
Classic McEliece:

conservative code-based cryptography

10 October 2020

Principal submitter

This submission is from the following team, listed in alphabetical order:

� Martin R. Albrecht, Information Security Group, Royal Holloway, University of London
� Daniel J. Bernstein, University of Illinois at Chicago and Ruhr University Bochum
� Tung Chou, Academia Sinica
� Carlos Cid, Royal Holloway, University of London and Simula UiB
� Jan Gilcher, ETH Zürich
� Tanja Lange, Eindhoven University of Technology
� Varun Maram, ETH Zürich
� Ingo von Maurich, self
� Rafael Misoczki, Google
� Ruben Niederhagen, University of Southern Denmark
� Kenneth G. Paterson, ETH Zürich
� Edoardo Persichetti, Florida Atlantic University
� Christiane Peters, self
� Peter Schwabe, Max Planck Institute for Security and Privacy & Radboud University
� Nicolas Sendrier, Inria
� Jakub Szefer, Yale University
� Cen Jung Tjhai, PQ Solutions Ltd.
� Martin Tomlinson, PQ Solutions Ltd. and University of Plymouth
� Wen Wang, Yale University

E-mail address (preferred): authorcontact-mceliece-merged@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422. Postal address (if absolutely nec-
essary): Daniel J. Bernstein, Department of Computer Science, University of Illinois at
Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago, IL 60607–7053.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20190309.

1

Contents

1 Introduction 5

2 General algorithm specification (part of 2.B.1) 6

2.1 Notation and parameters . 6

2.1.1 Notation . 6

2.1.2 Parameters . 7

2.2 The one-way function . 7

2.2.1 Matrix reduction . 7

2.2.2 Matrix generation for Goppa codes 9

2.2.3 Encoding subroutine . 10

2.2.4 Decoding subroutine . 11

2.3 The Model Classic McEliece KEM . 12

2.3.1 Model key generation . 12

2.3.2 Model encapsulation . 13

2.3.3 Decapsulation . 13

2.4 The Classic McEliece KEM . 14

2.4.1 Irreducible-polynomial generation . 14

2.4.2 Field-ordering generation . 14

2.4.3 Key generation . 14

2.4.4 Fixed-weight-vector generation . 15

2.4.5 Encapsulation . 16

2.5 Bits and bytes . 16

2.5.1 Choices of symmetric-cryptography parameters 16

2.5.2 Representation of objects as byte strings 16

3 List of parameter sets (part of 2.B.1) 19

3.1 Parameter set kem/mceliece348864 . 19

3.2 Parameter set kem/mceliece348864f . 19

2

3.3 Parameter set kem/mceliece460896 . 19

3.4 Parameter set kem/mceliece460896f . 19

3.5 Parameter set kem/mceliece6688128 . 19

3.6 Parameter set kem/mceliece6688128f . 19

3.7 Parameter set kem/mceliece6960119 . 20

3.8 Parameter set kem/mceliece6960119f . 20

3.9 Parameter set kem/mceliece8192128 . 20

3.10 Parameter set kem/mceliece8192128f . 20

4 Design rationale (part of 2.B.1) 20

4.1 One-wayness . 20

4.2 Better efficiency for the same one-wayness 23

4.3 Indistinguishability against chosen-ciphertext attacks 25

4.4 Generation of random objects . 28

5 Detailed performance analysis (2.B.2) 32

5.1 Overview of implementations . 32

5.2 Time . 32

5.3 Space . 33

5.4 Description of platforms . 34

5.5 How parameters affect performance . 35

6 Expected strength (2.B.4) in general 35

6.1 Provable-security overview . 36

6.2 Abstract conversion . 37

6.3 The Dent framework: preliminary analysis 39

6.4 The SXY framework: preliminary analysis 40

6.5 Followup analyses . 42

6.6 Relating the abstract conversion to the specification 43

7 Expected strength (2.B.4) for each parameter set 43

3

7.1 Parameter set kem/mceliece348864 . 43

7.2 Parameter set kem/mceliece348864f . 44

7.3 Parameter set kem/mceliece460896 . 44

7.4 Parameter set kem/mceliece460896f . 44

7.5 Parameter set kem/mceliece6688128 . 44

7.6 Parameter set kem/mceliece6688128f . 44

7.7 Parameter set kem/mceliece6960119 . 44

7.8 Parameter set kem/mceliece6960119f . 44

7.9 Parameter set kem/mceliece8192128 . 44

7.10 Parameter set kem/mceliece8192128f . 44

8 Analysis of known attacks (2.B.5) 45

8.1 Information-set decoding, asymptotically . 45

8.2 Information-set decoding, concretely . 45

8.3 Key recovery . 46

8.4 Chosen-ciphertext attacks . 46

8.5 Side-channel attacks . 47

9 Advantages and limitations (2.B.6) 47

References 48

4

1 Introduction

The first code-based public-key cryptosystem was introduced in 1978 by McEliece [51]. The
public key specifies a random binary Goppa code. A ciphertext is a codeword plus ran-
dom errors. The private key allows efficient decoding: extracting the codeword from the
ciphertext, identifying and removing the errors.

The McEliece system was designed to be one-way (OW-CPA), meaning that an attacker
cannot efficiently find the codeword from a ciphertext and public key, when the codeword
is chosen randomly. The security level of the McEliece system has remained remarkably
stable, despite dozens of attack papers over 40 years. The original McEliece parameters were
designed for only 264 security, but the system easily scales up to “overkill” parameters that
provide ample security margin against advances in computer technology, including quantum
computers.

The McEliece system has prompted a tremendous amount of followup work. Some of this
work improves efficiency while clearly preserving security:1 this includes a “dual” PKE
proposed by Niederreiter [56], software speedups such as [9], and hardware speedups such as
[74].

Furthermore, it is now well known how to efficiently convert an OW-CPA PKE into a KEM
that is IND-CCA2 secure against all ROM attacks. This conversion is tight, preserving the
security level, under two assumptions that are satisfied by the McEliece PKE: first, the
PKE is deterministic (i.e., decryption recovers all randomness that was used); second, the
PKE has no decryption failures for valid ciphertexts. Even better, recent work [15] achieves
similar tightness for a broader class of attacks, namely QROM attacks. The risk that a hash-
function-specific attack could be faster than a ROM or QROM attack is addressed by the
standard practice of selecting a well-studied, high-security, “unstructured” hash function.

This submission Classic McEliece (CM) brings all of this together. It presents a KEM de-
signed for IND-CCA2 security at a very high security level, even against quantum comput-
ers. The KEM is built conservatively from a PKE designed for OW-CPA security, namely
Niederreiter’s dual version of McEliece’s PKE using binary Goppa codes. Every level of
the construction is designed so that future cryptographic auditors can be confident in the
long-term security of post-quantum public-key encryption.

1Other work includes McEliece variants whose security has not been studied as thoroughly. For example,
many proposals replace binary Goppa codes with other families of codes, and lattice-based cryptography
replaces “codeword plus random errors” with “lattice point plus random errors”. Code-based cryptography
and lattice-based cryptography are two of the main types of candidates identified in NIST’s call for Post-
Quantum Cryptography Standardization. This submission focuses on the classic McEliece system precisely
because of how thoroughly it has been studied.

5

2 General algorithm specification (part of 2.B.1)

2.1 Notation and parameters

2.1.1 Notation

The list below introduces the notation used in this section. It is meant as a reference guide
only; for complete definitions of the terms listed, refer to the appropriate text. Some other
symbols are also used occasionally; they are introduced in the text where appropriate.

n The code length (part of the CM parameters)

k The code dimension (part of the CM parameters)

t The guaranteed error-correction capability (part of the CM parameters)

q The size of the field used (part of the CM parameters)

m log2 q (part of the CM parameters)

µ A nonnegative integer (part of the CM parameters)

ν A nonnegative integer (part of the CM parameters)

H A cryptographic hash function (symmetric-cryptography parameter)

` Length of an output of H (symmetric-cryptography parameter)

σ1 A nonnegative integer (symmetric-cryptography parameter)

σ2 A nonnegative integer (symmetric-cryptography parameter)

G A pseudorandom bit generator (symmetric-cryptography parameter)

g A polynomial in Fq[x] (part of the private key)

αi An element of the finite field Fq (part of the private key)

Γ (g, α1, . . . , αn) (part of the private key)

s A bit string of length n (part of the private key)

T An (n− k)× k matrix over F2 (the CM public key)

e A bit string of length n and Hamming weight t

C A ciphertext encapsulating a session key

C0 A bit string of length n− k (part of the ciphertext)

C1 A bit string of length ` (part of the ciphertext)

Elements of Fn2 , such as codewords and error vectors, are always viewed as column vectors.
This convention avoids all transpositions. Beware that this differs from a common convention
in coding theory, namely to write codewords as row vectors but to transpose the codewords
for applying parity checks.

6

2.1.2 Parameters

The CM parameters are implicit inputs to the CM algorithms defined below. A CM param-
eter set specifies the following:

� A positive integer m. This also defines a parameter q = 2m.

� A positive integer n with n ≤ q.

� A positive integer t ≥ 2 with mt < n. This also defines a parameter k = n−mt.

� A monic irreducible polynomial f(z) ∈ F2[z] of degree m. This defines a representation
F2[z]/f(z) of the field Fq.

� A monic irreducible polynomial F (y) ∈ Fq[y] of degree t. This defines a representation
Fq[y]/F (y) of the field Fqt = F2mt .

� Integers ν ≥ µ ≥ 0 with ν ≤ k + µ. Parameter sets that do not mention these
parameters define them as (0, 0) by default.

� The symmetric-cryptography parameters listed below.

The symmetric-cryptography parameters are the following:

� A positive integer `.

� A cryptographic hash function H that outputs ` bits.

� An integer σ1 ≥ m.

� An integer σ2 ≥ 2m.

� A pseudorandom bit generator G mapping a string of ` bits to a string of n+σ2q+σ1t+`
bits.

2.2 The one-way function

2.2.1 Matrix reduction

Given a matrix X, Gaussian elimination computes the unique matrix R in reduced row-
echelon form having the same number of rows as X and the same row space as X. Being in
reduced row-echelon form means that there is a sequence c1 < c2 < · · · < cr such that

� row 1 of R begins with a 1 in column c1, and this is the only 1 in column c1;

� row 2 of R begins with a 1 in column c2, the only 1 in column c2;

� row 3 of R begins with a 1 in column c3, the only 1 in column c3;

� etc.;

� row r of R begins with a 1 in column cr, the only 1 in column cr; and

7

� all subsequent rows of R are 0.

Note that the rank of R is r.

Systematic form. As a special case, R is in systematic form if

� R has exactly r rows, i.e., there are no zero rows; and

� c1 = 1, c2 = 2, c3 = 3, and so on through cr = r. (This second condition is equivalent
to simply saying cr = r, except in the degenerate case r = 0.)

In other words, R has the form (Ir | T), where I is an r × r identity matrix. Reducing a
matrix X to systematic form means computing the unique systematic-form matrix having
the same row space as X, if such a matrix exists. One way to do this is as follows:

� Use Gaussian elimination to compute R in reduced row-echelon form.

� Return R if R is in systematic form, else ⊥.

Implementors should note that Gaussian elimination can be streamlined in this context by
using early aborts. One can begin by trying to reduce the initial columns to triangular form;
if the answer is ⊥ then one can skip reducing these columns to an identity matrix, and one
can skip the operations on the remaining columns. There must always be a nonzero entry
in column 1 (or else the answer is ⊥), then after elimination there must always be a nonzero
entry in column 2 (or else the answer is ⊥), etc.

Semi-systematic form. The following generalization of the concept of systematic form
uses two integer parameters µ, ν satisfying ν ≥ µ ≥ 0.

Let R be a rank-r matrix in reduced row-echelon form. Assume that r ≥ µ, and that there
are at least r − µ+ ν columns.

We say that R is in (µ, ν)-semi-systematic form if R has r rows (i.e., no zero rows); ci = i
for 1 ≤ i ≤ r − µ; and ci ≤ i − µ + ν for 1 ≤ i ≤ r. (The ci conditions are equivalent to
simply cr−µ = r − µ and cr ≤ r − µ+ ν except in the degenerate case r = µ.)

As a special case, (µ, ν)-semi-systematic form is equivalent to systematic form if µ = ν.
However, if ν > µ then (µ, ν)-semi-systematic form allows more matrices than systematic
form.

This specification gives various definitions first for the simpler case (µ, ν) = (0, 0) and then
for the general case. The list of selected parameter sets provides, for each key size, one
parameter set with (µ, ν) = (0, 0), and one parameter set labeled “f” with (µ, ν) = (32, 64).
See Section 4.2 for an explanation of why the (µ, ν) = (32, 64) case is of interest.

As in the special case of systematic form, one way to compute the (µ, ν)-semi-systematic
form is to compute the reduced row-echelon form R, and then output R if R is in (µ, ν)-
semi-systematic form. A more streamlined computation requires a nonzero entry in the first
column, then after elimination requires a nonzero entry in the second column, and so on for

8

the first r− µ columns; then computes the reduced row-echelon form of the next ν columns
of the bottom µ rows, and requires this submatrix to have rank µ; and then completes the
computation of reduced row-echelon form of the entire matrix.

2.2.2 Matrix generation for Goppa codes

The following algorithm MatGen takes as input Γ = (g, α1, α2, . . . , αn) where

� g is a monic irreducible polynomial in Fq[x] of degree t and

� α1, α2, . . . , αn are distinct elements of Fq.

The algorithm output MatGen(Γ) is defined first in the simpler case of systematic form,
and then in the general case of semi-systematic form. The output is either ⊥ or of the form
(T, . . .), where T is the CM public key, an (n− k)× k matrix over F2.

Systematic form. For (µ, ν) = (0, 0), the algorithm output MatGen(Γ) is either ⊥ or
of the form (T,Γ), where T is an (n− k)× k matrix over F2. Here is the algorithm:

1. Compute the t× n matrix H̃ = {hi,j} over Fq, where hi,j = αi−1j /g(αj) for i = 1, . . . , t
and j = 1, . . . , n.

2. Form an mt× n matrix Ĥ over F2 by replacing each entry u0 + u1z + · · ·+ um−1z
m−1

of H̃ with a column of m bits u0, u1, . . . , um−1.

3. Reduce Ĥ to systematic form (In−k | T), where In−k is an (n − k) × (n − k) identity
matrix. If this fails, return ⊥.

4. Return (T,Γ).

The input Γ = (g, α1, α2, . . . , αn), also provided as output, describes a binary Goppa code of
length n and dimension k = n−mt. The public key T is a binary (n− k)× k matrix such
that H = (In−k | T) is a parity-check matrix for the same Goppa code.

Semi-systematic form. For general µ, ν, the algorithm output MatGen(Γ) is either ⊥
or of the form (T, cn−k−µ+1, . . . , cn−k,Γ

′), where

� T is an (n− k)× k matrix over F2;

� cn−k−µ+1, . . . , cn−k are integers with n− k − µ < cn−k−µ+1 < cn−k−µ+2 < · · · < cn−k ≤
n− k − µ+ ν;

� Γ′ = (g, α′1, α
′
2, . . . , α

′
n);

� g is the same as in the input; and

� α′1, α
′
2, . . . , α

′
n are distinct elements of Fq.

