Let’s DOIT: Using Intel’s Extended HW /SW
Contract for Secure Compilation of Crypto Code

Santiago Arranz-Olmos!, Gilles Barthe!?, Benjamin Grégoire®, Jan Jancar?,
Vincent Laporte®, Tiago Oliveira® and Peter Schwabe!:”

1 MPI-SP, Bochum, Germany
2 IMDEA Software Institute, Madrid, Spain
3 Inria, Sophia-Antipolis, France
4 Masaryk University, Brno, Czechia
5 Inria, Nancy, France
6 SandboxAQ, Palo Alto, USA
" Radboud University, Nijmegen, The Netherlands

Abstract. It is a widely accepted standard practice to implement cryptographic
software so that secret inputs do not influence the cycle count. Software following
this paradigm is often referred to as “constant-time” software and typically involves
following three rules: 1) never branch on a secret-dependent condition, 2) never
access memory at a secret-dependent location, and 3) avoid variable-time arithmetic
operations on secret data. The third rule requires knowledge about such variable-time
arithmetic instructions, or vice versa, which operations are safe to use on secret inputs.
For a long time, this knowledge was based on either documentation or microbench-
marks, but critically, there were never any guarantees for future microarchitectures.
This changed with the introduction of the data-operand-independent-timing (DOIT)
mode on Intel CPUs and, to some extent, the data-independent-timing (DIT) mode
on Arm CPUs. Both Intel and Arm document a subset of their respective instruction
sets that are intended to leak no information about their inputs through timing, even
on future microarchitectures if the CPU is set to run in a dedicated DOIT (or DIT)
mode.

In this paper, we present a principled solution that leverages DOIT to enable crypto-
graphic software that is future-proof constant-time, in the sense that it ensures that
only instructions from the DOIT subset are used to operate on secret data, even
during speculative execution after a mispredicted branch or function return location.
For this solution, we build on top of existing security type systems in the Jasmin
framework for high-assurance cryptography.

We then use our solution to evaluate the extent to which existing cryptographic
software built to be “constant-time” is already secure in this stricter paradigm
implied by DOIT and what the performance impact is to move from constant-time
to future-proof constant-time.

Keywords: data-operand-independent timing, Jasmin, high-assurance, constant-time
code

1 Introduction

Since timing attacks against cryptographic software were first proposed by Kocher in
1996 [Koc96], it has become best practice to attempt to implement cryptography in such a
way that the number of CPU cycles taken by computation is independent of any secret data.
This programming paradigm is commonly referred to as “constant-time programming,”
which is somewhat of a misnomer for various reasons. First, and most obviously, the

2 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

number of CPU cycles taken by constant-time software is usually not constant, but rather
independent of secret data. This becomes most obvious when encrypting messages of
different length: the length is typically considered public and encryption of short messages
is much faster than encryption of long messages. Second, at least traditionally, “constant-
time” programming did not take into account that also speculative execution enables certain
kinds of timing attacks. Such attacks are now known as “Spectre attacks” [KHFT19]
and motivated the extension of constant-time formalizations to the stronger speculative
constant-time notion [CDvG™20]. Third, it has recently been shown that even if the cycle
count of a program is independent of secret inputs, the #iming may not be [WPH™22;
WPW23]. The reason is that dynamic frequency scaling of modern CPU changes the
duration of a single cycle and it turns out that this scaling depends on processed data. For
the remainder of this paper we will consider this third issue out of scope, use the terms
timing and cycle count synonymously and assume that the cycle count is not influenced by
data-dependent frequency changes.

Despite these limitations, constant-time programming is widely accepted as a base-
line defense against (software-visible) side-channel attacks and is a design goal of many
cryptographic libraries [JED'22, Sec. IV.B]. There are several dozen tools that aim at
checking software for constant-time behavior (for an overview, see [Cen22]), and adher-
ence of cryptographic software to certain constant-time programming rules is a required
starting point in different recently proposed highly efficient protections against Spectre
attacks [MNMT24; SBGT23; ABCT25].

However, there has always been an “elephant in the room” issue with the idea that
carefully following a certain set of rules when writing cryptographic software can ensure
secret-independence of timing: any set of rules has to rely on some assumptions about the
hardware on which the software is running. Specifically, what is needed are assumptions
about what inputs to which instructions do not influence the timing of the software. It
is widely understood—in fact already pointed out by Kocher in [Koc96]—that branch
conditions and addresses used in memory access have an influence on the timing of programs.
Consequently, the term “constant-time” software is often used to refer to software that
avoids secret-dependent branches and memory indexing. For example, many of the tools
mentioned above check for exactly these two properties. On many microarchitectures this is
not sufficient. As, again, already pointed out by Kocher in [Koc96], also certain arithmetic
instructions “such as multiplication and division” may leak information about their inputs
through the amount of cycles they take to execute. This was recently showcased in the
KyberSlash vulnerability [BBB*24], where a division instruction with a secret-dependent
dividend lead to private-key recovery. The problem is that the exact subset of instructions
that is safe to use on secret inputs, depends on the microarchitecture.

For cryptographic software targeting only a well-defined set of known microarchitectures
it is in principle possible to identify what instructions do not leak information about their
inputs through timing, either by relying on detailed documentation of the microarchitecture
or on microbenchmarking. Unfortunately, in many cases, cryptographic software is written
without knowing what microarchitectures it will run on. Even worse, in many cases these
microarchitectures may not even exist when the software is written.

This is why, for many years, implementers of cryptographic and other security-critical
software have pointed out the need for guarantees by CPU manufacturers that a well-
defined subset of the CPU instructions will take input-independent timing also on future
microarchitectures. See, for example, the call for a new hardware-software contract by
Ge, Yarom, and Heiser from 2018 [GYH18]. These calls were recently answered, with the
introduction of Data Independent Timing (DIT) instructions for Arm [ARM20b], and Data
Operand Independent Timing (DOIT) instructions for Intel [Int22b]. RISC-V implements a
similar feature via the Zkt and Zvkt extensions that attest that their respective instruction
subsets have data-independent timing. Both Arm’s DIT and Intel’s DOIT implementations

Arranz-Olmos et al. 3

require setting a flag in a machine-specific register to switch the CPU into the guaranteed
“constant-time” mode for the respective instruction subsets.

One might think that now cryptographic software moves to systematically only using
DIT or DOIT instructions on secret data, but unfortunately these new features in the
hardware-software contract have, as far as we can tell, so far seen only very little application.
The only exceptions we could find are the enabling of ARM’s DIT in the Linux kernel
starting with version 6.2.1 [Lin23] and the support for enabling Intel’s DOIT in the
crypto/subtle package from the Go programming language [Go24].

One reason might be that the introduction of DOIT by Intel was misunderstood
and consequently met with rather harsh and public opposition by the Linux kernel
developer community. For example, Biggers stated that “this looks exactly like a CPU
vulnerability” [Big23b]. Another, more technical reason is that typical software-development
toolchains do not have support for issuing only DIT or DOIT instructions when operating
on secret data. In fact, mainstream programming languages and compilers do not even have
a concept of secret data in the first place. Until now, the only way to build cryptographic
software that only uses DIT or DOIT instructions, is to carefully handcraft all functions
that operate on secrets entirely in assembly. This is in principle feasible, but becomes
tedious when optimizing for multiple (micro)architectures. More importantly, it is error-
prone, in particular when attempting to avoid non-DOIT operations on secret data also
during speculative execution.

Contributions and Organization. In this paper we present a principled solution
to implementing cryptographic software following the rules implied by Intel’s DOIT
instruction set. We integrate this solution with the Jasmin framework for high-assurance
crypto [ABBT17; ABBT20] as follows:

e We incorporate knowledge about what instructions belong to the DOIT subset of
instructions into the Jasmin compiler. We then use existing information-flow type
systems in the Jasmin compiler to enforce that typable programs never use non-DOIT
instructions on secret inputs, not even during speculative execution after mispredicted
conditional branches or function return locations (Section 3).

o We investigate if existing cryptographic implementations written in Jasmin from
Libjade [For23] are typable under these additional constraints and modify them
where necessary to make them typable (Section 4).

e We present benchmarks of these implementations on different generations of Intel
CPUs to understand the performance impact of running cryptographic software with
and without the DOIT flag set and the impact of the modifications we had to make
to restrict operations on secret data to the DOIT subset of instructions (Section 5).
These benchmarks show that for highly optimized software, which typically makes
heavy use of vector instructions, the performance impact is minimal. However,
for non-vectorized reference implementations of cryptographic primitives involving
rotations, the impact is substantial.

o Based on our investigation we give recommendations to several stakeholders: plat-
form/ISA developers, software developers, kernel developers and compiler developers
(Section 6).

e We conclude by discussing how a slightly more fine-grained definition of DOIT would
make it easier and more efficient to implement cryptographic software, without
significantly sacrificing freedom for future hardware optimizations (Section 7).

We remark that in this paper we focus on cryptographic software targeting Intel CPUs and
thus the DOIT implementation, and leave Arm’s DIT instruction set to future work. The

4 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

reason is that support for Arm CPUs in the Jasmin framework is still immature and limited
to the 32-bit ARMv7M instruction set; there simply are not that many implementations of
cryptographic primitives targeting Arm available. Also, as we discuss in Section 2.3, the
guarantees offered by Arm’s DIT mode for future microarchitectures appear to be much
weaker than for Intel’s DOIT mode. However, it would be straight-forward to extend our
DOIT extensions to the Jasmin framework to DIT.

