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Abstract. In this work, we present a fast and first-order secure Kyber implementation
optimized for ARM Cortex-M4. Most notably, to our knowledge this is the first
liberally-licensed open-source Cortex-M4 implementation of masked Kyber. The
ongoing NIST standardization process for post-quantum cryptography and newly
proposed side-channel attacks have increased the demand for side-channel analysis
and countermeasures for the finalists. On the foundation of the commonly used
PQM4 project, we make use of the previously presented optimizations for Kyber
on a Cortex-M4 and further combine different ideas from various recent works to
achieve a better performance and improve the security in comparison to the original
implementations.
We show our performance results for first-order secure implementations. Our masked
Kyber768 decapsulation on the ARM Cortex-M4 requires only 2 978 441 cycles,
including randomness generation from the internal RNG. We then practically verify
our implementation by using the t-test methodology with 100 000 traces.
Keywords: Lattice-Based Cryptography · Kyber · Side-Channel Analysis · ARM
Cortex-M4

1 Introduction
In recent years the importance of post-quantum cryptography has significantly grown.
Due to Shor’s polynomial-time algorithm [Sho99] for solving prime factorization and
discrete-logarithm problem, the usage of classical asymmetric cryptography including RSA
and elliptic-curve cryptography is considered insecure against attacks involving large-scale
quantum computers. Consequently the National Institute of Standards and Technologies
(NIST) has started a standardization process to select appropriate post-quantum-secure
algorithms [Nat16]. The focus has shifted towards side-channel security of the proposed
schemes as different attacks on unmasked constant time implementations have been
proposed in the meantime [RRCB20, RBRC20, PP19].

Schemes based on RLWE and its variants are among the most promising remaining
candidates in the NIST post-quantum project. Oder et al. [OSPG18] presented the first fully
masked CCA2-secure RLWE-scheme akin to NewHope [ADPS16]. While NewHope is no
longer under consideration by NIST, two closely related finalists are Kyber [ABD+20] and
Saber [DKRV20]. Recently, the protection of Saber [BDK+21] against side-channel attacks
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has received research attention. Van Beirendonck et al. provide detailed performance
numbers of first-order masked Saber on the ARM Cortex-M4. Their results were recently
improved by Abdulrahman et al. [ACC+22]. The goal of our work is to make a comparison
between the two lattice-based finalists in a first-order masked setting possible, which is
why we also provide first performance numbers on this platform [HKL+21].

Contribution. This is a short report describing a first reference implementation on
the ARM Cortex-M4 for a first-order masked Kyber which was presented at the third
NIST Standardization Conference in June 2021 [HKL+21]. We make use of the existing
PQM4 project which already provides strongly optimized assembly code for post-quantum
cryptography on the Cortex-M4 including an optimized Kyber implementation [ABCG20].
Moreover, we combine different existing approaches and optimize them for the case of
Kyber. Finally, we independently verify performance numbers and confirm first-order
resistance using the fixed-vs-random TVLA methodology.

Related Work & Code. In comparison to the concurrent works of Bos et al. [BGR+21]
and Fritzmann et al. [FVBBR+21] our masked Kyber implementation is especially tailored
to the Cortex-M4 processor and the well known PQM4 project. In contrast to the M4
implementation in [BGR+21], we additionally provide t-test results on the Cortex-M4
as practical side-channel protection is sometimes hard to achieve, i.e. due to compiler
optimizations. Additionally, we hereby verify that the theoretical concepts work in
practice. Furthermore, our code is available to the public at https://github.com/
masked-kyber-m4/mkm4.

2 Preliminaries
In this section we briefly introduce our notation and the Kyber key-encapsulation mech-
anism [ABD+20]. Furthermore, we recall some important works on masking RLWE in
general and Kyber in particular.

2.1 Notation
For x ∈ R, we define ⌈x⌋ = ⌊x + 1

2⌋ ∈ Z. Let Zq denote the quotient ring Z/qZ for an
integer q > 1. Thus, Zq is the ring of cosets x + qZ with addition and multiplication
operations. For a, b ∈ Z, we write a mod(+) b for the unique integer â ≡ a mod b such
that 0 ≤ â < b. Let R = Z[X]/(f), where f is usually f = Xn + 1 for n being a power of
2, and Rq = R/(q) = Zq[X]/(f) for some positive integer q. Any element a ∈ Rq as well
as vectors of these elements are denoted as bold lower case letter. We use the notation
a[i] for i = 0, . . . , n− 1 to access the i-th coefficient of a polynomial a ∈ Rq. Matrices of
elements in Rq are denoted as bold upper-case letters. For a given set S and a probability
distribution D over S, we use s

r←− D to mean s ∈ S sampled according to D using coins r.
In addition, we use s

$←− S to mean s ∈ S sampled uniformly at random from S. Hereby,
U(q) denotes the uniform distribution on Rq, whereas χ denotes an error distribution to
be defined for the specific algorithm. When covering our implementation we define the
x mod q operation for integers x, q to always produce an output in the range [0, q − 1].
Unless stated otherwise, when we access an element a[i] of a polynomial a ∈ Rq, we always
assume that a[i] is reduced modulo q and in the range [0, q − 1].

