
Solving binary MQ with Grover’s algorithm

Peter Schwabe and Bas Westerbaan ?

Digital Security Group, Radboud University
peter@cryptojedi.org bas@westerbaan.name

Abstract. The problem of solving a system of quadratic equations in
multiple variables—known as multivariate-quadratic orMQ problem—
is the underlying hard problem of various cryptosystems. For efficiency
reasons, a common instantiation is to consider quadratic equations over
F2. The current state of the art in solving the MQ problem over F2

for sizes commonly used in cryptosystems is enumeration, which runs in
time Θ(2n) for a system of n variables. Grover’s algorithm running on a
large quantum computer is expected to reduce the time to Θ(2n/2). As a
building block, Grover’s algorithm requires an “oracle”, which is used to
evaluate the quadratic equations at a superposition of all possible inputs.
In this paper, we describe two different quantum circuits that provide
this oracle functionality. As a corollary, we show that even a relatively
small quantum computer with as little as 92 logical qubits is sufficient
to breakMQ instances that have been proposed for 80-bit pre-quantum
security.

Keywords: Grover’s algorithm, multivariate quadratics, quantum re-
source estimates

1 Introduction

The effects of large quantum computers on the world of modern cryptography are
often summarized roughly as follows: “All factoring-based and discrete-log based
cryptosystems are broken in polynomial time by Shor’s algorithm [Sho94,Sho97]”
and “symmetric crypto is affected by Grover’s algorithm [Gro96], but we just have
to double the key size”. A more detailed look also reveals applications of Grover’s
algorithm in various asymmetric schemes (as in this paper); an even more de-
tailed look considers the question what exactly “large quantum computer” means,
i.e., how many logical qubits and how much time is required to implement Shor’s
and Grover’s algorithm. In the following, when we say “time” we always refer to
the cumulative number of gates that need to be executed. This is obviously very
different from the number of gates that might be physically implemented. For

? This work has been supported by the European Commission through the ICT pro-
gram under contract ICT-645622 (PQCRYPTO); by the European Research Council
under grant 320571 (QCLS) and by the Netherlands Organisation for Scientific Re-
search (NWO) through Veni 2013 project 13114. Permanent ID of this document:
40eb0e1841618b99ae343ffa073d6c1e. Date: 2017-11-30

example, implementing a loop of length 100 around a certain circuit increases
the number of executed gates (i.e., the time) by a factor of 100, but does not
increase the number of physical gates (except maybe for the loop counter).

Recently, multiple papers have taken this more detailed approach of analyzing
the cost of quantum attacks against cryptographic primitives. For example, in
[GLRS16], Grassl, Langenberg, Roetteler, and Steinwandt describe how to attack
AES-128 with Grover’s algorithm using a quantum computer with 2953 logical
qubits in time about 287. We note that with the results of [GLRS16] it would
also be possible to perform this computation on a quantum computer with only
984 qubits, however, then increasing time by a factor of 3. In [AMG+16], Amy,
Di Matteo, Gheorghiu, Mosca, Parent and Schanck describe how to compute
SHA-2 preimages with Grover’s algorithm on a quantum computer with 2402
logical qubits in time about 2148 and how to compute SHA-3 preimages using
3200 qubits in time about 2154. For Shor’s algorithm the common estimate is
that one needs approximately 2n qubits to factor an n-bit number1. Breaking
RSA-1024 thus needs a quantum computer with at least 2048 logical qubits.

These results seem to suggest that quantum computers only affect cryptogra-
phy once they can be scaled to at least about one thousand qubits. In this paper
we show that much smaller quantum computers can be used to break crypto-
graphic schemes. Ironically, the schemes we are targeting are “post-quantum”
schemes, i.e., schemes that have been proposed to replace factoring-based sys-
tems like RSA and discrete-log based systems like DSA to resist attacks by quan-
tum computers. Specifically, we describe how to use Grover’s algorithm to solve
multivariate systems of equations over F2. This problem is known as the MQ
problem and it is in general NP-complete [GJ79]. It is the underlying hard prob-
lem of various signature schemes like HFEv− [PCG01,PCY+15] and (variants
of) Unbalanced Oil-and-Vinegar (UOV) [KPG99,DS05], and the identification
scheme proposed in [SSH11].

It is long known that Grover’s algorithm provides a square-root speedup in
enumeration attacks against this problem. What is new in this paper are two
implementations together with a detailed analysis of the cost of this attack in
terms of the number of required qubits and time (in the number of gates). These
numbers for Grover’s algorithm are largely determined by the number of qubits
and time required in an oracle that evaluates the target function. In the case of
MQ, evaluating the target function means evaluating the system of quadratic
equations at a superposition of all possible inputs. In this paper we describe two
such oracles for systems of quadratic equations over F2. The first oracle is easy
to describe and for m − 1 quadratic equations in n − 1 variables it only needs
m+n+2 qubits and at most 2m(n2+2n)+1 gates executed. The second oracle is
more sophisticated and requires only 3+n+ dlog2me qubits, but approximately
double the number of gates executed of the first oracle.

As a consequence, we show that the “80-bit secure” parameters (80 equa-
tions in 84 variables) used, for example, in the identification scheme described

1 The problem of factoring a number N is reduced to finding the order of an element x
modulo N , which requires a bit more than 2 log2N qubits [NC10, §5.3.1].

in [SSH11] can be broken on a quantum computer with only 168 logical qubits
in time about 262 or on a quantum computer with only 94 logical qubits in time
about 263.

