, Algorithm 7]. This exposes the software not just to data-cache-timing attacks but
also to instruction-cache-timing attacks, branch-timing attacks, etc.; for background see, e.g., [2]
(CHES 2010). Evidently “can be converted” was a statement regarding possibilities, not a statement
regarding what was actually done in the benchmarked software.

This is not an isolated example. We checked the fastest “constant-time” software from [17] and
found that it contained key-dependent branches. Specifically, the secret key sk is passed as the third
argument to a function mon_fp_smul_2e127m1e2_djb, which calls decompose and then getchain

to convert the secret key into a scanned array and then calls ec_fp_mdbladdadd_2e127m1e2_asm

repeatedly using various secret bits from that array; ec_fp_mdbladdadd_2e127m1e2_asm uses “jmpq
*(%rsi)” to branch to different instructions depending on those bits. This exposes the software to
instruction-cache-timing attacks.

The correct response to timing attacks is to use constant-time arithmetic instructions to simulate
data-dependent branches, data-dependent table indices, etc.; see, e.g., Section 4.5. It is essential for
“constant-time” cryptographic software to go to this effort. The time required for this simulation is
often highly algorithm-dependent, and must be included in speed reports so that users are not misled
regarding the costs of security.

4 Bernstein, Chuengsatiansup, Lange, Schwabe

Of course, the security assessment above was aided by the availability of the source code from [13]
and [17]. For comparison, the public has no easy way to check the “constant time” claims for the
software in [19], so for users the only safe assumption is that the claims are not correct. If that software
is deployed somewhere then an attacker can be expected to do the necessary reverse-engineering work
to discover and exploit the timing variability.

Our comparisons below are limited to software that has been advertised in the literature to be
constant-time. Some of this software is not actually constant-time, as illustrated by the analysis
above, and would become slower if it were fixed.

1.3. Performance results. Our DH software, compiled with gcc version 4.6.3 using options -m64

-march=corei7-avx -O3 -fomit-frame-pointer, uses just 91460 Sandy Bridge cycles (quartiles:
91292 and 91700). We collected this measurement using the eBACS SUPERCOP benchmarking
toolkit [10] on a single core of an Intel Core i3-2310M; we followed standard practice of disabling
hyperthreading and Turbo Boost.

On an Ivy Bridge our software uses 90896 cycles (quartiles: 90728 and 91288). We used a single
core of an Intel Core i5-3210M and the same compiler as above.

On a Haswell our software uses 72220 cycles (quartiles: 72040 and 72296). We used a single core
of an Intel Xeon E3-1275 v3 and gcc version 4.6.4 using the same options as above. See Section 1.4
for previous Haswell results.

On a Cortex-A8 our software uses 274593 cycles (quartiles: 274584 and 274623). We used a Freescale
i.MX515 and gcc version 4.3.3 using options -O3 -fomit-frame-pointer. See Section 1.4 for previ-
ous Cortex-A8 results.

These cycle counts are the complete time for constant-time variable-scalar variable-base-point
single-scalar multiplication using SUPERCOP’s crypto_dh API. Our inputs and outputs are canon-
ical representations of points as 48-byte strings and scalars as 32-byte strings. Our timings include
more than just scalar multiplication on an internal representation of field elements; they also include
the costs of parsing strings, all other necessary setup, the costs of conversion to inverted-affine form
(x/y, x/z, x/t) in the notation of Section 2, the costs of converting lazily reduced field elements to
unique representatives, and the costs of converting to strings.

1.4. Cycle-count comparison. The following table summarizes reported high-security DH speeds
for Cortex-A8, Sandy Bridge, Ivy Bridge, and Haswell.

arch cycles ladder open g field source of software

A8 460200 yes yes 1 2255 − 19 Bernstein–Schwabe [11] CHES 2012
A8 274593 yes yes 2 2127 − 1 new (this paper)

Sandy 194120 yes yes 1 2255 − 19 Bernstein–Duif–Lange–Schwabe–Yang [8] CHES 2011
Sandy 153000? yes no 1 2252 − 2232 − 1 Hamburg [28]
Sandy 137000? no no 1 (2127 − 5997)2 Longa–Sica [32] Asiacrypt 2012
Sandy 122728 yes yes 2 2127 − 1 Bos–Costello–Hisil–Lauter [13] Eurocrypt 2013
Sandy 114800? no no 1 2254 Oliveira–López–Aranha–Rodŕıguez-Henŕıquez [35] CHES 2013
Sandy 96000? no no 1 (2127 − 5997)2 Faz-Hernández–Longa–Sánchez [19]
Sandy 91460 yes yes 2 2127 − 1 new (this paper)

Ivy 182632 yes yes 1 2255 − 19 Bernstein–Duif–Lange–Schwabe–Yang [8] CHES 2011
Ivy 145000? yes yes 1 (2127 − 1)2 Costello–Hisil–Smith [17] Eurocrypt 2014
Ivy 116944 yes yes 2 2127 − 1 Bos–Costello–Hisil–Lauter [13] Eurocrypt 2013
Ivy 92000? no no 1 (2127 − 5997)2 Faz-Hernández–Longa–Sánchez [19]
Ivy 90896 yes yes 2 2127 − 1 new (this paper)

Haswell 162460 yes yes 1 2255 − 19 Bernstein–Duif–Lange–Schwabe–Yang [8] CHES 2011
Haswell 110816 yes yes 2 2127 − 1 Bos–Costello–Hisil–Lauter [13] Eurocrypt 2013
Haswell 72220 yes yes 2 2127 − 1 new (this paper)
Haswell 60000? no no 1 2254 Oliveira–López–Aranha–Rodŕıguez-Henŕıquez [35] CHES 2013

Kummer strikes back: new DH speed records 5

Cycle counts from eBACS are for curve25519 and kumfp127g on h1mx515 (Cortex-A8), h6sandy
(Sandy Bridge), h9ivy (Ivy Bridge), and haswell (Haswell). Cycle counts not from SUPERCOP are
marked “?”. ECC has g = 1; genus-2 HECC has g = 2.

This table is limited to software that claims to be constant time, and that claims a security level
close to 2128. This is the reason that the table does not include, e.g., the 767000 Cortex-A8 cycles
and 108000 Ivy Bridge cycles claimed in [14] for constant-time scalar multiplication on a Kummer
surface; the authors claim only 103 bits of security for that surface. This is also the reason that the
table does not include, e.g., the 69500 Sandy Bridge cycles claimed in [35] for non-constant-time
scalar multiplication.

The table does not attempt to report whether the listed cycle counts are from software that actually
meets the above security requirements. In some cases inspection of the software has shown that the
security requirements are violated; see Section 1.2. “Open” means that the software is reported to
be open source, allowing third-party inspection. The cycle counts from [35] are not from open-source
software, although other (non-constant-time) software in [35] is open-source.

Our speeds, on the same platform targeted in [13], solidly beat the HECC speeds from [13]. Our
speeds also solidly beat all available ECC software, including [8], [11], and [17]; solidly beat the Sandy
Bridge/Ivy Bridge ECC speeds claimed in [28], [32], and [35]; and are even faster than the previous
Sandy Bridge/Ivy Bridge DH record claimed in [19], namely 96000/92000 cycles using unpublished
software for GLV+GLS ECC. The only high-security DH speed faster than ours in the literature is
the 60000 Haswell cycles claimed in [35] for a GLS curve over a binary field. We set our new speed
records using a conceptually much simpler HECC ladder, avoiding all the complications involved in
GLV and GLS (scalar-dependent precomputations, lattice size issues, multi-scalar addition chains,
endomorphism-rho security analysis, Weil-descent security analysis, et al.). We have contributed our
software to eBACS to allow public verification of our results.

2 Fast scalar multiplication on the Kummer surface

This section reviews the smallest number of field operations known for genus-2 scalar multiplication.
Sections 3 and 4 optimize the performance of those field operations.

Vectorization changes the interface between this section and subsequent sections. What we actually
optimize is not individual field operations, but rather pairs of operations, pairs of pairs, etc., depend-
ing on the amount of vectorization available from the CPU. Our optimization also takes advantage
of sequences of operations such as the output of a squaring being multiplied by a small constant.
What matters in this section is therefore not merely the number of field multiplications, squarings,
etc., but also the pattern of those operations.

2.1. Only 25 multiplications. Almost thirty years ago Chudnovsky and Chudnovsky wrote a classic
paper [16] optimizing scalar multiplication inside the elliptic-curve method of integer factorization.
At the end of the paper they also considered the performance of scalar multiplication on Jacobian
varieties of genus-2 hyperelliptic curves. After mentioning various options they gave some details of
one option, namely scalar multiplication on a Kummer surface.

A Kummer surface is related to the Jacobian of a genus-2 hyperelliptic curve in the same way
that x-coordinates are related to a Weierstrass elliptic curve. There is a standard rational map X
from the Jacobian to the Kummer surface; this map satisfies X(P) = X(−P) for points P on the
Jacobian and is almost everywhere exactly 2-to-1. Addition on the Jacobian does not induce an
operation on the Kummer surface (unless the number of points on the surface is extremely small),
but scalar multiplication P 7→ nP on the Jacobian induces scalar multiplication X(P) 7→ X(nP)
on the Kummer surface. Not every genus-2 hyperelliptic curve can have its Jacobian mapped to the
standard type of Kummer surface over the base field, but a noticeable fraction of curves can; see [25].