Related Work. There is extensive literature on timing attacks and countermeasures. Most
of these attacks exploit either secretly indexed memory access or secret branch conditions.
A classic example for the former class of timing attacks are cache-timing attacks against
AES [TTM™02; Ber04; OST06], a cipher that was designed to be efficiently implemented
using (secretly indexed) lookup tables. Software countermeasures employed alternative
implementation approaches, most notably bitslicing [MN07; Kén08; KS09; PL18] and
Hamburg’s vector-permute-based approach [Ham09]. Prominent early examples for the
latter class are attacks against scalar multiplication or exponentiation (e.g., [BB03; BT11])
and modular reduction (e.g., [Sch00]). A more recent example targets variable-time string
comparison in an implementation of the Fujisaki-Okamoto transform [GJN20].

Attempting to systematically avoid these two major sources of timing leakage was
popularized, among others, by the NaCl library [BLS12] and is today widely considered
standard best practice for implementing cryptographic software [JFD*22]. Unfortunately,
as recently highlighted by Schneider, Lain, Puddu, Dutly, and Capkun [SLP*24], modern
optimizing compilers make it increasingly hard to achieve this goal when implementing
cryptography in general-purpose high-level languages such as C, Rust, or Go.

Somewhat more relevant to the work we present in this paper are timing attacks
exploiting variable-time arithmetic, such as DIV instructions on Intel CPUs, or certain
multiplication instructions on PowerPC and various Arm CPUs. Examples include attacks
against early-abort multiplications on ARMv7TDMI [GOP™10], timing side-channels in
floating point instructions [AKM™15], and very recently the “KyberSlash” attack against
the reference implementation of ML-KEM (Kyber) [BBB™24].

The “Spectre” paper [KHF19] and subsequent works [KKS'18; MR18; ZBC'23]
demonstrated that systematic protections against timing attacks need to avoid secretly
indexed memory, secret branch conditions, and variable-time arithmetic on secrets also
during speculative execution, e.g., after a mispredicted branch or function return location.

As we already mentioned earlier, there is very little work directly related to Intel’s
DOIT or Arm’s DIT execution modes. There has been some debate about if the DOIT
mode should be enabled by default in the Linux kernel [Big23b; Big23a], but enabling
this mode is only one part of what needs to be done for systematic and future-proof
constant-time execution. For the other part, namely systematically using only the DOIT
(or DIT) subset of instructions on secret data, we are not aware of any prior works.

Also very relevant to this work is the Jasmin high-assurance framework and in particular
its security type systems. We will discuss those in more detail in Section 2.5.

Artifact. We integrated support for the DOIT mode into the Jasmin compiler upstream,
which supports (S)CT verification against Spectre-vl. However, we use a version that
extends this support to Spectre-RSB [ABC'25]. Alongside this paper we submit an artifact
containing:

e a modified version of the Libjade library that is speculatively constant-time under
DOIT;

e benchmarking scripts for the library; and

e scripts for scraping and working with the Intel DOIT and Arm DIT instruction lists.

We release all of our contributions under permissive open-source licenses compatible with
the licenses of Jasmin and Libjade. The development is in https://artifacts.formosa-

https://artifacts.formosa-crypto.org/data/letsdoit.tar.bz2
https://artifacts.formosa-crypto.org/data/letsdoit.tar.bz2

Arranz-Olmos et al. 5

crypto.org/data/letsdoit.tar.bz2.

2 Preliminaries

In this section, we define our threat model and give a brief overview of Intel’s DOIT
subset of instructions—and, for completeness, also Arm’s DIT and RISC-V’s Zkt.We then
review the features of the Jasmin framework for high-assurance cryptography that are
most relevant to this paper.

2.1 Threat Model

We protect against an attacker that observes the addresses of all memory accesses, the
conditions of all control flow instructions, and, most relevant for this work, the arguments
of non-DOIT instructions; this model aligns with previous work [ABBT16; SBGT22].
Regarding speculation, we assume that the operating system has the most recent microcode
updates and sets the SSBD flag, thereby mitigating Spectre-v4 attacks. We consider that
the attacker has complete control over the conditional branch predictor, the indirect
branch predictor, and the return stack buffer, i.e., we combine the threat models described
in [KHF*19; MR18; KKST18]. We assume that the attacker observes the leakage described
above, even under speculative execution.

2.2 Intel DOIT

Intel introduced the Data Operand Independent Timing (DOIT) feature for their CPUs
in May 2022 [Int22b; Int22c]. On CPUs that enumerate the feature, i.e., the “Ice Lake”
and later microarchitectures, DOIT mode can be enabled by setting bit zero in the model-
specific register TA32_UARCH_MISC_CTL. In Linux, this flag can be set from user space using
the msr driver, which offers an interface through /dev/cpu/CPUNUM/msr. When enabled,
instructions within the DOIT subset will execute with timing independent of their data
operands. Additionally, the data operands of these instructions will not affect the timing of
other instructions (possibly outside of the DOIT subset). Note that instruction latency may
still depend on other aspects, such as addresses, immediate values, and instruction encoding.
Hence, in order to utilize DOIT securely, all of the usual constant-time programming
guidelines need to be followed. Similarly, there are no guarantees of resistance to power,
thermal or frequency-based side-channels given for the DOIT mode.

In addition to DOIT mode, Intel published a separate list of instructions—containing
only vector instructions—that are intended to operate in DOIT mode, but on certain
processors their run-time may depend on the value of the data operands under some
values of the MXCSR register [Int23b; Int23a]. This list is titled the MXCSR Configuration
Dependent Timing (MCDT). The guidance contains an explicit list of affected processors,
as well as a comment that future processors are not expected to exhibit this timing variation.
This points to the behavior being an unintended exception to the DOIT guarantees, i.e., a
bug, on the affected processors. We verified that other than a documentation change to
clarify behavior of REP* instructions® the DOIT list remains unchanged since its publication.

The DOIT mode is documented to control two other features: the data-dependent
prefetcher (DDP) [Int22a] and the fast-store-forwarding prefetcher (FSFP) [Int22d] are
disabled when the CPU is operating in DOIT mode. Note that the documentation explicitly
mentions DOIT only in the case of the DDP; the fact that the FSFP is disabled as well
was posted by an Intel employee to the linux-kernel mailing list [Big23a, Message from
2023-02-03 16:25].

1These REP* instructions’ latency varies based on the loop count.

https://artifacts.formosa-crypto.org/data/letsdoit.tar.bz2
https://artifacts.formosa-crypto.org/data/letsdoit.tar.bz2
https://artifacts.formosa-crypto.org/data/letsdoit.tar.bz2

6 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

Note that CPUs that do not enumerate the feature behave as if DOIT mode is always
enabled with regards to the instructions on the DOIT list. This, coupled with the explicit
note that “DOIT mode may have a performance impact, and Intel expects the performance
impact of this mode may be significantly higher on future processors” [Int22b] points to
DOIT mode being more of a measure to safeguard possible future optimizations, rather
than disabling current ones when it is turned on. This interpretation was confirmed by an
Intel employee on the linux-kernel mailing list [Big23a, Message from 2023-02-01 18:09].
The performance impact of DOIT mode being very low on current CPUs was also shown
in benchmarks by Linux users [Lar23].

2.3 Arm DIT

Arm introduced their own Data Independent Timing (DIT) feature in 2020 targeting Arm
v8.4-A and beyond [ARM20b; ARM20a]. The feature operates in the same way as Intel
DOIT. Similarly, Arm notes that it does not know of any CPU implementations prior
to the introduction of the DIT feature that would have data dependent timing for the
covered instructions.

In contrast to Intel DOIT, the list of covered instructions changed over time in case of
Arm DIT. Furthermore, the documentation was at various points inconsistent in listing
the instructions between the DIT page and individual instruction pages. We extracted the
instructions from Arm’s documentation in 3-month intervals since December 2020. The
full list of changes is too large to include—we include it in our artifact—so we summarize
some notable removals:

e 2021-12: removal of RET,

« 2023-03: removal of SQCVTN, SQCVTUN, SQRSHRN, SQRSHRUN, UQCVTN, UQRSHRN,
e 2023-09: removal of all WHILE* instructions,

e 2023-12: removal of PEXT,

e 2024-06: removal of CNTP, PUNPKHI, PUNPKLO,

e 2024-12: removal of all RCW* instructions.

Such frequent changes of the guarantees provided the DIT mode might make it hard
for developers to gain confidence that their implementations will not suddenly become
“out of spec” and vulnerable to timing attacks in some future processor architecture. In
fact, we remark that removal of instructions from the DIT subset defeats a large part of
the purpose of these protections, namely the guarantee that software will remain secure
also on future microarchitectures.

With Apple moving away from Intel to their own Arm-based architecture, it inherited
Arm DIT mode [App20]. However, Apple documentation does not go into detail on which
instructions are included (apart from linking to the Arm DIT documentation). In recent
versions of Apple operating systems a new timingsafe_enable_if_supported API was
added, which enables DIT mode if supported and limits speculative execution.

2.4 RISC-V Zkt and Zvkt

RISC-V defines two extensions that enforce data-independent timing for subsets of in-
structions: Zkt and Zvkt [RIS21; RIS23]. The former covers scalar instructions from
several instruction sets: RVI, RVM, RVC, RVK, and RVB, while the latter covers vector
instructions. Both require that listed instructions are implemented with data-independent
timing. Similarly to Intel DOIT, they allow timing dependency on immediate values or
instruction encoding. Unlike Intel DOIT and Arm DIT, which require to be enabled during
runtime to have an effect, the Zkt and Zvkt extensions are hardware guarantees and do
not require being enabled or disabled. The Zkt and Zvkt instruction lists have not changed

Arranz-Olmos et al. 7

since the extensions were ratified in November 2021 and September 2023, respectively.
Notably, the Zkt extension includes access to the seed control and status register (CSR),
which is used to extract randomness from a hardware entropy source. It requires that
timing is independent of the extracted entropy. In the case of Intel DOIT, there is no such
guarantee for the RDRAND instruction. It is unclear if such a guarantee holds for Arm’s DIT
as the MRS instruction is not on the DIT list, nor is the RNDR special purpose register.