Organization of this paper. Section 2 gives a very brief introduction to quan-
tum computing to establish notation and to give the basic background required
to follow the remainder of the paper. Section 3 collects the quantum gates we
need in our oracles. Section 4 describes in detail our first Grover oracle for the
MQ problem over binary fields with a careful analysis of the complexity. Sec-
tion 5 continues with a description of the more complex second oracle which
requires fewer qubits. Finally, in Section 6, we briefly sketch how to optimize for
circuit depth instead of number of qubits. In Appendix A we provide quipper
code to generate the oracles and Python code to generate the first oracle. We
place this code into the public domain.

2 Preliminaries

In this section we will first give a concise definition of the problem we solve
in this paper. Then we introduce the bare essentials of quantum computing to
apply Grover’s algorithm. For a proper introduction, see [NC10].

2.1 Problem definition

Problem 1. A system of quadratic equations over F2 is given by a “cube” (λ(k)ij)i,j,k
over F2 and a vector (v1, . . . , vm) ∈ Fm2 . The goal is to find (x1, . . . , xn) ∈ Fn2
such that ∑

1≤i,j≤n

λ
(1)
ij xixj = v1 . . .

∑
1≤i,j≤n

λ
(m)
ij xixj = vm.

Note that the system also contains linear terms as x2i = xi.
For sizes of this problem commonly used in cryptography, the best classical

algorithm known is (Gray-code) enumeration [BCC+14]. Specifically, [YCC04,
Section 2.2] estimates that asymptotically faster algorithms take over only for
systems with about n = 200 variables. On a quantum computer, however, one can
use Grover’s algorithm [Gro96,BHT98]. To apply Grover’s algorithm, we need to
provide a suitable oracle: a quantum circuit that checks whether a vector (xi) is
a solution for a given system (λ

(k)
ij), (vk). Every Boolean circuit can be translated

into an equivalent quantum circuit, however, naïve translations typically require
a vast amount of ancillary registers.

For notational convenience, we will solve the following equivalent problem.

Problem 2. A system of quadratic equations over F2 in convenient form is
given by a ‘cube’ (λ(k)ij)i,j,k in F2 where λ(k)ij = 0 whenever i > j. The goal is to
find x1, . . . , xn ∈ F2 such that∑

1≤i≤j≤n

λ
(1)
ij xixj = 1 . . .

∑
1≤i≤j≤n

λ
(m)
ij xixj = 1.

Clearly every system in convenient form is also a regular system. Now we de-
scribe how to turn any system (λ

(k)
i,j), (vk) of m equations in n variables into

an equivalent system (λ′
(k)
i,j) of m + 1 equations in n + 1 variables that is in

convenient form. For 1 ≤ i, j ≤ n+ 1 and 1 ≤ k ≤ m define

λ′
(k)
i,j :=

λ
(k)
i,j i = j ≤ n
λ
(k)
i,j + λ

(k)
j,i i < j ≤ n

1 + vk i = j = n+ 1

0 otherwise

λ′
(m+1)
i,j :=

{
1 i = j = n+ 1

0 otherwise.

The new equation forces xn+1 = 1 and so the new terms λ′(k)n+1,n+1 = 1 + vk
compensate for having a constant term 1.

The first oracle we construct, will use at most n + m + 2 qubit-registers
and O(mn2) time for a system of m quadratic equations in convenient form
with n variables. Our second oracle will only use n+3 qubit-registers, but require
approximately double the amount of time.

To conveniently describe our circuit later on, define

y
(k)
i =

∑
1≤j≤n

λ
(k)
ij xj E(k) =

∑
1≤i≤n

xiy
(k)
i .

Then (xi) is a solution if and only if E(k) = 1 for every 1 ≤ k ≤ m.

Example 1. As a running example throughout the paper, we will use the follow-
ing small system:

x1(1 + x2 + x3) + x2x3 = 1

x2(1 + x3) = 1

Before we continue with a step-by-step definition of the circuit for the first oracle,
we will review with the basics of quantum computing and in particular Grover’s
algorithm.

2.2 Quantum computing

We start with finite classical computing and describe finite quantum computing
later in a similar fashion. Write n for the set of natural numbers less than n.
Clearly 2n is the set of possible states of an n-bit unsigned integer. Classically
every function from f : 2n → 2m is computable. However, some are easy to
compute and others are practically infeasible. One measure of complexity is the
size of the smallest Boolean circuit containing just NAND-gates that computes f .

Later we will see that it is not easy for a quantum computer to efficiently
compute any classical function f , because every quantum gate must be invertible.
For every classical simple reversible gate, however, there exists a counterpart
quantum gate. In the construction of our oracles we will only use (the quantum
counterparts of) classical reversible gates.

The state of a quantum computer with n qubits is a tuple (a0, . . . , a2n−1)
of 2n complex numbers with |a0|2 + · · ·+ |a2n−1|2 = 1. It is convenient to write
subscripts of a in binary, e.g. a1...1 := a2n−1. If one opens up the quantum
computer and looks at the qubits, one will find that they collapse into some
classical state of just n bits in a non-deterministic fashion. The chance to find
all qubits in the classical state 0 is |a0...0|2. Similarly |ab1...bn |2 is the chance to
find the first qubit as the classical bit b1, the second qubit as the classical bit b2
and so on.