Chudnovsky and Chudnovsky reported 14M for doubling a point on a Kummer surface, where M
is the cost of field multiplication; and 23M for “general addition”, presumably differential addition,
computing X(Q + P) given X(P), X(Q), X(Q − P). They presented their formulas for doubling,
commenting on a “pretty symmetry” in the formulas and on the number of multiplications that were
actually squares. They did not present their formulas for differential addition.

6 Bernstein, Chuengsatiansup, Lange, Schwabe

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

��

�� �� ��

H

��

�� �� ��
·a
b

��

·a
c

��

·a
d

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(a) 10M + 9S + 6m ladder formulas.

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

��

�� �� ��

H

��

�� �� ��
·a
b

��

·a
c

��

·a
d

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(b) 7M + 12S + 9m ladder formulas.

Fig. 2.2. Ladder formulas for the Kummer surface. Inputs are X(Q−P) = (x1 : y1 : z1 : t1), X(P) = (x2 : y2 : z2 : t2),
and X(Q) = (x3 : y3 : z3 : t3); outputs are X(2P) = (x4 : y4 : z4 : t4) and X(P + Q) = (x5 : y5 : z5 : t5). Formulas are
from Gaudry [24]; diagrams are copied from Bernstein [7].

Two decades later, in [24], Gaudry reduced the total cost of differential addition and doubling,
computing X(2P), X(Q+P) given X(P), X(Q), X(Q−P), to 25M, more precisely 16M+ 9S, more
precisely 10M + 9S + 6m, where S is the cost of field squaring and m is the cost of multiplication
by a curve constant. An `-bit scalar-multiplication ladder therefore costs just 10`M + 9`S + 6`m.

Gaudry’s formulas are shown in Figure 2.2(a). Each point on the Kummer surface is expressed
projectively as four field elements (x : y : z : t); one is free to replace (x : y : z : t) with (rx : ry :
rz : rt) for any nonzero r. The “H” boxes are Hadamard transforms, each using 4 additions and 4
subtractions; see Section 4. The Kummer surface is parametrized by various constants (a : b : c : d)
and related constants (A2 : B2 : C2 : D2) = H(a2 : b2 : c2 : d2). The doubling part of the diagram,
from (x2 : y2 : z2 : t2) down to (x4 : y4 : z4 : t4), uses 3M + 5S + 6m, matching the 14M reported
by Chudnovsky and Chudnovsky; but the rest of the picture uses just 7M + 4S extra, making
remarkable reuse of the intermediate results of doubling. Figure 2.2(b) replaces 10M+ 9S+ 6m with
7M + 12S + 9m, as suggested by Bernstein in [7]; this saves time if m is smaller than the difference
M− S.

2.3. The original Kummer surface vs. the squared Kummer surface. Chudnovsky and
Chudnovsky had actually used slightly different formulas for a slightly different surface, which we
call the “squared Kummer surface”. Each point (x : y : z : t) on the original Kummer surface
corresponds to a point (x2 : y2 : z2 : t2) on the squared Kummer surface. Figure 2.4 presents the
equivalent of Gaudry’s formulas for the squared Kummer surface, relabeling (x2 : y2 : z2 : t2) as
(x : y : z : t); the squarings at the top of Figure 2.2 have moved close to the bottom of Figure 2.4.

The number of field operations is the same either way, as stated in [7] with credit to André
Augustyniak. However, the squared Kummer surface has a computational advantage over the original
Kummer surface, as pointed out by Bernstein in [7]: it is easier to construct surfaces in which all of
a2, b2, c2, d2, A2, B2, C2, D2 are small, producing fast multiplications by constants in Figure 2.4, than
to construct surfaces in which all of a, b, c, d, A2, B2, C2, D2 are small, producing fast multiplications
by constants in Figure 2.2.

2.5. Preliminary comparison to ECC. A Montgomery ladder step for ECC costs 5M+4S+1m,
while a ladder step on the Kummer surface costs 10M+ 9S+ 6m or 7M+ 12S+ 9m. Evidently ECC
uses only about half as many operations. However, for security ECC needs primes around 256 bits
(such as the convenient prime 2255 − 19), while the Kummer surface can use primes around 128 bits
(such as the even more convenient prime 2127 − 1), and presumably this saves more than a factor of
2.

Kummer strikes back: new DH speed records 7

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��
×
��
×
��
×

��

×

��

×

��

×

��
·a

2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(a) 10M + 9S + 6m ladder formulas.

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��
×
��
×
��
×

��

×

��

×

��

×

��
·a

2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(b) 7M + 12S + 9m ladder formulas.

Fig. 2.4. Ladder formulas for the squared Kummer surface. Compare to Figure 2.2.

Several years ago, in [7], Bernstein introduced 32-bit Intel Pentium M software for generic Kummer
surfaces (i.e., m = M) taking about 10% fewer cycles than his Curve25519 software, which at the
time was the speed leader for ECC. Gaudry, Houtmann, and Thomé, as reported in [26, comparison
table], introduced 64-bit software for Curve25519 and for a Kummer surface; the second option was
slightly faster on AMD Opteron K8 but the first option was slightly faster on Intel Core 2. It is not
at all clear that one can reasonably extrapolate to today’s CPUs.

Bernstein’s cost analysis concluded that HECC could be as much as 1.5× faster than ECC on a
Pentium M (cost 1355 vs. cost 1998 in [7, page 31]), depending on the exact size of the constants
a2, b2, c2, d2, A2, B2, C2, D2. This motivated a systematic search through small constants to find a
Kummer surface providing high security and high twist security. But this was more easily said than
done: genus-2 point counting was much more expensive than elliptic-curve point counting.

2.6. The Gaudry–Schost Kummer surface. Years later, after various algorithmic improvements
to genus-2 point counting and a 1000000-CPU-hour computation, Gaudry and Schost announced in
[27] that they had found a secure Kummer surface (a2 : b2 : c2 : d2) = (11 : −22 : −19 : −3) over Fp

with p = 2127 − 1, with Jacobian order and twisted Jacobian order equal to

16 · 1809251394333065553571917326471206521441306174399683558571672623546356726339,

16 · 1809251394333065553414675955050290598923508843635941313077767297801179626051

respectively. This is exactly the surface that was used for the HECC speed records in [13]. We obtain
even better speeds for the same surface.

Note that, as mentioned by Bos, Costello, Hisil, and Lauter in [13], the constants (1 : a2/b2 :
a2/c2 : a2/d2) = (1 : −1/2 : −11/19 : −11/3) in Figure 2.4 are projectively the same as (−114 : 57 :
66 : 418). The common factor 11 between a2 = 11 and b2 = −22 helps keep these integers small. The
constants (1 : A2/B2 : A2/C2 : A2/D2) = (1 : −3 : −33/17 : −33/49) are projectively the same as
(−833 : 2499 : 1617 : 561).

3 Decomposing field multiplication

The only operations in Figures 2.2 and 2.4 are the H boxes, which we analyze in Section 4, and field
multiplications, which we analyze in this section. Our goal here is to obtain the smallest possible
number of CPU cycles for M, S, etc. modulo p = 2127 − 1.

This prime has been considered before, for example in [5] and [7]. What is new here is fitting
arithmetic modulo this prime, for the pattern of operations shown in Figure 2.4, into the vector
abilities of modern CPUs. There are four obvious dimensions of vectorizability:

8 Bernstein, Chuengsatiansup, Lange, Schwabe

• Vectorizing across the “limbs” that represent a field element such as x2. The optimal number of
limbs is CPU-dependent and is usually nonzero modulo the vector length, posing a challenge in
organizing and reshuffling data.
• Vectorizing across the four field elements that represent a point. All of the multiplications in

Figure 2.4 are visually organized into 4-way vectors, except that in some cases the vectors have
been scaled to create a multiplication by 1. Even without vectorization, most of this scaling is
undesirable for any surface with small a2, b2, c2, d2: e.g., for the Gaudry–Schost surface we replace
(1 : a2/b2 : a2/c2 : a2/d2) with (−114 : 57 : 66 : 418). The only remaining exception is the
multiplication by 1 in (1 : x1/y1 : x1/z1 : x1/t1) where X(Q− P) = (x1 : y1 : z1 : t1). Vectorizing
across the four field elements means that this multiplication costs 1M, increasing the cost of a
ladder step from 7M + 12S + 12m to 8M + 12S + 12m.
• Vectorizing between doubling and differential addition. For example, in Figure 2.4(b), squarings

are imperfectly paired with multiplications on the third line; multiplications by constants are
perfectly paired with multiplications by the same constants on the fourth line; squarings are
perfectly paired with squarings on the sixth line; and multiplications by constants are imperfectly
paired with multiplications by inputs on the seventh line. There is some loss of efficiency in, e.g.,
pairing the squaring with the multiplication, since this prohibits using faster squaring methods.
• Vectorizing across a batch of independent scalar-multiplication inputs, in applications where a

suitably sized batch is available. This is relatively straightforward but increases cache traffic,
often to problematic levels. In this paper we focus on the traditional case of a single input.

The second dimension of vectorizability is, as far as we know, a unique feature of HECC, and one
that we heavily exploit for high performance.

For comparison, one can try to vectorize the well-known Montgomery ladder for ECC [34] across
the field elements that represent a point, but (1) this provides only two-way vectorization (x and z),
not four-way vectorization; and (2) many of the resulting pairings are imperfect. The Montgomery
ladder for Curve25519 was vectorized by Costigan and Schwabe in [18] for the Cell, and then by
Bernstein and Schwabe in [11] for the Cortex-A8, but both of those vectorizations had substantially
higher overhead than our new vectorization of the HECC ladder.