Here is the algorithm:

9

1. Compute the t× n matrix H̃ = {hi,j} over Fq, where hi,j = αi−1j /g(αj) for i = 1, . . . , t
and j = 1, . . . , n.

2. Form an mt× n matrix Ĥ over F2 by replacing each entry u0 + u1z + · · ·+ um−1z
m−1

of H̃ with a column of m bits u0, u1, . . . , um−1.

3. Reduce Ĥ to (µ, ν)-semi-systematic form, obtaining a matrix H. If this fails, return ⊥.
(Now the ith row has its leading 1 in column ci. By definition of semi-systematic form,
c1 = 1, c2 = 2, and so on through cn−k−µ = n − k − µ; and n − k − µ < cn−k−µ+1 <
cn−k−µ+2 < · · · < cn−k ≤ n − k − µ + ν. The matrix H is a variable that can change
later.)

4. Set (α′1, α
′
2, . . . , α

′
n)← (α1, α2, . . . , αn). (Each α′i is a variable that can change later.)

5. For i = n−k−µ+1, then i = n−k−µ+2, and so on through i = n−k, in this order:
swap column i with column ci in H, while swapping α′i with α′ci . (After the swap, the
ith row has its leading 1 in column i. The swap does nothing if ci = i.)

6. The matrix H now has systematic form (In−k | T), where In−k is an (n− k)× (n− k)
identity matrix. Return (T, cn−k−µ+1, . . . , cn−k,Γ

′) where Γ′ = (g, α′1, α
′
2, . . . , α

′
n).

By construction {α′1, α′2, . . . , α′n} = {α1, α2, . . . , αn}, since (α′1, α
′
2, . . . , α

′
n) is obtained by

a series of swaps from (α1, α2, . . . , αn). More precisely, swaps take place only on indices
between n − k − µ + 1 and n − k − µ + ν, so α′i = αi for i ≤ n − k − µ; α′i = αi for
i > n− k − µ+ ν; and

{
α′n−k−µ+1, . . . , α

′
n−k−µ+ν

}
= {αn−k−µ+1, . . . , αn−k−µ+ν}.

As before, the input Γ = (g, α1, α2, . . . , αn) describes a binary Goppa code of length n and
dimension k = n −mt. The output Γ′ = (g, α′1, α

′
2, . . . , α

′
n) also describes a binary Goppa

code of length n and dimension k, a permuted version of the first code. The public key T is
a binary (n− k)× k matrix such that H = (In−k | T) is a parity-check matrix for the second
code.

In the special case (µ, ν) = (0, 0), the cn−k−µ+1, . . . , cn−k portion of the output is empty, and
the i loop is empty, so Γ′ is guaranteed to be the same as Γ. The reduction to (0, 0)-semi-
systematic form is exactly reduction to systematic form. The general algorithm definition
thus matches the (0, 0) algorithm definition.

2.2.3 Encoding subroutine

The following algorithm Encode takes two inputs: a weight-t column vector e ∈ Fn2 ; and a
public key T , i.e., an (n− k)× k matrix over F2. The algorithm output Encode(e, T) is a
vector C0 ∈ Fn−k2 . Here is the algorithm:

1. Define H = (In−k | T).

2. Compute and return C0 = He ∈ Fn−k2 .

10

2.2.4 Decoding subroutine

The following algorithm Decode decodes C0 ∈ Fn−k2 to a word e of Hamming weight wt(e) =
t with C0 = He if such a word exists; otherwise it returns failure.

Formally, Decode takes two inputs: a vector C0 ∈ Fn−k2 ; and Γ′, the last component of
MatGen(Γ) for some Γ such that MatGen(Γ) 6= ⊥. Write T for the first component of
MatGen(Γ). By definition of MatGen,

� T is an (n− k)× k matrix over F2;

� Γ′ has the form (g, α′1, α
′
2, . . . , α

′
n);

� g is a monic irreducible polynomial in Fq[x]; and

� α′1, α
′
2, . . . , α

′
n are distinct elements of Fq.

There are two possibilities for Decode(C0,Γ
′):

� If C0 = Encode(e, T) then Decode(C0,Γ
′) = e. In other words, if there exists a

weight-t vector e ∈ Fn2 such that C0 = He withH = (In−k | T), then Decode(C0,Γ
′) =

e.

� If C0 does not have the form He for any weight-t vector e ∈ Fn2 , then Decode(C0,Γ
′) =

⊥.

Here is the algorithm:

1. Extend C0 to v = (C0, 0, . . . , 0) ∈ Fn2 by appending k zeros.

2. Find the unique codeword c in the Goppa code defined by Γ′ that is at distance ≤t
from v. If there is no such codeword, return ⊥.

3. Set e = v + c.

4. If wt(e) = t and C0 = He, return e. Otherwise return ⊥.

There are several well-known algorithms for Step 2. For references and speedups see generally
[9] and [24].

To see why Decode works, note first that the “syndrome” Hv is C0, because the first n− k
positions of v are multiplied by the identity matrix and the remaining positions are zero. If
C0 has the form He where e has weight t then Hv = He, so c = v + e is a codeword. This
codeword has distance exactly t from v, and it is the unique codeword at distance ≤t from
v since the minimum distance of Γ′ is at least 2t + 1. Hence Step 2 finds c, Step 3 finds e,
and Step 4 returns e. Conversely, if Decode returns e in Step 4 then e has been verified to
have weight t and to have C0 = He, so if C0 does not have this form then Decode must
return ⊥.

The logic here relies on Step 2 always finding a codeword at distance t if one exists. It does
not rely on Step 2 failing in the cases that a codeword does not exist: Decode remains
correct if, instead of returning ⊥, Step 2 chooses some vector c ∈ Fn2 and continues on to

11

Step 3.

Implementors are cautioned that it is important to avoid leaking secret information through
side channels, and that the distinction between success and failure of Decode is secret in the
context of the Classic McEliece KEM. In particular, immediately stopping the computation
when Step 2 returns ⊥ would reveal this distinction through timing, so it is recommended
for implementors to have Step 2 always choose some c ∈ Fn2 .

The Decode definition refers to H, which one can compute via MatGen(Γ′) = (T, . . .).
However, this recomputation is not necessary. In order to test C0 = He, implementors can
use any parity-check matrix H ′ for the same code. The computation uses v = (C0, 0, . . . , 0)
and compares H ′v to H ′e. The results are equal if and only if v+ e = c is a codeword, which
implies He = H(v + c) = Hv +Hc = Hv = C0. There are various well-known choices of H ′

related to Ĥ that are recovered from Γ′ much more efficiently than MatGen, and that can
be applied to vectors without using quadratic space.

2.3 The Model Classic McEliece KEM

We first introduce the Model Classic McEliece KEM, which is not the actual Classic McEliece
KEM but is used as a stepping-stone in the analysis of Classic McEliece. The reasons for
defining these two KEMs are explained in detail in Section 4.4.

Model Classic McEliece uses ModelKeyGen from Section 2.3.1 for key generation and
ModelEncap from Section 2.3.2 for encapsulation. Classic McEliece uses KeyGen from
Section 2.4.3 for key generation and Encap from Section 2.4.5 for encapsulation. Model
Classic McEliece and Classic McEliece both use Decap from Section 2.3.3 for decapsulation.

2.3.1 Model key generation

The following randomized algorithm ModelKeyGen takes no input (beyond the parame-
ters). It outputs a public key and private key. Here is the algorithm:

1. Generate a uniform random n-bit string s.

2. Generate a uniform random monic irreducible polynomial g(x) ∈ Fq[x] of degree t.

3. Generate a uniform random sequence (α1, α2, . . . , αn) of n distinct elements of Fq.

4. Define Γ = (g, α1, α2, . . . , αn).

5. Compute (T, cn−k−µ+1, . . . , cn−k,Γ
′) = MatGen(Γ). If this fails, restart the algorithm.

(Recall that Γ′ = Γ in the case (µ, ν) = (0, 0).)

6. Output T as the public key, and (Γ′, s) as the private key.

12

2.3.2 Model encapsulation

The following randomized algorithm ModelEncap takes as input a public key T . It outputs
a ciphertext C and a session key K. Here is the algorithm:

1. Generate a uniform random vector e ∈ Fn2 of weight t.

2. Compute C0 = Encode(e, T).

3. Compute C1 = H(2, e); see Section 2.5.2 for H input encodings. Put C = (C0, C1).

4. Compute K = H(1, e, C); see Section 2.5.2 for H input encodings.

5. Output ciphertext C and session key K.

2.3.3 Decapsulation

The following algorithm Decap takes as input a ciphertext C and a private key, and outputs
a session key K. Here is the algorithm:

1. Split the ciphertext C as (C0, C1) with C0 ∈ Fn−k2 and C1 ∈ F`2.

2. Set b← 1.

3. Extract s ∈ Fn2 and Γ′ = (g, α′1, α
′
2, . . . , α

′
n) from the private key.

4. Compute e← Decode(C0,Γ
′). If e = ⊥, set e← s and b← 0.

5. Compute C ′1 = H(2, e); see Section 2.5.2 for H input encodings.

6. If C ′1 6= C1, set e← s and b← 0.

7. Compute K = H(b, e, C); see Section 2.5.2 for H input encodings.

8. Output session key K.

If C is a legitimate ciphertext then C = (C0, C1) with C0 = He for some e ∈ Fn2 of weight
t and C1 = H(2, e). The decoding algorithm will return e as the unique weight-t vector
and the C ′1 = C1 check will pass, thus b = 1 and K matches the session key computed in
encapsulation.

As an implementation note, the output of decapsulation is unchanged if “e ← s” in Step 4
is changed to assign something else to e. Implementors may prefer, e.g., to set e to a fixed
n-bit string, or a random n-bit string other than s. However, the definition of decapsulation
does depend on e being set to s in Step 6.

Implementors are again cautioned that it is important to avoid leaking secret information
through side channels. In particular, the distinction between failures in Step 4, failures
in Step 6, and successes is secret information, and branching would leak this information
through timing. It is recommended for implementors to always go through the same sequence
of computations, using arithmetic to simulate tests and conditional assignments.

13

2.4 The Classic McEliece KEM

2.4.1 Irreducible-polynomial generation

The following algorithm Irreducible takes a string of σ1t input bits d0, d1, . . . , dσ1t−1. It
outputs either ⊥ or a monic irreducible degree-t polynomial g ∈ Fq[x]. Here is the algorithm:

1. Define βj =
∑m−1

i=0 dσ1j+iz
i for each j ∈ {0, 1, . . . , t− 1}. (Within each group of σ1

input bits, this uses only the first m bits. The algorithm ignores the remaining bits.)

2. Define β = β0 + β1y + · · ·+ βt−1y
t−1 ∈ Fq[y]/F (y).

3. Compute the minimal polynomial g of β over Fq. (By definition g is monic and irre-
ducible, and g(β) = 0.)

4. Return g if g has degree t. Otherwise return ⊥.

2.4.2 Field-ordering generation

The following algorithm FieldOrdering takes a string of σ2q input bits. It outputs either
⊥ or a sequence (α1, α2, . . . , αq) of q distinct elements of Fq. Here is the algorithm:

1. Take the first σ2 input bits b0, b1, . . . , bσ2−1 as a σ2-bit integer a0 = b0 + 2b1 + · · · +
2σ2−1bσ2−1, take the next σ2 bits as a σ2-bit integer a1, and so on through aq−1.

2. If a0, a1, . . . , aq−1 are not distinct, return ⊥. (Implementors can merge this test into
the following sorting step.)

3. Sort the pairs (ai, i) in lexicographic order to obtain pairs (aπ(i), π(i)) where π is a
permutation of {0, 1, . . . , q − 1}.

4. Define

αi+1 =
m−1∑
j=0

π(i)j · zm−1−j

where π(i)j denotes the jth least significant bit of π(i). (Recall that the finite field Fq
is constructed as F2[z]/f(z).)

5. Output (α1, α2, . . . , αq).

2.4.3 Key generation

The following randomized algorithm KeyGen takes no input (beyond the parameters).
It outputs a public key and private key. Here is the algorithm, using a subroutine
SeededKeyGen defined below:

1. Generate a uniform random `-bit string δ. (This is called a seed.)

2. Output SeededKeyGen(δ).

14

The following algorithm SeededKeyGen takes an `-bit input δ. It outputs a public key
and private key. Here is the algorithm:

1. Compute E = G(δ), a string of n+ σ2q + σ1t+ ` bits.

2. Define δ′ as the last ` bits of E.

3. Define s as the first n bits of E.

4. Compute α1, . . . , αq from the next σ2q bits of E by the FieldOrdering algorithm.
If this fails, set δ ← δ′ and restart the algorithm.

5. Compute g from the next σ1t bits of E by the Irreducible algorithm. If this fails,
set δ ← δ′ and restart the algorithm.

6. Define Γ = (g, α1, α2, . . . , αn). (Note that αn+1, . . . , αq are not used here.)

7. Compute (T, cn−k−µ+1, . . . , cn−k,Γ
′) ← MatGen(Γ). If this fails, set δ ← δ′ and

restart the algorithm.

8. Write Γ′ as (g, α′1, α
′
2, . . . , α

′
n).

9. Output T as public key and (δ, c, g, α, s) as private key, where c = (cn−k−µ+1, . . . , cn−k)
and α = (α′1, . . . , α

′
n, αn+1, . . . , αq).

2.4.4 Fixed-weight-vector generation

The following randomized algorithm FixedWeight takes no input. It outputs a vector
e ∈ Fn2 of weight t. The algorithm uses a precomputed integer τ ≥ t defined below. Here is
the algorithm:

1. Generate σ1τ uniform random bits b0, b1, . . . , bσ1τ−1.

2. Define dj =
∑m−1

i=0 bσ1j+i2
i for each j ∈ {0, 1, . . . , τ − 1}.

3. Define a0, a1, . . . , at−1 as the first t entries in d0, d1, . . . , dτ−1 in the range
{0, 1, . . . , n− 1}. If there are fewer than t such entries, restart the algorithm.

4. If a0, a1, . . . , at−1 are not all distinct, restart the algorithm.

5. Define e = (e0, e1, . . . , en−1) ∈ Fn2 as the weight-t vector such that eai = 1 for each i.
(Implementors are cautioned to compute e through arithmetic rather than variable-
time RAM lookups.)

6. Return e.

The integer τ is defined as t if n = q; as 2t if q/2 ≤ n < q; as 4t if q/4 ≤ n < q/2; etc. All
of our selected parameters have q/2 ≤ n ≤ q, so τ ∈ {t, 2t}.

15

2.4.5 Encapsulation

The following randomized algorithm Encap takes as input a public key T . It outputs a
ciphertext C and a session key K. Here is the algorithm:

1. Use FixedWeight to generate a vector e ∈ Fn2 of weight t.

2. Compute C0 = Encode(e, T).

3. Compute C1 = H(2, e); see Section 2.5.2 for H input encodings. Put C = (C0, C1).

4. Compute K = H(1, e, C); see Section 2.5.2 for H input encodings.

5. Output ciphertext C and session key K.

This is identical to ModelEncap except in how the vector e is generated.

2.5 Bits and bytes

2.5.1 Choices of symmetric-cryptography parameters

All of our selected parameter sets use the following symmetric-cryptography parameters:

� The integer ` is 256.

� The `-bit string H(x) is defined as the first ` bits of output of SHAKE256(x). Byte
strings here are viewed as bit strings in little-endian form; see Section 2.5.2.

� The integer σ1 is 16. (All of the parameter sets have m ≤ 16, so σ1 ≥ m.)