It is customary to define |b1 . . . bn〉 to be the state which is zero everywhere
except for on the b1 . . . bthn place. For example |0 . . . 0〉 = (1, 0, . . . , 0), |1 . . . 1〉 =
(0, . . . , 0, 1) and |00〉+|11〉√

2
= (1√

2
, 0, 0, 1√

2
). This last state is interesting: if one

measures the first qubit to be 0 (resp. 1), one is sure that the second qubit must
be 0 (resp. 1) as well. The two qubits are said to be entangled.

Every unitary complex 2n× 2n matrix U preserves length and thus will send
a state a to a new state Ua. Every operation a quantum computer can perform
(except for measurement) will be of this form. Conversely, every unitary (matrix)
is realizable by a universal quantum computer.

However, just like in the classical case, not every unitary is efficient to com-
pute. It is not yet clear what the primitive operations of the first practical
quantum computer will be and thus what would be the appropriate basic gates
of this quantum computer — or whether gate-count itself would be the most apt
measure of complexity. For instance, some gates (the Toffoli gates) in the gate
set we will use are more costly to make fault tolerant with the current quantum
error correcting codes than the others. For now we will make do.

If f : 2n → 2n is a reversible map, there is a unitary Uf fixed by Uf |b1 . . . bn〉 =
|f(b1 . . . bn)〉. In this way a reversible function corresponds to a quantum pro-
gram.

2.3 Applying Grover’s algorithm

Problem 3. Let f : 2n → 2 be a function which is valued 0 everywhere except
on one place. The problem is to find, given a Boolean circuit for f , the place
where f is valued 1.

Classically one cannot do better in general than to try every possible input. On
average one will have to execute f for 2n−1 times. With a quantum computer this
problem can be solved with high probability by executing the quantum analogue
of f just 2

1
2n times using just n qubits. This is done using Grover’s algorithm.

Actually, Grover’s algorithm (with the quantum counting extension [BHT98])
solves the more general problem where f has arbitrarily many places where it is
valued 1 and one is interested in any preimage of 1. In this paper, however, we
only need the simpler version.

Clearly f is not reversible. How can we then feed it to a quantum computer
where every operation should be invertible? One way is to define a new classical

reversible function Rf : 2n+1 → 2n+1 by

Rf (b1 . . . bny) =

{
b1 . . . bny f(b1 . . . bn) = 0,

b1 . . . bny f(b1 . . . bn) = 1.

Here overline denotes negation. For Grover’s algorithm it is sufficient to provide
a quantum circuit, the oracle, which is the quantum analogue of Rf . We claimed
Grover only needs n qubits. This is true, however in practice the oracle might
not be efficient to compute with just n qubits. Often the oracle itself requires
some ancillary qubits, say m, as scratch space to be efficient. In that case Grover
uses a total of n+m qubits.

The gist of Grover’s algorithm. To understand the remainder of this paper,
it is not required to know how Grover’s algorithm works (if the reader accepts
that the core part are evaluations of the oracle). However, for completeness, we
provide a brief summary of Grover’s algorithm.

Let f : 2n → 2 be any function for which we want to find a w ∈ 2n with f(w) =
1. Write a, g, b respectively for the standard uniform superposition of all ba-
sisvectors, the basisvectors marked 1 by f , and the basisvectors marked 0 by f .
Concretely, with N = 2n and M = |f−1(1)|:

a =
∑
w∈2n

1√
N
|w〉 g =

∑
w∈2n
f(w)=1

1√
M
|w〉 b =

∑
w∈2n
f(w)=0

1√
N −M

|w〉

b

g

a
v

ROv

Ov

◦◦

◦
◦
•

•

If we can put the quantum computer in state g, then
a measurement will give a bitstring w with f(w) = 1
as desired. It is easy to see that a is actually a linear
combination of b and g: a =

√
M√
N
g+

√
N−M√
N

b. As b and
g are orthogonal, we can visualize a as a point on a grid
with axes g and b. Let O be the unitary with O |w〉 =
|w〉 if f(w) = 0 and O |w〉 = − |w〉 if f(w) = 1. It
is not hard to construct O from the oracle discussed
above (the quantum analogue of Rf). In our picture,
O is simply a reflection over the b axis. Note how an
arbitrary v on the grid is reflected to Ov. Let R denote
the unitary that reflects over a. By adding some angles in the picture and a
moments thought, one can see the action of RO is a counter-clockwise rotation
in our grid by twice the angle a has with b. If M is known, this angle is straight-
forward to compute. Grover’s algorithm is to prepare the quantum computer
in state a and then to execute as many times the unitary RO until the state
of the computer is close to g. Measuring the bits will then give a bitstring w
with f(w) = 1 with high probability. The number of times that RO has to be
executed can be shown [NC10, Eq. 6.17] to be at most dπ4

√
N/Me.

3 A collection of quantum gates

In this section we collect the quantum gates that we will use for the oracles
presented in Sections 4 and 5. All quantum gates we will use are the quantum
counterparts of reversible classical gates.