3.1. Sandy Bridge floating-point units. The only fast multiplier available on Intel’s 32-bit plat-
forms for many years, from the original Pentium twenty years ago through the Pentium M, was the
floating-point multiplier. This was exploited by Bernstein for cryptographic computations in [5], [6],
etc.

The conventional wisdom is that this use of floating-point arithmetic was rendered obsolete by
the advent of 64-bit platforms: in particular, Intel now provides a reasonably fast 64-bit integer
multiplier. However, floating-point units have also become more powerful; evidently Intel sees many
applications that rely critically upon fast floating-point arithmetic. We therefore revisit Bernstein’s
approach, with the added challenge of vectorization.

We next describe the relevant features of the Sandy Bridge. Our optimization of HECC for the
Sandy Bridge occupies the rest of Sections 3 and 4. The Ivy Bridge has the same features and should
be expected to produce essentially identical performance for this type of code. The Haswell has
important differences and is analyzed in Section 6; the Cortex-A8 is analyzed in Section 5.

Each Sandy Bridge core has several 256-bit vector units operating in parallel on vectors of 4
double-precision floating-point numbers:

• “Port 0” handles one vector multiplication each cycle, with latency 5.
• Port 1 handles one vector addition each cycle, with latency 3.
• Port 5 handles one permutation instruction each cycle. The selection of permutation instructions

is limited and is analyzed in detail in Section 4.
• Ports 2, 3, and 4 handle vector loads and stores, with latency 4 from L1 cache and latency 3 to

L1 cache. Load/store throughput is limited in various ways, never exceeding one 256-bit load per
cycle.

Recall that a double-precision floating-point number occupies 64 bits, including a sign bit, a power
of 2, and a “mantissa”. Every integer between −253 and 253 can be represented exactly as a double-

Kummer strikes back: new DH speed records 9

precision floating-point number. More generally, every real number of the form 2ei, where e is a small
integer and i is an integer between −253 and 253, can be represented exactly as a double-precision
floating-point number. The computations discussed here do not approach the lower or upper limits
on e, so we do not review the details of the limits.

Our final software uses fewer multiplications than additions, and fewer permutations than multi-
plications. This does not mean that we were free to use extra multiplications and permutations: if
multiplications and permutations are not finished quickly enough then the addition unit will sit idle
waiting for input. In many cases, noted below, we have the flexibility to convert multiplications to
additions, reducing latency; we found that in some cases this saved time despite the obvious addition
bottleneck.

3.2. Optimizing M (field multiplication). We decompose an integer f modulo 2127 − 1 into six
floating-point limbs in (non-integer) radix 2127/6. This means that we write f as f0+f1+f2+f3+f4+f5
where f0 is a small multiple of 20, f1 is a small multiple of 222, f2 is a small multiple of 243, f3 is
a small multiple of 264, f4 is a small multiple of 285, and f5 is a small multiple of 2106. (The exact
meaning of “small” is defined by a rather tedious, but verifiable, collection of bounds on the floating-
point numbers appearing in each step of the program. It should be obvious that a simpler definition
of “small” would compromise efficiency; for example, H cannot be efficient unless the bounds on H
intermediate results and outputs are allowed to be larger than the bounds on H inputs.)

If g is another integer similarly decomposed as g0 + g1 + g2 + g3 + g4 + g5 then f0g0 is a multiple of
20, f0g1 + f1g0 is a multiple of 222, f0g2 + f1g1 + f2g0 is a multiple of 243, etc. Each of these sums is
small enough to fit exactly in a double-precision floating-point number, and the total of these sums
is exactly fg. What we actually compute are the sums

h0 = f0g0 + 2−127f1g5 + 2−127f2g4 + 2−127f3g3 + 2−127f4g2 + 2−127f5g1,

h1 = f0g1 + f1g0 + 2−127f2g5 + 2−127f3g4 + 2−127f4g3 + 2−127f5g2,

h2 = f0g2 + f1g1 + f2g0 + 2−127f3g5 + 2−127f4g4 + 2−127f5g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 2−127f4g5 + 2−127f5g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0 + 2−127f5g5,

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0,

whose total h is congruent to fg modulo 2127 − 1.
There are 36 multiplications figj here, and 30 additions. One can collect the multiplications by

2−127 into 5 multiplications such as 2−127(f4g5 + f5g4). We take a different approach, precomputing
2−127f1, 2

−127f2, 2
−127f3, 2

−127f4, 2
−127f5, for two reasons: first, this reduces the latency of each hi

computation, giving us more flexibility in scheduling; second, this gives us an opportunity to share
precomputations when the input f is reused for another multiplication.

This operation count does not include carries. We analyze carries below, but first we analyze the
improvements obtained when f = g and when f is a small constant.

3.3. Optimizing S (field squaring) and m (constant field multiplication). For S, i.e., for
f = g, we have

h0 = f0f0 + 2−1272f1f5 + 2−1272f2f4 + 2−127f3f3,

h1 = 2f0f1 + 2−1272f2f5 + 2−1272f3f4,

h2 = 2f0f2 + f1f1 + 2−1272f3f5 + 2−127f4f4,

h3 = 2f0f3 + 2f1f2 + 2−1272f4f5,

h4 = 2f0f4 + 2f1f3 + f2f2 + 2−127f5f5,

h5 = 2f0f5 + 2f1f4 + 2f2f3.

We precompute 2f1, 2f2, 2f3, 2f4, 2f5 and 2−127f3, 2
−127f4, 2

−127f5; this costs 8 multiplications, where
5 of the multiplications can be freely replaced by additions. The rest of S, after this precomputation,
takes 21 multiplications and 15 additions, plus the cost of carries.

10 Bernstein, Chuengsatiansup, Lange, Schwabe

For m we have simply h0 = cf0, h1 = cf1, etc., costing 6 multiplications plus the cost of carries.
This does not work for arbitrary field constants, but it does work for the small constants stated in
Section 2.6.

3.4. Carries. The output limbs hi from M are too large to be used in a subsequent multiplication.
We carry h0 → h1 by rounding 2−22h0 to an integer c0, adding 222c0 to h1, and subtracting 222c0
from h0. This takes 3 additions (the CPU has a rounding instruction, vroundpd, with the same cost
as an addition) and 2 multiplications. The resulting h0 is guaranteed to be between −221 and 221.

We could similarly carry h1 → h2 → h3 → h4 → h5, and carry h5 → h0 as follows: round 2−127h5
to an integer c5, add c5 to h0, and subtract 2127c5 from h5. One final carry h0 → h1, for a total of
7 carries (21 additions and 14 multiplications), would then guarantee that all of h0, h1, h2, h3, h4, h5
are small enough to be input to a subsequent multiplication.

The problem with this carry chain is that it has extremely high latency: 5 cycles for 2−22h0, 3
more cycles for c0, 5 more cycles for 222c0, and 3 more cycles to add to h1, all repeated 7 times, for
a total of 112 cycles, plus the latency of obtaining h0 in the first place. The ladder step in Figure 2.4
has a serial chain of H →M→ m→ H → S→M, for a total latency above 500 cycles, i.e., above
125500 cycles for a 251-bit ladder.

We do better in six ways. First, we use only 6 carries in M rather than 7, if the output will be used
only for m. Even if the output h0 is several bits larger than 222, it will not overflow the small-constant
multiplication, since our constants are all bounded by 212.

Second, pushing the same idea further, we do these 6 carries in parallel. First we round in parallel
to obtain c0, c1, c2, c3, c4, c5, then we subtract in parallel, then we add in parallel, allowing all of
h0, h1, h2, h3, h4, h5 to end up several bits larger than they would have been with full carries.

Third, we also use 6 parallel carries for a multiplication that is an m. There is no need for a chain,
since the initial h0, h1, h2, h3, h4, h5 cannot be very large.

Fourth, we also use 6 parallel carries for each S. This allows the S output to be somewhat larger
than the input, but this still does not create overflows in the subsequent M. At this point the only
remaining block of 7 carries is in the M4 by (1 : x1/y1 : x1/z1 : x1/t1), where M4 means a vector of
four field multiplications.

Fifth, for that M4, we run two carry chains in parallel, carrying h0 → h1 and h3 → h4, then
h1 → h2 and h4 → h5, then h2 → h3 and h5 → h0, then h3 → h4 and h0 → h1. This costs 8 carries
rather than 7 but chops latency in half.

Finally, for that M4, we use the carry approach from [5]: add the constant α22 = 222(252 + 251) to
h0, and subtract α22 from the result, obtaining the closest multiple of 222 to h0; add this multiple to
h1 and subtract it from h0. This costs 4 additions rather than 3, but reduces carry latency from 16
to 9, and also saves two multiplications.

4 Permutations: vectorizing the Hadamard transform

The Hadamard transform H in Section 2 is defined as follows:

H(x, y, z, t) = (x+ y + z + t, x+ y − z − t, x− y + z − t, x− y − z + t).

Evaluating this as written would use 12 field additions (counting subtraction as addition), but a
standard “fast Hadamard transform” reduces the 12 to 8:

x

�� ''

y

�� ��

z

�� ��

t

ww ��
+

��

+

~~ ��

−
��

−
~~ ��

+ − + −

We copied this diagram from Bernstein [7].
Our representation of field elements for the Sandy Bridge (see Section 3) requires 6 limb additions

for each field addition. There is no need to carry before the subsequent multiplications; this is the
main reason that we use 6 limbs rather than 5.

