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1 Introduction

The first code-based public-key cryptosystem was introduced in 1978 by McEliece [39]. The
public key specifies a random binary Goppa code. A ciphertext is a codeword plus ran-
dom errors. The private key allows efficient decoding: extracting the codeword from the
ciphertext, identifying and removing the errors.

The McEliece system was designed to be one-way (OW-CPA), meaning that an attacker
cannot efficiently find the codeword from a ciphertext and public key, when the codeword
is chosen randomly. The security level of the McEliece system has remained remarkably
stable, despite dozens of attack papers over 40 years. The original McEliece parameters were
designed for only 264 security, but the system easily scales up to “overkill” parameters that
provide ample security margin against advances in computer technology, including quantum
computers.

The McEliece system has prompted a tremendous amount of followup work. Some of this
work improves efficiency while clearly preserving security:1 this includes a “dual” PKE
proposed by Niederreiter [42], software speedups such as [7], and hardware speedups such as
[58].

Furthermore, it is now well known how to efficiently convert an OW-CPA PKE into a KEM
that is IND-CCA2 secure against all ROM attacks. This conversion is tight, preserving the
security level, under two assumptions that are satisfied by the McEliece PKE: first, the PKE
is deterministic (i.e., decryption recovers all randomness that was used); second, the PKE
has no decryption failures for valid ciphertexts. Even better, very recent work [48] suggests
the possibility of achieving similar tightness for the broader class of QROM attacks. The
risk that a hash-function-specific attack could be faster than a ROM or QROM attack is
addressed by the standard practice of selecting a well-studied, high-security, “unstructured”
hash function.

This submission Classic McEliece (CM) brings all of this together. It presents a KEM de-
signed for IND-CCA2 security at a very high security level, even against quantum comput-
ers. The KEM is built conservatively from a PKE designed for OW-CPA security, namely
Niederreiter’s dual version of McEliece’s PKE using binary Goppa codes. Every level of
the construction is designed so that future cryptographic auditors can be confident in the
long-term security of post-quantum public-key encryption.

1Other work includes McEliece variants whose security has not been studied as thoroughly. For example,
many proposals replace binary Goppa codes with other families of codes, and lattice-based cryptography
replaces “codeword plus random errors” with “lattice point plus random errors”. Code-based cryptography
and lattice-based cryptography are two of the main types of candidates identified in NIST’s call for Post-
Quantum Cryptography Standardization. This submission focuses on the classic McEliece system precisely
because of how thoroughly it has been studied.
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2 General algorithm specification (part of 2.B.1)

2.1 Notation

The list below introduces the notation used in this section. It is meant as a reference guide
only; for complete definitions of the terms listed, refer to the appropriate text. Some other
symbols are also used occasionally; they are introduced in the text where appropriate.

n The code length (part of the CM parameters)

k The code dimension (part of the CM parameters)

t The guaranteed error-correction capability (part of the CM parameters)

q The size of the field used (part of the CM parameters)

m log2 q (part of the CM parameters)

H A cryptographic hash function (part of the CM parameters)

` Length of a hash digest (part of the CM parameters)

g A polynomial in Fq[x] (part of the private key)

αi An element of the finite field Fq (part of the private key)

Γ (g, α1, . . . , αn) (part of the private key)

s A bit string of length n (part of the private key)

(s,Γ) A CM private key

T A CM public key

e A bit string of length n and Hamming weight t

C A ciphertext encapsulating a session key

C0 A bit string of length n− k (part of the ciphertext)

C1 A bit string of length ` (part of the ciphertext)

Elements of Fn
2 , such as codewords and error vectors, are always viewed as column vectors.

This convention avoids all transpositions. Beware that this differs from a common convention
in coding theory, namely to write codewords as row vectors but to transpose the codewords
for applying parity checks.

2.2 Parameters

The CM parameters are implicit inputs to the CM algorithms defined below. A CM param-
eter set specifies the following:

• A positive integer m. This also defines a parameter q = 2m.

• A positive integer n with n ≤ q.
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• A positive integer t ≥ 2 with mt < n. This also defines a parameter k = n−mt.

• A monic irreducible polynomial f(z) ∈ F2[z] of degree m. This defines a representation
F2[z]/f(z) of the field Fq.

• A positive integer `, and a cryptographic hash function H that outputs ` bits.

2.3 Key generation

Given a set of CM parameters, a user generates a CM key pair as follows:

1. Generate a uniform random monic irreducible polynomial g(x) ∈ Fq[x] of degree t.

2. Select a uniform random sequence (α1, α2, . . . , αn) of n distinct elements of Fq.

3. Compute the t× n matrix H̃ = {hi,j} over Fq, where hi,j = αi−1
j /g(αj) for i = 1, . . . , t

and j = 1, . . . , n.

4. Form an mt × n matrix Ĥ over F2 by replacing each entry c0 + c1z + · · · + cm−1z
m−1

of H̃ with a column of t bits c0, c1, . . . , cm−1.

5. Apply Gaussian elimination to Ĥ to reduce Ĥ to systematic form (In−k | T ), where
In−k is an (n− k)× (n− k) identity matrix. If Gaussian elimination does not produce
In−k (i.e., Ĥ cannot be transformed to systematic form), go back to Step 1.

6. Generate a uniform random n-bit string s.

7. Put Γ = (g, α1, α2, . . . , αn) and output (s,Γ) as private key and T as public key.

The second part of the private key, Γ = (g, α1, α2, . . . , αn), describes a binary Goppa code of
length n and dimension k = n−mt. The public key T is a binary (n− k)× k matrix such
that H = (In−k | T ) is a parity-check matrix for the same Goppa code.

2.4 Encoding subroutine

The encoding subroutine takes two inputs: a weight-t column vector e ∈ Fn
2 ; and a public

key T , i.e., an (n−k)×k matrix over F2. The subroutine returns a vector C0 ∈ Fn−k
2 defined

as follows:

1. Define H = (In−k | T ).

2. Compute and return C0 = He ∈ Fn−k
2 .
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2.5 Decoding subroutine

The decoding subroutine decodes C0 ∈ Fn−k
2 to a word e of Hamming weight wt(e) = t with

C0 = He if such a word exists; otherwise it returns failure.

Formally, this subroutine takes two inputs: a vector C0 ∈ Fn−k
2 ; and a private key (s,Γ).

The subroutine has two possible return values, defined in terms of the public key T that
corresponds to (s,Γ):

• If C0 was returned by the encoding subroutine on input e and T , then the decoding
subroutine returns e. In other words, if there exists a weight-t vector e ∈ Fn

2 such that
C0 = He with H = (In−k | T ), then the decoding subroutine returns e.

• If C0 does not have the form He for any weight-t vector e ∈ Fn
2 , then the decoding

subroutine returns ⊥ (failure).

The subroutine works as follows:

1. Extend C0 to v = (C0, 0, . . . , 0) ∈ Fn
2 by appending k zeros.

2. Find the unique codeword c in the Goppa code defined by Γ that is at distance ≤t
from v. If there is no such codeword, return ⊥.

3. Set e = v + c.

4. If wt(e) = t and C0 = He, return e. Otherwise return ⊥.

There are several standard algorithms for Step 2 of this subroutine. For references and
speedups see generally [7] and [17].

To see why the subroutine works, note first that the “syndrome” Hv is C0, because the first
n − k positions of v are multiplied by the identity matrix and the remaining positions are
zero. If C0 has the form He where e has weight t then Hv = He, so c = v+ e is a codeword.
This codeword has distance exactly t from v, and it is the unique codeword at distance ≤t
from v since the minimum distance of Γ is at least 2t+ 1. Hence Step 2 finds c, Step 3 finds
e, and Step 4 returns e. Conversely, if the subroutine returns e in Step 4 then e has been
verified to have weight t and to have C0 = He, so if C0 does not have this form then the
subroutine must return ⊥.