2.2 Kyber Key Encapsulation Mechanism
For later reference we provide a simplified version of the public-key encryption scheme
Kyber.CPA = (Kyber.CPA.Gen, Kyber.CPA.Enc, Kyber.CPA.Dec) as in Algo-
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rithms 1, 2, and 3. Define integers n = 256, q = 3329, η2 = 2 and let k, η1, dt, du, dv be
positive integers. We denote M = {0, 1}n as the plaintext space, where each message
m ∈M can be seen as a polynomial in R with coefficients in {0, 1}. Define the functions

Compressq(x, d) := ⌈(2d/q) · x⌋ mod(+) 2d ,

Decompressq(x, d) := ⌈(q/2d) · x⌋.

componentwise on each coefficient of a polynomial. We set χη as the centered binomial
distribution with support {−η, . . . , η}, and let χn,η be the distribution of polynomials of
degree n with entries independently sampled from χη. When we apply the NTT/INTT to
a vector of polynomials, the NTT/INTT gets applied to each polynomial individually.

Algorithm 1: Kyber.CPA.Gen.

1 (ρ, σ) $←− {0, 1}256 × {0, 1}256 ;
2 A ρ←− U(q)k×k ;
3 (s, e) σ←− χk

n,η1
× χk

n,η1
;

4 ŝ← NTT(s) ;
5 ê← NTT(e) ;
6 t̂← A◦ŝ + ê ;
7 return pkCP A := (t̂, ρ), skCP A := ŝ ;

Algorithm 2: Kyber.CPA.Enc.
Input: pkCP A = (t̂, ρ)
Input: m ∈M
Input: r

$←− {0, 1}256

1 A ρ←− U(q)k×k ;
2 (r, e1, e2) r←− χk

n,η1
× χk

n,η2
× χn,η2 ;

3 r̂← NTT(r) ;
4 u← INTT(A◦r̂) + e1 ;
5 v← INTT(t̂◦r̂) + e2 + ⌈ q

2⌋ ·m) ;
6 c1 ← Compressq(u, du) ;
7 c2 ← Compressq(v, dv) ;
8 return c := (c1, c2) ;

Algorithm 3: Kyber.CPA.Dec.
Input: skCP A = ŝ
Input: c = (u, v)

1 u← Decompressq(u, du) ;
2 v← Decompressq(v, dv) ;
3 return m = Compressq(v− INTT(ŝ◦NTT(u)), 1) ;

In order to obtain a CCA2-secure encryption scheme from the CPA-secure building
blocks, Kyber makes use of a tweaked version of the Fujisaki–Okamoto transform [FO99].
The decrypted message is re-encrypted and then compared to the received ciphertext. If
the ciphertext was not honestly generated, this comparison for equality fails and some
pseudo-random key is returned. The resulting key-encapsulation mechanism is shown in
Algorithms 4, 5, and 6.
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Algorithm 4:
Kyber.CCAKEM.Gen.

1 z
$←− {0, 1}256 ;

2 (pk, sk′) = Kyber.CPA.Gen() ;
3 sk := (sk′||pk||H(pk)||z) ;
4 return pk, sk ;

Algorithm 5:
Kyber.CCAKEM.Encaps.

Input: Public key of CCAKEM pk

1 m
$←− {0, 1}256 ;

2 m← H(m) ;
3 (K̄, r) := G(m||H(pk)) ;
4 c := Kyber.CPA.Enc(pk, m, r) ;
5 K := KDF(K̄||H(c)) ;
6 return c, k ;

Algorithm 6:
Kyber.CCAKEM.Decaps.

Input: Ciphertext of CCAKEM c
Input: Secret key of CCAKEM sk

1 Extract (sk′||pk||H(pk)||z) from sk ;
2 m′ := Kyber.CPA.Dec(sk′, c) ;
3 (K̄ ′, r′) := G(m′||H(pk)) ;
4 c′ := Kyber.CPA.Enc(pk, m′, r′) ;
5 if c = c′ then
6 K := KDF(K̄ ′||H(c)) ;
7 else
8 K := KDF(z||H(c)) ;
9 end

10 return K ;

3 Concept of the Implementation
The Kyber decapsulation algorithm (Algorithm 6) consists of four major building blocks
visualized in Figure 1:

• A CPA-secure decryption,

• A CPA-secure re-encryption,

• A masked hash G,

• A masked comparison of ciphertexts.