� The integer σ2 is 32.

� The (n + σ2q + σ1t + `)-bit string G(δ) is defined as the first n + σ2q + σ1t + ` bits
of output of SHAKE256(64, δ). Here 64, δ means the 33-byte string that begins with
byte 64 and continues with δ.

All H inputs used in Classic McEliece begin with byte 0 or 1 or 2 (see Section 2.5.2), and
thus do not overlap the SHAKE256 inputs used in G.

2.5.2 Representation of objects as byte strings

Vectors over F2. If r is a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr2 is
represented as the following sequence of r/8 bytes:

(v0+2v1+4v2+· · ·+128v7, v8+2v9+4v10+· · ·+128v15, . . . , vr−8+2vr−7+4vr−6+· · ·+128vr−1).

If r is not a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr2 is zero-padded on
the right to length between r+1 and r+7, whichever is a multiple of 8, and then represented
as above.

16

We define Simply Decoded Classic McEliece as ignoring padding bits on input, and Narrowly
Decoded Classic McEliece as rejecting inputs (ciphertexts and public keys) where padding
bits are nonzero. These are equivalent for some parameter sets but not for all; see Section 4.3.
Our software implements Narrowly Decoded Classic McEliece.

Session keys. A session key K is an element of F`2. It is represented as a d`/8e-byte string.

Ciphertexts. A ciphertext C has two components: C0 ∈ Fn−k2 and C1 ∈ F`2. The cipher-
text is represented as the concatenation of the dmt/8e-byte string representing C0 and the
d`/8e-byte string representing C1.

Hash inputs. There are three types of hash inputs: (2, v); (1, v, C); and (0, v, C). Here
v ∈ Fn2 , and C is a ciphertext.

The initial 0, 1, or 2 is represented as a byte. The vector v is represented as the next dn/8e
bytes. The ciphertext, if present, is represented as the next dmt/8e+ d`/8e bytes.

All hash inputs thus begin with byte 0, 1, or 2, as mentioned earlier.

Public keys. The public key T , which is an mt× k matrix, is represented in a row-major
fashion. Each row of T is represented as a dk/8e-byte string, and the public key is represented
as the mtdk/8e-byte concatenation of these strings.

Field elements. Each element of Fq ∼= F2[z]/f(z) has the form
∑m−1

i=0 ciz
i where ci ∈ F2.

The representation of the field element is the representation of the vector (c0, c1, . . . , cm−1) ∈
Fm2 .

Monic irreducible polynomials. The monic irreducible degree-t polynomial g = g0 +
g1x + · · · + gt−1x

t−1 + xt is represented as tdm/8e bytes, namely the concatenation of the
representations of the field elements g0, g1, . . . , gt−1.

Field orderings. The obvious representation of a sequence (α1, . . . , αq) of q distinct ele-
ments of Fq would be as a sequence of q field elements. We specify a different representation
that simplifies fast constant-time decoding algorithms.

An “in-place Beneš network” is a series of 2m − 1 stages of swaps applied to an array of
q = 2m objects (a0, a1, . . . , aq−1). The first stage conditionally swaps a0 and a1, conditionally
swaps a2 and a3, conditionally swaps a4 and a5, etc., as specified by a sequence of q/2 control
bits (1 meaning swap, 0 meaning leave in place). The second stage conditionally swaps a0
and a2, conditionally swaps a1 and a3, conditionally swaps a4 and a6, etc., as specified by the
next q/2 control bits. This continues through the mth stage, which conditionally swaps a0

17

and aq/2, conditionally swaps a1 and aq/2+1, etc. The (m+1)st stage is just like the (m−1)st
stage (with new control bits), the (m + 2)nd stage is just like the (m − 2)nd stage, and so
on through the (2m− 1)st stage.

Define π as the permutation of {0, 1, . . . , q − 1} such that αi+1 =
∑m−1

j=0 π(i)j · zm−1−j for all

i ∈ {0, 1, . . . , q − 1}. The ordering (α1, . . . , αq) is represented as a sequence of (2m− 1)2m−1

control bits for an in-place Beneš network for π. This vector is represented as d(2m− 1)2m−4e
bytes as above.

Each permutation has multiple choices of control-bit vectors. To simplify testing, we require
that a permutation π be converted to specifically the control bits defined in [8] for π. Software
reading control bits does not check uniqueness.

As low-cost protection against faults in computing the control bits for π, implementors are
advised to check after the computation that applying the Beneš network produces π, and to
restart key generation if this test fails.

Column selections. Part of the private key generated by KeyGen is a sequence c =
(cn−k−µ+1, . . . , cn−k) of µ integers in increasing order between n − k − µ + 1 and n − k −
µ + ν. (This is not used in the algorithms here, but supports compression as explained in
Section 4.4.)

This sequence c is represented as an dν/8e-byte string, the little-endian format of the integer

µ−1∑
i=0

2cn−k−µ+1+i−(n−k−µ+1).

However, for (µ, ν) = (0, 0), the sequence c is instead represented as the 8-byte string which
is the little-endian format of 232− 1, i.e., 4 bytes of value 255 followed by 4 bytes of value 0.

The special handling of (µ, ν) = (0, 0) is designed so that a private key using (µ, ν) = (0, 0)
is compatible with decapsulation software using (µ, ν) = (32, 64), when all other parameters
are the same.

Private keys. A private key (δ, c, g, α, s) is represented as the concatenation of five parts:

� The d`/8e-byte string representing δ ∈ F`2.

� The string representing the column selections c. This string has dν/8e bytes, or 8 bytes
if (µ, ν) = (0, 0).

� The tdm/8e-byte string representing the polynomial g.

� The d(2m− 1)2m−4e bytes representing the field ordering α.

� The dn/8e-byte string representing s ∈ Fn2 .

18

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set kem/mceliece348864

KEM with m = 12, n = 3488, t = 64. Field polynomials f(z) = z12 + z3 + 1 and F (y) =
y64 + y3 + y + z. This parameter set is proposed and implemented in this submission.

3.2 Parameter set kem/mceliece348864f

KEM with m = 12, n = 3488, t = 64. Field polynomials f(z) = z12 + z3 + 1 and F (y) =
y64 + y3 + y + z. Semi-systematic parameters (µ, ν) = (32, 64). This parameter set is
proposed and implemented in this submission.

3.3 Parameter set kem/mceliece460896

KEM with m = 13, n = 4608, t = 96. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y96 + y10 + y9 + y6 + 1. This parameter set is proposed and implemented in this
submission.

3.4 Parameter set kem/mceliece460896f

KEM with m = 13, n = 4608, t = 96. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y96 +y10 +y9 +y6 +1. Semi-systematic parameters (µ, ν) = (32, 64). This parameter
set is proposed and implemented in this submission.

3.5 Parameter set kem/mceliece6688128

KEM with m = 13, n = 6688, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y + 1. This parameter set is proposed and implemented in this
submission.

3.6 Parameter set kem/mceliece6688128f

KEM with m = 13, n = 6688, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y+ 1. Semi-systematic parameters (µ, ν) = (32, 64). This parameter
set is proposed and implemented in this submission.

19

3.7 Parameter set kem/mceliece6960119

KEM with m = 13, n = 6960, t = 119. Field polynomials f(z) = z13 + z4 + z3 + z + 1
and F (y) = y119 + y8 + 1. This parameter set is proposed and implemented in this
submission.

3.8 Parameter set kem/mceliece6960119f

KEM with m = 13, n = 6960, t = 119. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y119 + y8 + 1. Semi-systematic parameters (µ, ν) = (32, 64). This parameter set is
proposed and implemented in this submission.

3.9 Parameter set kem/mceliece8192128

KEM with m = 13, n = 8192, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y + 1. This parameter set is proposed and implemented in this
submission.

3.10 Parameter set kem/mceliece8192128f

KEM with m = 13, n = 8192, t = 128. Field polynomials f(z) = z13 + z4 + z3 + z + 1 and
F (y) = y128 + y7 + y2 + y+ 1. Semi-systematic parameters (µ, ν) = (32, 64). This parameter
set is proposed and implemented in this submission.

4 Design rationale (part of 2.B.1)

4.1 One-wayness

There is a long history of trapdoor systems (in modern terminology: PKEs) that are designed
to be one-way (in modern terminology: OW-CPA). One-wayness means that it is difficult
to invert the map from input to ciphertext, given the public key, when the input is chosen
uniformly at random.

The McEliece system is one of the oldest proposals, almost as old as RSA. RSA has suffered
dramatic security losses, while the McEliece system has maintained a spectacular security
track record unmatched by any other proposals for post-quantum encryption. This is the
reason that we have chosen to submit the McEliece system.

Here is more detail to explain what we mean by “spectacular security track record”.

20

With the key-size optimizations discussed below, the McEliece system uses a key size of
(c0 + o(1))b2(lg b)2 bits to achieve 2b security against all inversion attacks that were known
in 1978, when the system was introduced. Here lg means logarithm base 2, o(1) means
something that converges to 0 as b→∞, and c0 ≈ 0.7418860694.

The best attack at that time was from 1962 Prange [61]. After 1978 there were 27 publications
studying the one-wayness of the system and introducing increasingly sophisticated non-
quantum attack algorithms:

1. 1981 Clark–Cain [25], crediting Omura.

2. 1988 Lee–Brickell [46].

3. 1988 Leon [47].

4. 1989 Krouk [42].

5. 1989 Stern [67].

6. 1989 Dumer [31].

7. 1990 Coffey–Goodman [26].

8. 1990 van Tilburg [71].

9. 1991 Dumer [32].

10. 1991 Coffey–Goodman–Farrell [27].

11. 1993 Chabanne–Courteau [22].

12. 1993 Chabaud [23].

13. 1994 van Tilburg [72].

14. 1994 Canteaut–Chabanne [18].

15. 1998 Canteaut–Chabaud [19].

16. 1998 Canteaut–Sendrier [20].

17. 2008 Bernstein–Lange–Peters [11].

18. 2009 Bernstein–Lange–Peters–van Tilborg [13].

19. 2009 Finiasz–Sendrier [34].

20. 2011 Bernstein–Lange–Peters [12].

21. 2011 May–Meurer–Thomae [49].

22. 2012 Becker–Joux–May–Meurer [3].

23. 2013 Hamdaoui–Sendrier [37].

24. 2015 May–Ozerov [50].

25. 2016 Canto Torres–Sendrier [69].

21

26. 2017 Both–May [16].

27. 2018 Both–May [17].

What is the cumulative impact of all this work? Answer: With the same key-size optimiza-
tions, the McEliece system uses a key size of (c0 + o(1))b2(lg b)2 bits to achieve 2b security
against all non-quantum attacks known today, where c0 is exactly the same constant. All of
the improvements have disappeared into the o(1).

This does not mean that the required key size is precisely the same—that dozens of attack
papers over 40 years have not accomplished anything. What it means is that the required
change in key size is below 1% once b is large enough; below 0.1% once b is large enough;
etc. This is a remarkably stable security story.

What about quantum attacks? Grover’s algorithm is applicable, reducing the attack cost
to asymptotically its square root; see generally [5]. In other words, the key now needs
(4c0 + o(1))b2(lg b)2 bits. As before, further papers on the topic have merely improved the
o(1).

All of the papers mentioned above are focusing on the most effective attack strategy known,
namely “information-set decoding”. This strategy does not exploit any particular structure of
a generator matrix G: it recovers a low-weight error vector e given a uniform random matrix
G and Gm + e for some m. Experiments are consistent with the theory that McEliece’s
matrices G behave like uniform random matrices in this context.

There are also many papers studying attacks that instead recover McEliece’s private key from
the public key G. Recovering the private key also breaks one-wayness, since the attacker can
then use the receiver’s decryption algorithm. These attacks can be much faster than a brute-
force search through private keys: for example, Sendrier’s “support splitting” algorithm [63]
quickly finds α1, . . . , αn given g provided that n = q. More generally, whether or not n = q,
support splitting finds α1, . . . , αn given g and given the set {α1, . . . , αn}. (This can be viewed
as a reason to keep n somewhat smaller than q, since then there are many possibilities for the
set, along with many possibilities for g; most of our proposed parameter sets provide this
extra defense.) However, despite this and other interesting speedups, the state-of-the-art
key-recovery attacks are vastly slower than information-set decoding.

Various authors have proposed replacing the binary Goppa codes in McEliece’s system with
other families of codes: see, e.g., [2, 4, 52, 56, 58, 53]. Often these replacements are advertised
as allowing smaller public keys. Unfortunately, many of these proposals have turned out to
allow unacceptably fast recovery of the private key (or of something equivalent to the private
key, something that allows fast inversion of the supposedly one-way function). Some small-
key proposals are unbroken, but in this submission we focus on binary Goppa codes as the
traditional, conservative, well-studied choice.

Authors of attacks on other codes often study whether binary Goppa codes are affected
by their attacks. These studies consistently show that McEliece’s system is far beyond all
known attacks. For example, 2013 Faugère–Gauthier-Umaña–Otmani–Perret–Tillich [33]
showed that “high-rate” binary Goppa codes can be distinguished from random codes. The

22

worst-case possibility is that this distinguisher somehow allows an inversion attack faster
than attacks for random codes. However, the distinguisher stops working

� at 8 errors for n = 1024 (where McEliece’s original parameters used 50 errors),

� at 20 errors for n = 8192 (where our proposed parameters use between 96 and 128
errors),

etc. As another example, the attack in [28] reaches degree m = 2 where McEliece’s original
parameters used degree m = 10 and where our proposed parameters use degree m = 12 or
m = 13.

4.2 Better efficiency for the same one-wayness

The main focus of this submission is security, but we also take reasonable steps to improve ef-
ficiency when this clearly does not compromise security. In particular, we make the following
two well-known modifications.

First modification. The goal of the public key in McEliece’s system is to communicate
an [n, k] linear code C over F2: a k-dimensional linear subspace of Fn2 . This means commu-
nicating the ability to generate uniform random elements of C. McEliece accomplished this
by choosing the public key to be a uniform random generator matrix G for C: specifically,
multiplying any generator matrix for C by a uniform random invertible matrix.

The first modification accomplishes this by instead choosing the public key to be the unique
systematic-form generator matrix for C if one exists. This means a generator matrix of

the form
(
T

Ik

)
where T is some (n − k) × k matrix and Ik is the k × k identity matrix.

Approximately 29% of choices of C have this form, so key generation requires about 3.4
attempts on average, but now the public key occupies only k(n− k) bits instead of kn bits.
Note that sending a systematic-form generator matrix also implies sending a parity-check
matrix H for C, namely (In−k | T).

Any attack against the limited set of codes allowed here implies an attack with probability
29% against the full set of codes allowed by McEliece; this is a security difference of at
most 2 bits. Furthermore, any attack against the systematic-form public key can be used to
attack any generator matrix for the same code, and in particular McEliece’s public key, since
anyone given any generator matrix can quickly compute the systematic-form public key by
linear algebra.

Second modification. McEliece’s ciphertext has the form Ga + e. Here G is a random
n×k generator matrix for a code C as above; a is a column vector of length k; e is a weight-t
column vector of length n; and the ciphertext is a column vector of length n. McEliece’s
inversion problem is to compute (a, e) given G and the ciphertext Ga + e, where a is a
uniform random column vector of length k; e is a uniform random weight-t column vector

23

of length n; and a, e are independent.