The logic here relies on Step 2 always finding a codeword at distance t if one exists. It does
not rely on Step 2 failing in the cases that a codeword does not exist: the subroutine remains
correct if, instead of returning ⊥, Step 2 chooses some vector c ∈ Fn

2 and continues on to
Step 3.

Implementors are cautioned that it is important to avoid leaking secret information through
side channels, and that the distinction between success and failure in this subroutine is
secret in the context of the Classic McEliece KEM. In particular, immediately stopping the
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computation when Step 2 returns ⊥ would reveal this distinction through timing, so it is
recommended for implementors to have Step 2 always choose some c ∈ Fn

2 .

As a further implementation note: In order to test C0 = He, the decoding subroutine
does not need to recompute H from Γ as in key generation. Instead it can use any parity-
check matrix H ′ for the same code. The computation uses v = (C0, 0, . . . , 0) and compares
H ′v to H ′e. The results are equal if and only if v + e = c is a codeword, which implies
He = H(v + c) = Hv + Hc = Hv = C0. There are various standard choices of H ′ related
to Ĥ that are easily recovered from Γ, and that can be applied to vectors without using
quadratic space.

Remark. Note that the triple of algorithms (Key Generation, Encoding, Decoding) is essen-
tially Niederreiter’s “dual” version [42] of the McEliece cryptosystem (plus a private string
s not used in decoding; s is used in decapsulation below). We use the binary Goppa code
family, as in McEliece’s original proposal [39], rather than variants such as the GRS family
considered by Niederreiter. See Section 4 for further history.

2.6 Encapsulation

The sender generates a session key K and its ciphertext C as follows:

1. Generate a uniform random vector e ∈ Fn
2 of weight t.

2. Use the encoding subroutine on e and public key T to compute C0.

3. Compute C1 = H(2, e); see Section 2.8 for H input encodings. Put C = (C0, C1).

4. Compute K = H(1, e, C); see Section 2.8 for H input encodings.

5. Output session key K and ciphertext C.

2.7 Decapsulation

The receiver decapsulates the session key K from ciphertext C as follows:

1. Split the ciphertext C as (C0, C1) with C0 ∈ Fn−k
2 and C1 ∈ F`

2.

2. Set b← 1.

3. Use the decoding subroutine on C0 and private key Γ to compute e. If the subroutine
returns ⊥, set e← s and b← 0.

4. Compute C ′1 = H(2, e); see Section 2.8 for H input encodings.

5. If C ′1 6= C1, set e← s and b← 0.
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6. Compute K = H(b, e, C); see Section 2.8 for H input encodings.

7. Output session key K.

If C is a legitimate ciphertext then C = (C0, C1) with C0 = He for some e ∈ Fn
2 of weight

t and C1 = H(2, e). The decoding algorithm will return e as the unique weight-t vector
and the C ′1 = C1 check will pass, thus b = 1 and K matches the session key computed in
encapsulation.

As an implementation note, the output of decapsulation is unchanged if “e ← s” in Step 3
is changed to assign something else to e. Implementors may prefer, e.g., to set e to a fixed
n-bit string, or a random n-bit string other than s. However, the definition of decapsulation
does depend on e being set to s in Step 5.

Implementors are again cautioned that it is important to avoid leaking secret information
through side channels. In particular, the distinction between failures in Step 3, failures
in Step 5, and successes is secret information, and branching would leak this information
through timing. It is recommended for implementors to always go through the same sequence
of computations, using arithmetic to simulate tests and conditional assignments.

2.8 Representation of objects as byte strings

Vectors over F2. If r is a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr
2 is

represented as the following sequence of r/8 bytes:

(v0+2v1+4v2+· · ·+128v7, v8+2v9+4v10+· · ·+128v15, . . . , vr−8+2vr−7+4vr−6+· · ·+128vr−1).

If r is not a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr
2 is zero-padded to

length between r+ 1 and r+ 7, whichever is a multiple of 8, and then represented as above.

Session keys. A session key K is an element of F`
2. It is represented as a d`/8e-byte string.

Ciphertexts. A ciphertext C has two components: C0 ∈ Fn−k
2 and C1 ∈ F`

2. The cipher-
text is represented as the concatenation of the dmt/8e-byte string representing C0 and the
d`/8e-byte string representing C1.

Hash inputs. There are three types of hash inputs: (2, v); (1, v, C); and (0, v, C). Here
v ∈ Fn

2 , and C is a ciphertext.

The initial 0, 1, or 2 is represented as a byte. The vector v is represented as the next dn/8e
bytes. The ciphertext, if present, is represented as the next dmt/8e+ d`/8e bytes.
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Public keys. The public key T , which is essentially a mt× (n−mt) matrix, is represented
in a row-major fashion. Each row of T is represented as a dk/8e-byte string, and the public
key is represented as the mtdk/8e-byte concatenation of these strings.

Field elements. Each element of Fq
∼= F2[z]/f(z) has the form

∑m−1
i=0 ciz

i where ci ∈ F2.
The representation of the field element is the representation of the vector (c0, c1, . . . , cm−1) ∈
Fm
2 .

Private keys. A private key has the form (s, g, α1, α2, . . . , αn). This is represented as the
concatenation of three parts:

• The dn/8e-byte string representing s ∈ Fn
2 .

• The tdm/8e-byte string representing g = g0 + g1x + · · · + gt−1x
t−1 + xt, namely the

concatenation of the representations of the field elements g0, g1, . . . , gt−1.

• The representation defined below of the sequence (α1, . . . , αn).

The obvious representation of (α1, . . . , αn) would be as a sequence of n field elements. We
specify a different representation that simplifies fast constant-time decoding algorithms:
(α1, . . . , αn) are converted into a (2m − 1)2m−1-bit vector of “control bits” defined below,
and then this vector is represented as d(2m− 1)2m−4e bytes as above.

Recall that a “Beneš network” is a series of 2m − 1 stages of swaps applied to an array of
q = 2m objects (a0, a1, . . . , aq−1). The first stage conditionally swaps a0 and a1, conditionally
swaps a2 and a3, conditionally swaps a4 and a5, etc., as specified by a sequence of q/2 control
bits (1 meaning swap, 0 meaning leave in place). The second stage conditionally swaps a0
and a2, conditionally swaps a1 and a3, conditionally swaps a4 and a6, etc., as specified by the
next q/2 control bits. This continues through the mth stage, which conditionally swaps a0
and aq/2, conditionally swaps a1 and aq/2+1, etc. The (m+1)st stage is just like the (m−1)st
stage (with new control bits), the (m + 2)nd stage is just like the (m − 2)nd stage, and so
on through the (2m− 1)st stage.

Finally, (α1, . . . , αn) are represented as the control bits for a Beneš network that, when
applied to all q field elements (0, z12, z11, z12 + z11, z10, z12 + z10, . . . ) in reverse lexicographic
order, produces an array that begins (α1, α2, . . . , αn) and continues with the remaining field
elements in some order. An algorithm by Lev, Pippenger, and Valiant [35] computes these
control bits at reasonably high speed given the target array.
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3 List of parameter sets (part of 2.B.1)

3.1 Parameter set kem/mceliece6960119

KEM with m = 13, n = 6960, t = 119, ` = 256. Field polynomial f(z) = z13+z4+z3+z+1.
Hash function: SHAKE256 with 32-byte output.

3.2 Parameter set kem/mceliece8192128

KEM with m = 13, n = 8192, t = 128, ` = 256. Field polynomial f(z) = z13+z4+z3+z+1.
Hash function: SHAKE256 with 32-byte output.

4 Design rationale (part of 2.B.1)

4.1 One-wayness

There is a long history of trapdoor systems (in modern terminology: PKEs) that are designed
to be one-way (in modern terminology: OW-CPA). One-wayness means that it is difficult
to invert the map from input to ciphertext, given the public key, when the input is chosen
uniformly at random.