In Figure 1, the non-linear parts have been marked in red. These parts are not straightfor-
ward to mask as it is not possible to split them into multiple shares easily. The decryption
and re-encryption will be analyzed in the following sections. For the masked hash G, which
is defined as SHA3-512 for Kyber, we make use of the approach in [BDPA10].

KYBER.CPAPKE.Dec KYBER.CPAPKE.Enc

=

s1

s2

c

G(m1, h1)

G(m2, h2)

c1 c2

Figure 1: The masked CCA2-secure Kyber decapsulation.
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3.1 Kyber Decryption

As most parts of the Kyber decryption depicted in Figure 2 are linear operations, they can
be calculated on each share individually. However, the masked compression is non-linear
and it is not possible to calculate it on each share separately. The input to the compression
is shared arithmetically. The output on the other hand is a Boolean-shared message. This
requires us to use an arithmetic-to-Boolean (A2B) conversion during compression. In
[OSPG18, Alg. 2], a masked decoder has already been proposed. In the first step q/4 is
subtracted from one share. Then, both arithmetic shares modulo q are transformed to a
sharing (y1, y2) modulo 216 - requiring no rejection sampling. Finally, q/2 is subtracted
from one share yi. We obtain the shared message by extracting the most significant bit
from the Boolean sharing of (y1, y2).

It is important to mention that the A2B conversion from [OSPG18] has been shown to
be insecure in [BDV21]. Therefore, we used the fixed single-lookup A2B algorithm from
[BDV21] in our first-order masked decoder.

v−

NT T −1(si · u)
Compress(x, 1)

c = (u, v)

s1

s2

+

m1

m2

⊕

Figure 2: The masked CPA-secure Kyber decryption.

3.2 Kyber Re-Encryption

The Kyber re-encryption is the computationally most expensive part to mask. It includes
the shared computation of a pseudorandom function (PRF), a centered binomial sampling,
as well as compression and decompression of single coefficients. This is additionally
made harder by the fact that the input seed is given in boolean sharing, whereas some
intermediates are arithmetically shared as can be seen in detail in Figure 3 where ⊕
indicates boolean sharing and + indicates arithmetic sharing.

PRF CBD Ar + e1
pk · r + e2

+Decomp(m, 1)

Comp(u, du) Comp(v, dv)

G(m1, h1)
⊕

G(m2, h2)

u1⊕u2 v1 ⊕ v2

⊕ + +

+ +

Figure 3: The masked CPA-secure Kyber re-encryption.
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3.2.1 Masked Centered Binomial Sampling

To sample deterministically from a centered binomial distribution using a seed as input,
Kyber specifies the usage of SHAKE as PRF to generate a sufficiently many random bits.
To sample one coefficient (with η = 2), a0 + a1 − b0 − b1 is computed, where a0, a1, b0, b1
are four consecutive bits from the SHAKE output stream.

For the masked implementation, the seed is given in Boolean shares and our implemen-
tation expands it using a masked first-order secure implementation of Keccak [BDPA10].
Then our implementation follows the strategy of [SPOG19] and works on bitsliced Boolean
shares to compute a0 + a1− b0− b1 + η. Here, η is added in order to avoid negative results.
The result is then converted to an arithmetic sharing. For this, we follow the B2Aq strategy
from [FVBBR+21, Alg. 12] by implementing a masked and bitsliced ripple-carry adder.
Finally, the arithmetically shared samples are unpacked from the bitsliced representation
and the first share is subtracted by η in order to return to the centered distribution.

3.2.2 Masked Decompression

The masked decompression with a decompression parameter d = 1 is exactly off by one
if the decompression is performed on each share separately and both shares are equal to
one. All other cases produce a correctly shared output. This is why we chose to adapt the
strategy of [OSPG18] to subtract m1 AND m2 from the result of the sharewise operation
in a masked way. For the arithmetic subshares m′

1, m′′
1 (and m′

2, m′′
2 respectively) we can

calculate

c1 = pk · r1 + e2,1 − (m1 AND m2)
= pk · r1 + e2,1 − (m′

1m′
2)− (m′

1m′′
2)− (m′′

1m′
2)− (m′′

1m′′
2).