Kummer strikes back: new DH speed records 11

In a ladder step there are 4 copies of H, each requiring 8 field additions, each requiring 6 limb
additions, for a total of 192 limb additions. This operation count suggests that 48 vector instructions
suffice. Sandy Bridge has a helpful vaddsubpd instruction that computes (a − e, b + f, c − g, d + h)
given (a, b, c, d) and (e, f, g, h), obviously useful inside H.

However, we cannot simply vectorize across x, y, z, t. In Section 3 we were multiplying one x by
another, at the same time multiplying one y by another, etc., with no permutations required; in this
section we need to add x to y, and this requires permutations.

The Sandy Bridge has a vector permutation unit acting in parallel with the adder and the multi-
plier, as noted in Section 3. But this does not mean that the cost of permutations can be ignored. A
long sequence of permutations inside H will force the adder and the multiplier to remain idle, since
only a small fraction of the work inside M can begin before H is complete.

Our original software used 48 vector additions and 144 vector permutations for the 4 copies of H.
We then tackled the challenge of minimizing the number of permutations. We ended up reducing this
number from 144 to just 36. This section presents the details; analyzes conditional swaps, which end
up consuming further time in the permutation unit; and concludes by analyzing the total number of
operations used in our Sandy Bridge software.

4.1. Limitations of the Sandy Bridge permutations. There is a latency-1 permutation instruc-
tion vpermilpd that computes (x, y, z, t) given (y, x, t, z). vaddsubpd then produces (x−y, y+x, z−
t, t+z), which for the moment we abbreviate as (e, f, g, h). At this point we seem to be halfway done:
the desired output is simply (f + h, f − h, e+ g, e− g).

If we had (f, h, e, g) at this point, rather than (e, f, g, h), then we could apply vpermilpd and
vaddsubpd again, obtaining (f − h, h+ f, e− g, g+ e). One final vpermilpd would then produce the
desired (f + h, f − h, e + g, e − g). The remaining problem is the middle permutation of (e, f, g, h)
into (f, h, e, g).

Unfortunately, Sandy Bridge has very few options for moving data between the left half of a vector,
in this case (e, f), and the right half of a vector, in this case (g, h). There is a vperm2f128 instruction
(1-cycle throughput but latency 2) that produces (g, h, e, f), but it cannot even produce (h, g, f, e),
never mind a combination such as (f, h, e, g). (Haswell has more permutation instructions, but Ivy
Bridge does not. This is not a surprising restriction: n-bit vector units are often designed as n/2-
bit vector units operating on the left half of a vector in one cycle and the right half in the next
cycle, but this means that any communication between left and right requires careful attention in the
circuitry. A similar left-right separation is even more obvious for the Cortex-A8.) We could shift some
permutation work to the load/store unit, but this would have very little benefit, since simulating a
typical permutation requires quite a few loads and stores.

The vpermilpd instruction (x, y, z, t) 7→ (y, x, t, z) mentioned above is one of a family of 16
vpermilpd instructions that produce (x or y, x or y, z or t, z or t). There is an even more general
family of 16 vshufpd instructions that produce (a or b, x or y, c or d, z or t) given (a, b, c, d) and
(x, y, z, t). In the first versions of our software we applied vshufpd to (e, f, g, h) and (g, h, e, f),
obtaining (f, h, g, e), and then applied vpermilpd to obtain (f, h, e, g).

Overall a single H handled in this way uses, for each limb, 2 vaddsubpd instructions and 6 per-
mutation instructions, half of which are handling the permutation of (e, f, g, h) into (f, h, e, g). The
total for all limbs is 12 additions and 36 permutations, and the large “bubble” of permutations ends
up forcing many idle cycles for the addition unit. This occurs four times in each ladder step.

4.2. Changing the input/output format. There are two obvious sources of inefficiency in the
computation described above. First, we need a final permutation to convert (f −h, f +h, e−g, e+g)
into (f + h, f − h, e + g, e − g). Second, the middle permutation of (e, f, g, h) into (f, h, e, g) costs
three permutation instructions, whereas (g, h, e, f) would cost only one.

The first problem arises from a tension between Intel’s vaddsubpd, which always subtracts in the
first position, and the definition of H, which always adds in the first position. A simple way to
resolve this tension is to store (t, z, y, x) instead of (x, y, z, t) for the input, and (t′, z′, y′, x′) instead
of (x′, y′, z′, t′) for the output; the final permutation then naturally disappears. It is easy to adjust
the other permutations accordingly, along with constants such as (1, a2/b2, a2/c2, a2/d2).

12 Bernstein, Chuengsatiansup, Lange, Schwabe

x2

��

y2

��

−z2

��

t2

��

x3

��

y3

��

−z3

��

t3

��
H

x

����
33

t

����
33

−z

����
33

y

����
33

H

x

��
t

��
−z

��
y

��
×

x

��

×

t��

×
z��

×
y��

×

x

��

×

t��

×
z��

×
y��

·A
2

D2

t

��

·−A2

C2

−z

��

·A
2

B2

y

��

·A
2

D2

t

��

·−A2

C2

−z

��

·A
2

B2

y

��
H

x

����
y

����
−z

����
t

����

H

x

����
y

����
−z

����
t

����
×

x

��

×
y��

×
z��

×

t��

×

x

��

×
y

��

×
z
��

×

t
��

·a
2

b2

y

��

·−a2

c2

−z

��

·a
2

d2

t

��

·x1
y1

y

��

·−x1
z1

−z

��

·x1
t1

t

��
x4 y4 −z4 t4 x5 y5 −z5 t5

Fig. 4.3. Output format that we use for each operation in the right side of Figure 2.4 on Sandy Bridge, including
permutations and negations to accelerate H.

However, this does nothing to address the second problem. Different permutations of (x, y, z, t) as
input and output end up requiring different middle permutations, but these middle permutations are
never exactly the left-right swap provided by vperm2f128.

We do better by generalizing the input/output format to allow negations. For example, if we start
with (x,−y, z, t), permute into (−y, x, t, z), and apply vaddsubpd, we obtain (x+y, x−y, z− t, t+z).
Observe that this is not the same as the (x− y, x+ y, z − t, t+ z) that we obtained earlier: the first
two entries have been exchanged.

It turns out to be best to negate z, i.e., to start from (x, y,−z, t). Then vpermilpd gives (y, x, t,−z),
and vaddsubpd gives (x − y, x + y,−z − t, t − z), which we now abbreviate as (e, f, g, h). Next
vperm2f128 gives (g, h, e, f), and independently vpermilpd gives (f, e, h, g). Finally, vaddsubpd gives
(f − g, h+ e, h− e, f + g). This is exactly (x′, t′,−z′, y′) where (x′, y′, z′, t′) = H(x, y, z, t).

The output format here is not the same as the input format: the positions of t and y have been
exchanged. Fortunately, Figure 2.4 is partitioned by the H rows into two separate universes, and
there is no need for the universes to use the same format. We use the (x, y,−z, t) format at the top
and bottom, and the (x, t,−z, y) format between the two H rows. It is easy to see that exactly the
same sequence of instructions works for all the copies of H, either producing (x, y,−z, t) format from
(x, t,−z, y) format or vice versa.

S4 and M4 do not preserve negations: in effect, they switch from (x, t,−z, y) format to (x, t, z, y)
format. This is not a big problem, since we can reinsert the negation at any moment using a single
multiplication or low-latency logic instruction (floating-point numbers use a sign bit rather than twos-
complement, so negation is simply xor with a 1 in the sign bit). Even better, in Figure 2.4(b), the
problem disappears entirely: each S4 and M4 is followed immediately by a constant multiplication,
and so we simply negate the appropriate constants. The resulting sequence of formats is summarized
in Figure 4.3.

Each H now costs 12 additions and just 18 permutations. The number of non-addition cycles that
need to be overlapped with operations before and after H has dropped from the original 24 to just
6.

4.4. Exploiting double precision. We gain a further factor of 2 by temporarily converting from
radix 2127/6 to radix 2127/3 during the computation of H. This means that, just before starting H,
we replace the six limbs (h0, h1, h2, h3, h4, h5) representing h0 + h1 + h2 + h3 + h4 + h5 by three
limbs (h0 + h1, h2 + h3, h4 + h5). These three sums, and the intermediate H results, still fit into
double-precision floating-point numbers.

Kummer strikes back: new DH speed records 13

It is essential to switch each output integer back to radix 2127/6 so that each output limb is small
enough for the subsequent multiplication. Converting three limbs into six is slightly less expensive
than three carries; in fact, converting from six to three and back to six uses exactly the same opera-
tions as three carries, although in a different order.

We further reduce the conversion cost by the following observation. Except for the M4 by (1 :
x1/y1 : x1/z1 : x1/t1), each of our multiplication results uses six carries, as explained in Section 3.4.
However, if we are about to add h0 to h1 for input to H, then there is no reason to carry h0 → h1,
so we simply skip that carry; we similarly skip h2 → h3 and h4 → h5. These skipped carries exactly
cancel the conversion cost.

For the M4 by (1 : x1/y1 : x1/z1 : x1/t1) the analysis is different: h0 is large enough to affect h2,
and if we skipped carrying h0 → h1 → h2 then the output of H would no longer be safe as input
to a subsequent multiplication. We thus carry h0 → h1, h2 → h3, and h4 → h5 in parallel; and then
h1 → h2, h3 → h4, and h5 → h0 in parallel. In effect this M4 uses 9 carries, counting the cost of
conversion, whereas in Section 3.4 it used only 8.