The McEliece system is one of the oldest proposals, almost as old as RSA. RSA has suffered
dramatic security losses, while the McEliece system has maintained a spectacular security
track record unmatched by any other proposals for post-quantum encryption. This is the
reason that we have chosen to submit the McEliece system.

Here is more detail to explain what we mean by “spectacular security track record”.

With the key-size optimizations discussed below, the McEliece system uses a key size of
(c0 + o(1))b2(lg b)2 bits to achieve 2b security against all inversion attacks that were known
in 1978, when the system was introduced. Here lg means logarithm base 2, o(1) means
something that converges to 0 as b→∞, and c0 ≈ 0.7418860694.

The best attack at that time was from 1962 Prange [47]. After 1978 there were 25 publications
studying the one-wayness of the system and introducing increasingly sophisticated non-
quantum attack algorithms:

1. 1981 Clark–Cain [18], crediting Omura.

2. 1988 Lee–Brickell [33].

3. 1988 Leon [34].

4. 1989 Krouk [32].
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5. 1989 Stern [52].

6. 1989 Dumer [24].

7. 1990 Coffey–Goodman [19].

8. 1990 van Tilburg [55].

9. 1991 Dumer [25].

10. 1991 Coffey–Goodman–Farrell [20].

11. 1993 Chabanne–Courteau [15].

12. 1993 Chabaud [16].

13. 1994 van Tilburg [56].

14. 1994 Canteaut–Chabanne [11].

15. 1998 Canteaut–Chabaud [12].

16. 1998 Canteaut–Sendrier [13].

17. 2008 Bernstein–Lange–Peters [8].

18. 2009 Bernstein–Lange–Peters–van Tilborg [10].

19. 2009 Finiasz–Sendrier [27].

20. 2011 Bernstein–Lange–Peters [9].

21. 2011 May–Meurer–Thomae [37].

22. 2012 Becker–Joux–May–Meurer [3].

23. 2013 Hamdaoui–Sendrier [29].

24. 2015 May–Ozerov [38].

25. 2016 Canto Torres–Sendrier [54].

What is the cumulative impact of all this work? Answer: With the same key-size optimiza-
tions, the McEliece system uses a key size of (c0 + o(1))b2(lg b)2 bits to achieve 2b security
against all non-quantum attacks known today, where c0 is exactly the same constant. All of
the improvements have disappeared into the o(1).

This does not mean that the required key size is precisely the same—that dozens of attack
papers over 40 years have not accomplished anything. What it means is that the required
change in key size is below 1% once b is large enough; below 0.1% once b is large enough;
etc. This is a remarkably stable security story.
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What about quantum attacks? Grover’s algorithm is applicable, reducing the attack cost
to asymptotically its square root; see generally [5]. In other words, the key now needs
(4c0 + o(1))b2(lg b)2 bits. As before, further papers on the topic have merely improved the
o(1).

All of the papers mentioned above are focusing on the most effective attack strategy known,
namely “information-set decoding”. This strategy does not exploit any particular structure of
a generator matrix G: it recovers a low-weight error vector e given a uniform random matrix
G and Gm + e for some m. Experiments are consistent with the theory that McEliece’s
matrices G behave like uniform random matrices in this context.

There are also many papers studying attacks that instead recover McEliece’s private key from
the public key G. Recovering the private key also breaks one-wayness, since the attacker can
then use the receiver’s decryption algorithm. These attacks can be much faster than a brute-
force search through private keys: for example, Sendrier’s “support splitting” algorithm [49]
quickly finds α1, . . . , αn given g provided that n = 2q. More generally, whether or not n = 2q,
support splitting finds α1, . . . , αn given g and given the set {α1, . . . , αn}. (This can be viewed
as a reason to keep n somewhat smaller than 2q, since then there are many possibilities for
the set, along with many possibilities for g; one of our suggested parameter sets provides
this extra defense.) However, despite this and other interesting speedups, the state-of-the-art
key-recovery attacks are vastly slower than information-set decoding.

Various authors have proposed replacing the binary Goppa codes in McEliece’s system with
other families of codes: see, e.g., [2, 4, 40, 42, 44, 41]. Often these replacements are advertised
as allowing smaller public keys. Unfortunately, many of these proposals have turned out to
allow unacceptably fast recovery of the private key (or of something equivalent to the private
key, something that allows fast inversion of the supposedly one-way function). Some small-
key proposals are unbroken, but in this submission we focus on binary Goppa codes as the
traditional, conservative, well-studied choice.

Authors of attacks on other codes often study whether binary Goppa codes are affected
by their attacks. These studies consistently show that McEliece’s system is far beyond all
known attacks. For example, 2013 Faugère–Gauthier-Umaña–Otmani–Perret–Tillich [26]
showed that “high-rate” binary Goppa codes can be distinguished from random codes. The
worst-case possibility is that this distinguisher somehow allows an inversion attack faster
than attacks for random codes. However, the distinguisher stops working

• at 8 errors for n = 1024 (where McEliece’s original parameters used 50 errors),

• at 20 errors for n = 8192 (where our suggested parameters use more than 100 errors),

etc. As another example, the attack in [21] reaches degree m = 2 where McEliece’s original
parameters used degree m = 10 and where our suggested parameters use degree m = 13.
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4.2 Better efficiency for the same one-wayness

The main focus of this submission is security, but we also take reasonable steps to improve ef-
ficiency when this clearly does not compromise security. In particular, we make the following
two modifications suggested by Niederreiter [42].

First modification. The goal of the public key in McEliece’s system is to communicate
an [n, k] linear code C over F2: a k-dimensional linear subspace of Fn

2 . This means commu-
nicating the ability to generate uniform random elements of C. McEliece accomplished this
by choosing the public key to be a uniform random generator matrix G for C: specifically,
multiplying any generator matrix for C by a uniform random invertible matrix.

Niederreiter accomplished this by instead choosing the public key to be the unique
systematic-form generator matrix for C if one exists. This means a generator matrix of

the form
(

T

Ik

)
where T is some (n − k) × k matrix and Ik is the k × k identity matrix.

Approximately 29% of choices of C have this form, so key generation becomes about 3.4×
slower on average, but now the public key occupies only k(n − k) bits instead of kn bits.
Note that sending a systematic-form generator matrix also implies sending a parity-check
matrix H for C, namely (In−k | T ).

Any attack against the limited set of codes allowed by Niederreiter implies an attack with
probability 29% against the full set of codes allowed by McEliece; this is a security difference
of at most 2 bits. Furthermore, any attack against Niederreiter’s public key can be used to
attack any generator matrix for the same code, and in particular McEliece’s public key, since
anyone given any generator matrix can quickly compute Niederreiter’s public key by linear
algebra.

Second modification. McEliece’s ciphertext has the form Ga + e. Here G is a random
n×k generator matrix for a code C as above; a is a column vector of length k; e is a weight-w
column vector of length n; and the ciphertext is a column vector of length n. McEliece’s
inversion problem is to compute a uniform random input (a, e) given G and the ciphertext
Ga+ e.

Niederreiter’s ciphertext instead has the form He. Here H is the unique systematic-form
(n − k) × n parity-check matrix for C, and e is a weight-w column vector of length n, so
the ciphertext is a column vector of length just n − k, shorter than McEliece’s ciphertext.
Niederreiter’s inversion problem is to compute a uniform random input e given H and the
ciphertext He.

Niederreiter’s inversion problem is equivalent to McEliece’s inversion problem for the same
code. In particular, any attack recovering a random e from Niederreiter’s He and H can
be used with negligible overhead to recover a random (a, e) from McEliece’s Ga+ e and G.
Specifically, compute H from G, multiply H by Ga + e to obtain HGa + He = He, apply
the attack to recover e from He, subtract e from Ga + e to obtain Ga, and recover a by
linear algebra.
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4.3 Indistinguishability against chosen-ciphertext attacks

Assume that McEliece’s system is one-way. Niederreiter’s system is then also one-way: the
attacker cannot efficiently compute a uniform random weight-w vector e given Niederreiter’s
public key H and the ciphertext He.