Gate 1 We will use a CNOT gate (controlled not — also called the Feynman
gate) to compute XOR. CNOT is usually drawn as shown below on the left. As
unitary it is defined on the computational basis by CNOT |x〉 |y〉 = |x〉 |x+ y〉. It
corresponds to the classical reversible Boolean function on the right.

|x〉 • |x′〉 ≡ |x〉

|y〉 |y′〉 ≡ |x+ y〉

x y x′ y′

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Gate 2 To compute AND, we will use the Toffoli gate T . It’s drawn below
on the left. As unitary it is defined by T |x〉 |y〉 |z〉 = |x〉 |y〉 |z + xy〉 (on the
computation basis). It corresponds to the classical invertible Boolean function on
the right.

|x〉 • |x′〉 ≡ |x〉
|y〉 • |y′〉 ≡ |y〉

|z〉 |z′〉 ≡ |z + xy〉

x y z x′ y′ z′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Gate 3 To compute NOT, we use the X-gate, usually depicted by

|x〉 X |x〉

As unitary it is defined by X |x〉 = |x〉 = |1 + x〉 (on the computational basis).

Gate 4 To compute the AND of multiple bits, we will use the n-qubit Toffoli
gate (Tn). It is a controlled not-gate with n− 1 control-bits. That is: its action
as a unitary on the computational basis is

Tn |x1〉 · · · |xn〉 = |x1〉 · · · |xn−1〉 |xn + (x1 · · · · · xn−1)〉 .

Note that T1 = X, T2 = CNOT and T3 = T . The n-qubit Toffoli gate is drawn
similarly to the regular Toffoli gate. For instance, this is the 4-qubit Toffoli gate:

|x〉 • |x〉
|y〉 • |y〉
|z〉 • |z〉

|w〉 |w + xyz〉

Gate 5 For the second oracle we want to swap bits, which is done with the
2-qubit swap-gate S.It’s drawn below on the left2. As a unitary it is defined
by S |x〉 |y〉 = |y〉 |x〉 (on the computational basis). It corresponds to the classical
invertible Boolean function on the right.

|x〉 × |x′〉 ≡ |y〉
|y〉 × |y′〉 ≡ |x〉

x y x′ y′

0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

It is expected that the X, SWAP and CNOT gates will be cheap to execute
and error correct on a quantum computer, whereas (n-qubit) Toffoli gates will
be expensive. This is why papers often list gate-counts separately for ‘easy’ and
‘hard’ gates.

4 The first Grover oracle for MQ over F2

Our circuit Uλ to check whether (xi)i is a solution (of a system of m quadratic
equations in n variables in convenient form), will use n+m+2 registers. It will
act as follows, where r = |1〉 if (xi)i is a solution and |0〉 else.

|x1〉

Uλ

|x1〉...
...|xn〉 |xn〉

t ≡ |0〉 |0〉
e1 ≡ |0〉 |0〉

...
...

em ≡ |0〉 |0〉
y ≡ |0〉 r

The first n registers are the input and should be initialized with x1, . . . , xn. The
circuit will not change them – not even temporarily. The next register will be
an ancillary register labelled t. It is intended to be initialized to |0〉. The next m
registers we will label e1, ..., em and should all be initialized to |0〉. The final
register is an output register labelled y.

We will construct our circuit Uλ step by step. Note that 1 + z = z. Thus,
with at most n− 1 CNOT gates and possibly an X-gate, we can put y(1)1 into t.

2 Note that a SWAP gate can be written with CNOTs: ×
× =

• •
• .

In our example (see Section 2):

|x1〉 |x1〉
|x2〉 • |x2〉
|x3〉 • |x3〉

t ≡ |0〉 X |1 + x2 + x3〉

e1 ≡ |0〉 |0〉
e2 ≡ |0〉 |0〉
y ≡ |0〉 |0〉

Using one Toffoli gate, we put x1y
(1)
1 into e1. In our example:

|x1〉 • |x1〉
|x2〉 |x2〉
|x3〉 |x3〉

|1 + x2 + x3〉 • |1 + x2 + x3〉

|0〉 |x1(1 + x2 + x3)〉
|0〉 |0〉
|0〉 |0〉

Then, by applying the inverse circuit used to put y(1)1 into t, we can return t
to |0〉. As all the gates we use are self-inverse, the inverse circuit is simply the
horizontal mirror-image. In our example:

|x1〉 |x1〉
|x2〉 • |x2〉
|x3〉 • |x3〉

|1 + x2 + x3〉 X |0〉

|x1(1 + x2 + x3)〉 |x1(1 + x2 + x3)〉
|0〉 |0〉

Using a similar circuit with at most 2n − 4 CNOT-gates, two X-gate and a
Toffoli-gate, we can add y(1)2 to e1, leaving the remaining registers untouched. In
our example y(1)2 = x2x3, hence we obtain the following:

|x1〉 |x1〉
|x2〉 • |x2〉
|x3〉 • • |x3〉

|0〉 • |0〉

|x1(1 + x2 + x3)〉 |x1(1 + x2 + x3) + x2x3〉
|0〉 |0〉
|0〉 |0〉

We continue with n− 2 similar circuits, to add y(1)2 , ..., y(1)n to e1. Our complete
circuit up to this point, has put E(1) into e1 with at most n2 +2n gates. (In our
example we are already done.) The remaining registers are as they were.