It is important to execute the calculations exactly in order and to not store any unmasked
values in registers as this would leak information. The method works because the register
from which the values are subtracted is already randomized. It holds the result of
pk · r1 + e2,1, which is different in every execution of the masked decapsulation.

3.2.3 Masked Comparison

Recent work [BDH+21, DHP+21] has shown that little information, like the position
of the difference between the submitted and re-encrypted ciphertext, can be used to
significantly reduce the security level of the scheme. This is why we opted for the masked
comparison as presented in a recent work on masking Kyber [BGR+21]. We do not
directly compare compressed ciphertexts but check if the decompressed coefficients of
the polynomial are in the correct interval. This choice allows us to omit the masked
compression in the re-encryption step where the compression parameters du and dv are
not equal to one. Following the notation of [BGR+21], let a denote the masked sensitive
variable and b denote the public variable. One can compute a lower bound S(b) and
a higher bound E(b) such that Compress(x) = b if and only if S(b) ≤ a ≤ E(b) − 1 .
Instead of checking if Compress(a) = b, one can now simply check if S(b) ≤ a ≤ E(b)− 1.
This can be done by subtracting the value S(b) and E(b) from the masked a and then
extracting the most significant bit from the two shares using an A2B conversion or an A2A
conversion [BDK+21]. Extracting the MSB can be interpreted as a sign check because
a− S(b) is negative and a− E(b) is positive if a is in the interval. The two bits are then
combined into a final output bit using bitsliced calls to SecAND.
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4 Evaluation
This section shows the performance and leakage evaluation of our implementation. Note
that we use as baseline the existing non-masked implementation by Alkim et al. [ABCG20],
which is also part of the PQM4 project [KRSS], and then modified the code to include
the aforementioned countermeasures. Critical subroutines are implemented in assembly to
avoid the recombination of shares in registers due to compiler optimizations.

4.1 Performance
In this section we present the performance of our first-order masked Kyber768 implementa-
tion. We measured performance on the STM32F407VG microcontroller with 32-bit ARM
Cortex-M4 with FPU core that is mounted on the STM32F407VG Discovery board. The
measurement setup is based on the PQM4 project [KRSS]. The CPU is clocked at 24 MHz
to avoid wait states due to the slow speed of the memory controller. For the compilation, we
used arm-none-eabi-gcc version 11.2.0 with compiler flags -O3 -std=gnu99 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16. The randomness required for
masking is sampled using the internal hardware random number generator available on the
STM32F407VG Discovery board. All in all, our result of 2 978 441 cycles for first-order
masked Kyber decryption is similar to the performance numbers provided in [BGR+21]
who reported 3 116 000 cycles on a STM32F407G.

Operation Cycles
crypto_kem_dec 2 978 441

indcpa_dec 132 048
hashg 108 588
indcpa_enc 2 168 034
comparison 350 544
hashh 114 557
kdf 108 655

indcpa_dec 132 048
unpackdecompress 11 293
arithmetic operations 55 360
masked_poly_tomsg 65 286

indcpa_enc 2 168 034
masked_poly_getnoise 1 242 988
poly_frommsg 85 866
masked_mattacc 497 234
arithmetic operations 419 678

4.2 Leakage Evaluation
The leakage evaluation was performed on the ChipWhisperer Lite platform with an
STM32F303 target [OC14] featuring an Arm Cortex-M4 core. This allows easy verification
with a standardized platform. Furthermore, low noise level and well aligned traces are
advantages of this setup. Instead of a random number generator which is missing on the
ChipWhisperer Lite, we employ a deterministic pseudorandom sampler from a fixed input
seed. We applied the commonly used t-test methodology [SM15] to each function separately.
We use a fixed vs. random t-test (FvR) as it is proposed in the literature. In future work,
a fixed plus noise vs. random t-test (FNvR) may also be helpful to differentiate between
sensitive and non-sensitive output leakage [BDH+21]. If any t-value larger than 4.5 would
appear in our diagram, this would be a strong indicator of remaining leakage. However,
this is not the case for 100 000 traces measures for each experiment. The plot of the our
t-test results is provided in Figures 4, 5, 6, and 7.
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5 Conclusion
In this work, we presented a first-order masked Kyber specifically for the ARM Cortex-
M4. We combined different approaches from previous works and practically verified the
first-order resistance with the ChipWhisperer Lite. As previous attacks, i.e. [NDGJ21]
have shown, first-order masking is not enough to achieve practical side-channel resistance.
Higher-order implementations should be combined with different countermeasures as
shuffling or hiding. Additionally, the computational overhead of some operations in
higher-order solutions still seems quite high and it might be part of future work to reduce
it.
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