2.5 The Jasmin Framework

Jasmin is a programming framework for high-assurance high-speed cryptography comprising
a programming language, a formally verified compiler, a safety checker, a cryptographic
constant-time checker, and speculative cryptographic constant-time checker.

Synthetically, developing a Jasmin program and verifying that it is constant-time
involves the following steps: First, the developer writes the program in Jasmin and then
annotates exported functions—i.e., the entry points of the program—to classify inputs and
outputs as public or secret. Then, invoking the type checker leads to one of two scenarios:
either the program is verified as constant-time, in which case the developer has succeeded,
or the checker finds an information leak and raises an error with the location of the leak.
After the type system accepts the program, invoking the compiler produces an assembly
program that can be given to an off-the-shelf assembler such as GNU as. We describe the
interface of the type checker in detail in Section Section 3.4.

The Language. The Jasmin language is low-level to allow a high degree of control over the
generated assembly: most architecture-specific instructions are available to the programmer
as primitive constructs in Jasmin, called intrinsics, such as x = #ADD(y, z). It provides
structured control flow (such as if, while, and function calls) and zero-cost abstractions
(such as named reg variables, named stack variables, and arrays) to ease development,
maintenance, and verification of highly optimized cryptographic routines.

Several standard cryptographic schemes have been implemented in Jasmin, see, for ex-
ample, [ABBT20; ABB'19]. Additionally, the post-quantum key-encapsulation mechanism
Kyber (now ML-KEM) has also been implemented and proven correct and secure [ABBT23;
AOB™24]. Most of these developments have been integrated into Libjade [For23|, an open-
source cryptographic library written in Jasmin.

The Compiler. The Jasmin compiler is implemented and formally verified in the Coq proof
assistant. It consists of standard compiler transformations such as dead-code elimination,
unrolling of for loops, function inlining, instruction selection, stack allocation, register
allocation, value propagation, and linearization of control flow into jumps. These passes
gradually simplify the program from a structured source (Jasmin) to assembly code.
Instruction selection replaces high-level constructs such as x + y by architecture-specific
intrinsics such as #ADD(x, y). Stack allocation lays out function frames: it arranges
the offsets from the stack pointer for local variables and arrays, and attempts to share
memory between variables that are not needed at the same time to optimize memory
usage. Register allocation renames variables such that they coincide with architecture
registers, e.g., #ADD(x, y) becomes #ADD (RAX, RBX), and fails if this is not possible. The
programmer must perform spilling manually at source level. Value propagation (called
propagate inline in the compiler) is necessary to resolve compile-time constructs of the
language, such as reg bool le = (x <= y); which improve the readability of the source,
but require every use of le to be replaced by the appropriate flag combination CF || ZF.
Finally, linearization replaces conditionals, loops, and function calls with jump, call, and
return instructions, respectively.

8 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

ASSIGN COND INTRINSIC
F'ke:t<T(z) I' e : public I'c | e I'ke;:t; <T(z) for each i
'tx=e I'Fif (e) {c} else {c'} F'Fx=4#l(e1, - ,en)

Figure 1: Selected rules of the CT type system.

Most passes are proven directly in Coq, with few exceptions such as register allocation,
which is implemented in OCaml and its output validated by a verified checker. The compiler
targets two architectures: x86-64 and ARMv7-M. It also translates Jasmin programs into
EasyCrypt [BDG'13] models to enable computer-verified proofs of functional correctness
and connect to mechanized reductionist cryptographic security proofs in that proof assistant.

The CT and SCT Checkers. The Jasmin constant-time checker [SBG122] verifies that
branch conditions and memory accesses do not depend on secrets. That is, the inputs
to entry point functions (called ezported functions in Jasmin) are tagged as public or
secret, and the checker disallows information flow from these values into branches or
memory accesses. It is implemented as a type system; Figure 1 shows—simplified—selected
rules for the CT checker. We write I' - ¢ to express that an instruction i, such as an
assignment, an intrinsic, a conditional, or a loop, is well-typed under a context I" (a context
associates each variable with a type, either public or secret). The ASSIGN rule says that
an assignment is well-typed if the type of variable on the left-hand side is at most that of
the expression—e.g., an integer, a boolean, or another variable—on the right-hand side. In
line with the literature on confidentiality, we consider that secret is greater than public.
This means that we can assign a public value to a secret variable, since we enforce that
secret variables do not leak. The COND rule states that a conditional is well-typed if its
condition is public and each branch is well-typed. The rule for intrinsics is similar to the
one for assignments, where the type of each argument of the instruction must be at most
that of the assigned variable. Rules for memory accesses (not shown) enforce that the
address expressions have a public type.

The speculative constant-time checker [SBG™23] is more complex, as it needs to keep
track of both the sequential confidentiality of registers and arrays—in the same way as the
CT checker—and also their speculative confidentiality. That is, contexts associate each
variable with a pair of types. Under speculation, both public registers and arrays may
receive secret values: for instance, a loop may misspeculate and continue executing past its
bound, and thus a sequentially public load in the loop body may perform an out-of-bounds
access and read from a secret region of memory. Therefore, the SCT type system for
Spectre-v1 refines the rules for loads, stores, conditionals, and loops. The rule for loads
sets the speculative type to secret, to account for reading out-of-bounds into a secret
memory region. Analogously, the rule for store sets the speculative types of every array
to secret if the stored value is secret, to account for writing out-of-bounds into a public
memory region. The type system supports selective speculative load hardening (selSLH),
a state-of-the-art mitigation against Spectre-v1. Essentially, the first component of the
mitigation is to keep a misspeculation flag (MSF), a register whose value is 0x00..00 or
oxff..ff depending on whether the branch predictor has misspeculated. Then, we use the
MSF to mask values before leaking them. The SCT checker ensures that the programmer
keeps the MSF correctly updated and masks all speculatively leaked values.

Recent work [ABCT25] further extends the checker to also protect against Spectre-
RSB [KKST18; MR18], by adapting the rules for calls and returns. These modifica-
tions correspond to a more powerful attacker—that controls branch and return address
prediction—and were designed to be independent from the leakage model.

Arranz-Olmos et al. 9

Other Compiler Infrastructures. Mainstream compilers, such as GCC and Clang, and
also verified ones, such as CompCert, struggle with a significant correctness-security
gap [DPS15]. That is, when compiling the high-level abstractions of the source language
and striving for performance, the goal of these compilers is to preserve the functionality of
the source program, not to respect its security guarantees. Thus, it is unsurprising that
they sometimes introduce side-channel vulnerabilities [SLP*24; BBGT19]. CompCert, in
a mildly modified version, stands out by preserving CT [BBGT19], although its use by
cryptographic libraries is scarce. Furthermore, and particularly relevant for the present
work, a critical challenge in mainstream languages such as C is the absence of a clear,
fine-grained leakage model, which explains the lack of features analogous to the security
types of Jasmin. For instance, the expression x / 16 could be considered as leaking since it
is a division, but it is equally valid to assume that the compiler will use a constant-time bit
shift instead. As a result, it is challenging to define security properties in these languages
rigorously. On the other hand, Jasmin enjoys a much narrower correctness-security gap
by design, being a lower-level language that offers developers a high degree of control,
and consequently has a straightforward leakage model, which allowed its compiler to be
proven to preserve CT [BGLT21; SBG'22]. Lastly, several cryptographic schemes have
been implemented in Jasmin, as shown in Section 4.

3 Extending the Jasmin Framework

In this section, we describe the modifications necessary to incorporate the DOIT leak-
age model into the framework. We assume that the DOIT mode is enabled via the
TIA32_UARCH_MISC_CTL flag, before running Jasmin-compiled code.

3.1 Extraction of DOIT Instructions

Intel does not provide a list of DOIT instructions in a machine-readable format. We
thus scraped the list out of the documentation site, which contains a table of instruction
mnemonic-opcode pairs. Since this list provides opcodes, one cannot assume that a given
instruction is fully covered (i.e., that all of its opcodes are DOIT). As Jasmin outputs
assembly language and not machine code, it can only use instructions that are fully covered
in the DOIT list.

Our scraping and analysis found only three examples of uncovered opcodes:

e MOV with opcodes 0x8c and 0x8e that move values to and from the segment registers.

e POP with opcodes 0x0fal, 0x0fa9, Ox1f, 0x07, and 0x17 that pop values from the
FS and GS segment registers.

e PUSH with opcodes 0x0fa0, 0x0fa8, Oxle, 0x0e, 0x06, and 0x16 that push values
from the segment registers.

As Jasmin does not use segment registers, the MOV, POP and PUSH instructions can be
considered DOIT.

3.2 Changes to the Compiler

The main change to the compiler was to move the propagate-inline pass earlier in the
compiler stack and update the corresponding end-to-end compiler proof. This was necessary
to improve the precision of the CT and SCT checkers, since this pass transforms high-level
conditions (e.g., x <= y) to architecture-specific flag combinations. The precision of the
analysis increases as in the following example: let us consider a CMP instruction on public
operands, then an ADD instruction on secret operands, and lastly some non-DOIT instruction

10 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

INTRINSIC
I'ke;:t; <T(z) for each i I not DOIT = every t; is public

F'Fx=#l(e1, - ,en)

Figure 2: New type system rule for intrinsics.

that depends on the zero flag. The zero flag is not set by the secret ADD instruction, only
the carry and overflow flag are. To accept the non-DOIT instruction, the checkers need to
understand which individual flags are set and read by each one of these instructions.