With m−1 similar circuits we can store E(k) into ek for the other k. In total
we will have used at most m(n2 + 2n) gates. In our example the remainder will
be:

|x1〉 |x1〉
|x2〉 • |x2〉
|x3〉 • • |x3〉

|0〉 X • X |0〉

|E(1)〉 |E(1)〉
|0〉 |x2(1 + x3) ≡ E(2)〉
|0〉 |0〉

Next, compute E(1) · E(2) · · · · · E(m) and store it in y using an m-qubit Toffoli
gate.

|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 |x3〉
|0〉 |0〉

|E(1)〉 • |E(1)〉
|E(2)〉 • |E(2)〉
|0〉 |E(1) · E(2)〉

The circuit for our example is shown on the right.
Finally, we reverse the computation of E(1), ..., E(m)

to reset all but the output register to their initial
state. We have used at most 2m(n2 + 2n) + 1 gates.

One might object to counting the n-qubit Toffoli
gate with the same weight as the other gates. Indeed,
classically one cannot even compute arbitrarily large
reversible circuits if one is restricted to m-register
gates and no temporary storage [Tof80, Thm. 5.2]. However, without ancillary
qubits and just with CNOTs and one-qubit gates, one can create an n-qubit
Toffoli gate. If one allows one ancillary qubit, one only needs O(n) many ≤ 2-
qubit gates to construct a n-qubit Tofolli gate [MD03]. The gates used in this
construction are, however, expensive to error correct with current codes. For the
next oracle, we will implicitly construct a 2n-qubit Toffoli gate from an n-qubit
Toffoli gate with n ancillary qubits.

Python and Quipper code to generate the oracle presented in this section are
given in Appendix A.

5 The second Grover oracle for MQ over F2

In this section we will describe a second, more complex oracle, which requires
fewer qubits, but approximately twice the number of gates. As for the first oracle,
we give Quipper code to generate this second oracle in Appendix A.

In our first oracle we reserved for every equation a qubit register which stores
whether that equation is satisfied. At the end the oracle checks whether every
equation is satisfied by checking whether every of the corresponding registers is
set to |1〉. Instead, for our second oracle we will only count the number of equa-
tions that are satisfied. Instead ofm separate registers, we will only need dlog2me

registers which act as a counter. Instead of storing E(k) into a separate register,
the oracle will do a controlled increment on the counter. At the end the oracle
will check whether the value in the counter is m. This can be done with suitably
placed X-gates and a multi-qubit Toffoli.

Note that as the value of E(k) is not kept around anymore, it needs to be com-
puted and uncomputed a second time compared to the first oracle to uncompute
the counter qubits. This is the reason the second oracle requires approximately
double the number of gates.

We still have to describe the increment circuit for the counter register. Using
the standard binary encoding for the counter and the obvious increment is not a
good a choice: the incrementation is hard to implement efficiently without using
ancillary registers. We can do better by not adhering to the standard binary
encoding.

× •
× ×
×

For instance consider the 3-qubit circuit on the right. This
circuit has two (classical) cycles: it will send |000〉 directly
to |000〉 and

|111〉 7→ |101〉 7→ |100〉 7→ |010〉 7→ |001〉 7→ |110〉 7→ |011〉 7→ |111〉 .

This simple 3-qubit circuit can thus be used as a counter up to 7. For instance, to
count 5 equations with this circuit one initializes the counter register to |100〉,
applies the circuit for each valid equation and checks in the end whether the
counter register is set to |111〉.

Now we will show how to construct a similar simple circuit for any number of
qubits. For this construction we will need to think of the state |v1 . . . vn〉 as the
polynomial vnxn−1+· · ·+v2x+v1 over F2. For instance |1101〉 corresponds to 1+
x2+x3. The circuit above corresponds to multiplying by x in the field F2[x]/(x

3+
x + 1). Indeed: the ladder of swap gates at the start of the circuit is a rotation
down and would correspond to multiplying by x in the ring F2[x]/(x

3 + 1). The
cNOT at the end of the circuit is responsible for the missing x term. The fact
that the circuit cycles over all (7) invertible elements of the field is by definition
equivalent to the fact that x3 + x+ 1 is a primitive polynomial.

× •
× ×

× ×
× ×
×

So, to construct a counter on c-qubits, one picks a
primitive polynomial p(x) over F2 of degree c (eg. from
[Wat62]) and builds the corresponding circuit. For in-
stance, x5 + x4 + x3 + x2 + 1 is a primitive polynomial
and corresponds to the circuit on the right.

The following table lists the maximum number of each gate used in the second
oracle compared to the first for a system of 81 equations in 85 variables.

qubits X CNOT Toffoli and
First oracle 168 27,710 1,156,680 13,770 one 81-Toffoli

Second oracle 94 55,250 2,316,276 27,702 one 7-Toffoli

To find a solution to this example system, the oracle will be executed ∼240 times
interleaved with reflections, which yields a total of ∼261 executed gates when
using the second oracle.

6 Circuit depth

If gates act on separate qubits, they might be executed in parallel. For this
reason the depth of a circuit is often considered instead of the total number of
gates executed. For our first two oracles we choose to optimize for qubit count
instead of circuit depth. We will briefly sketch how to decrease the circuit depth
by allowing for more qubit registers.

For simplicity we will assume that CNOTs an Tofolli’s with different target
wires (but possibly the same control wires) can be executed in parallel. If one
changes the first oracle to use a separate t register for each equation, the value
of each equation can be computed practically in parallel and the circuit depth
is reduced from O(n2m) to O(n2 +m) using a total of n+ 2m+ 1 registers.