Niederreiter [56] instead suggested a ciphertext of the form He. Here H is a parity-check ma-
trix for C used as a public key, and e is a weight-t column vector of length n, so the ciphertext
is a column vector of length just n − k, shorter than McEliece’s ciphertext. Niederreiter’s
inversion problem is to compute e given H and the ciphertext He, where e is a uniform
random weight-t vector of length n.

For any distribution of parity-check matrices H publicly computable from the code C (e.g.,
the unique systematic-form parity-check matrix (In−k | T) defined above), Niederreiter’s
inversion problem is equivalent to McEliece’s inversion problem for the same code. In par-
ticular, any attack recovering e from Niederreiter’s He and H can be used with negligible
overhead to recover (a, e) from McEliece’s Ga + e and G. Specifically, given Ga + e and
G, compute a parity-check matrix H for the same code, multiply H by Ga + e to obtain
HGa+He = He, apply the attack to recover e from He, subtract e from Ga+ e to obtain
Ga, and recover a by linear algebra.

Semi-systematic form, continued. As a generalization (introduced by Chou) of the
idea of systematic form, we consider any key obtained as follows:

� Starting from the secret parity-check matrix for the code C, compute the unique parity-
check matrix in reduced row-echelon form.

� Start over with a new code if this matrix is not acceptable. This generalization is
parameterized by the definition of acceptability: e.g., one can define an acceptable
matrix as a matrix in (µ, ν)-semi-systematic form.

� Permute the matrix columns to reach systematic form, while permuting the code ac-
cordingly. This requires all acceptable matrices to have full rank.

It is important here for the second and third steps to depend only on the reduced row-echelon
form. This guarantees that any attack against the resulting public key can be converted into
an attack against McEliece’s public key: anyone can convert McEliece’s public key into the
parity-check matrix in reduced row-echelon form, and then follow the second and third steps.

Accepting only systematic-form matrices—i.e., (0, 0)-semi-systematic-form matrices—is the
simplest possibility, making implementations as easy as possible to write and audit. One
can argue that accepting more matrices produces a tighter security proof, but the original
tightness loss was at most 2 bits. The primary argument for accepting more matrices is
a performance argument, namely that this increases the success probability of each key-
generation attempt.

Accepting any full-rank matrix maximizes the success probability. On the other hand, the
analysis in [35] suggests that constant-time implementations of the first step will then be
very slow. Presumably this means that the overall key-generation time will be slower on
average, despite the improved success probability.

The concept of (µ, ν)-semi-systematic form is designed to take both the time and the success

24

probability into account. Compared to (µ, ν) = (0, 0), a small increase in µ and ν − µ
reduces and stabilizes the number of key-generation attempts. It is reasonable to estimate,
for example, that (µ, ν) = (32, 64) reduces the failure probability of each attempt below
2−30, so most of the time one needs only 1 key-generation attempt. This attempt requires
extra work for a constant-time echelon-form computation, but only within ν columns, which
is not a large issue when ν is kept reasonably small.

We have three reasons for continuing to propose (0, 0)-semi-systematic-form computations.
First, we also speed up these computations, skipping most of the work in Gaussian elimi-
nation in the failure cases and thus reducing the average key-generation time. Second, it is
not clear how often users will generate new keys, and as a result it is not clear how much
users will care about the speedups from (32, 64)-semi-systematic form. Third, there is value
in simplicity.

4.3 Indistinguishability against chosen-ciphertext attacks

Assume that McEliece’s system is one-way. Niederreiter’s system is then also one-way: the
attacker cannot efficiently compute a uniform random weight-t vector e given Niederreiter’s
public key H and the ciphertext He.

What the user actually needs is more than one-wayness. The user is normally sending a
plaintext with structure, perhaps a plaintext that can simply be guessed. Furthermore, the
attacker can try modifying ciphertexts to see how the receiver reacts. McEliece’s original
PKE was not designed to resist, and does not resist, such attacks. In modern terminology,
the user needs IND-CCA2 security.

There is a long literature studying the IND-CCA2 security of various PKE constructions,
and in particular constructions built from an initial PKE assumed to have OW-CPA secu-
rity. An increasingly popular simplification here is to encrypt the user’s plaintext with an
authenticated cipher such as AES-GCM. The public-key problem is then simply to send
an unpredictable session key to use as the cipher key. Formally, our design goal here is
to build a KEM with IND-CCA2 security; “KEM-DEM” composition [29] then produces a
PKE with IND-CCA2 security, assuming a secure DEM. More complicated PKE construc-
tions can pack some plaintext bytes into the ciphertext but are more difficult to audit and
would be contrary to our goal of producing high confidence in security.

For our KEM construction we follow the best practices established in the literature:

� We use a uniform random PKE input e. We compute the session key as a hash of e.

� Our ciphertext is the original ciphertext plus a “confirmation”: another cryptographic
hash of e.

� After using the private key to compute e from a ciphertext, we recompute the ciphertext
(including the confirmation) and check that it matches.

� If decryption fails (i.e., if computing e fails or the recomputed ciphertext does not

25

match), we do not return a KEM failure: instead we return a pseudorandom function
of the ciphertext, specifically a cryptographic hash of a separate private key and the
ciphertext.

We use a standard, thoroughly studied cryptographic hash function. We ensure that the
three hashes mentioned above are obtained by applying this function to input spaces that
are visibly disjoint. We choose the input details to simplify implementations that run in
constant time, in particular not leaking whether decryption failed.

There are intuitive arguments for these practices, and the same practices already had benefits
for partial security proofs available at the time of our round-1 submission:

� A KEM construction published in a classic 2003 paper by Dent [30, Section 6] features
a tight proof of security against ROM attacks, assuming OW-CPA security of the
underlying PKE. This theorem relies on the first three items in the list above.

� A much more recent KEM construction by Saito, Xagawa, and Yamakawa [62] features
a tight proof of security against the broader class of QROM attacks, under somewhat
stronger assumptions. This theorem relies on the first, third, and fourth items.

Both theorems also rely on two PKE features that are provided by the PKE we use: the
ciphertext is a deterministic function of the input e, and there are no decryption failures for
legitimate ciphertexts. At the time of our round-1 submission, the theorems stated in the
literature did not apply directly to our KEM construction, but we included a preliminary
analysis indicating that the proof ideas do apply, and subsequent analysis confirmed this;
see Section 6. The deterministic PKE, the fact that decryption always works for legitimate
ciphertexts, and the overall simplicity of the KEM construction should make it possible to
formally verify complete proofs, building further confidence.

IND-CCA2 for encodings. Ciphertexts are normally encoded as byte strings and then
further encoded as objects in higher-level protocols. Encodings in network protocols and in
other applications are, in general, not unique: there are many objects that will decode to
the same ciphertext.

Shoup [66] refers to this non-uniqueness property as “benign malleability”. It is possible to
construct applications where this property loses security. There is a debate in the literature
as to whether this should be addressed

� in applications, by the rule of acting on encoded ciphertexts solely by decoding and
decapsulating them, or

� in decoders, by the rule of enforcing unique encodings for ciphertexts.

A generic reencoding wrapper converts a deterministic decoder (and deterministic encoder)
into a decoder following the second rule, by rejecting any encoded ciphertext C different from
the encoding of the decoding of C. A similar wrapper that rewrites ciphertexts, without
rejecting them, converts an application into an application following the first rule.

Given any encoding, one can extend the definition of IND-CCA2 for ciphertexts into a

26

definition of IND-CCA2 for encoded ciphertexts. The rule of enforcing unique encodings
makes the second definition equivalent to the first. The rule of acting on encoded ciphertexts
solely by decoding and decapsulating them makes the second definition unnecessary.

The literature contains many other extensions of IND-CCA2. There are arguments that
the extended properties are easy for cryptosystems to achieve and can protect applications.
There are counterarguments saying that the same security can be achieved in a simpler way
by another layer of the system. Consider, e.g., Shoup’s argument in [66, Section 3.3] that
KEMs should avoid hashing “labels” such as identities since “it is easier to implement labels
in the data encapsulation mechanism”.

Encodings as byte strings are within the scope of Classic McEliece. To provide clarity for
applications that want to enforce unique encodings as byte strings, we distinguish between

� Narrowly Decoded Classic McEliece, which requires padding bits (not just for encoded
ciphertexts but also for encoded public keys) to be 0 on decoding, and

� Simply Decoded Classic McEliece, which ignores padding bits on decoding.

A wrapper that requires the padding bits to be 0 converts an implementation of Simply
Decoded Classic McEliece into an implementation of Narrowly Decoded Classic McEliece.
A wrapper that clears the padding bits converts an implementation of Narrowly Decoded
Classic McEliece into an implementation of Simply Decoded Classic McEliece.

Simply Decoded Classic McEliece and Narrowly Decoded Classic McEliece are equivalent for
our selected non-6960 parameter sets, since only the 6960 parameter sets use padding bits.
For the 6960 parameter sets, our software implements Narrowly Decoded Classic McEliece
by checking the appropriate bits of public keys and ciphertexts. This check is handled in
constant time, for applications where “public” keys and ciphertexts are actually confidential
(e.g., obtained as outputs of another layer of decryption). In case applications fail to check
return values, the encapsulation software sets all bits to 0 in its ciphertext and session-key
output buffers in case of bad padding, and the decapsulation software sets all bits to 1 in
its session-key output buffer in case of bad padding. The difference between 0 and 1 here is
designed so that a cascade of several possible failures (bad padding in a public key, ignoring
the encapsulation failure, bad padding in a ciphertext, and ignoring the decapsulation failure)
will produce two different session keys that will not interoperate in typical DEMs, increasing
the chance of the failures being caught by tests.

Further malleability is possible in private keys, not just because of padding bits but because
there are multiple sequences of control bits that represent the same permutation. Also,
modifying one bit in a public key has a significant chance of not affecting any particular
ciphertext, and various linear-algebra operations on public keys have predictable effects on
ciphertexts. These obvious properties of Classic McEliece have no effect on our IND-CCA2
security goal, but one can make other definitions that are affected by these properties.
Application designers are encouraged to assume solely the standard IND-CCA2 property,
and in any case to be clear regarding the properties that they assume.

27

4.4 Generation of random objects

A widely deployed RSA prime-generation algorithm was broken by ROCA [55]. Nothing
was shown to be wrong with the underlying source of random bytes, or the primality of each
output p, or the interval containing p, or the entropy of p, namely 256 bits. The problem
was that, for efficiency, the algorithm generated primes with a special structure that could
be exploited by the attacker.

This algorithm was compliant with RSA specifications that asked for “random” primes p in
an interval. It was not compliant with RSA specifications that asked for “uniform random”
primes p in an interval, since the distribution of p was not uniform, but formally such
specifications prohibit almost all RSA implementations: any PRNG converting (say) 256
bits of entropy into a 1024-bit prime p is producing a non-uniform output distribution.

PRNGs are good for testability, so standards should allow cryptographic modules to generate
a prime p from a PRNG. How does the cryptographic module validator assess whether the
prime p is sufficiently random?

If RSA security reviewers have considered uniform random private keys (p, q), then there is
no loss of security from any distribution of (p, q) that is indistinguishable from uniform. It
therefore suffices for the validator to ask whether the algorithm to generate (p, q) is generating
a distribution indistinguishable from uniform. A weaker divergence property (see, e.g., [7])
suffices for “search” security properties such as signature security and OW-CPA.

The standard PRNG objective is to generate a byte string indistinguishable from a uniform
random byte string. This is analogous to generating primes indistinguishable from uniform
random primes, but it is not the same. To close the gap, some standards specify algorithms
to deterministically convert byte strings into private keys (p, q); see, e.g., [54, Appendix
B.3.3]. The security goal for such an algorithm is to convert a uniform random byte string
into (p, q) indistinguishable from uniform. If the algorithm meets this goal, and is applied to
a byte string indistinguishable from uniform, then it produces (p, q) indistinguishable from
uniform. A weaker divergence property again suffices for some applications.

This structure means that there is a process of specifying, reviewing, and approving algo-
rithms to generate RSA keys: not just tests for primality, but complete algorithms to convert
random bytes into private keys. The cryptographic module validator checks whether the im-
plementation is using an approved private-key-generation algorithm and an approved source
of random bytes.

Random objects in Classic McEliece. The same issues arise in post-quantum cryp-
tography. In particular, key generation in the Model Classic McEliece KEM, defined using
ModelKeyGen from Section 2.3.1, asks for a uniform random sequence (α1, . . . , αn) of
n distinct elements of Fq, and a uniform random monic irreducible polynomial g of degree
t. Even if an implementation is using an approved source of random bytes, how does the
cryptographic module validator assess whether an implementation is generating a sufficiently
random sequence (α1, . . . , αn) and a sufficiently random g?

28

To answer these questions, we define deterministic algorithms Irreducible and
FieldOrdering designed to convert uniform random byte strings into sufficiently ran-
dom g and (α1, . . . , αq) respectively, and on top of this we define a deterministic algorithm
SeededKeyGen that converts a 32-byte seed into a private key. We then define KeyGen
for the Classic McEliece KEM to apply SeededKeyGen to a uniform random 32-byte seed.

Specifying ModelKeyGen gives a simple definition of the Model Classic McEliece KEM
for review of the IND-CCA2 security property. A separate review of the relationship between
KeyGen and ModelKeyGen then transports the IND-CCA2 security property from the
Model Classic McEliece KEM to the Classic McEliece KEM. The cryptographic module
validator then checks that an implementation is correctly implementing SeededKeyGen
and is starting from an approved source of 32 random bytes for KeyGen.

This structure is compatible with specifying, reviewing, and approving future alternatives
to SeededKeyGen, for example because performance analysis finds faster secure key-
generation methods.

Compression of private keys. Classic McEliece private keys are much smaller than
public keys, but there may be interest in compressing them further.

The KeyGen structure explained above, deterministically mapping a 32-byte seed to a
private key, implies that a private key can be compressed to these 32 bytes. Uncom-
pression then means running SeededKeyGen again. We have designed various details of
SeededKeyGen, and of the private-key format, to support a slightly different compression
mechanism for which uncompression is much faster than key generation.

The main bottleneck in key generation is reducing a parity-check matrix to systematic form
(or semi-systematic form), and starting over with a new key-generation attempt if the matrix
reduction fails. However, as explained earlier, the resulting public key is not needed for
decapsulation. The data flow from the matrix reduction to the private key consists solely of
(1) knowing whether (g, α1, . . . , αn) has been rejected and (2) a permutation of (α1, . . . , αn)
into (α′1, . . . , α

′
n) for the generalization to semi-systematic form.

SeededKeyGen starts with a seed δ and deterministically maps δ to (g, α1, . . . , αn, δ
′).

If (g, α1, . . . , αn) is rejected, SeededKeyGen replaces δ with δ′ and starts over. This
structure supports a compression mechanism that stores the final seed, a seed known to pass
the rejection-sampling process, rather than the initial seed. Uncompression then simply
maps the final seed δ to the final (g, α1, . . . , αn), without any matrix operations.

For the generalization to semi-systematic form, uncompression needs to compute
(α′1, . . . , α

′
n), not just (α1, . . . , αn). The permutation of (α1, . . . , αn) into (α′1, . . . , α

′
n) is

fully specified by a ν-bit string of weight µ encoding c = (cn−k−µ+1, . . . , cn−k): e.g., a 64-bit
string of weight 32 when (µ, ν) = (32, 64).