To summarize, all of these conversions for all four H cost just one extra carry, while reducing 48
additions and 72 permutations to 24 additions and 36 permutations.

4.5. Conditional swaps. A ladder step starts from an input (X(nP), X((n + 1)P)), which we
abbreviate as L(n), and produces L(2n) as output. Swapping the two halves of the input, applying
the same ladder step, and swapping the two halves of the output produces L(2n + 1) instead; one
way to see this is to observe that L(−n− 1) is exactly the swap of L(n).

Consequently one can reach L(2n+ ε) for ε ∈ {0, 1} by starting from L(n), conditionally swapping,
applying the ladder step, and conditionally swapping again, where the condition bit is exactly ε.
A standard ladder reaches L(n) by applying this idea recursively. A standard constant-time ladder
reaches L(n) by applying this idea for exactly ` steps, starting from L(0), where n is known in advance
to be between 0 and 2` − 1. An alternate approach is to first add to n an appropriate multiple of
the order of P , producing an integer known to be between (e.g.) 2`+1 and 2`+2 − 1, and then start
from L(1). We use a standard optimization, merging the conditional swap after a ladder step into
the conditional swap before the next ladder step, so that there are just `+1 conditional swaps rather
than 2`.

One way to conditionally swap field elements x and x′ using floating-point arithmetic is to replace
(x, x′) with (x+ b(x′ − x), x′ − b(x′ − x)) where b is the condition bit, either 0 or 1. This takes three
additions and one multiplication (times 6 limbs, times 4 field elements to swap). It is better to use
logic instructions: replace each addition with xor, replace each multiplication with and, and replace
b with an all-1 or all-0 mask computed from b. On the Sandy Bridge, logic instructions have low
latency and are handled by the permutation unit, which is much less of a bottleneck for us than the
addition unit.

We further improve the performance of the conditional swap as follows. The M4 on the right side
of Figure 4.3 is multiplying H of the left input by H of the right input. This is commutative: it does
not depend on whether the inputs are swapped. We therefore put the conditional swap after the
first row of H computations, and multiply the H outputs directly, rather than multiplying the swap
outputs. This simple trick has several minor effects and one important effect.

A minor advantage is that this trick removes all use of the right half of the swap output; i.e., it
replaces the conditional swap with a conditional move. This reduces the original 24 logic instructions
to just 18.

Another minor advantage is as follows. The Sandy Bridge has a vectorized conditional-select in-
struction vblendvpd. This instruction occupies the permutation unit for 2 cycles, so it is no better
than the 4 traditional logic instructions for a conditional swap: a conditional swap requires two con-
ditional selects. However, this instruction is better than the 3 traditional logic instructions for a
conditional move: a conditional move requires only one conditional select. This replaces the original
logic instructions with 6 conditional-select instructions, consuming just 12 cycles.

A minor disadvantage is that the first M4 and S4 are no longer able to share precomputations of
multiplications by 2−127. This costs us 3 multiplication instructions.

14 Bernstein, Chuengsatiansup, Lange, Schwabe

The important effect is that this trick reduces latency, allowing the M4 to start much sooner.
Adding this trick immediately produced a 5% reduction in our cycle counts.

4.6. Total operations. We treat Figure 2.4(b) as 2M4 + 3S4 + 3m4 + 4H.
The main computations of hi, not counting precomputations and carries, cost 30 additions and 36

multiplications for each M4, 15 additions and 21 multiplications for each S4, and 0 additions and 6
multiplications for each m4. The total here is 105 additions and 153 multiplications.

The M4 by (1 : x1/y1 : x1/z1 : x1/t1) allows precomputations outside the loop. The other M4

consumes 5 multiplications for precomputations, and each S4 consumes 8 multiplications for pre-
computations; the total here is 29 multiplications. We had originally saved a few multiplications by
sharing precomputations between the first S4 and the first M4, but this is incompatible with the
more important trick described in Section 4.5.

There are a total of 24 additions in the four H, as explained in Section 4.4. There are also 51
carries (counting the conversions described in Section 4.4 as carries), each consuming 3 additions and
2 multiplications, for a total of 153 additions and 102 multiplications.

The grand total is 282 additions and 284 multiplications, evidently requiring at least 284 cycles
for each iteration of the main loop. Recall that there are various options to trade multiplications for
additions: each S4 has 5 precomputed doublings that can each be converted from 1 multiplication to
1 addition, and each carry (except h5 → h0) can be converted from 3 additions and 2 multiplications
to 4 additions. We could use either of these options to eliminate one multiplication, reducing the
284-cycle lower bound to 283 cycles, but to reduce latency we ended up instead using the first option
to eliminate 11 multiplications and the second option to eliminate 30 multiplications, obtaining a
final total of 308 additions and 243 multiplications. These totals have been computer-verified.

We wrote functions in assembly for M4, S4, etc., but were still over 500 cycles. Given the Sandy
Bridge floating-point latencies we were already expecting instruction scheduling to be much more of
an issue for this software than for typical integer-arithmetic software. We merged the functions into a
single loop, reorganized many computations to save registers, and eliminated many loads and stores.
After building a new Sandy Bridge simulator and experimenting with different instruction schedules
we ended up with our current loop, just 347 cycles, and a total of 91460 Sandy Bridge cycles for
scalar multiplication. The main loop explains 87097 of these cycles; the remaining cycles are spent
outside the ladder, mostly on converting (x : y : z : t) to (x/y : x/z : x/t) for output.

5 Cortex-A8

The low-power ARM Cortex-A8 core is the CPU core in the iPad 1, iPhone 4, Samsung Galaxy S,
Motorola Droid X, Amazon Kindle 4, etc. Today a Cortex-A8 CPU, the Allwinner A10, costs just
$5 in bulk and is widely used in low-cost tablets, set-top boxes, etc. Like Sandy Bridge, Cortex-A8
is not the most recent microarchitecture, but its very wide deployment and use make it a sensible
choice of platform for optimization and performance comparisons.

Bernstein and Schwabe in [11] (CHES 2012) analyzed the vector capabilities of the Cortex-A8
for various cryptographic primitives, and in particular set a new speed record for high-security DH,
namely 460200 Cortex-A8 cycles. We do much better, just 274593 Cortex-A8 cycles, measured on a
Freescale i.MX515. Our basic vectorization approach is the same for Cortex-A8 as for Sandy Bridge,
and many techniques are reused, but there are also many differences. The rest of this section explains
the details.

5.1. Cortex-A8 vector units. Each Cortex-A8 core has two 128-bit vector units operating in
parallel on vectors of four 32-bit integers or two 64-bit integers:

• The arithmetic port takes one cycle for vector addition, with latency 2; or two cycles for vector
multiplication (two 64-bit products ac, bd given 32-bit inputs a, b and c, d), with latency 7. Logic
operations also use the arithmetic port.
• The load/store port handles loads, stores, and permutations. ARM’s Cortex-A8 documentation

indicates that the load/store port can carry out one 128-bit load every cycle. Beware, however,
that there are throughput limits on the L1 cache. We have found experimentally that the common

Kummer strikes back: new DH speed records 15

TI Sitara Cortex-A8 CPU (used, e.g., in the Beaglebone Black development board) needs three
cycles from one load until the next, while other Cortex-A8 CPUs can handle seven consecutive
cycles of loads without penalty.

Compared to Sandy Bridge cycle counts, there are three obvious reasons for Cortex-A8 cycle counts
to be much larger: registers are only 128 bits, not 256 bits; there are only 2 ports, not 6; and multi-
plication has a throughput of 1 every 2 cycles, not 1 every cycle. However, there are also speedups on
Cortex-A8. There is (as on Haswell—see Section 6) a vector multiply-accumulate instruction with the
same throughput as vector multiplication. A sequence of m consecutive multiply-accumulate instruc-
tions that all accumulate into the same register executes in 2m cycles (unlike Haswell), effectively
reducing multiplication latency from 7 to 1. Furthermore, Cortex-A8 multiplication produces 64-bit
integer products, while Sandy Bridge gives only 53-bit-mantissa products.

5.2. Representation. We decompose an integer f modulo 2127 − 1 into five integer pieces in radix
2127/5: i.e., we write f as f0 + 226f1 + 251f2 + 277f3 + 2102f4. Compared to Sandy Bridge, having
20% more room in 64-bit integers than in 53-bit floating-point mantissas allows us to reduce the
number of limbs from 6 to 5. We require the small integers f0, f1, f2, f3, f4 to be unsigned because
this reduces carry cost from 4 integer instructions to 3.

We arrange four integers x, y, z, t modulo 2127 − 1 in five 128-bit vectors r0, . . . , r4 as

r0 = (x0, y0, x1, y1);

r1 = (x2, y2, x3, y3);

r2 = (x4, y4, z4, t4);

r3 = (z0, t0, z1, t1);

r4 = (z2, t2, z3, t3).

This representation is designed to minimize permutations in M, S, and H. For example, computing
(x0 + z0, y0 + t0, x1 + z1, y1 + t1) takes just one addition without any permutations. The Cortex-A8
multiplications take two pairs of inputs at a time, rather than four as on Sandy Bridge, so there is
little motivation to put (x0, y0, z0, t0) into a vector.

5.3. Optimizing M. Given an integer f as above and an integer g = g0+226g1+251g2+277g3+2102g4,
the product fg modulo 2127 − 1 is h = h0 + 226h1 + 251h2 + 277h3 + 2102h4, with

h0 = f0g0 + 2f1g4 + 2f2g3 + 2f3g2 + 2f4g1,

h1 = f0g1 + f1g0 + f2g4 + 2f3g3 + f4g2,

h2 = f0g2 + 2f1g1 + f2g0 + 2f3g4 + 2f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g4,

h4 = f0g4 + 2f1g3 + f2g2 + 2f3g1 + f4g0.