There is still room for another trade-off: the terms y(k)i for a single equation
are not computed in parallel. If one uses a separate register for each y

(k)
i , one

could reduce the circuit depth to O(n + m) using a total of n + nm + m + 1
registers.

7 Conclusion

We have shown step-by-step how to construct oracles for Grover’s algorithm to
solve binary MQ, implement these in a quantum programming language, and
estimate the resources it will use. As a corollary we find that some proposed
choice of parameters for some “post-quantum” schemes seem practical to break
on a quantum computer with less than a hundred logical qubits.

We finish with a table that shows the upper bound of resources required to
solve a system with 84 equations in 80 variables with a single solution. (This
is the hard problem underlying the identification scheme described in [SSH11]
for “80-bits security”.) We reiterate that the number of gates mentioned is the
cumulative number of times that kind is executed.

first oracle second oracle
qubits 168 94

X gates 13,5363,390,216,963,920 269,896,330,187,198,000
CNOT gates 5,650,383,478,749,831,360 11,300,766,957,499,662,720
Toffoli gates 67,266,469,985,117,040 135,324,310,205,353,104

7-qubit Toffoli gates 0 9,770,002,902,704
81-qubit Toffoli gates 9,770,002,902,704 0
84-qubit Toffoli gates 4,885,001,451,352 4,885,001,451,352

Hadamard gates 840,220,249,632,629 200,285,059,505,513
Controlled swap 0 4,748,221,410,714,144

Controlled-Z gates 4,885,001,451,352 4,885,001,451,352
Total number of gates 5,989,207,179,415,606,250 11,982,322,359,992,293,930

0

x1 x2 x3 r

0 0
0

0
0

0
0

0 0
0

0
0

0
0

E
1

E
2

(a) First oracle

1 0

x1 x2 x3

0 0
0

0
0

0
0

0
0

0
0

0
00

0 0
0

0
0

0
0

0
0

0
0

0
00

0

(b) Second oracle

Fig. 1: Oracles for the running example generated by Quipper

Acknowledgments

The authors are grateful to Gauillaume Allais and Peter Selinger for their help-
ful suggestions. In particular, it was Peter Selinger’s suggestion to construct a
counter from a primitive polynomial. Ben Pring spotted two errors in §6.

References

AMG+16. Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex
Parent, and John Schanck. Estimating the cost of generic quantum pre-
image attacks on SHA-2 and SHA-3. Preprint arXiv:1603.09383, 2016.
https://arxiv.org/abs/1603.09383. 2

BCC+14. Charles Bouillaguet, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen,
and Bo-Yin Yang. Fast exhaustive search for quadratic systems in F2 on
FPGAs. In Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors, Selected
Areas in Cryptography – SAC 2013, volume 8282 of LNCS, pages 205–222.
Springer, 2014. http://polycephaly.org/papers/#forcemq. 3

BHT98. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In
Automata, Languages and Programming, pages 820–831. Springer, 1998. 3,
5

Chu05. Isaac Chuang. Quantum circuit viewer: qasm2circ, 2005. http://www.
media.mit.edu/quanta/qasm2circ/ (accessed 2016-06-24). 16

DS05. Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In John Ioannidis, Angelos D. Keromytis, and Moti
Yung, editors, Applied Cryptography and Network Security, volume 3531 of
LNCS, pages 164–175. Springer, 2005. 2

GJ79. Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979. 2

GLR+13a. Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger,
and Benoît Valiron. An introduction to quantum programming in quipper.
In Gerhard W. Dueck and D. Michael Miller, editors, Reversible Computa-
tion, volume 7948 of LNCS, pages 110–124. Springer, 2013. 16

GLR+13b. Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger,
and Benoît Valiron. Quipper: a scalable quantum programming language.
48(6):333–342, 2013. https://arxiv.org/pdf/1304.3390. 16

GLRS16. Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grover’s algorithm to AES: quantum resource estimates.
In Tsuyoshi Takagi, editor, Post-Quantum Cryptography, volume 9606 of
LNCS, pages 29–43. Springer, 2016. 2

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219. ACM, 1996. 1, 3

KPG99. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Jacques Stern, editor, Advanced in Cryptol-
ogy – EUROCRYPT ’99, volume 1592 of LNCS, pages 206–222. Springer,
1999. extended version at http://andrewl.dreamhosters.com/archive/
45339168.pdf. 2

MD03. Dmitri Maslov and Gerhard W Dueck. Improved quantum cost for n-bit
Toffoli gates. Electronics Letters, 39(25):1790–1791, 2003. 10

https://arxiv.org/abs/1603.09383
http://polycephaly.org/papers/#forcemq
http://www.media.mit.edu/quanta/qasm2circ/
http://www.media.mit.edu/quanta/qasm2circ/
https://arxiv.org/pdf/1304.3390
http://andrewl.dreamhosters.com/archive/45339168.pdf
http://andrewl.dreamhosters.com/archive/45339168.pdf

NC10. Michael A. Nielsen and Isaak L. Chuang. Quantum computation and quan-
tum information. Cambridge University Press, 2010. 2, 3, 6

PCG01. Jacques Patarin, Nicolas Courtois, and Louis Goubin. QUARTZ, 128-bit
long digital signatures. In David Naccache, editor, Topics in Cryptology –
CT-RSA 2001, volume 2020 of LNCS, pages 282–297. Springer, 2001. 2