What the user actually needs is more than one-wayness. The user is normally sending a
plaintext with structure, perhaps a plaintext that can simply be guessed. Furthermore, the
attacker can try modifying ciphertexts to see how the receiver reacts. McEliece’s original
PKE was not designed to resist, and does not resist, such attacks. In modern terminology,
the user needs IND-CCA2 security.

There is a long literature studying the IND-CCA2 security of various PKE constructions,
and in particular constructions built from an initial PKE assumed to have OW-CPA secu-
rity. An increasingly popular simplification here is to encrypt the user’s plaintext with an
authenticated cipher such as AES-GCM. The public-key problem is then simply to send
an unpredictable session key to use as the cipher key. Formally, our design goal here is
to build a KEM with IND-CCA2 security; “KEM-DEM” composition [22] then produces a
PKE with IND-CCA2 security, assuming a secure DEM. More complicated PKE construc-
tions can pack some plaintext bytes into the ciphertext but are more difficult to audit and
would be contrary to our goal of producing high confidence in security.

For our KEM construction we follow the best practices established in the literature:

• We use a uniform random input e. We compute the session key as a hash of e.

• Our ciphertext is the original ciphertext plus a “confirmation”: another cryptographic
hash of e.

• After using the private key to compute e from a ciphertext, we recompute the ciphertext
(including the confirmation) and check that it matches.

• If decryption fails (i.e., if computing e fails or the recomputed ciphertext does not
match), we do not return a KEM failure: instead we return a pseudorandom function
of the ciphertext, specifically a cryptographic hash of a separate private key and the
ciphertext.

We use a standard, thoroughly studied cryptographic hash function. We ensure that the
three hashes mentioned above are obtained by applying this function to input spaces that
are visibly disjoint. We choose the input details to simplify implementations that run in
constant time, in particular not leaking whether decryption failed.

There are intuitive arguments for these practices, and to some extent there are also proofs.
Specifically, a KEM construction 15 years ago from Dent [23, Section 6] features a tight proof
of security against ROM attacks, assuming OW-CPA security of the underlying PKE; and a
very recent KEM construction by Saito, Xagawa, and Yamakawa [48, Theorem 5.2] features a
tight proof of security against the broader class of QROM attacks, under somewhat stronger

15



assumptions. Dent’s theorem relies on the first three items in the list above, and the XYZ
theorem from [48] relies on the first, third, and fourth items. Both theorems also rely on
two PKE features that are provided by the PKE we use: the ciphertext is a deterministic
function of the input e, and there are no decryption failures for legitimate ciphertexts. The
theorems as stated do not apply directly to our KEM construction, but our preliminary
analysis indicates that the proof ideas do apply; see Section 6. The deterministic PKE, the
fact that decryption always works for legitimate ciphertexts, and the overall simplicity of
the KEM construction should make it possible to formally verify complete proofs, building
further confidence.

5 Detailed performance analysis (2.B.2)

5.1 Overview of implementations

We are supplying, as part of this submission, reference implementations for both of our
parameter sets, mceliece6960119 and mceliece8192128. Reference implementations are
designed for clarity, not performance, so measuring their performance is not meaningful.

We are also supplying, as part of this submission, two additional software implementations
for the larger parameter set, mceliece8192128. The sse implementation is (partially) vec-
torized using Intel’s 128-bit (SSE4.1) vector instructions, and in particular provides much
faster decapsulation performance than the ref implementation. The avx implementation is
(partially) further vectorized using Intel’s 256-bit vector instructions.

The sse and avx implementations are interoperable with the ref implementation, and pro-
duce identical test vectors. All three implementations are also designed to avoid all data flow
from secrets to timing,2 stopping timing attacks such as [53]. Formally verified protection
against timing attacks can be provided by a combination of architecture documentation as
recommended in [6] and [30], and timing-aware compilation as in [1].

We report measurements of the performance of mceliece8192128/avx as our speed esti-
mate for mceliece8192128 on the NIST PQC Reference Platform. To meet NIST’s formal
requirements, we also declare these numbers to be our current speed estimate for the smaller
mceliece6960119 parameter set. This is not an unreasonable estimate: the field size is the
same, and other sizes are similar.

We also report preliminary measurements of key generation and decoding in hardware from
an FPGA running a reference hardware design [58], for both parameter sets. The computa-
tions in McEliece’s cryptosystem are particularly well suited for hardware implementations.
The key generator is online at http://caslab.csl.yale.edu/code/keygen/.

2Each attempted key generation succeeds with probability about 29%, as mentioned earlier, so the total
time for key generation varies. However, the final successful key generation takes constant time, and it uses
separate random numbers from the unsuccessful key-generation attempts. In other words, the information
about secrets that is leaked through timing is information about secrets that are not used.
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5.2 Description of platforms

The software measurements were collected using supercop-20171020 running on a com-
puter named hiphop. The CPU on hiphop is an Intel Xeon E3-1220 v3 (Haswell) run-
ning at 3.10GHz. This CPU does not support hyperthreading. It does support Turbo
Boost but /sys/devices/system/cpu/intel_pstate/no_turbo was set to 1, disabling
Turbo Boost. hiphop has 32GB of RAM and runs Ubuntu 16.04. Benchmarks used
./do-part, which ran on one core of the CPU. The compiler list was reduced to just
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv.

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” hiphop is an Intel x64 running Linux and
supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

The hardware design was synthesized for and measured on a medium-sized Altera Stratix V
FPGA (5SGXEA7N).

5.3 Time

mceliece8192128 software: Encapsulation took slightly under 300000 cycles. Specifically,
the median of 31 timings in the first run was 296036 cycles; the median of 31 timings in the
second run was 295392 cycles; and the median of 31 timings in the third run was 295932
cycles.

Decapsulation took slightly over 450000 cycles. Specifically, the three medians were 458556
cycles, 458476 cycles, and 458340 cycles.

Key generation took billions of cycles, with medians of 4010278828 cycles, 6008245724 cycles
(about 2 seconds), and 4005886024 cycles. Each key-generation attempt took about 2 billion
cycles.

mceliece8192128 hardware: Each key-generation attempt takes 1173750 cycles, which is
5.08ms with the FPGA running at 231MHz. Decoding takes 17140 cycles, which is 0.074ms
with the FPGA running at 231MHz.

mceliece6960119 hardware: Each key-generation attempt takes 966400 cycles, which is
3.85ms with the FPGA running at 248MHz. Decoding takes 17055 cycles, which is 0.060ms
with the FPGA running at 248MHz.

5.4 Sizes of inputs and outputs

mceliece8192128 uses 1357824-byte public keys, 14080-byte private keys, 240-byte cipher-
texts, and 32-byte session keys.

mceliece6960119 uses 1047319-byte public keys, 13908-byte private keys, 226-byte cipher-
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texts, and 32-byte session keys.

5.5 Area

On the medium-sized Altera Stratix V FPGA described above, the mceliece8192128 hard-
ware design takes 227,750 registers (flip-flops), 129,059 ALMs (55% of available logic re-
sources), 1,126 RAM blocks (44% of available on-chip RAM), and 4 DSP blocks (1.6% of
available DSPs). The mceliece6960119 hardware design takes 223,232 registers (flip-flops),
121,806 ALMs (52% of logic resources), 961 RAM blocks (38% of available on-chip RAM),
and 6 DSP blocks (2.3% of available DSPs). Note that this includes only key generation and
decoding; full decapsulation and encapsulation will use more space, for example for hashing.