3.3 Changes to the Type System

To take DOIT instructions into consideration, for this work we introduce a new constraint
(highlighted in bold red in Figure 2) that ensures that non-DOIT instructions execute
only on public values. This extension carries seamlessly over to the speculative setting,
i.e., it is straight-forward to (optionally) ensure that there is no data flow from secrets
into arguments of non-DOIT instructions, even during speculative execution following a
mispredicted branch or return location.

3.4 Usage

The Jasmin constant-time checker, accessed through the jasmin-ct binary, checks each
exported function in a source file for constant-time. Developers can select between the
default sequential constant-time mode and speculative constant-time mode using the
--sct option. With the changes presented in this work, the --doit option enhances
the leakage model by treating non-DOIT instructions as sources of leakage. Developers
must annotate exported functions to denote the confidentiality of arguments and results,
specifying whether they are public or secret using a straightforward syntax, e.g.,

fn foo(#secret reg u64 key, #public reg u64 nonce) -> #public reg u64 { ... }

Alternatively, developers can employ the ——infer option to allow the checker to deduce
the weakest type for each argument and return, bypassing the need for manual annotations.
The responsibility remains with the developer: they must verify that inferred types align
with their expectations, avoiding misclassification, such as typing a password as secret.
These annotation procedures remain unaffected by our changes.

4 Application to Libjade

In this section we apply the Jasmin type system with DOIT extensions to the implemen-
tations of cryptographic primitives in Libjade. The starting point for this investigation
is the Libjade version in the artifact of [ABC'25]; all code in this version of Libjade is
already systematically avoiding data flow from secrets into branch conditions and memory
addresses, even during speculative execution. It also already avoids arithmetic instructions
that are known to leak information about their arguments through timing. For example,
the Kyber implementation in Libjade was not affected by KyberSlash [BBB*24], because
it implements divisions through multiplication instructions as described in [GM94].

4.1 Primitives and Implementations in Libjade

The version of Libjade we investigated contains a total of 44 implementations of crypto-
graphic primitives (see Figure 3). Not all of these are completely independent; some of

Arranz-Olmos et al. 11

hash kem onetimeauth scalarmult
SHA2 SHA3-224 SHA3-256 Kyber512 Poly1305 Curve25519
ref ref ref avx2 \ Soref oref4
0avx2 oavx2 Kyber768 ; /' avx refb
SHA3-384 SHA3-512 lax2 Iawx2 refS_inline
rof ref / p /J omulx
°avx2 oavx2 //// 2 - ,
/ _
o7 7 /
xof 7 “secretbox _~ stream
N 7 - -
SHAKE128 /% XSalsa20Poly1305 ChaChal2 ChaCha20 ChaCha20-IETF
ref / ref ref ref ref
@avx2 J/ avx \ @avx @avx @avx
SHAKE?256 avx2 A\ N ©avx2 ®avx2 oavx2
ref T~ _, XSalsa20 Salsa20 Salsa2012
©avx2 ref ref ref
avx ®avx ®avx
avx2 @avx2 @avx2

Figure 3: Overview of the implementations in Libjade. Arrows signify code sharing.
Implementations that did not require changes to be DOIT are marked with @.

them share code. For example, multiple primitives from the FIPS-202 (SHA-3) standard
may share code for the Keccak permutation.

Out of the 44 implementations available in this Libjade version, all targeting x86-64, 19
were already compliant with DOIT (i.e., they did not use instructions outside the DOIT
list on secret data). Among these 19, 16 were vectorized implementations targeting AVX
and AVX2. These included multiple instances of SHA-3, SHAKE, and ChaCha20. In
addition, two non-vectorized implementations of Curve25519 were DOIT-compliant, as
well as one Poly1305 implementation.

The remaining 25 implementations required changes. Of these, 17 were so-called
reference implementations: they are optimized, often offering performance comparable
to the best non-vectorized code publicly available, but they do not utilize AVX or AVX2
instructions or registers. Among the remaining 8 implementations, 6 AVX/AVX2 im-
plementations were non-compliant with DOIT due to the use of non-vectorized code for
some computations, meaning the DOIT violations were unrelated to the AVX code itself.
The final two vectorized and Spectre-protected versions of Kyber (now ML-KEM) in
this package also required fixes—mnot due to the use of divisions but because of other

non-DOIT instructions and also challenges in verifying complex code protected against
both Spectre-RSB and DOIT that we address next.

4.2 Rotation Instructions in Chacha20 and SHA-3/SHAKE

A core operation in many symmetric cryptographic primitives is rotation. In Libjade, the
primitives that make heavy use of rotations are ChaCha20, SHA-3, and SHAKE. The
latter two furthermore serve as building blocks for ML-KEM. Under a strict interpretation
of the DOIT list, applicable to the x86-64 implementations in this study, the rotate
instruction—whether left or right—should not be used for cryptographic purposes. For
instance, the ChaCha family of ciphers frequently employs this operation during its round
function (over 32-bit words), as does the Keccak permutation (over 64-bit words). Such
interpretation requires implementing the rotation operation using a different sequence

12 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

of instructions to avoid the rotate instruction—for example, by combining left and right
shifts with a logical bitwise OR.

The Jasmin programming language provides (almost) complete control over the gen-
erated assembly code. This control implies that the Jasmin developer determines which
values reside in registers and memory during the algorithm’s execution. Existing Jasmin
implementations leverage this control to maximize performance: whenever advantageous,
all registers are fully utilized. This is precisely the case with the current ChaCha and
Salsa20 reference implementations, which require modifications to comply with DOIT.
Replacing the rotation with a different sequence of instructions demands one free register
to hold the intermediate value.

Consider the ChaCha20 reference implementation, initially performing at the same
speed as the OpenSSL equivalent [ABB™20] and now protected against Spectre attacks
with minimal overhead. On an Intel 11700K CPU, using standard benchmarking practices,
the Spectre-protected version of this implementation takes 97222 CPU cycles to generate
a 16KiB stream for encryption or decryption. Adjusting the implementation to free up
one register (to accommodate the upcoming change in rotation computation) introduces
some slowdown, with the execution time increasing to 103562 CPU cycles under the same
conditions. Finally, replacing the 32-bit rotation with a sequence of shifts and a logical OR
(to ensure DOIT compliance) has a substantial performance impact, increasing execution
time to 161288 CPU cycles. There is little one can do to mitigate this performance impact,
except using vector instructions, which we do in the AVX2 implementation.

In the case of the non-vectorized Keccak permutation, the patch was more straight-
forward as the Jasmin implementation already had one register available whenever we
required a rotation. Hashing a 16KiB message using SHA3-256 took 138626 CPU cycles
before replacing the rotate and 182626 CPU cycles afterward.

4.3 Endianess Conversion in SHA-256

The SHA-256 reference implementation also required patching. This implementation used
two instructions not included in the DOIT list: BSWAP and—just as in ChaCha20 and
Keccak—ROR, both operating on 32-bit words. Before any changes were made, and under
the same benchmarking conditions as previously mentioned, hashing 16KiB of data with
this implementation took 247110 CPU cycles. The BSWAP instruction reverses the byte
order of 32-bit values, which were being copied from one memory location to another with
byte-swapping in between. The first approach we took to remove the BSWAP instruction
involved replacing it with a sequence of four loads followed by four writes to achieve the
same result. This introduced a significant but not critical penalty, with the implementation
taking 258088 CPU cycles for the same message length. The second approach replaced
BSWAP with a sequence of bitwise operations (shifts, AND, OR), reducing the overhead slightly,
with benchmarks yielding 256566 CPU cycles. The rotation instruction was addressed next,
and just like for ChaCha20 and Keccak, its replacement caused a substantial overhead,
with the implementation now requiring 342762 CPU cycles for 16KiB inputs.

4.4 Double-Precision Shift Instructions in Poly1305 and X25519

Double-precision shifts are not included in the DOIT list. These are used in the Poly1305
AVX and AVX2 implementations, as well as in one Curve25519 implementation. In the
context of Poly1305 vectorized implementations, the specific instruction is SHRD, which
allows a 64-bit variable to be shifted right while feeding the lower bits of a second variable
into the higher bits of the resulting variable (instead of injecting zeros). This instruction
is typically useful in multi-limb arithmetic and, in the case of Poly1305, is employed to
prepare the vectorized state. Since it is not part of the main computation, replacing
this instruction with a sequence of two shifts and a bitwise OR should not significantly

Arranz-Olmos et al. 13

impact performance. Intermediate benchmarks confirm this, with the number of cycles for
16KiB inputs increasing by just 34 cycles, from 8968 to 9002 CPU cycles for the AVX2
implementation.

In the 5-limb implementation of Curve25519, the patch is similar: the instruction used
is a double-precision left shift, SHRL, and the strategy is the same —two shifts and a bitwise
OR. Since this instruction is used multiple times during the multiplication routines, the
performance impact is more significant in this case. Before patching, the implementation
required 129850 CPU cycles to perform a scalar multiplication, whereas after patching, it
required 141670 CPU cycles.