We organize the objects (δ, c, g, α, s) in a private key so that four natural compression mech-
anisms each consist of simple truncation:

29

� Truncation to (δ, c, g, α) saves n/8 bytes in the private key, and regenerating s from δ
requires simply (the first) n/8 bytes of SHAKE256 output.

� Truncation to (δ, c, g) requires more work to regenerate α but saves much more space.

� Truncation to (δ, c) requires a minimal-polynomial computation to regenerate g but
compresses to just 40 bytes.

� Truncation to the 32-byte seed δ suffices for systematic form.

We could encode c as 0 bytes for systematic form. We instead encode it as 8 bytes so
that a systematic-form private key can also be used by implementations that expect a semi-
systematic-form private key. This avoids the need for key-format specifications to distin-
guish systematic form from semi-systematic form when all other parameters are the same:
systematic-form private keys are simply the special case of semi-systematic-form private keys
in which these 8 bytes are (255, 255, 255, 255, 0, 0, 0, 0).

The private key is specified to record an ordering (α′1, . . . , α
′
n, αn+1, . . . , αq) of the field Fq as a

sequence of control bits for a Beneš network. Most of our parameters have n < q, and no use
is made of (αn+1, . . . , αq), so another way to save space is to list just (α′1, . . . , α

′
n). One can

apply the corresponding permutation by sorting, which is slower than a Beneš network but
avoids the need to compute control bits. One can also apply the corresponding permutation
through RAM lookups, but implementors are cautioned that this leaks information through
timing on many platforms. Specifying control bits as the default representation of α has
the advantage of encouraging constant-time implementations. All implementations should
be reviewed for timing leaks and other applicable side-channel leaks in any case.

Out of all 256-bit seeds, under 30% of seeds are accepted for systematic form. The final
seed has only about 254 bits of entropy and, like most private keys in most cryptographic
algorithms, is efficiently distinguishable from uniform. A search through seeds still costs
more than AES-256 key search.

Field ordering. The FieldOrdering algorithm interprets a uniform random 4q-byte
input string as a uniform random sequence of 32-bit integers a0, a1, . . . , aq−1. This sequence
is rejected if and only if it contains fewer than q distinct elements. The sequence is accepted
with probability (1 − 1/232)(1 − 2/232) · · · (1 − (q − 1)/232), which is more than 0.99 if
q ≤ 213, and more than 0.6 if q ≤ 216. (This description focuses on our choice σ2 = 32.
Parameters with q > 216 would take more than 32 bits in each integer by definition of σ2, so
the acceptance probability would still be more than 0.6.)

An accepted sequence is a uniform random sequence of distinct 32-bit integers a0, a1, . . . , aq−1.
There is then a unique permutation that sorts (a0, a1, . . . , aq−1), and the output is the same
permutation applied to an initial ordering of Fq. The permutation is a uniform random
permutation, so the output is a uniform random ordering of Fq.

Omitting the rejection would produce a permutation distinguishable from uniform, but would
still suffice for almost exactly the same OW-CPA security level by a divergence argument.
See [7].

30

Irreducible polynomial. The Irreducible algorithm extracts mt input bits from a
uniform random 2t-byte input string, and interprets the mt bits as a uniform random element
β of Fq[y]/F (y). The algorithm returns the minimal polynomial g of β over Fq if g has degree
t; otherwise it fails. (This description focuses on our choice σ1 = 16, with m ≤ 16.)

Any particular monic irreducible degree-t polynomial g has exactly t roots in Fq[y]/F (y),
and is thus found by exactly t of the 2mt possibilities for β, i.e., exactly t216t−mt of the
possibilities for the 16t-bit input string. The distribution of g is thus uniform. Uniformity
is again overkill here: having low divergence would suffice.

Well-known formulas for the number of irreducible polynomials (equivalently, the observation
that the algorithm fails exactly when β is in a proper subfield of Fq[y]/F (y)) imply that this
algorithm succeeds with probability more than 99% when t ≥ 16.

Fixed-weight vector in encapsulation. ModelEncap begins by generating a uniform
random n-bit vector of weight t. This again raises a question for cryptographic module
validators regarding how these vectors are generated. Encap instead calls FixedWeight,
which calls a traditional RNG that produces a stream of bits.

This RNG can in turn generate output from a series of seeds as in key generation, allowing
a ciphertext to be compressed to the final seed. See [10] for an application. The same
compression approach works for rejection sampling in much more generality.

FixedWeight generates a uniform random n-bit vector e = (e0, e1, . . . , en−1) of weight
t by generating a uniform random sequence (a0, a1, . . . , at−1) of t distinct integers in
{0, 1, . . . , n− 1}, and using those integers as the support of e.

FixedWeight generates this uniform random sequence by generating a uniform random se-
quence (a0, a1, . . . , at−1) of integers in {0, 1, . . . , n− 1}, and then starting over if the integers
are not distinct. Each try succeeds with probability (1 − 1/n)(1 − 2/n) · · · (1 − (t − 1)/n),
which is above 1/4 for each of our selected parameter sets. (The alternative e-generation
method in [7] guarantees its run time, but FixedWeight is essentially always faster.)

Generating a uniform random sequence (a0, a1, . . . , at−1) of integers in {0, 1, . . . , q − 1} is a
simple matter of collecting uniform random bits. For n < q, one well-known way to generate
a uniform random stream of integers in {0, 1, . . . , n− 1} is by rejection sampling on a uniform
random stream of integers in {0, 1, . . . , q − 1}. If n is below q/2 then it is more efficient to
begin with integers in {0, 1, . . . , q/2− 1}, and similar comments apply if n is below q/4 etc.,
but we skip these refinements since all of our parameters have n > q/2.

FixedWeight uses a batch of τ integers in {0, 1, . . . , q − 1}, and applies rejection sampling
to generate a batch of integers in {0, 1, . . . , n− 1}, say u integers, where u is between 0 and
τ . For each u, the integers in {0, 1, . . . , n− 1} are uniform. Consequently, if u ≥ t, the first t
integers in {0, 1, . . . , n− 1} are uniform as desired. Batch processing simplifies parallelization
and vectorization, and some standard RNGs are much more efficient at generating a large
batch of random bits than at generating the same volume of data in small chunks.

31

The probability of u ≥ t is the sum of the coefficients of xt, xt+1, . . . , xτ in (1−n/q+(n/q)x)τ .
This probability is above 0.96 for (m,n, t) = (13, 4608, 96), and much closer to 1 for our other
selected parameters.

There would be a slight savings in time from reducing τ below 2t. With smaller batch sizes it
would also save time to handle the case u < t differently: instead of discarding the u integers
already found in {0, 1, . . . , n− 1}, keep those integers and use the next batch to extend
the list of integers. This would reduce the number of iterations required, at the expense of
tracking state between iterations. As long as the selection process sees only whether integers
are in {0, 1, . . . , n− 1} or not, the resulting integers in {0, 1, . . . , n− 1} are uniform.

5 Detailed performance analysis (2.B.2)

5.1 Overview of implementations

We are supplying 40 software implementations as part of this submission:

� There are five proposed parameter sets using systematic form: mceliece348864,
mceliece460896, mceliece6960119, mceliece6688128, and mceliece8192128.

� There are also five proposed parameter sets using semi-systematic form:
mceliece348864f, mceliece460896f, mceliece6960119f, mceliece6688128f, and
mceliece8192128f.

� Each of these ten parameter sets has a ref implementation (designed for clarity, not
performance); a vec implementation (vectorizing across the 64 bits in a long long);
an sse implementation (using the Intel/AMD 128-bit vector instructions); and an
avx implementation (using the Intel/AMD 256-bit vector instructions). These four
implementations are interoperable and produce identical test vectors.

All of the implementations are designed to avoid all data flow from secrets to timing,2

stopping timing attacks such as [68]. Formally verified protection against timing attacks can
be provided by a combination of architecture documentation as recommended in [6] and [38],
and timing-aware compilation as in [1].

5.2 Time

Table 1 reports speeds of the avx implementations on an Intel Haswell CPU core described in
more detail below. For comparison, the mceliece8192128 software originally submitted for

2Each attempted key generation (for the non-f variants) succeeds with probability about 29%, as men-
tioned earlier, so the total time for key generation varies. However, the final successful key generation takes
constant time, and it uses separate random numbers from the unsuccessful key-generation attempts. In other
words, the information about secrets that is leaked through timing is information about secrets that are not
used.

32

operation quartile median average quartile
mceliece348864 keypair 35492688 46526112 58034411 68561244
mceliece348864f keypair 36612936 36627388 36641040 36645716
mceliece460896 keypair 119530424 158155696 215785433 236056616
mceliece460896f keypair 116896272 116914656 117067765 116938560
mceliece6688128 keypair 364883936 458561448 556495649 738637632
mceliece6688128f keypair 284363176 284468140 284584602 284551052
mceliece6960119 keypair 249975756 330214944 438217685 490873872
mceliece6960119f keypair 246252520 246291008 246508730 246336840
mceliece8192128 keypair 316082088 409854088 514489441 594965680
mceliece8192128f keypair 316118712 316166640 316202817 316221040
mceliece348864 enc 42812 43832 44350 44872
mceliece460896 enc 111140 115540 117782 121460
mceliece6688128 enc 143540 149080 151721 154632
mceliece6960119 enc 156212 159116 161224 163412
mceliece8192128 enc 175840 177480 178093 178688
mceliece348864 dec 134056 134184 134745 134324
mceliece460896 dec 270444 270856 271694 271048
mceliece6688128 dec 322756 322988 323957 323148
mceliece6960119 dec 300448 300688 301480 301072
mceliece8192128 dec 325624 325744 326531 325904

Table 1: Time for complete cryptographic functions on an Intel Haswell CPU core. All times are
expressed in CPU cycles. Statistics are computed across SUPERCOP’s default 93 experiments.
The f variants have different keypair algorithms but identical enc algorithms and identical dec
algorithms.

round 1 took about 2 billion cycles for each key-generation attempt (and on average about
6 billion cycles for total key generation), slightly under 300000 cycles for encapsulation, and
slightly over 450000 cycles for decapsulation. The round-2 submission reached approximately
the current speeds for encapsulation and decapsulation, took 1.28 billion cycles on average
for mceliece8192128 key generation, and took 0.68 billion cycles for mceliece8192128f key
generation. The software in this submission generates keys more than twice as quickly.

Table 2 reports measurements of a separate FPGA implementation of the core mathematical
functions (not including, e.g., hashing). The computations in McEliece’s cryptosystem are
particularly well suited for hardware implementations; see [74] and https://caslab.csl.

yale.edu/code/niederreiter/.

5.3 Space

Table 3 reports sizes of inputs and outputs. Note the small ciphertext sizes (including 32
bytes for confirmation), about half the size of compressed SIKE ciphertexts that claim the
same security levels, and much smaller than lattice ciphertexts that claim the same security

33

https://caslab.csl.yale.edu/code/niederreiter/
https://caslab.csl.yale.edu/code/niederreiter/

FPGA keypair enc dec Fmax LUT FF BRAM
cycles cycles cycles MHz

Area optimized

mceliece348864 Artix-7 1599882 2720 15638 108.1 25327 49383 168
mceliece460896 Artix-7 5002044 3360 27645 107.0 38669 74858 303
mceliece6688128 Virtex-7 12389742 5024 47309 136.1 44345 83637 446
mceliece6960119 Virtex-7 11179636 5413 40728 140.5 44154 88963 563
mceliece8192128 Virtex-7 15185314 6528 48802 134.2 45150 88154 525

Area and time balanced

mceliece348864 Artix-7 482893 2720 12036 104.8 39766 70453 213
mceliece460896 Artix-7 1383104 3360 18771 108.0 57134 97056 349
mceliece6688128 Virtex-7 3346231 5024 32145 143.4 66615 111299 492
mceliece6960119 Virtex-7 3086064 5413 26617 136.2 63629 115580 509
mceliece8192128 Virtex-7 4115427 6528 33640 131.3 67457 115819 572

Time optimized

mceliece348864 Artix-7 202787 2720 10023 105.6 81339 132190 236
mceliece460896 Virtex-7 515806 3360 14571 130.8 109484 168939 446
mceliece6688128 Virtex-7 1046139 5024 24730 136.6 122624 186194 589
mceliece6960119 Virtex-7 974306 5413 19722 130.0 116928 188324 607
mceliece8192128 Virtex-7 1286179 6528 26237 129.9 123361 190707 589

Table 2: Performance of core mathematical operations on FPGAs. We provide numbers for three
performance parameter sets: one for small area, one for small runtime, and one for balanced time
and area.

levels. Classic McEliece is used in the PQ-WireGuard [40] VPN, which beyond security is
“mainly concerned about ciphertext size”.

Another aspect of space is RAM usage. McTiny [10] shows how clients can stream ephemeral
Classic McEliece keys through a tiny network server to set up new sessions, with the server
immediately handling each network packet and not allocating any RAM per client.

5.4 Description of platforms

The software measurements were collected using supercop-20200906 running on a com-
puter named titan0. The CPU on titan0 is an Intel Xeon E3-1275 v3 (Haswell) run-
ning at 3.50GHz. This CPU does not support hyperthreading. It does support Turbo
Boost but /sys/devices/system/cpu/intel_pstate/no_turbo was set to 1, disabling
Turbo Boost. titan0 has 32GB of RAM and runs Ubuntu 18.04. Benchmarks used
./do-part, which ran on one core of the CPU. The compiler list was reduced to just
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv.

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” titan0 is an Intel x64 running Linux and

34

Public key Private key Ciphertext Session key
mceliece348864 261120 6492 128 32
mceliece348864f 261120 6492 128 32
mceliece460896 524160 13608 188 32
mceliece460896f 524160 13608 188 32
mceliece6688128 1044992 13932 240 32
mceliece6688128f 1044992 13932 240 32
mceliece6960119 1047319 13948 226 32
mceliece6960119f 1047319 13948 226 32
mceliece8192128 1357824 14120 240 32
mceliece8192128f 1357824 14120 240 32

Table 3: Sizes of inputs and outputs to the complete cryptographic functions. All sizes are
expressed in bytes.

supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

The hardware design was synthesized using Vivado v2018.3. Some of the hardware designs for
smaller parameter sets fit into an Artix-7 XC7A200T FPGA, and in these cases performance
numbers are reported on that FPGA. In the remaining cases, performance numbers on a
Virtex-7 XC7V2000T FPGA are reported instead. BRAM is shown in the unit of RAMB36.

5.5 How parameters affect performance

The ciphertext size is n − k bits. Normally the rate R = k/n is chosen around 0.8 (see
Section 8), so the ciphertext size is around 0.2n bits, i.e., n/40 bytes, plus 32 bytes for
confirmation.

The public-key size is k(n−k) bits. For R ≈ 0.8 this is around 0.16n2 bits, i.e., n2/50 bytes.

Generating the public key uses n3+o(1) operations with standard Gaussian elimination. There
are asymptotically faster matrix algorithms. Private-key operations use just n1+o(1) opera-
tions with standard algorithms.

6 Expected strength (2.B.4) in general

This submission is designed and expected to provide IND-CCA2 security.

See Section 7 for the quantitative security of our proposed parameter sets, and Section 8 for
analysis of known attacks. The rest of this section analyzes the KEM from a provable-security
perspective.

35

6.1 Provable-security overview

In general, a security theorem for a cryptographic system C states that an attack A of type
T against C implies an attack A′ against an underlying problem P . Here are four important
ways to measure the quality of a security theorem:

� The security of the underlying problem P . The theorem is useless if P is easy to
break, and the value of the theorem is questionable if the security of P has not been
thoroughly studied.