5.6 How parameters affect performance

The ciphertext size is n − k bits. Normally the rate R = k/n is chosen around 0.8 (see
Section 8), so the ciphertext size is around 0.2n bits, i.e., n/40 bytes, plus 32 bytes for
confirmation.

The public-key size is k(n−k) bits. For R ≈ 0.8 this is around 0.16n2 bits, i.e., n2/50 bytes.

Generating the public key uses n3+o(1) operations with standard Gaussian elimination. There
are asymptotically faster matrix algorithms. Private-key operations use just n1+o(1) opera-
tions with standard algorithms.

6 Expected strength (2.B.4) in general

This submission is designed and expected to provide IND-CCA2 security.

See Section 7 for the quantitative security of our two suggested parameter sets, and Section 8
for analysis of known attacks. The rest of this section analyzes the KEM from a provable-
security perspective.

6.1 Provable-security overview

In general, a security theorem for a cryptographic system C states that an attack A of type
T against C implies an attack A′ against an underlying problem P . Here are four important
ways to measure the quality of a security theorem:

• The security of the underlying problem P . The theorem is useless if P is easy to
break, and the value of the theorem is questionable if the security of P has not been
thoroughly studied.
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• The “tightness” of the theorem: i.e., the closeness of the efficiency ofA′ to the efficiency
of A. If A′ is much less efficient than A then the theorem does not rule out the
possibility that C is much easier to break than P .

• The type T of attacks covered by the theorem. The theorem does not rule out attacks
of other types.

• The level of verification of the proof.

Our original plan was to present a KEM with a theorem of the folowing type:

• P is exactly the thoroughly studied inversion (OW-CPA) problem for McEliece’s orig-
inal 1978 system.

• The theorem is extremely tight.

• The theorem covers all IND-CCA2 “ROM” (Random-Oracle Model) attacks. Roughly,
an attack of this type is an IND-CCA2 attack that works against any hash function
H, given access to an oracle that computes H on any input.

• The proof was already published by Dent [23, Theorem 8] fourteen years ago. The
proof is not very complicated, and should be within the range of current techniques
for computer verification of proofs.

However, a very recent paper by Saito, Xagawa and Yamakawa [48] indicates that it
is possible—without sacrificing tightness—to expand the attack type T from all IND-
CCA2 ROM attacks to all IND-CCA2 “QROM” (Quantum Random-Oracle Model) attacks.
Roughly, an attack of this type is an IND-CCA2 attack that works against any hash function
H, given access to an oracle that computes H on a quantum superposition of inputs.

An obstacle here is that Dent’s theorem and the Saito–Xagawa–Yamakawa theorem are
stated for different KEMs. Another obstacle is that, while Dent’s theorem is stated with OW-
CPA as the sole assumption, the Saito–Xagawa–Yamakawa theorem is stated with additional
assumptions.

To obtain the best of both worlds, we have designed a KEM that combines Dent’s frame-
work with the Saito–Xagawa–Yamakawa framework, with the goal of allowing both proof
techniques to apply. This has created a temporary sacrifice in the level of verification, but
we expect that complete proofs will be written and checked by the community in under a
year.

6.2 Abstract conversion

Abstractly, we are building a correct KEM given a correct deterministic PKE. We want the
KEM to achieve IND-CCA2 security, and we want this to be proven to the extent possible,
assuming that the PKE achieves OW-CPA security.

19



The PKE functionality is as follows. There is a set of public keys, a set of private keys,
a set of plaintexts, and a set of ciphertexts. There is a key-generation algorithm KeyGen
that produces a public key and a private key. There is a deterministic encryption algorithm
Encrypt that, given a plaintext and a public key, produces a ciphertext. There is a decryption
algorithm Decrypt that, given a ciphertext and a private key, produces a plaintext or a failure
symbol ⊥ (which is not a plaintext). We require that Decrypt(Encrypt(p,K), k) = p for every
(K, k) output by KeyGen() and every plaintext p.

We emphasize that Encrypt is not permitted to randomize its output: in other words, any
randomness used to produce a ciphertext must be in the plaintext recovered by decryption.
We also emphasize that Decrypt is not permitted to fail on valid ciphertexts; even a tiny
failure probability is not permitted. These requirements are satisfied by the PKE in this
submission, and the literature indicates that these requirements are helpful for security
proofs.

In this level of generality, our KEM is defined in two modular layers as follows, using three
hash functions H0, H1, H2. These hash functions can be modeled in proofs as independent
random oracles. If the hash output spaces are the same then this is equivalent to defining
Hi(x) = H(i, x) for a single random oracle H, since the input spaces are disjoint.

First layer. Write X for the original correct deterministic PKE. We define a modified
PKE X2 = ConfirmPlaintext(X,H2) as follows. This modified PKE is also a correct
deterministic PKE.

The modified key-generation algorithm KeyGen2 is the same as the original key-generation
algorithm KeyGen. The set of public keys is the same, and the set of private keys is the
same.

The modified encryption algorithm Encrypt2 is defined by Encrypt2(p,K) =
(Encrypt(p,K),H2(p)). The set of plaintexts is the same, and the modified set of
ciphertexts consists of pairs of original ciphertexts and hash values.

Finally, the modified decryption algorithm Decrypt2 is defined by Decrypt2((C, h), k) =
Decrypt(C, k).

Note that Decrypt2 does not check hash values: changing (C, h) to a different (C, h′) produces
the same output from Decrypt2. There was also no requirement for the original PKE X to
recognize invalid ciphertexts.

Second layer. We define a KEM RandomizeSessionKeys(X2,H1,H0) as follows, given
a correct deterministic PKE X2 with algorithms KeyGen2,Encrypt2,Decrypt2. This KEM is
a correct KEM.

Key generation:

1. Compute (K, k)← KeyGen2().
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2. Choose a uniform random plaintext s.

3. Output K as the public key, and (k,K, s) as the private key.

Encapsulation, given a public key K:

1. Choose a uniform random plaintext p.

2. Compute C ← Encrypt2(p,K).

3. Output C as the ciphertext, and H1(p, C) as the session key.

Decapsulation, given a ciphertext C and a private key (k,K, s):

1. Compute p′ ← Decrypt2(C, k).

2. If p′ = ⊥, set p′ ← s and b← 0. Otherwise set b← 1.

3. Compute C ′ ← Encrypt2(p
′, K).

4. If C 6= C ′, set p′ ← s and b← 0.

5. Output Hb(p
′, C) as the session key.

In other words:

• If there exists a plaintext p such that C = Encrypt2(p,K), then decapsulation outputs
H1(p, C). Indeed, p′ = Decrypt2(C, k) = p by correctness, so C ′ = Encrypt2(p,K) = C
and b = 1 throughout, so the output is H1(p, C).

• If there does not exist a plaintext p such that C = Encrypt2(p,K), then decapsulation
outputs H0(s, C). Indeed, the only way for b to avoid being set to 0 in Step 4 is to
have C ′ = Encrypt2(p

′, K), contradiction; so that step sets p′ to s and sets b to 0, and
decapsulation outputs H0(s, C).

6.3 Non-quantum reduction

The conversion by Dent requires nothing more than OW-CPA security for the underlying
PKE, and has a tight IND-CCA2 ROM proof, but for a different KEM. Compared to
Dent’s KEM, the most significant change in our KEM is the replacement of the ⊥ output
for decapsulation errors with a pseudorandom value. This variant is not new and similar
techniques have been used before for code-based schemes (e.g. [45, 46]). We expect that a
theorem along the following lines can be proven for our KEM, showing that this difference
does not have any sort of negative impact on the security proof.
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Expected Theorem 1 Let A be an IND-CCA2 adversary against the KEM, running in
time t, with advantage ε, that performs at most q decapsulation queries and at most q1 and
q2 queries to the independent uniform random oracles H1 and H2 respectively. Then there
exists an OW-CPA adversary A′ against the PKE, running in time t′, which is successful
with probability ε′, where

t′ ≤ t+ (q + q1 + q2)T,

ε′ ≥ ε− q

2`2
− q

#M
,

where T is the running time of encapsulation, `2 is the number of bits of H2 output, and #M
is the size of the plaintext space.