There are 25 multiplications figj ; additions are free as part of multiply-accumulate instructions.
We precompute 2f1, 2f2, 2f3, 2f4 so that these values can be reused for another multiplication. These
precomputations can be done by using either 4 shift or 4 addition instructions. Both shift and addition
use 1 cycle per instruction, but addition has a lower latency. See Section 5.6 for the cost of carries.

5.4. Optimizing S. The idea of optimizing S in Cortex-A8 is quite similar to Sandy Bridge; for
details see Section 3.3. We state here only the operation count. Besides precomputation and carry,
we use 15 multiplication instructions; some of those are actually multiply-accumulate instructions.

5.5. Optimizing m. For m we compute only h0 = cf0, h1 = cf1, h2 = cf2, h3 = cf3, and h4 = cf4,
again exploiting the small constants stated in Section 2.6.

Recall that we use unsigned representation. We always multiply absolute values, then negate results
as necessary by subtracting from 2129 − 4:

n0 = 228 − 4− h0, n1 = 227 − 4− h1, n2 = 228 − 4− h2, n3 = 227 − 4− h3, n4 = 227 − 4− h4.

16 Bernstein, Chuengsatiansup, Lange, Schwabe

Negating any subsequence of x, y, z, t costs at most 5 vector subtractions. Negating only x or y,
or both x and y, costs only 3 subtractions, because our representation keeps x, y within 3 vectors.
The same comment applies to z and t. The specific m in Section 2.6 end up requiring a total of 13
subtractions with the same cost as 13 additions.

5.6. Carries. Each multiplication uses at worst 6 serial carries h1 → h2 → h3 → h4 → h0 → h1,
each costing 3 additions. Various carries are eliminated by the ideas of Section 3.4.

5.7. Hadamard transform. Each of the 8 field additions in H requires 5 additions of limbs. One
ladder step has four H, for a total of 160 limb additions, i.e., at least 40 vector additions.

Four of the field additions in H are actually subtractions. We handle subtractions by the same
strategy as Section 5.6. The extra constants cost another 5 vector additions per H.

The detailed sequence of operations that we use on the Cortex-A8 is as follows. The Hadamard
transform receives as input

r0 = (x0, y0, x1, y1);

r1 = (x2, y2, x3, y3);

r2 = (x4, y4, z4, t4);

r3 = (z0, t0, z1, t1);

r4 = (z2, t2, z3, t3).

The output will be 5 registers s0, . . . , s4 with

s0 = ((x0 + y0) + (z0 + t0), (x0 + y0)− (z0 + t0), (x1 + y1) + (z1 + t1), (x1 + y1)− (z1 + t1)),

s1 = ((x0 − y0) + (z0 − t0), (x0 − y0)− (z0 − t0), (x1 − y1) + (z1 − t1), (x1 − y1)− (z1 − t1)),
s2 = ((x4 + y4) + (z4 + t4), (x4 + y4)− (z4 + t4), (x4 − y4) + (z4 − t4), (x4 − y4)− (z4 − t4)),
s3 = ((x2 + y2) + (z2 + t2), (x2 + y2)− (z2 + t2), (x3 + y3) + (z3 + t3), (x3 + y3)− (x3 + y3)),

s4 = ((x2 − y2) + (z2 − t2), (x2 − y2)− (z2 − t2), (x3 − y3) + (z3 − t3), (x3 − y3)− (x3 − y3)).

We begin with vector addition and subtraction to produce

t0 = (x0 + z0, y0 + t0, x1 + z1, y1 + t1),

t1 = (x0 − z0, y0 − t0, x1 − z1, y1 − t1),
t2 = (x2 + z2, y2 + t2, x3 + z3, y3 + t3),

t3 = (x2 − z2, y2 − t2, x3 − z3, y3 − t3).

We would next like to add/subtract x0 + z0 with y0 + t0, also x1 + z1 with y1 + t1, and so
on. Unfortunately, there are no instructions to add/subtract among or between left/right halves
of vectors. There is a Cortex-A8 instruction vtrn which allows permuting two vectors (a, b, c, d)
(e, f, g, h) to produce (a, e, c, g) (b, f, d, h), and can also permute two vectors (a, b, c, d) (e, f, g, h)
to produce (a, b, c, g) (e, f, d, h). Another helpful instruction is vswp which swaps left and right half
of two vectors in various ways such as (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h), and (a, b, c, d)
(e, f, g, h) → (a, b, g, h) (e, f, c, d).

We apply vtrn to t0 and t1 to produce

t4 = (x0 + z0, x0 − z0, x1 + z1, x1 − z1),
t5 = (y0 + t0, y0 − t0, y1 + t1, y1 − t1).

We then add and subtract to produce

t6 = (x0 + z0 + y0 + t0, x0 − z0 + y0 − t0, x1 + z1 + y1 + t1, x1 − z1 + y1 − t1),
t7 = (x0 + z0 − y0 − t0, x0 − z0 − y0 + t0, x1 + z1 − y1 − t1, x1 − z1 − y1 + t1).

These are two of the desired output vectors from the Hadamard transform.

Kummer strikes back: new DH speed records 17

We could repeat similar steps for t2 and t3, but then there would be considerable overhead in han-
dling the one remaining vector. To avoid arithmetic overhead we we permute three vectors together
while performing arithmetic on two at a time. Specifically, we apply vtrn to t2 and t3 to produce

t8 = (x2 + z2, x2 − z2, x3 + z3, x3 − z3),
t9 = (y2 + t2, y2 − t2, y3 + t3, y3 − t3);

next use vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t8, r2 to produce

t10 = (x2 + z2, x2 − z2, x4, y4),
t11 = (x3 + z3, x3 − z3, z4, t4);

and then use vswp (a, b, c, d) (e, f, g, h) → (a, b, g, h) (e, f, c, d) to t9, t11 to produce

t12 = (y2 + t2, y2 − t2, z4, t4),
t13 = (x3 + z3, x3 − z3, y3 + t3, y3 − t3).

We then add and subtract t10 and t12 to produce

t14 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, x4 + z4, y4 + t4),

t15 = (x2 + z2 − y2 − t2, x2 − z2 − y2 + t2, x4 − z4, y4 − t4).

Next, we perform another sequence of permutations as follows: starting with using vswp (a, b, c, d)
(e, f, g, h) → (e, f, c, d) (a, d, g, h) to t14 and t13 to produce

t16 = (x3 + z3, x3 − z3, x4 + z4, y4 + t4),

t17 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, y3 + t3, y3 − t3);

then using vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t17 and t15 to produce

t18 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, x2 + z2 − y2 − t2, x2 − z2 − y2 + t2),

t19 = (y3 + t3, y3 − t3, x4 − z4, y4 − t4);

and then using vtrn (a, b, c, d) (e, f, g, h) → (a, b, c, g) (e, f, d, h) to t16 and t19 to produce

t20 = (x3 + z3, x3 − z3, x4 + z4, x4 − z4),
t21 = (y3 + t3, y3 − t3, y4 + t4, y4 − t4).

Now we are ready to add and subtract t20 with t21 to produce

t22 = (x3 + z3 + y3 + t3, x3 − z3 + y3 − t3, x4 + z4 + y4 + t4, x4 − z4 + y4 − t4),
t23 = (x3 + z3 − y3 − t3, x3 − z3 − y3 + t3, x4 + z4 − y4 − t4, x4 − z4 − y4 + t4).

Finally, we use vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t22 and t23 to produce

t24 = (x3 + z3 + y3 + t3, x3 − z3 + y3 − t3, x3 + z3 − y3 − t3, x3 − z3 − y3 + t3),

t25 = (x4 + z4 + y4 + t4, x4 − z4 + y4 − t4, x4 + z4 − y4 − t4, x4 − z4 − y4 + t4);

and vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t18 and t24 to produce

t26 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, x3 + z3 + y3 + t3, x3 − z3 + y3 − t3),
t27 = (x2 + z2 − y2 − t2, x2 − z2 − y2 + t2, x3 + z3 − y3 − t3, x3 − z3 − y3 + t3).

The vectors t6, t7, t25, t26, t27 are the final results of the Hadamard transform.

5.8. Total arithmetic. We view Figure 2.4(b) as 4M2 + 6S2 + 6m2 + 4H. Here we combine x mul-
tiplications and y multiplications into a vectorized M2, and similarly combine z multiplications and

18 Bernstein, Chuengsatiansup, Lange, Schwabe

t multiplications; this fits well with the Cortex-A8 vector multiplication instruction, which outputs
two products.

The main computations of hi, not counting precomputations and carries, cost 0 additions and
25 multiplications for each M, 0 additions and 15 multiplications for each S, 0 additions and 5
multiplications for each m, and 15 additions for each H block. The total here is 60 additions and
220 multiplications.

Each M costs 4 additions for precomputations, and each S also costs 4 additions for precomputa-
tions. Some precomputations can be reused. The cost of precomputations is 20 additions.

There are 10 carry blocks using 6 carries each, and 6 carry blocks using 5 carries each. Each
carry consists of 1 shift, 1 addition, and 1 logical AND. This cost is equivalent to 3 additions. There
are another 13 additions needed to handle negation. Overall the carries cost 283 additions. Two
conditional swaps, each costing 9 additions, sum up to 18 additions.