� The “tightness” of the theorem: i.e., the closeness of the efficiency ofA′ to the efficiency
of A. If A′ is much less efficient than A then the theorem does not rule out the
possibility that C is much easier to break than P .

� The type T of attacks covered by the theorem. The theorem does not rule out attacks
of other types.

� The level of verification of the proof.

Our original plan in preparing the round-1 Classic McEliece submission was to present a
KEM with a theorem of the following type:

� P is exactly the thoroughly studied inversion (OW-CPA) problem for McEliece’s orig-
inal 1978 system.

� The theorem is extremely tight.

� The theorem covers all IND-CCA2 “ROM” (Random-Oracle Model) attacks. Roughly,
an attack of this type is an IND-CCA2 attack that works against any hash function
H, given access to an oracle that computes H on any input.

� The proof was already published by Dent [30, Theorem 8] in 2003. The proof is not
very complicated, and should be within the range of current techniques for computer
verification of proofs.

Shortly before round-1 submissions were due, a paper by Saito, Xagawa and Yamakawa [62]
indicated that it was possible—without sacrificing tightness—to expand the attack type T
from all IND-CCA2 ROM attacks to all IND-CCA2 “QROM” (Quantum Random-Oracle
Model) attacks. Roughly, an attack of this type is an IND-CCA2 attack that works against
any hash function H, given access to an oracle that computes H on a quantum superposition
of inputs.

In our round-1 submission we wrote the following:

An obstacle here is that Dent’s theorem and the Saito–Xagawa–Yamakawa theo-
rem are stated for different KEMs. Another obstacle is that, while Dent’s theorem
is stated with OW-CPA as the sole assumption, the Saito–Xagawa–Yamakawa
theorem is stated with additional assumptions.

To obtain the best of both worlds, we have designed a KEM that combines
Dent’s framework with the Saito–Xagawa–Yamakawa framework, with the goal

36

of allowing both proof techniques to apply. This has created a temporary sacrifice
in the level of verification, but we expect that complete proofs will be written
and checked by the community in under a year.

Our round-1 submission included preliminary analyses of both frameworks, and then followup
analyses in the literature gave complete proofs applicable to our KEM. We include the
story here. Section 6.2 presents the abstract KEM design; Sections 6.3 and 6.4 repeat the
preliminary analyses given in our round-1 submission regarding the two proof frameworks;
Section 6.5 summarizes the followup analyses in the literature; and Section 6.6 explains how
the abstract KEM design relates to the specification of Classic McEliece.

6.2 Abstract conversion

Abstractly, we are building a correct KEM given a correct deterministic PKE. We want the
KEM to achieve IND-CCA2 security, and we want this to be proven to the extent possible,
assuming that the PKE achieves OW-CPA security.

The PKE functionality is as follows. There is a set of public keys, a set of private keys,
a set of plaintexts, and a set of ciphertexts. There is a key-generation algorithm KeyGen
that produces a public key and a private key. There is a deterministic encryption algorithm
Encrypt that, given a plaintext and a public key, produces a ciphertext. There is a decryption
algorithm Decrypt that, given a ciphertext and a private key, produces a plaintext or a failure
symbol ⊥ (which is not a plaintext). We require that Decrypt(Encrypt(p,K), k) = p for every
(K, k) output by KeyGen() and every plaintext p.

We emphasize that Encrypt is not permitted to randomize its output: in other words, any
randomness used to produce a ciphertext must be in the plaintext recovered by decryption.
We also emphasize that Decrypt is not permitted to fail on valid ciphertexts; even a tiny
failure probability is not permitted. These requirements are satisfied by the PKE in this
submission, and the literature indicates that these requirements are helpful for security
proofs.

In this level of generality, our KEM is defined in two modular layers as follows, using three
hash functions H0, H1, H2. These hash functions can be modeled in proofs as independent
random oracles. If the hash output spaces are the same then this is equivalent to defining
Hi(x) = H(i, x) for a single random oracle H, since the input spaces are disjoint.

First layer. Write X for the original correct deterministic PKE. We define a modified
PKE X2 = ConfirmPlaintext(X,H2) as follows. This modified PKE is also a correct
deterministic PKE.

The modified key-generation algorithm KeyGen2 is the same as the original key-generation
algorithm KeyGen. The set of public keys is the same, and the set of private keys is the
same.

37

The modified encryption algorithm Encrypt2 is defined by Encrypt2(p,K) =
(Encrypt(p,K),H2(p)). The set of plaintexts is the same, and the modified set of
ciphertexts consists of pairs of original ciphertexts and hash values.

Finally, the modified decryption algorithm Decrypt2 is defined by Decrypt2((C, h), k) =
Decrypt(C, k).

Note that Decrypt2 does not check hash values: changing (C, h) to a different (C, h′) produces
the same output from Decrypt2. There was also no requirement for the original PKE X to
recognize invalid ciphertexts.

Second layer. We define a KEM RandomizeSessionKeys(X2,H1,H0) as follows, given
a correct deterministic PKE X2 with algorithms KeyGen2,Encrypt2,Decrypt2. This KEM is
a correct KEM.

Key generation:

1. Compute (K, k)← KeyGen2().

2. Choose a uniform random plaintext s.

3. Output K as the public key, and (k,K, s) as the private key.

Encapsulation, given a public key K:

1. Choose a uniform random plaintext p.

2. Compute C ← Encrypt2(p,K).

3. Output C as the ciphertext, and H1(p, C) as the session key.

Decapsulation, given a ciphertext C and a private key (k,K, s):

1. Compute p′ ← Decrypt2(C, k).

2. If p′ = ⊥, set p′ ← s and b← 0. Otherwise set b← 1.

3. Compute C ′ ← Encrypt2(p
′, K).

4. If C 6= C ′, set p′ ← s and b← 0.

5. Output Hb(p
′, C) as the session key.

In other words:

� If there exists a plaintext p such that C = Encrypt2(p,K), then decapsulation outputs
H1(p, C). Indeed, p′ = Decrypt2(C, k) = p by correctness, so C ′ = Encrypt2(p,K) = C
and b = 1 throughout, so the output is H1(p, C).

� If there does not exist a plaintext p such that C = Encrypt2(p,K), then decapsulation
outputs H0(s, C). Indeed, the only way for b to avoid being set to 0 in Step 4 is to
have C ′ = Encrypt2(p

′, K), contradiction; so that step sets p′ to s and sets b to 0, and
decapsulation outputs H0(s, C).

38

6.3 The Dent framework: preliminary analysis

The following text is repeated from our round-1 submission. Readers interested in the latest
analyses can skip to Section 6.5.

The conversion by Dent requires nothing more than OW-CPA security for the underlying
PKE, and has a tight IND-CCA2 ROM proof, but for a different KEM. Compared to
Dent’s KEM, the most significant change in our KEM is the replacement of the ⊥ output
for decapsulation errors with a pseudorandom value. This variant is not new and similar
techniques have been used before for code-based schemes (e.g. [59, 60]). We expect that a
theorem along the following lines can be proven for our KEM, showing that this difference
does not have any sort of negative impact on the security proof.

Expected Theorem 1 Let A be an IND-CCA2 adversary against the KEM, running in
time t, with advantage ε, that performs at most q decapsulation queries and at most q1 and
q2 queries to the independent uniform random oracles H1 and H2 respectively. Then there
exists an OW-CPA adversary A′ against the PKE, running in time t′, which is successful
with probability ε′, where

t′ ≤ t+ (q + q1 + q2)T,

ε′ ≥ ε− q

2`2
− q

#M
,

where T is the running time of encapsulation, `2 is the number of bits of H2 output, and #M
is the size of the plaintext space.

We now indicate the modifications that need to be made in the proof of [30, Theorem 8].
First of all, the auxiliary table used by the algorithm simulating H1 (called KDFList in [30])
now contains entries of the type (x0, x1, x2, K) to reflect the different form of the input. The
simulator works in exactly the same way, checking the table for previously queried values
and outputting a randomly-generated value for K otherwise. Then, we have to modify the
response to decapsulation queries. These receive the same input as in [30], and the simulator
behaves similarly. It first checks if there exists a preimage p that was already queried by
the hash simulator for H2 and is consistent with the ciphertext. But now, the simulator
has to output a value for K even if this check fails: it will simply call the key-generating
simulator for H0(s, C) rather than H1(p, C), where s is an independently generated element
as in an honest run of the key generation algorithm. This modification has no impact on
the simulation and the adversary learns no more than if it would have received ⊥ instead.
Note that the game is still halted if the adversary attempts to query the simulator on the
challenge ciphertext.

Apart from these modifications, the proof is expected to proceed in the same way, gener-
ating the same probability bound. The probability bound is a consequence of one of two
events occurring, none of which are impacted by the above modifications: the probability
of the adversary querying the decapsulation oracle on the challenge ciphertext before this is

39

generated, or querying it on the encapsulation of a string for which the hash oracle hasn’t
been queried.

6.4 The SXY framework: preliminary analysis

The following text is repeated from our round-1 submission. Readers interested in the latest
analyses can skip to Section 6.5.

As noted above, Saito, Xagawa, and Yamakawa very recently introduced a KEM construction
“XYZ” with a tight QROM theorem [62, Theorem 5.2]. This theorem, like Dent’s theorem,
requires the underlying PKE to be correct (no decryption error) and deterministic. It also
makes a stronger security assumption regarding the PKE: the PKE is required to satisfy a
new notion of security called PR-CPA, which guarantees that encryption keys and ciphertexts
can be indistinguishably replaced by “fake”, randomly-generated equivalents. More precisely,
to be considered PR-CPA secure, an encryption scheme needs to satisfy the following three
requirements:

- PR-key security : adversary has negligible advantage to distinguish a real public key
from a fake one.

- PR-ciphertext security : adversary has negligible advantage to distinguish a real cipher-
text from a fake one when using a fake public key.

- Statistical disjointness : negligible probability that a fake ciphertext is in the range of
a real ciphertext obtained via a fake key.

See [62, Definition 3.1].

Our KEM construction has two differences from XYZ. First, there is an extra hash value
in the ciphertext. Second, the ciphertext is an extra input to the hash used to compute the
session key. We expect that a QROM theorem can be proven for our KEM as a composition
of the following two steps.

Step 1: Reduce to passive attacks. The proof in [62] can be decomposed into two
parts. The first part shows that decapsulation does not reveal any additional information:
i.e., all attacks are as difficult as passive attacks.

The original proof of the first part proceeds as follows. If decryption fails or reencryption
produces a different ciphertext, XYZ decapsulation outputs H0(s, C). The proof simulates
H0(s, C) with Hq(C), where Hq (using the notation from [62]) is a random oracle.

If decryption succeeds and reencryption produces the same ciphertext, XYZ decapsulation
outputs H1(p). The proof redefines H1(p) as Hq(Encrypt(p,K)); this does not change the
attack success probability, since H1 is again a random oracle. It is crucial to understand
that this is valid only since the attack doesn’t have access to Hq—except via decapsulation
failures, but those are disjoint inputs to Hq.

Now decapsulation outputs Hq(C) for all ciphertexts C, whether C itself is valid or invalid.

40

The attack using this decapsulation oracle has the same output as an attack that instead
uses an oracle for its own randomly chosen Hq.

For our KEM construction, decapsulation outputs H1(p, C) in the success case rather than
H1(p). We proceed analogously. First simulate H0(s, C) with Hq(C,C), where Hq is a random
oracle. Then redefine H1(p, C) as Hq(Encrypt(p,K), C); this is again a random oracle, and
again the inputs to Hq are disjoint between the valid and invalid cases. Finally, decapsulation
maps C to Hq(C,C) in all cases, regardless of the validity of C.

Step 2: Invoke the PR-CPA assumptions. The second part of the proof in [62] shows
that, given the PR-CPA assumptions, passive attacks are infeasible. We expect this part of
the proof to apply directly to our KEM construction, invoking the PR-CPA assumptions for
the modified PKE.

We expect the PR-CPA assumptions for the modified PKE to be provable as follows from
the same assumptions for the original PKE. PR-key security is the same property for the
two PKEs, since KeyGen2 = KeyGen. PR-ciphertext security for the modified PKE for a
random oracle H2 should follow from PR-ciphertext security for the original PKE. Statistical
disjointness for the modified PKE is implied by statistical disjointness for the original PKE,
since identical ciphertexts for the modified PKE begin with identical ciphertexts for the
original PKE.

Plausibility of the PR-CPA assumptions for Classic McEliece. As noted in Sec-
tion 4, there is a long literature on information-set decoding, the fastest inversion attack
known against the McEliece PKE. This literature generally treats the problem of decoding
uniform random codes, and frequently observes that—in experiments—the attacks behave
the same way for uniform random binary Goppa codes. This behavior of attacks is sometimes
formalized and generalized to a hypothesis about all fast algorithms: namely, the genera-
tor matrix (or parity-check matrix) for a uniform random binary Goppa code is hard to
distinguish from the generator matrix (or parity-check matrix) for a uniform random code.

This hypothesis is the PR-key security assumption for this PKE. Cryptanalysis of this
hypothesis has focused mainly on key-recovery attacks, although, as noted earlier, there is a
paper [33] explicitly studying distinguishing attacks. None of these attacks threaten PR-key
security for our proposed parameters. This is not the same as saying that PR-key security
has been studied as thoroughly as OW-CPA security. Similarly, existing cryptanalysis of
PR-ciphertext security has focused mainly on inversion attacks. Statistical disjointness,
a statement about the sparsity of the range of the encryption function compared to the
ciphertext space, may be provable: a similar property “γ-uniformity” was proved by Cayrel,
Hoffmann, and Persichetti [21].

To summarize, there is already some work that can be viewed as studying the PR-CPA as-
sumptions. On the other hand, the assumptions go beyond the thoroughly studied McEliece
OW-CPA problem. A theorem assuming PR-CPA security, as in [62], is thus not a replace-
ment for a theorem assuming merely OW-CPA security, as in [30, Theorem 8]. Note that

41

the reduction to passive attacks is independent of this choice of assumption.

6.5 Followup analyses

In May 2018, an update of [62] gave the following two-layer proof for our two-layer KEM:

� First, ConfirmPlaintext (called “KC” in [62]) produces a “disjoint simulatable”
PKE from an OW-CPA PKE. (Disjoint simulatability is a ciphertext-unrecognizability
assumption.) This reduction is tight in the ROM but loose in the QROM.

� Second, RandomizeSessionKeys produces an IND-CCA2 KEM from a disjoint sim-
ulatable PKE. This reduction is tight in the ROM, and also tight in the QROM.

Another paper [14] in May 2018, from a subset of the Classic McEliece team, gave a two-layer
proof that RandomizeSessionKeys produces a ROM IND-CCA2 KEM from an OW-CPA
PKE. This paper also presented counterexamples to two theorems from [39], illustrating the
importance of proof verification.

We summarized the situation in our round-2 submission as follows: “In short, as expected,
the state-of-the-art proof techniques work for our KEM. The main open question is whether
QROM IND-CCA2 security can be proven tightly from OW-CPA security of the underlying
PKE.”

This open question was then resolved positively by [15], which proves a bound ε on the
probability of a QROM IND-CCA2 attack, assuming a bound on the scale of ε2 on the
probability of an OW-CPA attack against the underlying deterministic PKE.