4.5 Vector-Extraction Instructions in Kyber

Regarding the Kyber implementations available in the Spectre-protected Libjade package,
specifically the AVX2 implementations for Kyber512 and Kyber768, these used the VMOVLPD
and MOVHPD instructions to extract data from a vectorized state. With respect to DOIT
compliance, the patch was straightforward: we replaced these instructions with a sequence
of moves and shifts. However, the implementations required further changes to ensure
Spectre protections: the constant-time property with respect to DOIT must be done at
later compilation stages, close to the assembly level, where the exact instructions used
are already fixed by the compiler. This differs from previous work, where speculative
constant-time properties are checked in earlier compilation stages, allowing the type checker
access to more information about the program’s structure. To address this—checking
both the speculative and DOIT constant-time properties almost at the assembly level—we
patched the implementation by introducing new protect directives on specific variables to
ensure that both properties hold simultaneously. The overhead of this patch is negligible
on the 11700K CPU, with all three operations (keypair generation, encapsulation, and
decapsulation) taking roughly the same number of CPU cycles before and after the patch.

5 Benchmarks and Validation

In this section, we discuss the performance of Libjade implementations protected against
Spectre attacks using only DOIT instructions. The benchmarks presented were obtained
using three CPUs: Intel 8700K (Coffee Lake), Intel 11700K (Rocket Lake), and Intel
13900K (Raptor Lake).

We followed standard benchmarking practices, including disabling TurboBoost and
HyperThreading and setting the clock speed to the base frequency. The CPU cycle
measurements were obtained as follows: 1) recording the median value of 10000 runs; 2)
repeating the experiment 11 times; and 3) selecting the median of the 11 experiments.
The Kyber benchmarks use real randombytes, providing a performance assessment that
reasonably reflects real-world executions.

Table 1 presents the CPU cycles for several AVX2 implementations, including Kyber768.
The first column, “Impl.,” identifies the implementation, and the second column, “Op.,” is
the operation (e.g., the length of the input).

For each CPU, the table includes six columns of cycle counts. The first column of
this set, “Alt,” reports the performance of alternative cryptographic library implemen-
tations. ChaCha20, Poly1305, and X25519 report the cycle counts for OpenSSL 3.4.0.
XSalsa20Poly1305 corresponds to the fastest implementation available in libsodium 1.0.20
(it is not AVX2-optimized, hence the significant performance difference). SHA3-256 was
taken from SUPERCOP 20250307 and corresponds to a Keccak Code Package imple-
mentation. For Kyber768, we refer to the implementation from mlkem-native (from the
pg-code-package project). All code under “Alt” was compiled with Clang 18. The remain-
ing five columns show cycle counts for different versions of the Jasmin code, with the plus

14 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

sign in a column title indicating an accumulation of protections. The column “Plain”
refers to the original Libjade implementations without any Spectre or DOIT protections.
Column “+SSBD” refers to the plain implementation run with the SSBD CPU flag enabled,
providing protection against Spectre v4 attacks. The “4v1” column adds protection against
Spectre-v1 to the SSBD setup. The “+RSB” column adds protection against Spectre-RSB.
Finally, the “4+DOIT” column incorporates all protections, including DOIT. The first
(leftmost) percentage column shows the overhead incurred from plain to “+RSB,” while
the second percentage column indicates the additional overhead introduced by this work,
from “+RSB” to “+DOIT.”

Table 1: The good. CPU cycle counts for a subset of the fastest implementations in
Libjade, for Coffee, Rocket, and Raptor Lake CPUs.

Impl. Desc. CPU Alt. Plain +SSBD +vl +RSB % +DOIT %

ChaCha20 8700K 19488 18965 18954 18908 18915 -0.26 18910 -0.03
16KiB 11700K 19256 19034 19060 19052 19056 0.12 19056 0.00

-avx2 13900K 19958 20254 20332 20328 20332 0.39 20336 0.02
Polv1305 S7T00K 8228 8393 8409 8415 8422 0.35 8419 -0.04
_mg 16KiB 11700K 8612 8910 8918 8968 8968 0.65 9002 0.38

13900K 8556 8758 8832 8808 8932 1.99 8990 0.65
Polv1305 8700K 18582 15976 15977 15997 15996 0.13 16000 0.03
_rofy 16KiB 11700K 18226 17540 17544 17570 17572 0.18 17572 0.00
© 13900K 16986 16144 16144 16160 16154 0.06 16154 0.00
XSalsa20 S7T00K 84827 31278 31267 31315 31310 0.10 31579 0.86
Poly1305 16KiB 11700K 82760 32512 32508 32538 32532 0.06 32742 0.65
-avx?2 13900K 78916 32788 32850 32980 33012 0.68 33186 0.53
SHA3.256 8700K 162232 131523 141532 141540 141563 7.63 141575 0.01
o 16KiB 11700K 155112 140626 152708 155376 153416 9.10 153410 -0.00

13900K 140112 140668 150856 152156 152154 8.17 152152 -0.00
X95519 S7T00K 115623 98293 99543 99742 99746 1.48 99743 -0.00
S smult 11700K 116320 103238 104186 104480 104480 1.20 104466 -0.01

13900K 103704 95414 96490 96592 96594 1.24 96590 -0.00
X95519 S700K 146625 124808 125180 125262 125173 0.29 125135 -0.03
o smult 11700K 132118 121264 125928 126362 126364 4.21 126366 0.00

13900K 111128 98908 103880 103800 103862 5.01 103874 0.01

8700K 53403 46270 48160 48322 49122 6.16 49335 0.43
keypair 11700K 48130 43056 45178 45394 46244 7.40 46686 0.96
13900K 37496 38452 40548 40920 41756 8.59 42024 0.64

Kyber768 8700K 54700 56326 59035 59161 60537 7.48 60130 -0.67
-avx?2 enc 11700K 49616 55328 58252 58722 59504 7.55 59912 0.69
13900K 37950 50780 53620 54024 54946 8.20 55242 0.54

8700K 68098 45829 47628 47880 49121 7.18 49085 -0.07
dec 11700K 60506 44878 47048 47336 48204 7.41 48444 0.50
13900K 48514 46844 48928 49230 50164 7.09 50460 0.59

The performance of several implementations in Table 1 is not harmed by DOIT
compliance. Specifically, the AVX2 versions of ChaCha20, SHA3, and X25519 exhibit a
negligible DOIT overhead, with differences very close to zero. For instance, the difference
between “+RSB” and “+DOIT” for the ChaCha20 AVX2 implementation processing a 16

Arranz-Olmos et al.

15

Table 2: The not so good. CPU cycle counts for a subset of the reference implementations
in Libjade, for Coffee, Rocket, and Raptor Lake CPUs.

Impl. Desc. CPU Alt. Plain +SSBD +vl1 +RSB % +DOIT %
ChaCha20 S700K 95001 94297 94339 94549 94524 0.24 156554 65.62
o 16KiB 11700K 95914 94406 96934 97220 97222 2.98 161288 65.90
e 13900K 83366 84116 85720 85816 85884 2.10 144730 68.52
XSalsa20 8700K 139080 115317 115469 115343 115328 0.01 177807 54.18
Poly1305 16KiB 11700K 138928 113846 114992 114898 114904 0.93 176586 53.68
—ref 13900K 122972 101910 102212 102172 102168 0.25 152438 49.20
SHA3.256 8700K 154063 152273 156140 153593 153579 0.86 211147 37.48
ot 16KiB 11700K 138574 131296 138620 138764 138626 5.58 182626 31.74
13900K 110510 106200 102712 102878 102908 -3.10 144582 40.50

SHA256 8700K 186329 270218 271725 269409 276094 2.17 396213 43.51
; 16KiB 11700K 170678 231720 252230 247452 247110 6.64 342762 38.71
e 13900K 143142 202364 224224 224716 224352 10.87 303900 35.46
X95510 S700K 142636 136480 139287 138342 138433 1.43 147312 6.41
p smult 11700K 124472 127476 129740 129800 129850 1.86 141670 9.10
re 13900K 106474 103774 106328 106416 106450 2.58 118524 11.34

KiB stream is just four cycles, which falls within the range of unavoidable noise. In the case
of Poly1305 AVX2, there was a slight change due to DOIT, but the overhead is negligible
for the recent CPU generations under analysis, while it is non-existent for the older 8700K.
The Poly1305 reference implementation is unaffected by DOIT compliance. Regarding the
XSalsa20Poly1305 instantiation of secretbox, the overhead is more noticeable (between
0.53% and 0.86%) because non-vectorized code is used in these implementations (for
computing the subkeys, which are small and do not justify the use of AVX2). As a result,
they are affected by the rotate instruction discussed in the previous section.

For the AVX2 implementation of Kyber768, compliance with DOIT combined with
Spectre-RSB protections yields good results, with reported overheads of less than 1%. This
outcome is partly expected due to the non-critical nature of the changes made for DOIT.
However, additional usage of the protect directive was necessary to ensure simultaneous
protection against Spectre-RSB and DOIT. Interestingly, the machine equipped with the
8700K handled the proposed changes well. The performance even improved slightly (by
400 cycles). The results were consistent across the eleven runs, with the 25th and 75th
percentiles for “+DOIT” being 60094 and 60140 cycles, respectively, compared to 60525
and 60557 cycles for the “+RSB” experiment.