PCY+15. Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and
Jintai Ding. Design principles for HFEv- based multivariate signature
schemes. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptol-
ogy – ASIACRYPT 2015, volume 9452 of LNCS, pages 311–334. Springer,
2015. http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf. 2

Sel. Peter Selinger. The quipper language. http://www.mathstat.dal.ca/
~selinger/quipper/ (accessed 2016-09-01). 16

Sho94. Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In SFCS ’94 Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, pages 124–134. IEEE, 1994. http:
//www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf. 1

Sho97. Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26:1484–1509, 1997. http://arxiv.org/abs/quant-ph/9508027. 1

SSH11. Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-key iden-
tification schemes based on multivariate quadratic polynomials. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of
LNCS, pages 706–723. Springer, 2011. https://www.iacr.org/archive/
crypto2011/68410703/68410703.pdf. 2, 3, 12

Tof80. Tommaso Toffoli. Reversible computing. Springer, 1980. 10
Wat62. E.J. Watson. Primitive polynomials (mod 2). Mathematics of Computation,

16(79):368–369, 1962. 11
YCC04. Bo-Yin Yang, Jiun-Ming Chen, and Nicolas T. Courtois. On asymptotic

security estimates in XL and Gröbner bases-related algebraic cryptanaly-
sis. In Eiji Okamoto Javier Lopez, Sihan Qing, editor, Information and
Communications Security, volume 3269 of LNCS, pages 401–413. Springer,
2004. http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf. 3

A Example code

The following is Python code that generates the first oracle circuit, which we
described informally in Section 4.

def create_circuit(n, m, sqe):
""" Creates Circuit for Grover oracle that solves the system of

quadratic equations sqe over F_2 in standard form

n: number of variables x_i in sqe
m: number of equations in sqe
sqe[k][i][j]: true if x_ix_j occurs in the k-th equation. """

First, create helper circuit that puts E^(k) into e_k
E_circuit = Circuit()
for k in range(1, m+1):

http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf
http://www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf
http://arxiv.org/abs/quant-ph/9508027
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf

for i in range(1, n+1):
if not any(sqe[k-1][i-1]): continue
Another helper circuit, that XORs y_i^(k) into t
y_circuit = Circuit()
for j in range(i+1, n+1):

if sqe[k-1][i-1][j-1]:
y_circuit.CNOT(’x’+str(j), ’t’)

if sqe[k-1][i-1][i-1]:
y_circuit.X(’t’)

XOR the value (x_i AND y_i^(k)) into e_k
and clear t afterwards
E_circuit.extend(y_circuit) # first put y_i^(k) into t
E_circuit.toffoli(’x’+str(i), ’t’, ’e’+str(k))
E_circuit.extend(y_circuit.inverse()) # uncompute t

Now, assemble the whole circuit
circuit = Circuit()
circuit.extend(E_circuit) # put E^(k) into e_k
put result into y
circuit.add(’toffoli{0}’.format(m),

[’e{0}’.format(i) for i in range(1,m+1)] + [’y’])
circuit.extend(E_circuit.inverse()) # uncompute e_k
return circuit

To turn this into a useful commandline util that converts a system of quadratic
equations into a quantum circuit in Nielsen and Chuang’s QASM[Chu05] format,
we need a few more lines of code.3 One one invokes the completed script as fol-
lows.

python mqgrover.py 3 2 111010000110

The second oracle is more complex and easier to synthesize in a special purpose
language. The following is an implementation of the first and second oracle in
the quipper programming language[GLR+13b,GLR+13a,Sel], which is based on
Haskell.

module MQGrover (oracle1, oracle2) where

import Quipper
import Data.Bits
import Data.List
import Control.Monad
import Control.Applicative

3 https://github.com/bwesterb/mqgrover

https://github.com/bwesterb/mqgrover

--
-- First oracle
--

-- Compute y_i^(k) from the coefficients lambda_ii^(k), ..., lambda_in^(k)
-- and the assignment x_1, ..., x_n.
compute_y :: [Bool] -> [Qubit] -> Circ (Qubit)
compute_y cs xs = withM (qinit False) $ \t ->

unless (null cs) $ do
when (head cs) $ qnot_at t
zipWithM_ (\c x -> when c (qnot_at t ‘controlled‘ x)) (tail cs) (tail xs)

-- Computes E^(k) from the "triangle" lambda^(k)_ij (1 <= j <= n)
-- and the assignment x_1, ..., x_n.
compute_e :: [Qubit] -> [[Bool]] -> Circ (Qubit)
compute_e xs css =

withM (qinit False) $ \e ->
forM_ (zip css (init $ tails xs)) $ \(cs, xs’) ->

with_computed (compute_y cs xs’) $ \t ->
qnot_at e ‘controlled‘ (t, head xs’)

-- The first (straight-forward) oracle. Computes whether the
-- assignment x_1, ..., x_n satisfies the given system of equations.
oracle1 :: [[[Bool]]] -> [Qubit] -> Circ (Qubit)
oracle1 csss xs =

withM (qinit False) $ \r -> do
label (r:xs) ("r":["x" ++ (show i) | i <- [1..length xs]])
es <- mapM (compute_e xs) csss
label es ["E" ++ (show i) | i <- [1..length es]]
qnot_at r ‘controlled‘ es