(For comparison, the best QROM results [43] known for randomized PKEs need to assume a
bound on the scale of ε/q where q is the number of hash queries. For values of ε of interest,
ε/q is much smaller than ε2. These results also assume IND-CPA security, which is a stronger
assumption than OW-CPA security. There are other results for randomized PKEs assuming
only OW-CPA security, but these results are even less tight.)

In the context of Classic McEliece, the success probabilities of the best OW-CPA attacks
known have the following shape: the best probability-ε non-quantum attacks use about ε2λ

operations, and the best probability-ε2 quantum attacks use about ε2λ/2 operations. If these
are optimal then, by [15], a QROM IND-CCA2 attack has success probability at most ε
using about ε2λ/2 operations.

A natural next step is formal verification, covering both the general CCA conversion and
its application to Classic McEliece. See [70] for formal verification of another QROM IND-
CCA2 proof; this particular proof is too loose to be useful here, but it should be feasible to
adapt the same verification techniques to [15].

42

6.6 Relating the abstract conversion to the specification

The general specification in Section 2 can be viewed as the result of the following four steps:

� Start with the McEliece PKE. This PKE is correct and deterministic, and its OW-CPA
security has been thoroughly studied.

� Switch to Niederreiter’s dual PKE. This PKE is correct and deterministic, and its
OW-CPA security is tightly implied by the OW-CPA security of the McEliece PKE.

� Obtain a KEM by applying the ConfirmPlaintext conversion, followed by the
RandomizeSessionKeys conversion. This KEM is correct, and its IND-CCA2 secu-
rity is the topic of the previous subsections.

� Apply three further optimizations discussed below. These optimizations preserve cor-
rectness, and they do not affect the IND-CCA2 security analysis.

The first optimization is as follows. Checking whether C = Encrypt2(p
′, K), with the knowl-

edge that p′ = Decrypt2(C, k), does not necessarily require a full Encrypt2 computation. In
particular, in Section 2, the decoding procedure is already guaranteed to output

� a weight-t vector whose syndrome is the input if such a vector exists, or

� ⊥ otherwise.

Checking whether C = Encrypt2(p
′, K) is thus a simple matter of checking H2(p

′).

The second optimization is as follows. The KEM private key (k,K, s) does not necessarily
need as much space as the space for k plus the space for K plus the space for s. For example,
if K can be computed efficiently from k, then it can be recomputed on demand, or optionally
cached. In Section 2, the situation is even simpler: decapsulation, with the first optimization,
does not look at K, so K is simply eliminated from the KEM private key.

The third optimization is that s is generated from a larger space than the plaintext space: it is
simpler to generate a uniform random n-bit string than to generate a uniform random weight-
t n-bit string. The set of s enters into the security analysis solely for the indistinguishability
of H0(s, C) from uniform random.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set kem/mceliece348864

IND-CCA2 KEM, Category 1.

43

7.2 Parameter set kem/mceliece348864f

IND-CCA2 KEM, Category 1.

7.3 Parameter set kem/mceliece460896

IND-CCA2 KEM, Category 3.

7.4 Parameter set kem/mceliece460896f

IND-CCA2 KEM, Category 3.

7.5 Parameter set kem/mceliece6688128

IND-CCA2 KEM, Category 5.

7.6 Parameter set kem/mceliece6688128f

IND-CCA2 KEM, Category 5.

7.7 Parameter set kem/mceliece6960119

IND-CCA2 KEM, Category 5.

7.8 Parameter set kem/mceliece6960119f

IND-CCA2 KEM, Category 5.

7.9 Parameter set kem/mceliece8192128

IND-CCA2 KEM, Category 5.

7.10 Parameter set kem/mceliece8192128f

IND-CCA2 KEM, Category 5.

44

8 Analysis of known attacks (2.B.5)

8.1 Information-set decoding, asymptotically

There is a long literature studying algorithms to invert the McEliece PKE. See Section 4.1.

The fastest attacks known use information-set decoding (ISD). The simplest form of ISD,
from 1962 Prange [61], tries to guess an error-free information set in the code. An information
set is, by definition, a set of positions that determines an entire codeword. The set is error-
free, by definition, if it avoids all of the error positions in the “received word”, i.e., the
ciphertext; then the ciphertext at those positions is exactly the codeword at those positions.
The attacker determines the rest of the codeword by linear algebra, and sees whether the
attack succeeded by checking whether the error weight is t.

One expects a random set of k positions to be an information set with reasonable probability,
the same 29% mentioned earlier. However, the chance of the set being error-free drops rapidly
as the number of errors increases. The following asymptotic statement holds for any real
number R with 0 < R < 1: if the code dimension k is (R+ o(1))n, and the number of errors
t is Θ(n/ log n), then the chance of the set being error-free is (1−R+ o(1))t as n→∞. The
cost of ISD is thus (1/(1−R) + o(1))t.

Subsequent improvements to ISD have affected the o(1) but have not changed the constant
1/(1−R). See generally [13] and [69].

In the McEliece system, t is asymptotically (1 − R + o(1))n/lg n, so the assumption t ∈
Θ(n/ log n) holds.3 To summarize, the (OW-CPA) security level of the McEliece system
against all of these attacks is the n/lg n power of 1/(1−R)1−R + o(1).

Meanwhile the ciphertext size is (1−R+ o(1))n bits, and the key size is (R(1−R) + o(1))n2

bits. Security level 2b thus uses key size (c0+o(1))b2(lg b)2 where c0 = R/(1−R)(lg(1−R))2.
This c0 reaches its minimum value, approximately 0.7418860694, when R is approximately
0.7968121300.

8.2 Information-set decoding, concretely

We emphasize that o(1) does not mean 0: it means something that converges to 0 as n→∞.
More detailed attack-cost evaluation is therefore required for any particular parameters.

As an example, our parameter set mceliece6960119 takes m = 13, n = 6960, and t = 119.
This parameter set was proposed in the attack paper [11] that broke the original McEliece
parameters (10, 1024, 50).

3Beware that some ISD papers instead measure their results for much larger t ∈ Θ(n), such as “half of
the GV distance”. This dramatically increases cost from 2Θ(n/lg n) to 2Θ(n). For example, [50] two years ago
reports O(20.0473n) when t is half of the GV distance, compared to O(20.0576n) from Prange 55 years ago.
As these numbers illustrate, this inflation of t also makes differences between algorithms more noticeable.
Such large error rates are of interest in coding theory but are not relevant to the McEliece system.

45

That paper reported that its attack uses 2266.94 bit operations to break the (13, 6960, 119)
parameter set. Subsequent ISD variants have reduced the number of bit operations consid-
erably below 2256. However:

� None of these analyses took into account the costs of memory access. A closer look
shows that the attack in [11] is bottlenecked by random access to a huge array (much
larger than the public key being attacked), and that subsequent ISD variants use
even more memory. The same amount of hardware allows much more parallelism in
attacking, e.g., AES-256.

� Known quantum attacks multiply the security level of both ISD and AES by an asymp-
totic factor 0.5 + o(1), but a closer look shows that the application of Grover’s method
to ISD suffers much more overhead in the inner loop.

We expect that switching from a bit-operation analysis to a cost analysis will show that
this parameter set is more expensive to break than AES-256 pre-quantum and much more
expensive to break than AES-256 post-quantum.

8.3 Key recovery

A different inversion strategy is to find the private key (g, α1, . . . , αn). As noted earlier,
one should not think that this is as difficult as a brute-force search: one can determine the
sequence (α1, . . . , αn) from g and the set {α1, . . . , αn}, or alternatively determine g from
(α1, . . . , αn). See generally [48], [36], and [57]. However, for (e.g.) our mceliece6960119

parameter set, the number of choices of g is more than 21500. Known symmetries provide
only a small speedup. The number of choices of (α1, . . . , αn) is much larger. Most of
our parameter sets have an extra defense here, namely that there are a huge number of
possibilities for the set {α1, . . . , αn}.

In a multi-message attack scenario, the cost of finding the private key is spread across many
messages. There are also faster multi-message attacks that do not rely on finding the private
key; see, e.g., [41] and [65]. Rather than analyzing multi-message security in detail, we rely
on the general fact that attacking T targets cannot gain more than a factor T . For example,
with our recommended 6688/6960/8192 parameter sets, one ciphertext is expected to be
secure against an attacker without the resources to find an AES-256 key, and 264 ciphertexts
are expected to all be secure against an attacker without the resources to find an AES-192
key.

8.4 Chosen-ciphertext attacks

A traditional approach to chosen-ciphertext attacks against the McEliece system is to add
(say) two errors to a ciphertext Gm + e. This is equivalent to adding two errors to e.
Decryption succeeds if and only if the resulting error vector has weight t, i.e., exactly one of
the two error positions was already in e. It is straightforward to find e from the pattern of

46

decryption failures. See, e.g., [73]. For a Niederreiter ciphertext He, one similarly adds two
errors to e by adjusting He appropriately.

There are two reasons that these attacks do not work against our submission. First, KEM
decapsulation forces the ciphertext to include a hash of e as a confirmation, and the attacker
has no way to compute the hash of a modified version of e without knowing e in the first
place. Second, the KEM does not reveal decryption failures: the modified ciphertext will
produce an unpredictable session key, whether or not the modified error vector has weight t.

The confirmation allows attackers to check possibilities for e by checking their hashes. How-
ever, this is much less efficient than ISD.

8.5 Side-channel attacks

As for any state-of-the-art implementation of cryptographic primitives, side-channel security
needs to be taken into consideration. Any operation that handles secret data needs to be
protected against side-channel attacks depending on the intended application and usage
scenario of the implementation.

As a baseline, any implementation should be constant time, i.e., not exposing a varying
runtime depending on secret data. The reference implementation of this submission is a
constant time implementation.

In addition to protection against timing attacks, further protection against other side chan-
nels may be necessary depending on the intended use case. A smart-card implementation
for example should be protected among others against power and EM side-channel attacks.

Side channels might in fact enable practical attacks for key recovery and chosen-ciphertext
attacks and can amplify ISD by providing partial information (see [44] for an example).

9 Advantages and limitations (2.B.6)

The central advantage of this submission is security. See the design rationale.

Regarding efficiency, the use of random-looking linear codes with no visible structure forces
public-key sizes to be on the scale of a megabyte for quantitatively high security: the public
key is a full (generator/parity-check) matrix. Key-generation software is also not very fast.
Applications must continue using each public key for long enough to handle the costs of
generating and distributing the key.

There are, however, some compensating efficiency advantages. Encapsulation and decapsu-
lation are reasonably fast in software, and impressively fast in hardware, due to the simple
nature of the objects (binary vectors) and operations (such as binary matrix-vector mul-
tiplications). Key generation is also quite fast in hardware. The hardware speeds of key
generation and decoding are already demonstrated by our FPGA implementation. Encap-

47

sulation takes only a single pass over a public key, allowing large public keys to be streamed
through small coprocessors and small devices.

Furthermore, the ciphertexts are unusually small for post-quantum cryptography: under
256 bytes for our proposed high-security parameter sets. This allows ciphertexts to fit
comfortably inside single network packets. The small ciphertext size can be much more
important for total traffic than the large key size, depending on the ratio between how often
keys are sent and how often ciphertexts are sent. System parameters can be adjusted for
even smaller ciphertexts.

References

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016, pages 53–70. USENIX Association, 2016. https://www.usenix.

org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf.

[2] Marco Baldi, Franco Chiaraluce, Roberto Garello, and Francesco Mininni. Quasi-cyclic
low-density parity-check codes in the McEliece cryptosystem. In Proceedings of IEEE In-
ternational Conference on Communications, ICC 2007, Glasgow, Scotland, 24-28 June
2007, pages 951–956. IEEE, 2007.

[3] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1+1 = 0 improves information set decoding. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 520–536. Springer, 2012. https://www.

cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf.

[4] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Reducing
key length of the McEliece cryptosystem. In Bart Preneel, editor, Progress in Cryptol-
ogy - AFRICACRYPT 2009, Second International Conference on Cryptology in Africa,
Gammarth, Tunisia, June 21-25, 2009. Proceedings, volume 5580 of Lecture Notes in
Computer Science, pages 77–97. Springer, 2009. https://hal.archives-ouvertes.

fr/hal-01081727/file/ACTI-BERGER-2009-2.pdf.

[5] Daniel J. Bernstein. Grover vs. McEliece. In Sendrier [64], pages 73–80. https:

//cr.yp.to/papers.html#grovercode.

[6] Daniel J. Bernstein. Some small suggestions for the Intel instruction set, 2014. https:
//blog.cr.yp.to/20140517-insns.html.

[7] Daniel J. Bernstein. Divergence bounds for random fixed-weight vectors obtained by
sorting, 2018. https://cr.yp.to/papers.html#divergence.

48

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/isd-extended.pdf
https://hal.archives-ouvertes.fr/hal-01081727/file/ACTI-BERGER-2009-2.pdf
https://hal.archives-ouvertes.fr/hal-01081727/file/ACTI-BERGER-2009-2.pdf
https://cr.yp.to/papers.html#grovercode
https://cr.yp.to/papers.html#grovercode
https://blog.cr.yp.to/20140517-insns.html
https://blog.cr.yp.to/20140517-insns.html
https://cr.yp.to/papers.html#divergence

[8] Daniel J. Bernstein. Verified fast formulas for control bits for permutation networks,
2020. https://cr.yp.to/papers.html#controlbits.

[9] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time code-
based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic
Hardware and Embedded Systems - CHES 2013 - 15th International Workshop, Santa
Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes
in Computer Science, pages 250–272. Springer, 2013. https://tungchou.github.io/

papers/mcbits.pdf.

[10] Daniel J. Bernstein and Tanja Lange. McTiny: Fast high-confidence post-quantum key
erasure for tiny network servers. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages
1731–1748. USENIX Association, 2020. https://mctiny.org.

[11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending
the McEliece cryptosystem. In Johannes A. Buchmann and Jintai Ding, editors, Post-
Quantum Cryptography, Second International Workshop, PQCrypto 2008, Cincinnati,
OH, USA, October 17-19, 2008, Proceedings, volume 5299 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2008. https://eprint.iacr.org/2008/318.

[12] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents:
Ball-collision decoding. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 743–760.
Springer, 2011. https://eprint.iacr.org/2010/585.

[13] Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Henk C. A. van Tilborg.
Explicit bounds for generic decoding algorithms for code-based cryptography. In Pre-
proceedings of WCC 2009, pages 168–180, 2009.

[14] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification, 2018. https:

//eprint.iacr.org/2018/526.

[15] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Per-
sichetti. Tighter proofs of CCA security in the quantum random oracle model. In
Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
II, volume 11892 of Lecture Notes in Computer Science, pages 61–90. Springer, 2019.
https://eprint.iacr.org/2019/590.

[16] Leif Both and Alexander May. Optimizing BJMM with nearest neighbors: Full decod-
ing in 22n/21 and McEliece security, 2017. https://www.cits.ruhr-uni-bochum.de/

imperia/md/content/may/paper/bjmm+.pdf.

[17] Leif Both and Alexander May. Decoding linear codes with high error rate and its impact
for LPN security. In Lange and Steinwandt [45], pages 25–46. https://eprint.iacr.
org/2017/1139.