Table 2 presents several less favorable results, clearly indicating that improvements are
needed, particularly regarding the handling of rotation instructions. In this table, we also
include the “alt” column for comparison with widely deployed implementations. ChaCha20,
SHA3, and SHA256 are from OpenSSL 3.4.0; XSalsa20Poly1305 is from libsodium 1.0.20
(configured without assembly to access the non-vectorized implementation); and X25519
corresponds to the 5-limb implementation (amd64-51) taken from SUPERCOP 20250307.
The overhead introduced by strictly adhering to DOIT for all implementations using
rotations is substantial. The worst case is ChaCha20, where the overhead from “4+RSB”
to “+DOIT” exceeds 65% across all CPUs. In the case of XSalsa20Poly1305 (where the
computations of Salsa20 are similar to ChaCha20 and rely heavily on rotations), the
performance penalty is slightly mitigated because Poly1305 remains unaffected. The
average overhead for the hash functions listed in the table is below 40%, which is still
considerable. For the 5-limb implementation of Curve25519, the overhead remains within
practical limits, staying below 7% on the oldest CPU generation. The information in the

16 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

table provides a basis for analyzing the evolution of the code, and the costs associated with
different types of protections. Interestingly, addressing and mitigating all Spectre attacks
is, in several cases, significantly less costly than addressing instruction timing variations.

6 Discussion

Our work on enabling a DOIT-only implementation of Libjade as well as the inclusion
of DOIT into the Jasmin (S)CT checker gave us insights which we now turn into rec-
ommendations for several stakeholders in the ecosystem. We consider four stakeholders:
the platform/ISA developer, the crypto/software developer, the kernel developer, and
the compiler/tool developer. Naturally, most of our recommendations go towards the
platform/ISA developer, as they are most in control of shaping the guarantees.

Platform/ISA Developer

We consider the platform and ISA developer as a single entity, even though in the case of
RISC-V they differ. We believe that they could improve usability of their constant-time
instruction modes by using the following principles:

e Be as specific as possible with regards to the guarantees.

e Offer instruction sets and guarantees in machine-readable form.

o Consider instruction use-cases in cryptography and sensitive areas when deciding on
the guarantees and evaluating their value vs. their preformance impact.

e Limit changes to the constant-time instruction sets and guarantees as much as
possible. Version the changes and keep them publicly available.

o Be clear on which (micro-)architectures the guarantees apply to (and which version
of them if they changed).

o Be clear in communicating the current and (expected) future performance impacts.

Crypto/Software Developer

The responsibility to actually use the DOIT/DIT/Zkt instruction subsets for sensitive
applications falls on software developers. To avoid vulnerabilities like KyberSlash [BBB™24],
we recommend the following:

o Move toward DOIT/DIT/Zkt implementations of cryptography and other critical
software, particularly since many vector implementations of cryptographic primitives
are almost inherently protected.

o Enable the DOIT/DIT mode when possible on the target platform.

Kernel Developer

Kernel developers are also key stakeholders, as runtime control for the DOIT/DIT modes
has to be implemented in-kernel. We recommend the following:

o Offer a user-space API to enable the DOIT/DIT modes for sensitive applications
that request it. The Apple DIT API described in Section 2.3 that also controls
mitigations against other micro-architectural attacks may be a good choice.

o Use the DOIT/DIT modes for in-kernel cryptography and implement it using the
DOIT/DIT/Zkt instruction subsets.

Arranz-Olmos et al. 17

Compiler/Tool Developer

Finally, developers of compilers and tools for verifying constant-timeness (see [FDJT24]
for an overview) can support the effort to move toward DOIT/DIT/Zkt implementations.
We recommend that they

o Add options to limit or validate generated assembly against the DOIT/DIT/Zkt
subsets of instructions.

7 Conclusion

In this paper we present a principled approach to developing cryptographic software in
the constant-time regime as implied by Intel’s DOIT subset of instructions. The big
advantage to limiting all operations on secret data to the DOIT subset is that the software
is, for the first time, guaranteed to run in (speculative) “constant-time” also on future
microarchitectures.

The proposed approach critically relies on already existing information-flow type
systems in the Jasmin compiler. We believe that it would be possible to offer similar
DOIT support also in general-purpose mainstream languages and compilers, if those had
similar leakage models and type systems in place. The idea of such an information-flow
type system in Rust and LLVM is discussed in [Hos20], but as far as we know, this idea
has not been implemented, yet.

We also show that not all existing “constant-time” cryptographic software is already
in the DOIT regime—there are some instructions that are not leaking information about
their operands on existing microarchitectures, but that are not guaranteed to maintain
this non-leaking behavior also on future microarchitectures. The most notable example
are rotate instructions, which are widely used in non-vectorized implementations of ARX
ciphers such as ChaCha20 and SHA-2 and in implementations of Keccak.

There are two conclusions one can draw from the large overhead introduced by re-
moving those rotation instructions. One option is to conclude that performance-oriented
implementations will anyway rely on vector instructions and environments that do not use
those vectorized implementations clearly do not care about performance anyway.

However, it is also interesting to observe that in all uses of rotate instructions we
found, the rotation distance is public (in fact, it is a compile-time constant); what is
secret is the value that is rotated. We believe that here it could be interesting for Intel
to investigate a slightly more fine-grained approach to DOIT guarantees in the following
sense: Instead of stating for each instruction if it is in the DOIT subset or not, one could
state for each instruction, which of its inputs is guaranteed to not leak through timing on
future microarchitectures when running in DOIT mode. Such a per-input instead of per-
instruction granularity would allow to express, for example, that rotate instructions may
leak the rotation distance, but not the value that is rotated. This would make it possible
for Intel to introduce hardware optimizations for rotate instructions that, e.g., accelerate
short rotation distances and still allow implementations of ChaCha20 or Keccak to use
those instructions in a future-proof way. Should Intel opt to extend their DOIT guarantees
in this way, we would require only small changes to support this in our implementation of
DOIT in the Jasmin framework. Even though comparing ISAs is complex and out-of-scope
for this paper, we remark that ARM’s DIT and RISC-V’s Zkt include rotations, which
are constant-time w.r.t. the data, but not the immediate rotation amount. This means
that an important source of overhead would not be present in those architectures, though
other, different sources may still exist.

18 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

Acknowledgements

J. Jancar was supported by RedHat Research Czech and the Cyber-security Excellence
Hub in Estonia and South Moravia (CHESS, 101087529). This research was supported
by the Deutsche Forschungsgemeinschaft (DFG, German research Foundation) as part
of the Excellence Strategy of the German Federal and State Governments — EXC 2092
CASA - 390781972; the German Federal Ministry of Education and Research (BMBF) in
the course of the 6GEM research hub under grant number 16KISK038; and the Agence
Nationale de la Recherche (ANR, French National Research Agency) as part of the France
2030 programme — ANR-22-PECY-0006.

References

[ABB*16] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Frangois Dupressoir,
and Michael Emmi. Verifying constant-time implementations. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 53—70, Austin, TX, USA. USENIX Association,
August 2016.

[ABBT17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidst,
and Pierre-Yves Strub. Jasmin: high-assurance and high-speed cryptography.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 1807-1823, Dallas, TX, USA. ACM Press, October 2017. DOT:
10.1145/3133956.3134078.

[ABBT19] José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles Barthe,
Francois Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Alley Stoughton, and Pierre-Yves Strub. Machine-checked proofs for crypto-
graphic standards: indifferentiability of sponge and secure high-assurance
implementations of SHA-3. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on
Computer and Communications Security, pages 1607-1622, London, UK.
ACM Press, November 2019. DOI: 10.1145/3319535.3363211.

[ABBT20] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub.
The last mile: high-assurance and high-speed cryptographic implementations.
In 2020 IEEE Symposium on Security and Privacy, pages 965-982, San
Francisco, CA, USA. IEEE Computer Society Press, May 2020. DorI: 10.
1109/SP40000.2020.00028.

[ABBT23] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco,
Miguel Quaresma, Peter Schwabe, Antoine Séré, and Pierre-Yves Strub.
Formally verifying Kyber episode IV: implementation correctness. JACR
Transactions on Cryptographic Hardware and Embedded Systems, 2023(3):164—
193, 2023. DOI: 10.46586/tches.v2023.13.164-193.

[ABC*25] Santiago Arranz Olmos, Gilles Barthe, Chitchanok Chuengsatiansup, Ben-
jamin Gregoire, Vincent Laporte, Tiago Oliveira, Peter Schwabe, Yuval
Yarom, and Zhiyuan Zhang. Protecting cryptographic code against spectre-
rsb: (and, in fact, all known spectre variants). In Proceedings of the 30th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS ’25, pages 933-948,

https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.46586/tches.v2023.i3.164-193

Arranz-Olmos et al. 19

Rotterdam, Netherlands. Association for Computing Machinery, 2025. I1SBN:
9798400710797. DOI: 10.1145/3676641.3716015.

[AKM*15] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In 2015 IEEE Symposium on Security and Privacy, pages 623—
639, San Jose, CA, USA. IEEE Computer Society Press, May 2015. DOTI:
10.1109/8P.2015.44.

[AOB*24] José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles
Barthe, Frangois Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-
Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco, Miguel
Quaresma, Peter Schwabe, and Pierre-Yves Strub. Formally verifying kyber -
episode V: machine-checked IND-CCA security and correctness of ML-KEM
in EasyCrypt. In Leonid Reyzin and Douglas Stebila, editors, Advances
in Cryptology — CRYPTO 2024, Part II, volume 14921 of Lecture Notes
in Computer Science, pages 384—421, Santa Barbara, CA, USA. Springer,
Cham, Switzerland, August 2024. DOI: 10.1007/978-3-031-68379-4_12.

[App20] Apple. Enable DIT for constant-time cryptographic operations, 2020. URL:
https://developer.apple.com/documentation/xcode/writing-arm64-
code-for-apple-platforms#Enable-DIT-for-constant-time-cryptographic-
operations (visited on 01/09/2025).

[ARM20a] ARM. DIT, Data Independent Timing, 2020. URL: https://developer .
arm.com/documentation/ddi0601/2024-12/AArch64-Registers/DIT--
Data-Independent-Timing?lang=en (visited on 01/09/2025).