--
-- Second oracle that uses only n + ceil(log_2 m) + 3 registers, but requires
-- more gates.
--

oracle2 :: [[[Bool]]] -> [Qubit] -> Circ (Qubit)
oracle2 csss xs = do

ctr <- init_counter $ length csss
label xs ["x" ++ (show i) | i <- [1..length xs]]
forM_ csss $ \css ->

with_computed (compute_e xs css) $ controlled $ inc_counter ctr
check_counter ctr

--

-- Helpers for the second oracle.
--

-- Rotates qubits around one turn
qrotate :: [Qubit] -> Circ()
qrotate qs = zipWithM_ swap qs’ $ tail qs’ where qs’ = reverse qs

-- Turns polynomial into corresponding circuit
apply_polynomial :: [Bool] -> [Qubit] -> Circ()
apply_polynomial cs qs = do

qrotate qs
zipWithM_ (\c q -> do

when c $ qnot_at q ‘controlled‘ head qs) (init $ tail cs) (tail qs)
return ()

-- Returns number of bits in the binary expansion of a given integer
bits_required :: Int -> Int
bits_required 0 = 0
bits_required n = 1 + bits_required (n ‘shiftR‘ 1)

type QCounter = (Int, [Qubit])
bound :: QCounter -> Int
bound (n, qs) = n
qbits :: QCounter -> [Qubit]
qbits (n, qs) = qs

-- Creates a new counter to count up to the given integer.
init_counter :: Int -> Circ(QCounter)
init_counter n = do

qs <- qinit $ iterate (class_inc_counter zero_poly) (replicate nbits True)
!! (2^nbits - n)

return (n, qs)
where

nbits = bits_required n
zero_poly = prim_poly nbits
class_inc_counter :: [Bool] -> [Bool] -> [Bool]
class_inc_counter zero_poly (False:cs) = cs ++ [False]
class_inc_counter zero_poly (True:cs)

= zipWith xor (cs ++ [False]) (tail zero_poly)

-- Increment the counter by one.
inc_counter :: QCounter -> Circ ()
inc_counter (n,qs) = prim_poly (bits_required n) ‘apply_polynomial‘ qs

-- Check whether the counter has reached the desired value

check_counter :: QCounter -> Circ (Qubit)
check_counter qc = withM (qinit False) $ \t -> qnot_at t ‘controlled‘ qbits qc

-- Returns a primitive polynomial over F_2 of given degree
prim_poly :: Int -> [Bool]
prim_poly n = map (‘elem‘ 0:n:(watson_prim_polies!!n)) [0..n]

-- Contains for each n <= 32 a primitive polynomial of order n modulo F_2.
-- The number are the non-trivial powers of x that occur: for instance
-- the list [4,3,2] at index 8 represents the primitive polynomial
-- x^8 + x^4 + x^3 + x^2 + 1.
-- List taken from E. J. Watson, 1961.
watson_prim_polies = [

[], [], [1], [1], [1], [2], [1], [1], [4, 3, 2], [4], [3], [2], [6,
4, 1], [4, 3, 1], [5, 3, 1], [1], [5, 3, 2], [3], [5, 2, 1], [5,
2, 1], [3], [2], [1], [5], [4, 3, 1], [3], [6, 2, 1], [5, 2, 1],
[3], [2], [6, 4, 1], [3], [7, 5, 3, 2]]

withM :: Monad m => m a -> (a -> m ()) -> m a
withM f g = do

t <- f
g t
return t

The gate counts mentioned in the conclusion were generated by the build-in
GateCount functionality of Quipper, which was invoked (for the first oracle) with
the following code.

print_simple GateCount $ grover (oracle1 sqe) 85 1

The variable sqe is set to the system of 81 equations in 85 variables where every
coefficient is 1 as it requires most gates executed in our construction. We use the
following implementation of Grover’s algorithm.

module Grover (grover) where

import Quipper

import Control.Monad

-- |Reflects (in place) over the standard uniform superposition of qubits.
-- This is used as the second part of the Grover iteration.
reflect_over_a :: [Qubit] -> Circ ()
reflect_over_a qs = do

with_basis_change (forM_ qs hadamard_at) $ do
with_basis_change (forM_ qs qnot_at) $ do

with_basis_change (hadamard_at $ head qs) $ do

qnot_at (head qs) ‘controlled‘ tail qs

-- |Grover’s algorithm. ’oracle’ is a circuit that should map exactly
-- ’m’ ’n’-qubit-words to |1> and the others to |0>. ’grover’ returns
-- a circuit that creates a superposition over all ’n’-qubit words that
-- are mapped to |1> by the oracle.
grover :: ([Qubit] -> Circ (Qubit)) -> Int -> Int -> Circ ()
grover oracle n m = do

-- Create a standard uniform superposition over all qubits.
qs <- qinit $ replicate n False
forM_ qs hadamard_at
iterations qs
return ()

where
n_iters = floor $ pi / 4 / asin(sqrt((fromIntegral m) / (2^n)))
iterations :: [Qubit] -> Circ ([Qubit])
iterations = nbox "grover-iteration" n_iters $ \qs -> do

-- First, the adapted oracle. The following will send a computational
-- basis vector w to -w if its tagged by the original oracle and
-- leave it in place otherwise.
with_computed (oracle qs) $ \r -> do

gate_Z_at (head qs) ‘controlled‘ r
-- Then, reflect over the standard uniform superposition.
reflect_over_a qs
return qs

	Solving binary MQ with Grover's algorithm