In total we have 381 additions and 220 multiplications in our inner loop. This means that the inner
loop takes at least 821 cycles.

We scheduled instructions carefully but ended up with some overhead beyond arithmetic: even
though the arithmetic and the load/store unit can operate in parallel, latencies and the limited
number of registers leave the arithmetic unit idle for some cycles. Sobole’s simulator at [39], which
we found very helpful, reports 966 cycles. Actual measurements report 986 cycles; the 251 ladder
steps thus account for 247486 of our 274593 cycles.

6 Haswell

At the end of January 2014 we obtained access to a Haswell CPU (Intel Xeon E3-1275 v3) and began
rewriting our software for it. The Haswell has some important extra features beyond the Sandy Bridge
(and Ivy Bridge), but also poses some new challenges.

One important feature for [35] is that Haswell has an unusual level of hardware support for fast
binary-polynomial multiplication. One should expect this to make binary-field ECC much faster on
Haswell than on other CPUs. The impressive claim of 60000 Haswell cycles in [35] for constant-time
binary-field GLV+GLS ECC is not implausible (although it is not publicly verifiable: the software
has not been released). For comparison, our best HECC result so far is 72220 cycles, and it is not
clear at this point whether prime-field HECC will end up faster than binary-field ECC on Haswell.
On the other hand, it is clear that HECC is an excellent cross-platform option and will continue
to benefit from increased CPU support for vectorization, while it is not at all clear whether Intel
will continue to expand the circuit area devoted to binary-field arithmetic, or whether other CPU
manufacturers will follow. Note also that there are formulas in [26] for Kummer surfaces of binary
hyperelliptic curves, opening up the possibility of a unification of these techniques.

The most interesting Haswell feature for this paper is that each core has two vectorized floating-
point multiplication units: port 0 and port 1 each handle one 256-bit vector multiplication each cycle.
Even better, these multipliers include integrated adders, so in one cycle a Haswell core can compute
ab + c and de + f , while in one cycle a Sandy Bridge core can compute at best ab and d + f . One
should not think that this trivially reduces our cycle counts by a factor of 2:

• Multiplication latency is still 5 cycles, so to keep both multipliers busy one needs 10 indepen-
dent multiplications. For comparison, keeping the Sandy Bridge multiplier busy needs only 5
independent multiplications.
• The integrated adders are useful only for additions (or subtractions) of products. There is no

improvement to the performance of other addition instructions: each 256-bit vector addition
consumes port 1 for one cycle. Obviously one can also take advantage of port 0 by rewriting b+ c
as 1b+ c, but this still costs 1 arithmetic instruction rather than 0.5 arithmetic instructions, and
it also increases latency from 3 to 5.

A further detail of importance for us is that the vroundpd instruction on the Haswell costs as much
as two additions, whereas on Sandy Bridge it costs just one. We therefore switched to the carry
approach from [5] described in Section 3.4. This reduced our starting 284 multiplications on Sandy

Kummer strikes back: new DH speed records 19

Bridge to 190 multiplications: it eliminated 2 multiplications in each of 51 carries, except that the
8 carries h5 → h0 (see Section 3.4) still require 1 multiplication each. Meanwhile this increased the
original 282 additions to 333 additions.

Most of the additions in Sections 3.4 and 4 cannot be integrated into multiplications but the
additions in Sections 3.2 and 3.3 naturally have the form “add ab into c”. After integrating additions
into multiplications we were left with 220 additions and 190 multiplications. These numbers have
been computer-verified.

This arithmetic consumes at least 205 arithmetic cycles, i.e., at least 51455 cycles for 251 iterations
of the main loop. The actual performance of our main loop at this point was much worse, 333 cycles.
Rescheduling is now in progress, and so far has reduced the main loop to 272 cycles, explaining 68272
of our current 72220 cycles.

7 Lattice techniques

The maximum possible speedup from the following idea is small and and as far as we can tell is
outweighed by overhead, so we do not use it in our software, but we briefly describe the idea because
it might be useful in other contexts.

One could scale (1 : x1/y1 : x1/z1 : x1/t1) so that each limb is smaller, hopefully small enough
to eliminate the need for carry chains in the relevant M. There are 24 limbs and approximately
2127 possible scalings, so one would expect a scaling to exist that makes all the limbs 5 bits smaller.
However, finding this scaling appears to be a medium-dimensional lattice problem that would cost
more to solve than it could possibly save. Scaling to four integers below 296 would be a much easier
lattice computation and would save the multiplications by top coefficients, but still does not appear
to be worthwhile.

For comparison, scaling (x1 : y1 : z1 : t1) to (1 : x1/y1 : x1/z1 : x1/t1) is a one-dimensional lattice
problem. The potential advantage of the higher-dimensional lattices in the previous paragraph is that
they are compatible with our vectorization across the four coefficients.

For generating DH keys we simply apply our variable-base-point software to the base point

(x/y : x/z : x/t) = (6 : 142514137003289508520683013813888233576 : 1)

of prime order (the prime ending 339); the software takes constant time and in particular takes the
same time for key generation as for DH shared-secret computation. Of course, we could instead have
a separate function for key generation, and in particular carry out any amount of precomputation
involving this base point, including the above lattice precomputations, or generate new base points
meeting various criteria. However, our focus in this paper is on the performance of long-term Diffie–
Hellman keys, and precomputations using any particular base point have negligible impact on this
performance: a long-term key involves just one scalar multiplication using this base point (for key
generation) and is then bottlenecked by scalar multiplications using other users’ public keys. Note
that users could spend effort applying precomputations to their own public keys, slightly speeding
up shared-secret computations for other users.

References

[1] — (no editor), 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19–22, 2013,
IEEE Computer Society, 2013. ISBN 978-1-4673-6166-8. See [3].

[2] Onur Acıiçmez, Billy Bob Brumley, Philipp Grabher, New results on instruction cache attacks, in CHES 2010
[33] (2010), 110–124. URL: http://www.iacr.org/archive/ches2010/62250105/62250105.pdf. Citations in this
document: §1.2.

[3] Nadhem J. AlFardan, Kenneth G. Paterson, Lucky Thirteen: breaking the TLS and DTLS record protocols, in S&P
2013 [1] (2013), 526–540. URL: http://www.isg.rhul.ac.uk/tls/TLStiming.pdf. Citations in this document:
§1.2.

[4] Vijay Atluri, Claudia Daz (editors), Computer security — ESORICS 2011 — 16th European symposium on research
in computer security, Leuven, Belgium, September 12–14, 2011, proceedings, Lecture Notes in Computer Science,
6879, Springer 2011, 2011. ISBN 978-3-642-23821-5. See [15].

http://www.iacr.org/archive/ches2010/62250105/62250105.pdf
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf

20 Bernstein, Chuengsatiansup, Lange, Schwabe

[5] Daniel J. Bernstein, Floating-point arithmetic and message authentication (2004). URL: http://cr.yp.to/

papers.html#hash127. Citations in this document: §3, §3.1, §3.4, §6.
[6] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006 [42] (2006), 207–228. URL:

http://cr.yp.to/papers.html#curve25519. Citations in this document: §1, §1.2, §3.1.
[7] Daniel J. Bernstein, Elliptic vs. hyperelliptic, part 1 (2006). URL: http://cr.yp.to/talks.html#2006.09.20.

Citations in this document: §2.1, §2.2, §2.2, §2.3, §2.3, §2.5, §2.5, §3, §4.
[8] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-speed high-security signatures,

in CHES 2011 [37] (2011); see also newer version [9]. URL: http://eprint.iacr.org/2011/368. Citations in this
document: §1, §1.4, §1.4, §1.4, §1.4.

[9] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-speed high-security signatures,
Journal of Cryptographic Engineering 2 (2012), 77–89; see also older version [8]. URL: http://eprint.iacr.org/
2011/368.

[10] Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking of Cryptographic Systems, accessed
7 February 2014 (2014). URL: http://bench.cr.yp.to. Citations in this document: §1, §1.3.

[11] Daniel J. Bernstein, Peter Schwabe, NEON crypto, in CHES 2012 [38] (2012), 320–339. URL: http://cr.yp.to/
papers.html#neoncrypto. Citations in this document: §1.4, §1.4, §3, §5.

[12] Guido Bertoni, Jean-Sébastien Coron (editors), Cryptographic hardware and embedded systems — CHES 2013 —
15th international workshop, Santa Barbara, CA, USA, August 20–23, 2013, proceedings, Lecture Notes in Com-
puter Science, 8086, Springer, 2013. ISBN 978-3-642-40348-4. See [14], [35].

[13] Joppe W. Bos, Craig Costello, Huseyin Hisil, Kristin Lauter, Fast cryptography in genus 2, in Eurocrypt 2013
[29] (2013), 194–210. URL: http://eprint.iacr.org/2012/670. Citations in this document: §1, §1, §1, §1, §1,
§1, §1, §1, §1, §1.2, §1.2, §1.2, §1.2, §1.4, §1.4, §1.4, §1.4, §1.4, §2.6, §2.6.

[14] Joppe W. Bos, Craig Costello, Huseyin Hisil, Kristin Lauter, High-performance scalar multiplication using 8-
dimensional GLV/GLS decomposition, in CHES 2013 [12] (2013), 331–348. URL: http://eprint.iacr.org/

2013/146. Citations in this document: §1, §1, §1.4.
[15] Billy Bob Brumley, Nicola Tuveri, Remote timing attacks are still practical, in ESORICS 2011 [4] (2011), 355-371.