[ARM20b] ARM. How is instruction timing affected by the FEAT DIT architec-
tural feature?, 2020. URL: https://developer.arm.com/documentation/
ka005181/latest (visited on 01/09/2025).

[BB03] David Brumley and Dan Boneh. Remote timing attacks are practical. In
USENIX Security 2003: 12th USENIX Security Symposium, Washington,
DC, USA. USENIX Association, August 2003.

[BBB*24] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam Chat-
topadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer,
Thales Paiva, Prasanna Ravi, and Goutam Tamvada. KyberSlash: exploiting
secret-dependent division timings in Kyber implementations. Cryptology
ePrint Archive, Paper 2024/1049, 2024. URL: https://eprint.iacr.org/
2024/1049 (visited on 04/14/2025).

[BBGT19] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent
Laporte, David Pichardie, and Alix Trieu. Formal verification of a constant-
time preserving C compiler. Proc. ACM Program. Lang., 4(POPL), December
2019. por: 10.1145/3371075.

[BDG*13] Gilles Barthe, Frangois Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In Alessandro Aldini,
Javier Lépez, and Fabio Martinelli, editors, Foundations of Security Analysis
and Design VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of
Lecture Notes in Computer Science, pages 146-166. Springer, 2013. DOI:
10.1007/978-3-319-10082-1_6.

Ber04 Daniel J. Bernstein. Cache-timing attacks on AES, 2004. URL: http://cr.
1%
yp.to/papers.html#cachetiming (visited on 01/15/2025).

https://doi.org/10.1145/3676641.3716015
https://doi.org/10.1109/SP.2015.44
https://doi.org/10.1007/978-3-031-68379-4_12
https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms#Enable-DIT-for-constant-time-cryptographic-operations
https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms#Enable-DIT-for-constant-time-cryptographic-operations
https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms#Enable-DIT-for-constant-time-cryptographic-operations
https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/DIT--Data-Independent-Timing?lang=en
https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/DIT--Data-Independent-Timing?lang=en
https://developer.arm.com/documentation/ddi0601/2024-12/AArch64-Registers/DIT--Data-Independent-Timing?lang=en
https://developer.arm.com/documentation/ka005181/latest
https://developer.arm.com/documentation/ka005181/latest
https://eprint.iacr.org/2024/1049
https://eprint.iacr.org/2024/1049
https://doi.org/10.1145/3371075
https://doi.org/10.1007/978-3-319-10082-1_6
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming

20 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

[BGL*21]

[Big23a]

[Big23b]

[BLS12]

[BT11]

[CDvG20]

[Cen22]

[DPS15]

[FDJ*24]

[For23]

Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. Struc-
tured leakage and applications to cryptographic constant-time and cost. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference
on Computer and Communications Security, pages 462—476, Virtual Event,
Republic of Korea. ACM Press, November 2021. DOI: 10.1145/3460120.
3484761.

Eric Biggers. [PATCH] x86: enable Data Operand Independent Timing Mode.
Posting to the Linux kernel mailing list, 2023. URL: https://lore.kernel.
org/1kml/20230125012801.362496-1-ebiggers@kernel.org/t/ (visited
on 01/09/2025).

Eric Biggers. Should linux set the new constant-time mode cpu flags? Posting
to the Linux kernel mailing list, 2023. URL: https://lore.kernel.org/
1kml/YwgCrqutxmXOW72r@gmail.com/T/ (visited on 01/15/2025).

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. In Alejandro Hevia and Gregory Neven, editors,
Progress in Cryptology - LATINCRYPT 2012: 2nd International Conference
on Cryptology and Information Security in Latin America, volume 7533 of
Lecture Notes in Computer Science, pages 159-176, Santiago, Chile. Springer
Berlin Heidelberg, Germany, October 2012. DOI: 10.1007/978-3-642-
33481-8_9.

Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practi-
cal. In Vijay Atluri and Claudia Diaz, editors, ESORICS 2011: 16th European
Symposium on Research in Computer Security, volume 6879 of Lecture Notes
in Computer Science, pages 355-371, Leuven, Belgium. Springer Berlin Hei-
delberg, Germany, September 2011. DOI: 10.1007/978-3-642-23822-2_20.

Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M. Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time foundations for
the new spectre era. In Alastair F. Donaldson and Emina Torlak, editors, Pro-
ceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK, June
15-20, 2020, pages 913-926. ACM, 2020. por: 10.1145/3385412.3385970.

Centre for Research on Cryptography and Security. Constant-timeness ver-
ification tools, 2022. URL: https://crocs-muni.github.io/ct-tools/
(visited on 01/06/2025).

Vijay D’Silva, Mathias Payer, and Dawn Xiaodong Song. The correctness-
security gap in compiler optimization. In 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, San Jose, CA, USA, May 21-22, 2015,
pages 73-87. IEEE Computer Society, 2015. Do1: 10.1109/SPW.2015.33.

Marcel Fourné, Daniel De Almeida Braga, Jan Jancar, Mohamed Sabt, Peter
Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “These
results must be false”: A usability evaluation of constant-time analysis tools.
In Davide Balzarotti and Wenyuan Xu, editors, USENIX Security 2024: 33rd
USENIX Security Symposium, Philadelphia, PA, USA. USENIX Association,
August 2024.

Formosa Crypto Team. Libjade, 2023. URL: https://github.com/formosa-
crypto/libjade (visited on 07/15/2023).

https://doi.org/10.1145/3460120.3484761
https://doi.org/10.1145/3460120.3484761
https://lore.kernel.org/lkml/20230125012801.362496-1-ebiggers@kernel.org/t/
https://lore.kernel.org/lkml/20230125012801.362496-1-ebiggers@kernel.org/t/
https://lore.kernel.org/lkml/YwgCrqutxmX0W72r@gmail.com/T/
https://lore.kernel.org/lkml/YwgCrqutxmX0W72r@gmail.com/T/
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1145/3385412.3385970
https://crocs-muni.github.io/ct-tools/
https://doi.org/10.1109/SPW.2015.33
https://github.com/formosa-crypto/libjade
https://github.com/formosa-crypto/libjade

Arranz-Olmos et al. 21

[GIN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery tim-
ing attack on post-quantum primitives using the Fujisaki-Okamoto trans-
formation and its application on FrodoKEM. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology — CRYPTO 2020,
Part II, volume 12171 of Lecture Notes in Computer Science, pages 359-386,
Santa Barbara, CA, USA. Springer, Cham, Switzerland, August 2020. DOTI:
10.1007/978-3-030-56880-1_13.

[GM94] Torbjorn Granlund and Peter L. Montgomery. Division by invariant integers
using multiplication. In Proceedings of the ACM SIGPLAN ’94 Conference
on Programming Language Design and Implementation, pages 61-72. ACM,
1994. URL: https://gmplib.org/~tege/divcnst-pldi94.pdf (visited on
04/14/2025).

[Go24] Go, 2024. URL: https://github.com/golang/go/commit/bclda38 (visited
on 04/14/2025).

[GOPT10] Johann GroBschédl, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Side-channel analysis of cryptographic software via early-terminating multi-
plications. In Donghoon Lee and Seokhie Hong, editors, ICISC 09: 12th In-
ternational Conference on Information Security and Cryptology, volume 5984
of Lecture Notes in Computer Science, pages 176-192, Seoul, Korea. Springer
Berlin Heidelberg, Germany, December 2010. DOI: 10.1007/978-3-642-
14423-3_13.

[GYH18] Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time pro-
tection: we need a new hardware-software contract. In Proceedings of the
9th Asia-Pacific Workshop on Systems, APSys 2018, Jeju Island, Republic
of Korea, August 27-28, 2018, 1:1-1:9. ACM, 2018. por: 10.1145/3265723.
3265724.

[Ham09] Mike Hamburg. Accelerating AES with vector permute instructions. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems — CHES 2009, volume 5747 of Lecture Notes in Computer
Science, pages 18-32, Lausanne, Switzerland. Springer Berlin Heidelberg,
Germany, September 2009. DOI: 10.1007/978-3-642-04138-9_2.

[Hos20] Diane Hosfelt. Added secret types. Rust RFC pull request #2859, 2020.
URL: https://github. com/rust-lang/rfcs/pull/2859 (visited on
04/14/2025).

[Int22a] Intel. Data Dependent Prefetcher, 2022. URL: https://www. intel. com/

content/www/us/en/developer/articles/technical/software-security-
guidance / technical - documentation / data - dependent - prefetcher .
html (visited on 01/09/2025).

[Int22b) Intel. Data Operand Independent Timing Instruction Set Architecture (ISA)
Guidance, 2022. URL: https://www. intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/best-
practices/data- operand- independent - timing-isa-guidance . html

(visited on 01/09/2025).

[Int22c] Intel. Data Operand Independent Timing Instructions, 2022. URL: https://
www . intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/resources/data-operand-independent-
timing-instructions.html (visited on 01/09/2025).

https://doi.org/10.1007/978-3-030-56880-1_13
https://gmplib.org/~tege/divcnst-pldi94.pdf
https://github.com/golang/go/commit/bc1da38
https://doi.org/10.1007/978-3-642-14423-3_13
https://doi.org/10.1007/978-3-642-14423-3_13
https://doi.org/10.1145/3265723.3265724
https://doi.org/10.1145/3265723.3265724
https://doi.org/10.1007/978-3-642-04138-9_2
https://github.com/rust-lang/rfcs/pull/2859
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html

22 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

[Int22d] Intel. Fast Store Forwarding Predictor, 2022. URL: https://www. intel.
com/content /www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/fast-store-forwarding-
predictor.html (visited on 01/09/2025).