We now indicate the modifications that need to be made in the proof of [23, Theorem 8].
First of all, the auxiliary table used by the algorithm simulating H1 (called KDFList in [23])
now contains entries of the type (x0, x1, x2, K) to reflect the different form of the input. The
simulator works in exactly the same way, checking the table for previously queried values
and outputting a randomly-generated value for K otherwise. Then, we have to modify the
response to decapsulation queries. These receive the same input as in [23], and the simulator
behaves similarly. It first checks if there exists a preimage p that was already queried by
the hash simulator for H2 and is consistent with the ciphertext. But now, the simulator
has to output a value for K even if this check fails: it will simply call the key-generating
simulator for H0(s, C) rather than H1(p, C), where s is an independently generated element
as in an honest run of the key generation algorithm. This modification has no impact on
the simulation and the adversary learns no more than if it would have received ⊥ instead.
Note that the game is still halted if the adversary attempts to query the simulator on the
challenge ciphertext.

Apart from these modifications, the proof is expected to proceed in the same way, gener-
ating the same probability bound. The probability bound is a consequence of one of two
events occurring, none of which are impacted by the above modifications: the probability
of the adversary querying the decapsulation oracle on the challenge ciphertext before this is
generated, or querying it on the encapsulation of a string for which the hash oracle hasn’t
been queried.

6.4 Quantum reduction

As noted above, Saito, Xagawa, and Yamakawa very recently introduced a KEM construction
“XYZ” with a tight QROM theorem [48, Theorem 5.2]. This theorem, like Dent’s theorem,
requires the underlying PKE to be correct (no decryption error) and deterministic. It also
makes a stronger security assumption regarding the PKE: the PKE is required to satisfy a
new notion of security called PR-CPA, which guarantees that encryption keys and ciphertexts
can be indistinguishably replaced by “fake”, randomly-generated equivalents. More precisely,
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to be considered PR-CPA secure, an encryption scheme needs to satisfy the following three
requirements:

- PR-key security : adversary has negligible advantage to distinguish a real public key
from a fake one.

- PR-ciphertext security : adversary has negligible advantage to distinguish a real cipher-
text from a fake one when using a fake public key.

- Statistical disjointness : negligible probability that a fake ciphertext is in the range of
a real ciphertext obtained via a fake key.

See [48, Definition 3.1].

Our KEM construction has two differences from XYZ. First, there is an extra hash value
in the ciphertext. Second, the ciphertext is an extra input to the hash used to compute the
session key. We expect that a QROM theorem can be proven for our KEM as a composition
of the following two steps.

Step 1: Reduce to passive attacks. The proof in [48] can be decomposed into two
parts. The first part shows that decapsulation does not reveal any additional information:
i.e., all attacks are as difficult as passive attacks.

The original proof of the first part proceeds as follows. If decryption fails or reencryption
produces a different ciphertext, XYZ decapsulation outputs H0(s, C). The proof simulates
H0(s, C) with Hq(C), where Hq (using the notation from [48]) is a random oracle.

If decryption succeeds and reencryption produces the same ciphertext, XYZ decapsulation
outputs H1(p). The proof redefines H1(p) as Hq(Encrypt(p,K)); this does not change the
attack success probability, since H1 is again a random oracle. It is crucial to understand
that this is valid only since the attack doesn’t have access to Hq—except via decapsulation
failures, but those are disjoint inputs to Hq.

Now decapsulation outputs Hq(C) for all ciphertexts C, whether C itself is valid or invalid.
The attack using this decapsulation oracle has the same output as an attack that instead
uses an oracle for its own randomly chosen Hq.

For our KEM construction, decapsulation outputs H1(p, C) in the success case rather than
H1(p). We proceed analogously. First simulate H0(s, C) with Hq(C,C), where Hq is a random
oracle. Then redefine H1(p, C) as Hq(Encrypt(p,K), C); this is again a random oracle, and
again the inputs to Hq are disjoint between the valid and invalid cases. Finally, decapsulation
maps C to Hq(C,C) in all cases, regardless of the validity of C.

Step 2: Invoke the PR-CPA assumptions. The second part of the proof in [48] shows
that, given the PR-CPA assumptions, passive attacks are infeasible. We expect this part of
the proof to apply directly to our KEM construction, invoking the PR-CPA assumptions for
the modified PKE.
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We expect the PR-CPA assumptions for the modified PKE to be provable as follows from
the same assumptions for the original PKE. PR-key security is the same property for the
two PKEs, since KeyGen2 = KeyGen. PR-ciphertext security for the modified PKE for a
random oracle H2 should follow from PR-ciphertext security for the original PKE. Statistical
disjointness for the modified PKE is implied by statistical disjointness for the original PKE,
since identical ciphertexts for the modified PKE begin with identical ciphertexts for the
original PKE.

Plausibility of the PR-CPA assumptions for Classic McEliece. As noted in Sec-
tion 4, there is a long literature on information-set decoding, the fastest inversion attack
known against the McEliece PKE. This literature generally treats the problem of decoding
uniform random codes, and frequently observes that—in experiments—the attacks behave
the same way for uniform random binary Goppa codes. This behavior of attacks is sometimes
formalized and generalized to a hypothesis about all fast algorithms: namely, the genera-
tor matrix (or parity-check matrix) for a uniform random binary Goppa code is hard to
distinguish from the generator matrix (or parity-check matrix) for a uniform random code.

This hypothesis is the PR-key security assumption for this PKE. Cryptanalysis of this
hypothesis has focused mainly on key-recovery attacks, although, as noted earlier, there is a
paper [26] explicitly studying distinguishing attacks. None of these attacks threaten PR-key
security for our suggested parameters. This is not the same as saying that PR-key security
has been studied as thoroughly as OW-CPA security. Similarly, existing cryptanalysis of
PR-ciphertext security has focused mainly on inversion attacks. Statistical disjointness,
a statement about the sparsity of the range of the encryption function compared to the
ciphertext space, may be provable: a similar property “γ-uniformity” was proved by Cayrel,
Hoffmann, and Persichetti [14].

To summarize, there is already some work that can be viewed as studying the PR-CPA as-
sumptions. On the other hand, the assumptions go beyond the thoroughly studied McEliece
OW-CPA problem. A theorem assuming PR-CPA security, as in [48], is thus not a replace-
ment for a theorem assuming merely OW-CPA security, as in [23, Theorem 8]. Note that
the reduction to passive attacks is independent of this choice of assumption.

6.5 Relating the abstract conversion to the specification

The general specification in Section 2 can be viewed as the result of the following four steps:

• Start with the McEliece PKE. This PKE is correct and deterministic, and its OW-CPA
security has been thoroughly studied.

• Switch to Niederreiter’s dual PKE. This PKE is correct and deterministic, and its
OW-CPA security is tightly implied by the OW-CPA security of the McEliece PKE.

• Obtain a KEM by applying the ConfirmPlaintext conversion, followed by the
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RandomizeSessionKeys conversion. This KEM is correct, and its IND-CCA2 secu-
rity is the topic of the previous subsections.

• Apply three further optimizations discussed below. These optimizations preserve cor-
rectness, and they do not affect the IND-CCA2 security analysis.

The first optimization is as follows. Checking whether C = Encrypt2(p
′, K), with the knowl-

edge that p′ = Decrypt2(C, k), does not necessarily require a full Encrypt2 computation. In
particular, in Section 2, the decoding procedure is already guaranteed to output

• a weight-t vector whose syndrome is the input if such a vector exists, or

• ⊥ otherwise.