URL: http://eprint.iacr.org/2011/232. Citations in this document: §1.2.
[16] David V. Chudnovsky, Gregory V. Chudnovsky, Sequences of numbers generated by addition in formal groups and

new primality and factorization tests, Advances in Applied Mathematics 7 (1986), 385–434. MR 88h:11094. URL:
http://dx.doi.org/10.1016/0196-8858(86)90023-0. Citations in this document: §2.1.

[17] Craig Costello, Huseyin Hisil, Benjamin Smith, Faster compact Diffie–Hellman: endomorphisms on the x-line,
Eurocrypt 2014, to appear (2013). URL: http://eprint.iacr.org/2013/692. Citations in this document: §1,
§1.2, §1.2, §1.4, §1.4.

[18] Neil Costigan, Peter Schwabe, Fast elliptic-curve cryptography on the Cell Broadband Engine, in Africacrypt 2009
[36] (2009), 368–385. URL: http://cryptojedi.org/users/peter/#celldh. Citations in this document: §3.

[19] Armando Faz-Hernández, Patrick Longa, Ana H. Sánchez, Efficient and secure algorithms for GLV-based scalar
multiplication and their implementation on GLV-GLS curves (2013). URL: http://eprint.iacr.org/2013/158.
Citations in this document: §1, §1, §1, §1.2, §1.4, §1.4, §1.4.

[20] Steven Galbraith, Xibin Lin, Michael Scott, Endomorphisms for faster elliptic curve cryptography on a large class
of curves, in Eurocrypt 2009 [30] (2009), 518–535. URL: http://eprint.iacr.org/2008/194. Citations in this
document: §1.

[21] Robert P. Gallant, Robert J. Lambert, Scott A. Vanstone, Faster point multiplication on elliptic curves with
efficient endomorphisms, in Crypto 2001 [31] (2001), 190–200. MR 2003h:14043. URL: http://www.iacr.org/
archive/crypto2001/21390189.pdf. Citations in this document: §1.

[22] Robert P. Gallant, Robert J. Lambert, Scott A. Vanstone, U.S. patent 7110538: method for accelerating crypto-
graphic operations on elliptic curves (2006). URL: http://www.freepatentsonline.com/7110538.html. Citations
in this document: §1.

[23] Robert P. Gallant, Robert J. Lambert, Scott A. Vanstone, U.S. patent 7995752: method for accelerating crypto-
graphic operations on elliptic curves (2011). URL: http://www.freepatentsonline.com/7995752.html. Citations
in this document: §1.

[24] Pierrick Gaudry, Variants of the Montgomery form based on Theta functions (2006); see also newer version [25].
URL: http://www.loria.fr/~gaudry/publis/toronto.pdf. Citations in this document: §2.1, §2.2, §2.2.

[25] Pierrick Gaudry, Fast genus 2 arithmetic based on Theta functions, Journal of Mathematical Cryptology 1 (2007),
243–265; see also older version [24]. URL: http://webloria.loria.fr/~gaudry/publis/arithKsurf.pdf. Cita-
tions in this document: §2.1.

[26] Pierrick Gaudry, David Lubicz, The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines,
Finite Fields and Their Applications 15 (2009), 246–260. URL: http://hal.inria.fr/inria-00266565/PDF/c2.
pdf. Citations in this document: §2.5, §6.

[27] Pierrick Gaudry, Éric Schost, Genus 2 point counting over prime fields, Journal of Symbolic Computation 47
(2012), 368–400. URL: http://www.csd.uwo.ca/~eschost/publications/countg2.pdf. Citations in this docu-
ment: §2.6.

[28] Mike Hamburg, Fast and compact elliptic-curve cryptography (2012). URL: http://eprint.iacr.org/2012/309.
Citations in this document: §1, §1.4, §1.4.

[29] Thomas Johansson, Phong Q. Nguyen (editors), Advances in cryptology — EUROCRYPT 2013, 32nd annual
international conference on the theory and applications of cryptographic techniques, Athens, Greece, May 26–30,
2013, proceedings, Lecture Notes in Computer Science, 7881, Springer, 2013. ISBN 978-3-642-38347-2. See [13].

http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/talks.html#2006.09.20
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2011/368
http://bench.cr.yp.to
http://cr.yp.to/papers.html#neoncrypto
http://cr.yp.to/papers.html#neoncrypto
http://eprint.iacr.org/2012/670
http://eprint.iacr.org/2013/146
http://eprint.iacr.org/2013/146
http://eprint.iacr.org/2011/232
http://dx.doi.org/10.1016/0196-8858(86)90023-0
http://eprint.iacr.org/2013/692
http://cryptojedi.org/users/peter/#celldh
http://eprint.iacr.org/2013/158
http://eprint.iacr.org/2008/194
http://www.iacr.org/archive/crypto2001/21390189.pdf
http://www.iacr.org/archive/crypto2001/21390189.pdf
http://www.freepatentsonline.com/7110538.html
http://www.freepatentsonline.com/7995752.html
http://www.loria.fr/~gaudry/publis/toronto.pdf
http://webloria.loria.fr/~gaudry/publis/arithKsurf.pdf
http://hal.inria.fr/inria-00266565/PDF/c2.pdf
http://hal.inria.fr/inria-00266565/PDF/c2.pdf
http://www.csd.uwo.ca/~eschost/publications/countg2.pdf
http://eprint.iacr.org/2012/309

Kummer strikes back: new DH speed records 21

[30] Antoine Joux (editor), Advances in cryptology — EUROCRYPT 2009, 28th annual international conference on the
theory and applications of cryptographic techniques, Cologne, Germany, April 26–30, 2009, proceedings, Lecture
Notes in Computer Science, 5479, Springer, 2009. ISBN 978-3-642-01000-2. See [20].

[31] Joe Kilian (editor), Advances in cryptology — CRYPTO 2001, 21st annual international cryptology conference,
Santa Barbara, California, USA, August 19–23, 2001, proceedings, Lecture Notes in Computer Science, 2139,
Springer, 2001. ISBN 3-540-42456-3. MR 2003d:94002. See [21].

[32] Patrick Longa, Francesco Sica, Four-dimensional Gallant–Lambert–Vanstone scalar multiplication, in Asiacrypt
2012 [41] (2012), 718–739. URL: http://eprint.iacr.org/2011/608. Citations in this document: §1, §1, §1.4,
§1.4.

[33] Stefan Mangard, François-Xavier Standaert (editors), Cryptographic hardware and embedded systems, CHES 2010,
12th international workshop, Santa Barbara, CA, USA, August 17–20, 2010, proceedings, Lecture Notes in Com-
puter Science, 6225, Springer, 2010. ISBN 978-3-642-15030-2. See [2].

[34] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics of Computa-
tion 48 (1987), 243–264. ISSN 0025-5718. MR 88e:11130. URL: http://links.jstor.org/sici?sici=0025-5718
(198701)48:177<243:STPAEC>2.0.CO;2-3. Citations in this document: §3.

[35] Thomaz Oliveira, Julio López, Diego F. Aranha, Francisco Rodŕıguez-Henŕıquez, Lambda coordinates for binary
elliptic curves, in CHES 2013 [12] (2013), 311–330. URL: http://eprint.iacr.org/2013/131. Citations in this
document: §1, §1, §1, §1.2, §1.4, §1.4, §1.4, §1.4, §1.4, §1.4, §1.4, §6, §6.

[36] Bart Preneel (editor), Progress in cryptology — AFRICACRYPT 2009, second international conference on cryp-
tology in Africa, Gammarth, Tunisia, June 21–25, 2009, proceedings, Lecture Notes in Computer Science, 5580,
Springer, 2009. See [18].

[37] Bart Preneel, Tsuyoshi Takagi (editors), Cryptographic hardware and embedded systems — CHES 2011, 13th inter-
national workshop, Nara, Japan, September 28–October 1, 2011, proceedings, Lecture Notes in Computer Science,
Springer, 2011. ISBN 978-3-642-23950-2. See [8].

[38] Emmanuel Prouff, Patrick Schaumont (editors), Cryptographic hardware and embedded systems — CHES 2012 —
14th international workshop, Leuven, Belgium, September 9–12, 2012, proceedings, Lecture Notes in Computer
Science, 7428, Springer, 2012. ISBN 978-3-642-33026-1. See [11].

[39] Étienne Sobole, Calculateur de cycle pour le Cortex A8 (2012). URL: http://pulsar.webshaker.net/ccc/index.
php. Citations in this document: §5.8.

[40] Eran Tromer, Dag Arne Osvik, Adi Shamir, Efficient cache attacks on AES, and countermeasures, Journal of
Cryptology 23 (2010), 37–71. URL: http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf.
Citations in this document: §1.2.

[41] Xiaoyun Wang, Kazue Sako (editors), Advances in cryptology — ASIACRYPT 2012, 18th international confer-
ence on the theory and application of cryptology and information security, Beijing, China, December 2–6, 2012,
proceedings, Lecture Notes in Computer Science, Springer, 2012. ISBN 978-3-642-34960-7. See [32].

[42] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key cryptography — 9th international
conference on theory and practice in public-key cryptography, New York, NY, USA, April 24–26, 2006, proceedings,
Lecture Notes in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [6].

http://eprint.iacr.org/2011/608
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://eprint.iacr.org/2013/131
http://pulsar.webshaker.net/ccc/index.php
http://pulsar.webshaker.net/ccc/index.php
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf

	Kummer strikes back: new DH speed records