[Int23a] Intel. MCDT Data Operand Independent Timing Instructions, 2023. URL:
https://www. intel . com/content/www/us/en/developer/articles/
technical/software-security-guidance/resources/mcdt-data-operand-
independent-timing-instructions.html (visited on 01/09/2025).

[Int23b] Intel. MXCSR Configuration Dependent Timing, 2023. URL: https://
www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/best-practices/mxcsr-configuration-
dependent-timing.html (visited on 01/09/2025).

[JEDT22] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter
Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. “They’re
not that hard to mitigate”: what cryptographic library developers think
about timing attacks. In 2022 IEEE Symposium on Security and Privacy,
pages 632-649, San Francisco, CA, USA. IEEE Computer Society Press,
May 2022. DOI: 10.1109/8P46214.2022.9833713.

[KHFT19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: exploiting speculative
execution. In 2019 IEEE Symposium on Security and Privacy, pages 1-19,
San Francisco, CA, USA. IEEE Computer Society Press, May 2019. DOTI:
10.1109/S8P.2019.00002.

[KKS*18] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. Spectre returns! speculation attacks using the return
stack buffer. In USENIX WOOT, 2018. URL: https://www.usenix.org/
conference/woot18/presentation/koruyeh (visited on 04/14/2025).

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology —
CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages 104—
113, Santa Barbara, CA, USA. Springer Berlin Heidelberg, Germany, August
1996. po1: 10.1007/3-540-68697-5_9.

[K6n08] Robert Konighofer. A fast and cache-timing resistant implementation of
the AES. In Tal Malkin, editor, Topics in Cryptology — CT-RSA 2008,
volume 4964 of Lecture Notes in Computer Science, pages 187-202, San
Francisco, CA, USA. Springer Berlin Heidelberg, Germany, April 2008. DOI:
10.1007/978-3-540-79263-5_12.

[KS09] Emilia Késper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems — CHES 2009, volume 5747 of Lecture Notes in Com-
puter Science, pages 1-17, Lausanne, Switzerland. Springer Berlin Heidelberg,
Germany, September 2009. DOI: 10.1007/978-3-642-04138-9_1.

[Lar23) Michael Larabel. Linux developers evaluating new “DOITM” security mitiga-
tion for latest Intel CPUs, 2023. URL: https://www.phoronix.com/review/
intel-doitm-1linux/2 (visited on 01/09/2024).

[Lin23] Linux, 2023. URL: https://git.kernel.org/pub/scm/linux/kernel/git/
stable/linux.git/tree/arch/arm64/kernel/entry.S7h=v6.2.1#n200
(visited on 04/14/2025).

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/mcdt-data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/mcdt-data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/mcdt-data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mxcsr-configuration-dependent-timing.html
https://doi.org/10.1109/SP46214.2022.9833713
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-642-04138-9_1
https://www.phoronix.com/review/intel-doitm-linux/2
https://www.phoronix.com/review/intel-doitm-linux/2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/arm64/kernel/entry.S?h=v6.2.1#n200
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/arm64/kernel/entry.S?h=v6.2.1#n200

Arranz-Olmos et al. 23

[MNO7]

[MNM*24]

[MR18]

[OSTO6]

[PL18]

[RIS21]

[RIS23]

[SBGT22]

[SBG+23]

[Sch00]

Mitsuru Matsui and Junko Nakajima. On the power of bitslice implemen-
tation on intel core2 processor. In Pascal Paillier and Ingrid Verbauwhede,
editors, Cryptographic Hardware and Embedded Systems — CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 121-134, Vi-
enna, Austria. Springer Berlin Heidelberg, Germany, September 2007. DOTI:
10.1007/978-3-540-74735-2_9.

Nicholas Mosier, Hamed Nemati, John C. Mitchell, and Caroline Trippel.
Serberus: protecting cryptographic code from spectres at compile-time. In
2024 IEEE Symposium on Security and Privacy, pages 4200-4219, San
Francisco, CA, USA. IEEE Computer Society Press, May 2024. por1: 10.
1109/SP54263.2024.00048.

Giorgi Maisuradze and Christian Rossow. ret2spec: speculative execution
using return stack buffers. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on
Computer and Communications Security, pages 2109-2122, Toronto, ON,
Canada. ACM Press, October 2018. DOI: 10.1145/3243734.3243761.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of AES. In David Pointcheval, editor, Topics in Cryptology
— CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 1—
20, San Jose, CA, USA. Springer Berlin Heidelberg, Germany, February 2006.
DOI: 10.1007/11605805_1.

Jin Hyung Park and Dong Hoon Lee. FACE: fast AES CTR mode encryption
techniques based on the reuse of repetitive data. TACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(3):469-499, 2018. 1SSN:
2569-2925. DOI: 10.13154/tches.v2018.i3.469-499.

RISC-V. Zkt extension :: RISC-V ISA manual, 2021. URL: https://riscv-
software-src.github.io/riscv-unified-db/manual/html/isa/isa_
20240411/exts/Zkt .html (visited on 04/14/2025).

RISC-V. Zkvt extension :: RISC-V ISA manual, 2023. URL: https://riscv-
software-src.github.io/riscv-unified-db/manual/html/isa/isa_
20240411/exts/Zvkt . html (visited on 04/14/2025).

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, and Swarn Priya. Enforcing fine-grained constant-time
policies. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, edi-
tors, ACM CCS 2022: 29th Conference on Computer and Communications
Security, pages 83-96, Los Angeles, CA, USA. ACM Press, November 2022.
DOI: 10.1145/3548606.3560689.

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas
Tabary-Maujean. Typing high-speed cryptography against spectre v1. In 2023
IEEE Symposium on Security and Privacy, pages 1094-1111, San Francisco,
CA, USA. IEEE Computer Society Press, May 2023. Do1: 10.1109/SP46215.
2023.10179418.

Werner Schindler. A timing attack against RSA with the Chinese remainder
theorem. In Cetin Kaya Kog¢ and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2000, volume 1965 of Lecture
Notes in Computer Science, pages 109-124, Worcester, Massachusetts, USA.
Springer Berlin Heidelberg, Germany, August 2000. bo1: 10.1007/3-540-
44499-8_8.

https://doi.org/10.1007/978-3-540-74735-2_9
https://doi.org/10.1109/SP54263.2024.00048
https://doi.org/10.1109/SP54263.2024.00048
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1007/11605805_1
https://doi.org/10.13154/tches.v2018.i3.469-499
https://riscv-software-src.github.io/riscv-unified-db/manual/html/isa/isa_20240411/exts/Zkt.html
https://riscv-software-src.github.io/riscv-unified-db/manual/html/isa/isa_20240411/exts/Zkt.html
https://riscv-software-src.github.io/riscv-unified-db/manual/html/isa/isa_20240411/exts/Zkt.html
https://riscv-software-src.github.io/riscv-unified-db/manual/html/isa/isa_20240411/exts/Zvkt.html
https://riscv-software-src.github.io/riscv-unified-db/manual/html/isa/isa_20240411/exts/Zvkt.html
https://riscv-software-src.github.io/riscv-unified-db/manual/html/isa/isa_20240411/exts/Zvkt.html
https://doi.org/10.1145/3548606.3560689
https://doi.org/10.1109/SP46215.2023.10179418
https://doi.org/10.1109/SP46215.2023.10179418
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.1007/3-540-44499-8_8

24 Using Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code

[SLP+24]

[TTM*02]

[WPH*22]

[WPW+23]

[ZBC+23]

Moritz Schneider, Daniele Lain, Ivan Puddu, Nicolas Dutly, and Srdjan
Capkun. Breaking Bad: how compilers break constant-time implementations.
arXiv report 2410.13489, 2024. URL: https://arxiv.org/abs/2410.13489
(visited on 04/14/2025).

Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In Proceedings of the International Symposium on Information Theory
and Its Applications, ISITA 2002, pages 803-806, 2002.

Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: turning power
side-channel attacks into remote timing attacks on x86. In Kevin R. B. Butler
and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX Security
Symposium, pages 679-697, Boston, MA, USA. USENIX Association, August
2022.

Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant
Garrett-Grossman, Christopher W. Fletcher, David Kohlbrenner, and Hovav
Shacham. DVFS frequently leaks secrets: hertzbleed attacks beyond SIKE,
cryptography, and CPU-only data. In 2023 IEEE Symposium on Security
and Privacy, pages 2306-2320, San Francisco, CA, USA. IEEE Computer
Society Press, May 2023. DOI: 10.1109/SP46215.2023.10179326.

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe,
and Yuval Yarom. Ultimate SLH: taking speculative load hardening to
the next level. In Joseph A. Calandrino and Carmela Troncoso, editors,
USENIX Security 2023: 32nd USENIX Security Symposium, pages 7125—
7142, Anaheim, CA, USA. USENIX Association, August 2023.

https://arxiv.org/abs/2410.13489
https://doi.org/10.1109/SP46215.2023.10179326

	Introduction
	Preliminaries
	Threat Model
	Intel DOIT
	Arm DIT
	RISC-V Zkt and Zvkt
	The Jasmin Framework

	Extending the Jasmin Framework
	Extraction of DOIT Instructions
	Changes to the Compiler
	Changes to the Type System
	Usage

	Application to Libjade
	Primitives and Implementations in Libjade
	Rotation Instructions in Chacha20 and SHA-3/SHAKE
	Endianess Conversion in SHA-256
	Double-Precision Shift Instructions in Poly1305 and X25519
	Vector-Extraction Instructions in Kyber

	Benchmarks and Validation
	Discussion
	Conclusion