Checking whether C = Encrypt2(p
′, K) is thus a simple matter of checking H2(p

′).

The second optimization is as follows. The KEM private key (k,K, s) does not necessarily
need as much space as the space for k plus the space for K plus the space for s. For example,
if K can be computed efficiently from k, then it can be recomputed on demand, or optionally
cached. In Section 2, the situation is even simpler: decapsulation, with the first optimization,
does not look at K, so K is simply eliminated from the KEM private key.

The third optimization is that s is generated from a larger space than the plaintext space: it is
simpler to generate a uniform random n-bit string than to generate a uniform random weight-
t n-bit string. The set of s enters into the security analysis solely for the indistinguishability
of H0(s, C) from uniform random.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set kem/mceliece6960119

IND-CCA2 KEM, Category 5.

7.2 Parameter set kem/mceliece8192128

IND-CCA2 KEM, Category 5.

8 Analysis of known attacks (2.B.5)

8.1 Information-set decoding, asymptotically

There is a long literature studying algorithms to invert the McEliece PKE. See Section 4.1.
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The fastest attacks known use information-set decoding (ISD). The simplest form of ISD,
from 1962 Prange [47], tries to guess an error-free information set in the code. An information
set is, by definition, a set of positions that determines an entire codeword. The set is error-
free, by definition, if it avoids all of the error positions in the “received word”, i.e., the
ciphertext; then the ciphertext at those positions is exactly the codeword at those positions.
The attacker determines the rest of the codeword by linear algebra, and sees whether the
attack succeeded by checking whether the error weight is t.

One expects a random set of k positions to be an information set with reasonable probability,
the same 29% mentioned earlier. However, the chance of the set being error-free drops rapidly
as the number of errors increases. The following asymptotic statement holds for any real
number R with 0 < R < 1: if the code dimension k is (R+ o(1))n, and the number of errors
t is Θ(n/ log n), then the chance of a set being error-free is (1− R + o(1))t as n→∞. The
cost of ISD is thus (1/(1−R) + o(1))t.

Subsequent improvements to ISD have affected the o(1) but have not changed the constant
1/(1−R). See generally [10] and [54].

In the McEliece system, t is asymptotically (1 − R + o(1))n/lg n, so the assumption t ∈
Θ(n/ log n) holds.3 To summarize, the (OW-CPA) security level of the McEliece system
against all of these attacks is the n/lg n power of 1/(1−R)1−R + o(1).

Meanwhile the ciphertext size is (1−R+ o(1))n bits, and the key size is (R(1−R) + o(1))n2

bits. Security level 2b thus uses key size (C0+o(1))b2(lg b)2 where C0 = R/(1−R)(lg(1−R))2.
This C0 reaches its minimum value, approximately 0.7418860694, when R is approximately
0.7968121300.

8.2 Information-set decoding, concretely

We emphasize that o(1) does not mean 0: it means something that converges to 0 as n→∞.
More detailed attack-cost evaluation is therefore required for any particular parameters.

Our smaller parameter set mceliece6960119 takes m = 13, n = 6960, and t = 119. This pa-
rameter set was proposed in the attack paper [8] that broke the original McEliece parameters
(10, 1024, 50).

That paper reported that its attack uses 2266.94 bit operations to break the (13, 6960, 119)
parameter set. Subsequent ISD variants have reduced the number of bit operations consid-
erably below 2256. However:

• None of these analyses took into account the costs of memory access. A closer look
shows that the attack in [8] is bottlenecked by random access to a huge array (much

3Beware that some ISD papers instead measure their results for much larger t ∈ Θ(n), such as “half of
the GV distance”. This dramatically increases cost from 2Θ(n/lg n) to 2Θ(n). For example, [38] two years ago
reports O(20.0473n) when t is half of the GV distance, compared to O(20.0576n) from Prange 55 years ago.
As these numbers illustrate, this inflation of t also makes differences between algorithms more noticeable.
Such large error rates are of interest in coding theory but are not relevant to the McEliece system.
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larger than the public key being attacked), and that subsequent ISD variants use
even more memory. The same amount of hardware allows much more parallelism in
attacking, e.g., AES-256.

• Known quantum attacks multiply the security level of both ISD and AES by an asymp-
totic factor 0.5 + o(1), but a closer look shows that the application of Grover’s method
to ISD suffers much more overhead in the inner loop.

We expect that switching from a bit-operation analysis to a cost analysis will show that
this parameter set is more expensive to break than AES-256 pre-quantum and much more
expensive to break than AES-256 post-quantum.

8.3 Key recovery

A different inversion strategy is to find the private key (g, α1, . . . , αn). As noted earlier,
one should not think that this is as difficult as a brute-force search: one can determine the
sequence (α1, . . . , αn) from g and the set {α1, . . . , αn}, or alternatively determine g from
(α1, . . . , αn). See generally [36], [28], and [43]. The number of choices of g is more than
21500 for our smaller parameter set and more than 21600 for our larger parameter set. Known
symmetries provide only a small speedup. The number of choices of (α1, . . . , αn) is much
larger. Our smaller parameter set has an extra defense here, namely that there are a huge
number of possibilities for the set {α1, . . . , αn}.

In a multi-message attack scenario, the cost of finding the private key is spread across many
messages. There are also faster multi-message attacks that do not rely on finding the private
key; see, e.g., [31] and [51]. Rather than analyzing multi-message security in detail, we rely
on the general fact that attacking T targets cannot gain more than a factor T . Our expected
security levels are so high that this is not a concern for any foreseeable value of T .

8.4 Chosen-ciphertext attacks

A traditional approach to chosen-ciphertext attacks against the McEliece system is to add
(say) two errors to a ciphertext Gm + e. This is equivalent to adding two errors to e.
Decryption succeeds if and only if the resulting error vector has weight t, i.e., exactly one of
the two error positions was already in e. It is straightforward to find e from the pattern of
decryption failures. See, e.g., [57]. For a Niederreiter ciphertext He, one similarly adds two
errors to e by adjusting He appropriately.

There are two reasons that these attacks do not work against our submission. First, KEM
decapsulation forces the ciphertext to include a hash of e as a confirmation, and the attacker
has no way to compute the hash of a modified version of e without knowing e in the first
place. Second, the KEM does not reveal decryption failures: the modified ciphertext will
produce an unpredictable session key, whether or not the modified error vector has weight t.
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The confirmation allows attackers to check possibilities for e by checking their hashes. How-
ever, this is much less efficient than ISD.

9 Advantages and limitations (2.B.6)

The central advantage of this submission is security. See the design rationale.

Regarding efficiency, the use of random-looking linear codes with no visible structure forces
public-key sizes to be on the scale of a megabyte for quantitatively high security: the public
key is a full (generator/parity-check) matrix. Key-generation software is also not very fast.
Applications must continue using each public key for long enough to handle the costs of
generating and distributing the key.

There are, however, some compensating efficiency advantages. Encapsulation and decapsu-
lation are reasonably fast in software, and impressively fast in hardware, due to the simple
nature of the objects (binary vectors) and operations (such as binary matrix-vector mul-
tiplications). Key generation is also quite fast in hardware. The hardware speeds of key
generation and decoding are already demonstrated by our FPGA implementation. Encap-
sulation takes only a single pass over a public key, allowing large public keys to be streamed
through small coprocessors and small devices.

Furthermore, the ciphertexts are unusually small for post-quantum cryptography: under
256 bytes for our suggested high-security parameter sets. This allows ciphertexts to fit
comfortably inside single network packets. The small ciphertext size can be much more
important for total traffic than the large key size, depending on the ratio between how often
keys are sent and how often ciphertexts are sent. System parameters can be adjusted for
even smaller ciphertexts.
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Rapport de Recherche, number 122.