49

https://cr.yp.to/papers.html#controlbits
https://tungchou.github.io/papers/mcbits.pdf
https://tungchou.github.io/papers/mcbits.pdf
https://mctiny.org
https://eprint.iacr.org/2008/318
https://eprint.iacr.org/2010/585
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2019/590
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/bjmm+.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/bjmm+.pdf
https://eprint.iacr.org/2017/1139
https://eprint.iacr.org/2017/1139

[18] Anne Canteaut and Herve Chabanne. A further improvement of the work factor in an
attempt at breaking McEliece’s cryptosystem. In Pascale Charpin, editor, Livre des
résumés—EUROCODE 94, Abbaye de la Bussière sur Ouche, France, October 1994,
1994. https://hal.inria.fr/inria-00074443.

[19] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Trans. Information Theory, 44(1):367–
378, 1998. https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/

Canteaut_Chabaud98.pdf.

[20] Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece cryptosys-
tem. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology - ASIACRYPT
’98, International Conference on the Theory and Applications of Cryptology and In-
formation Security, Beijing, China, October 18-22, 1998, Proceedings, volume 1514 of
Lecture Notes in Computer Science, pages 187–199. Springer, 1998. https://www.rocq.
inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf.

[21] Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. Efficient im-
plementation of a CCA2-secure variant of McEliece using generalized Srivastava
codes. In Marc Fischlin, Johannes A. Buchmann, and Mark Manulis, editors,
Public Key Cryptography - PKC 2012 - 15th International Conference on Prac-
tice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23,
2012. Proceedings, volume 7293 of Lecture Notes in Computer Science, pages 138–
155. Springer, 2012. https://hal-ujm.archives-ouvertes.fr/file/index/docid/

712875/filename/2012_PKC_cayrel.pdf.

[22] Herve Chabanne and Bernard Courteau. Application de la méthode de décodage
itérative d’Omura à la cryptanalyse du système de McEliece, 1993. Université de Sher-
brooke, Rapport de Recherche, number 122.

[23] Florent Chabaud. Asymptotic analysis of probabilistic algorithms for finding short
codewords. In Paul Camion, Pascale Charpin, and Sami Harari, editors, Eurocode ’92:
proceedings of the international symposium on coding theory and applications held in
Udine, October 23–30, 1992, pages 175–183. Springer, 1993.

[24] Tung Chou. McBits revisited. In Wieland Fischer and Naofumi Homma, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 213–231. Springer, 2017. https://tungchou.github.io/

papers/mcbits_revisited.pdf.

[25] George C. Clark, Jr. and J. Bibb Cain. Error-correcting coding for digital communica-
tion. Plenum, 1981.

[26] John T. Coffey and Rodney M. Goodman. The complexity of information set decoding.
IEEE Transactions on Information Theory, 35:1031–1037, 1990.

50

https://hal.inria.fr/inria-00074443
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Chabaud98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Chabaud98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf
https://hal-ujm.archives-ouvertes.fr/file/index/docid/712875/filename/2012_PKC_cayrel.pdf
https://hal-ujm.archives-ouvertes.fr/file/index/docid/712875/filename/2012_PKC_cayrel.pdf
https://tungchou.github.io/papers/mcbits_revisited.pdf
https://tungchou.github.io/papers/mcbits_revisited.pdf

[27] John T. Coffey, Rodney M. Goodman, and P. Farrell. New approaches to reduced
complexity decoding. Discrete and Applied Mathematics, 33:43–60, 1991. https://

core.ac.uk/reader/81155220.

[28] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time attack on
Wild McEliece over quadratic extensions. IEEE Trans. Information Theory, 63(1):404–
427, 2017. https://eprint.iacr.org/2014/112.

[29] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–
226, January 2004. https://shoup.net/papers/cca2.pdf.

[30] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, 9th IMA International Conference, Cirencester, UK, Decem-
ber 16-18, 2003, Proceedings, volume 2898 of Lecture Notes in Computer Science, pages
133–151. Springer, 2003. https://eprint.iacr.org/2002/174.

[31] Ilya I. Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Infor-
matsii, 25:24–32, 1989. http://www.mathnet.ru/eng/ppi635.

[32] Ilya I. Dumer. On minimum distance decoding of linear codes. In Grigori A. Kabatian-
skii, editor, Fifth joint Soviet-Swedish international workshop on information theory,
Moscow, 1991, pages 50–52, 1991.

[33] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich. A distinguisher for high-rate McEliece cryptosystems. IEEE Trans.
Information Theory, 59(10):6830–6844, 2013. https://eprint.iacr.org/2010/331.

[34] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-
based cryptosystems. In Mitsuru Matsui, editor, Advances in Cryptology - ASI-
ACRYPT 2009, 15th International Conference on the Theory and Application of Cryp-
tology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
volume 5912 of Lecture Notes in Computer Science, pages 88–105. Springer, 2009.
https://eprint.iacr.org/2009/414.

[35] Classic McEliece Comparison Task Force. Classic McEliece vs. NTS-KEM. 2018. https:
//classic.mceliece.org/nist/vsntskem-20180629.pdf.

[36] J. Keith Gibson. Equivalent Goppa codes and trapdoors to McEliece’s public key cryp-
tosystem. In Donald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91,
Workshop on the Theory and Application of of Cryptographic Techniques, Brighton,
UK, April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science,
pages 517–521. Springer, 1991.

[37] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information set
decoding. 2013. https://eprint.iacr.org/2013/162.

51

https://core.ac.uk/reader/81155220
https://core.ac.uk/reader/81155220
https://eprint.iacr.org/2014/112
https://shoup.net/papers/cca2.pdf
https://eprint.iacr.org/2002/174
http://www.mathnet.ru/eng/ppi635
https://eprint.iacr.org/2010/331
https://eprint.iacr.org/2009/414
https://classic.mceliece.org/nist/vsntskem-20180629.pdf
https://classic.mceliece.org/nist/vsntskem-20180629.pdf
https://eprint.iacr.org/2013/162

[38] Gernot Heiser. For safety’s sake: We need a new hardware-software contract! IEEE
Des. Test, 35(2):27–30, 2018. https://ts.data61.csiro.au/publications/csiro_

full_text/Heiser_18.pdf.

[39] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, Theory
of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in Computer
Science, pages 341–371. Springer, 2017. https://eprint.iacr.org/2017/604.

[40] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Ralf Zimmer-
mann. Post-quantum WireGuard. IEEE S&P 2021, to appear. https://eprint.iacr.
org/2020/379.

[41] Thomas Johansson and Fredrik Jönsson. On the complexity of some cryptographic
problems based on the general decoding problem. IEEE Trans. Information Theory,
48(10):2669–2678, 2002.

[42] Evgueni A. Krouk. Decoding complexity bound for linear block codes. Problemy
Peredachi Informatsii, 25:103–107, 1989. http://www.mathnet.ru/eng/ppi665.

[43] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun.
Measure-rewind-measure: Tighter quantum random oracle model proofs for one-way
to hiding and CCA security. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part III, volume 12107 of Lecture Notes in Computer Science, pages 703–728.
Springer, 2020.

[44] Norman Lahr, Ruben Niederhagen, Richard Petri, and Simona Samardjiska. Side chan-
nel information set decoding using iterative chunking. In Advances in Cryptology -
ASIACRYPT 2020, Lecture Notes in Computer Science. Springer, 2020, to appear.
Preprint: https://eprint.iacr.org/2019/1459.

[45] Tanja Lange and Rainer Steinwandt, editors. Post-Quantum Cryptography - 9th In-
ternational Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018,
Proceedings, volume 10786 of Lecture Notes in Computer Science. Springer, 2018.

[46] Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Christoph G. Günther, editor, Advances in Cryptology
- EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic
Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330 of Lecture
Notes in Computer Science, pages 275–280. Springer, 1988.

[47] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Information Theory, 34(5):1354–1359, 1988.

52

https://ts.data61.csiro.au/publications/csiro_full_text/Heiser_18.pdf
https://ts.data61.csiro.au/publications/csiro_full_text/Heiser_18.pdf
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2020/379
http://www.mathnet.ru/eng/ppi665
https://eprint.iacr.org/2019/1459

[48] Pierre Loidreau and Nicolas Sendrier. Weak keys in the McEliece public-key cryptosys-
tem. IEEE Trans. Information Theory, 47(3):1207–1211, 2001.

[49] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryp-
tology - ASIACRYPT 2011 - 17th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages 107–124.
Springer, 2011. https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/
paper/decoding.pdf.

[50] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 203–228. Springer, 2015. https://www.cits.ruhr-uni-bochum.de/imperia/

md/content/may/paper/codes.pdf.

[51] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. Tech-
nical report, NASA, 1978. https://ipnpr.jpl.nasa.gov/progress_report2/42-44/
44N.PDF.

[52] Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa codes.
In Michael J. Jacobson Jr., Vincent Rijmen, and Rei Safavi-Naini, editors, Selected Areas
in Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 376–392.
Springer, 2009. https://eprint.iacr.org/2009/187.

[53] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In
Proceedings of the 2013 IEEE International Symposium on Information Theory, Istan-
bul, Turkey, July 7-12, 2013, pages 2069–2073. IEEE, 2013. https://eprint.iacr.

org/2012/409.

[54] National Institute for Standards and Technology (NIST). Digital signature standard
(DSS) FIPS 186–4, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

186-4.pdf.

[55] Matús Nemec, Marek Sýs, Petr Svenda, Dusan Klinec, and Vashek Matyas. The return
of Coppersmith’s attack: Practical factorization of widely used RSA moduli. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1631–1648. ACM,
2017. https://crocs.fi.muni.cz/public/papers/rsa_ccs17.

[56] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory, 15(2):159–166, 1986.

53

https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/decoding.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/decoding.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/codes.pdf
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://eprint.iacr.org/2009/187
https://eprint.iacr.org/2012/409
https://eprint.iacr.org/2012/409
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://crocs.fi.muni.cz/public/papers/rsa_ccs17

[57] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography,
pages 95–145. Springer Berlin Heidelberg, 2009.

[58] Edoardo Persichetti. Compact McEliece keys based on quasi-dyadic Srivastava codes. J.
Mathematical Cryptology, 6(2):149–169, 2012. https://eprint.iacr.org/2011/179.

[59] Edoardo Persichetti. Secure and anonymous hybrid encryption from coding theory. In
Philippe Gaborit, editor, Post-Quantum Cryptography: 5th International Workshop,
PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, pages 174–187, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[60] Edoardo Persichetti. Code-based key encapsulation from McEliece’s cryptosystem.
In Johannes Blömer, Ilias S. Kotsireas, Temur Kutsia, and Dimitris E. Simos, edi-
tors, Mathematical Aspects of Computer and Information Sciences - 7th International
Conference, MACIS 2017, Vienna, Austria, November 15-17, 2017, Proceedings, vol-
ume 10693 of Lecture Notes in Computer Science, pages 454–459. Springer, 2017.
https://arxiv.org/abs/1706.06306.

[61] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, IT-8:S5–S9, 1962.

[62] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 520–551. Springer, 2018.
https://eprint.iacr.org/2017/1005.pdf.

[63] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Trans. Information Theory, 46(4):1193–1203, 2000.

[64] Nicolas Sendrier, editor. Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, volume 6061 of
Lecture Notes in Computer Science. Springer, 2010.

[65] Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer Science,
pages 51–67. Springer, 2011. https://eprint.iacr.org/2011/367.

[66] Victor Shoup. A proposal for an ISO standard for public key encryption. 2001. https:
//eprint.iacr.org/2001/112.

[67] Jacques Stern. A method for finding codewords of small weight. In Gérard D. Cohen
and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd International
Colloquium, Toulon, France, November 2-4, 1988, Proceedings, volume 388 of Lecture
Notes in Computer Science, pages 106–113. Springer, 1988.

54

https://eprint.iacr.org/2011/179
https://arxiv.org/abs/1706.06306
https://eprint.iacr.org/2017/1005.pdf
https://eprint.iacr.org/2011/367
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2001/112

[68] Falko Strenzke. A timing attack against the secret permutation in the McEliece PKC.
In Sendrier [64], pages 95–107.

[69] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144–161. Springer,
2016. https://hal.inria.fr/hal-01244886v1/document.

[70] Dominique Unruh. Post-quantum verification of Fujisaki-Okamoto, 2020. Asiacrypt
2020, to appear. https://eprint.iacr.org/2020/962.

[71] Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume
403 of Lecture Notes in Computer Science, pages 119–131. Springer, 1988.

[72] Johan van Tilburg. Security-analysis of a class of cryptosystems based on linear error-
correcting codes. PhD thesis, Technische Universiteit Eindhoven, 1994.

[73] Eric R. Verheul, Jeroen M. Doumen, and Henk C. A. van Tilborg. Sloppy Alice attacks!
Adaptive chosen ciphertext attacks on the McEliece public-key cryptosystem. In Mario
Blaum, Patrick G. Farrell, and Henk C. A. van Tilborg, editors, Information, coding and
mathematics, volume 687 of Kluwer International Series in Engineering and Computer
Science, pages 99–119. Kluwer, 2002.

[74] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter cryp-
tosystem using binary Goppa codes. In Lange and Steinwandt [45], pages 77–98.
https://eprint.iacr.org/2017/1180.

55

https://hal.inria.fr/hal-01244886v1/document
https://eprint.iacr.org/2020/962
https://eprint.iacr.org/2017/1180

	Introduction
	General algorithm specification (part of 2.B.1)
	Notation and parameters
	Notation
	Parameters

	The one-way function
	Matrix reduction
	Matrix generation for Goppa codes
	Encoding subroutine
	Decoding subroutine

	The Model Classic McEliece KEM
	Model key generation
	Model encapsulation
	Decapsulation

	The Classic McEliece KEM
	Irreducible-polynomial generation
	Field-ordering generation
	Key generation
	Fixed-weight-vector generation
	Encapsulation

	Bits and bytes
	Choices of symmetric-cryptography parameters
	Representation of objects as byte strings

	List of parameter sets (part of 2.B.1)
	Parameter set kem/mceliece348864
	Parameter set kem/mceliece348864f
	Parameter set kem/mceliece460896
	Parameter set kem/mceliece460896f
	Parameter set kem/mceliece6688128
	Parameter set kem/mceliece6688128f
	Parameter set kem/mceliece6960119
	Parameter set kem/mceliece6960119f
	Parameter set kem/mceliece8192128
	Parameter set kem/mceliece8192128f

	Design rationale (part of 2.B.1)
	One-wayness
	Better efficiency for the same one-wayness
	Indistinguishability against chosen-ciphertext attacks
	Generation of random objects

	Detailed performance analysis (2.B.2)
	Overview of implementations
	Time
	Space
	Description of platforms
	How parameters affect performance

	Expected strength (2.B.4) in general
	Provable-security overview
	Abstract conversion
	The Dent framework: preliminary analysis
	The SXY framework: preliminary analysis
	Followup analyses
	Relating the abstract conversion to the specification

	Expected strength (2.B.4) for each parameter set
	Parameter set kem/mceliece348864
	Parameter set kem/mceliece348864f
	Parameter set kem/mceliece460896
	Parameter set kem/mceliece460896f
	Parameter set kem/mceliece6688128
	Parameter set kem/mceliece6688128f
	Parameter set kem/mceliece6960119
	Parameter set kem/mceliece6960119f
	Parameter set kem/mceliece8192128
	Parameter set kem/mceliece8192128f

	Analysis of known attacks (2.B.5)
	Information-set decoding, asymptotically
	Information-set decoding, concretely
	Key recovery
	Chosen-ciphertext attacks
	Side-channel attacks

	Advantages and limitations (2.B.6)
	References