[16] Florent Chabaud. Asymptotic analysis of probabilistic algorithms for finding short
codewords. In Paul Camion, Pascale Charpin, and Sami Harari, editors, Eurocode ’92:
proceedings of the international symposium on coding theory and applications held in
Udine, October 23–30, 1992, pages 175–183. Springer, 1993.

[17] Tung Chou. McBits revisited. In Wieland Fischer and Naofumi Homma, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science, pages 213–231. Springer, 2017.

[18] George C. Clark, Jr. and J. Bibb Cain. Error-correcting coding for digital communica-
tion. Plenum, 1981.

[19] John T. Coffey and Rodney M. Goodman. The complexity of information set decoding.
IEEE Transactions on Information Theory, 35:1031–1037, 1990.

[20] John T. Coffey, Rodney M. Goodman, and P. Farrell. New approaches to reduced
complexity decoding. Discrete and Applied Mathematics, 33:43–60, 1991.

[21] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time attack on
Wild McEliece over quadratic extensions. IEEE Trans. Information Theory, 63(1):404–
427, 2017.

[22] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–
226, January 2004.

[23] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, 9th IMA International Conference, Cirencester, UK, Decem-
ber 16-18, 2003, Proceedings, volume 2898 of Lecture Notes in Computer Science, pages
133–151. Springer, 2003.

[24] Ilya I. Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Infor-
matsii, 25:24–32, 1989.

30



[25] Ilya I. Dumer. On minimum distance decoding of linear codes. In Grigori A. Kabatian-
skii, editor, Fifth joint Soviet-Swedish international workshop on information theory,
Moscow, 1991, pages 50–52, 1991.

[26] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich. A distinguisher for high-rate McEliece cryptosystems. IEEE Trans.
Information Theory, 59(10):6830–6844, 2013.

[27] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and In-
formation Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of
Lecture Notes in Computer Science, pages 88–105. Springer, 2009.

[28] J. K. Gibson. Equivalent Goppa codes and trapdoors to McEliece’s public key cryp-
tosystem. In Donald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91,
Workshop on the Theory and Application of of Cryptographic Techniques, Brighton,
UK, April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science,
pages 517–521. Springer, 1991.

[29] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information set
decoding. IACR Cryptology ePrint Archive, 2013:162, 2013. https://eprint.iacr.

org/2013/162.

[30] Gernot Heiser. For safety’s sake: we need a new hardware-software contract! IEEE
Design and Test, 2017. To appear.

[31] Thomas Johansson and Fredrik Jönsson. On the complexity of some cryptographic
problems based on the general decoding problem. IEEE Trans. Information Theory,
48(10):2669–2678, 2002.

[32] Evgueni A. Krouk. Decoding complexity bound for linear block codes. Problemy
Peredachi Informatsii, 25:103–107, 1989.

[33] Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Christoph G. Günther, editor, Advances in Cryptology
- EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic
Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330 of Lecture
Notes in Computer Science, pages 275–280. Springer, 1988.

[34] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Information Theory, 34(5):1354–1359, 1988.

[35] Gavriela Freund Lev, Nicholas Pippenger, and Leslie G. Valiant. A fast parallel al-
gorithm for routing in permutation networks. IEEE Trans. Computers, 30(2):93–100,
1981.

[36] Pierre Loidreau and Nicolas Sendrier. Weak keys in the McEliece public-key cryptosys-
tem. IEEE Trans. Information Theory, 47(3):1207–1211, 2001.

31

https://eprint.iacr.org/2013/162
https://eprint.iacr.org/2013/162


[37] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in 20.054n. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Pro-
ceedings, volume 7073 of Lecture Notes in Computer Science, pages 107–124. Springer,
2011.

[38] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
203–228. Springer, 2015.

[39] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. Tech-
nical report, NASA, 1978. http://ipnpr.jpl.nasa.gov/progressreport2/42-44/

44N.PDF.

[40] Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa codes.
In Michael J. Jacobson Jr., Vincent Rijmen, and Rei Safavi-Naini, editors, Selected Areas
in Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 376–392.
Springer, 2009.

[41] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In
Proceedings of the 2013 IEEE International Symposium on Information Theory, Istan-
bul, Turkey, July 7-12, 2013, pages 2069–2073. IEEE, 2013.

[42] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory, 15(2):159–166, 1986.

[43] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography,
pages 95–145. Springer Berlin Heidelberg, 2009.

[44] Edoardo Persichetti. Compact McEliece keys based on quasi-dyadic Srivastava codes.
J. Mathematical Cryptology, 6(2):149–169, 2012.

[45] Edoardo Persichetti. Secure and anonymous hybrid encryption from coding theory. In
Philippe Gaborit, editor, Post-Quantum Cryptography: 5th International Workshop,
PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, pages 174–187, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[46] Edoardo Persichetti. Code-based key encapsulation from McEliece’s cryptosystem. 2017.
http://arxiv.org/abs/1706.06306.

[47] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, IT-8:S5–S9, 1962.

32

http://ipnpr.jpl.nasa.gov/progress report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress report2/42-44/44N.PDF
http://arxiv.org/abs/1706.06306


[48] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. https://eprint.

iacr.org/2017/1005.

[49] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Trans. Information Theory, 46(4):1193–1203, 2000.

[50] Nicolas Sendrier, editor. Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, volume 6061 of
Lecture Notes in Computer Science. Springer, 2010.

[51] Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer Science,
pages 51–67. Springer, 2011.

[52] Jacques Stern. A method for finding codewords of small weight. In Gérard D. Cohen
and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd International
Colloquium, Toulon, France, November 2-4, 1988, Proceedings, volume 388 of Lecture
Notes in Computer Science, pages 106–113. Springer, 1988.

[53] Falko Strenzke. A timing attack against the secret permutation in the McEliece PKC.
In Sendrier [50], pages 95–107.

[54] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144–161. Springer,
2016.

[55] Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume
403 of Lecture Notes in Computer Science, pages 119–131. Springer, 1988.

[56] Johan van Tilburg. Security-analysis of a class of cryptosystems based on linear error-
correcting codes. PhD thesis, Technische Universiteit Eindhoven, 1994.

[57] Eric R. Verheul, Jeroen M. Doumen, and Henk C. A. van Tilborg. Sloppy Alice attacks!
Adaptive chosen ciphertext attacks on the McEliece public-key cryptosystem. In Mario
Blaum, Patrick G. Farrell, and Henk C. A. van Tilborg, editors, Information, coding and
mathematics, volume 687 of Kluwer International Series in Engineering and Computer
Science, pages 99–119. Kluwer, 2002.

[58] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter cryp-
tosystem using binary Goppa codes. Paper in submission, http://caslab.csl.yale.
edu/code/niederreiter/.

33

https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2017/1005
http://caslab.csl.yale.edu/code/niederreiter/
http://caslab.csl.yale.edu/code/niederreiter/


A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.
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A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementa-
tions that I have submitted, known as , is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

• I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as OR (check one
or both of the following):

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

may be covered by the following U.S. and/or foreign patents:

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.
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Signed:

Title:

Date:

Place:
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A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those
held by the submitter, the following statement must be signed by each and every owner, or
each owner’s authorized representative, of each patent and patent application identified.

I, , of ,
am the owner or authorized representative of the owner (print
full name, if different than the signer) of the following patent(s)
and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of
implementing the standard (check one):

• without compensation and under reasonable terms and conditions that are demonstrably
free of any unfair discrimination, OR

• under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination.

I further do hereby commit and agree to license such party on the same basis with respect
to any other patent application or patent hereafter granted to me, or owned or controlled by
me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring
ownership of each patent and patent application, provisions to ensure that the commitments
and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest of each patent and patent application, regardless
of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title:

Date:

Place:
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A.3 Statement by Reference/Optimized Implementations’
Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the sub-
mitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based
upon, distribute copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process, and implementation if the corre-
sponding cryptosystem is selected for standardization and as a standard, notwithstanding that
the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:
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