
NTRU

Algorithm Speci�cations And Supporting Documentation

Cong Chen, Oussama Danba, Je�rey Ho�stein, Andreas Hülsing,

Joost Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang

March 30, 2019

1

Contents

1 Written speci�cation 4
1.1 Overview . 4
1.2 De�nitions . 4
1.3 Parameter sets . 5

1.3.1 ntru . 5
1.3.2 ntru-hps . 5
1.3.3 ntru-hrss . 6

1.4 Additional parameters . 6
1.4.1 Hash . 6
1.4.2 Sample_fg . 6
1.4.3 Sample_rm . 6
1.4.4 key_seed_bits . 7

1.5 Derived constants . 7
1.5.1 logq . 7
1.5.2 sample_iid_bits . 7
1.5.3 sample_�xed_type_bits . 7
1.5.4 sample_key_bits . 7
1.5.5 sample_plaintext_bits . 7
1.5.6 packed_s3_bytes . 7
1.5.7 packed_sq_bytes . 7
1.5.8 packed_rq0_bytes . 7
1.5.9 dpke_public_key_bytes . 7
1.5.10 dpke_private_key_bytes . 8
1.5.11 dpke_plaintext_bytes . 8
1.5.12 dpke_ciphertext_bytes . 8
1.5.13 kem_public_key_bytes . 8
1.5.14 kem_private_key_bytes . 8
1.5.15 kem_ciphertext_bytes . 8
1.5.16 kem_shared_key_bits . 8
1.5.17 prf_key_bits . 8

1.6 Summary of recommended parameters and derived constants 9
1.7 Externally de�ned algorithms . 9

1.7.1 SHAKE256 . 9
1.7.2 SHA3_256 . 9

1.8 Encodings . 10
1.8.1 Bit strings and byte arrays . 10
1.8.2 Polynomials . 10
1.8.3 pack_Rq0 . 10
1.8.4 unpack_Rq0 . 10
1.8.5 pack_Sq . 11
1.8.6 unpack_Sq . 11
1.8.7 pack_S3 . 12
1.8.8 unpack_S3 . 12

1.9 Arithmetic . 12
1.9.1 S2_inverse and S3_inverse . 12
1.9.2 Sq_inverse . 13
1.9.3 Lift . 13

1.10 Sampling . 13
1.10.1 Sample_fg . 13
1.10.2 Sample_rm . 14
1.10.3 Ternary . 15
1.10.4 Ternary_Plus . 15

2

1.10.5 Fixed_Type . 16
1.11 Passively secure DPKE . 16

1.11.1 DPKE_Key_Pair . 16
1.11.2 DPKE_Public_Key . 17
1.11.3 DPKE_Encrypt . 17
1.11.4 DPKE_Decrypt . 18

1.12 Strongly secure KEM . 19
1.12.1 Key_Pair . 19
1.12.2 Encapsulate . 19
1.12.3 Decapsulate . 20

2 Design rationale 20
2.1 Summary of merger . 20
2.2 Detailed description of previous NTRU variants . 21

2.2.1 The ANTS'98 NTRU PPKE . 21
2.2.2 The ANTS'98 NTRU DPKE . 21
2.2.3 The �rst round NTRUEncrypt submission . 21
2.2.4 The �rst round NTRU-HRSS-KEM submission . 23
2.2.5 The Saito�Xagawa�Yamakawa variant of NTRU-HRSS-KEM 24

2.3 The NTRU submission . 25
2.4 Variants of the NTRU submission . 26

2.4.1 Faster key generation for single-use keys . 26
2.4.2 Prime q . 26
2.4.3 ntru-hps-like parameter sets with faster key generation 26
2.4.4 Arbitrary weight m and �xed-weight f . 26
2.4.5 An IND-CCA2 PKE using Q-OAEP . 27

2.5 Available size vs. security trade-o�s . 27
2.6 Parameter selection . 27

3 Performance analysis 29
3.1 Description of platform . 29
3.2 Performance of reference and AVX2 implementations . 29
3.3 Memory usage . 30

4 Known Answer Test values 30

5 Expected security 30
5.1 Security de�nition for key-establishment . 30
5.2 Security de�nition for ephemeral-only key-establishment 30
5.3 Security categories . 31

6 Cost of known attacks 31
6.1 Attacks based on lattices . 32
6.2 Quality of lattice reduction . 32
6.3 Cost of SVP algorithms . 33

6.3.1 Non-asymptotic memory usage of sieving . 33
6.3.2 E�ect of quantum search . 34

6.4 The cost of lattice attacks . 34
6.4.1 Short vectors in NTRU lattices . 34
6.4.2 Costing the primal attack . 34
6.4.3 Costing the hybrid attack . 35

6.5 Rationale for security categories . 36

7 Advantages and limitations 36

3

1 Written speci�cation

1.1 Overview

This document speci�es a key encapsulation mechanism (KEM) based on Ho�stein, Pipher, and Silver-
man's NTRU encryption scheme [19, 20]. The KEM is constructed using a generic transformation from
a correct deterministic public key encryption scheme (correct DPKE). NTRU was originally described
as a partially correct probabilistic public key encryption scheme (partially correct PPKE), and most
instantiations in the literature are based on this PPKE (e.g. [9, 26, 24, 17, 18, 25]). However, a preprint
of the NTRU paper circulated at CRYPTO'96 [19] describes how NTRU can be made both determinis-
tic [19, Section 4.2] and perfectly correct [19, Section 4.3]. Modulo a few small changes introduced by
Hülsing, Rijnveld, Schanck, and Schwabe in [25], the correct DPKE that we describe here is obtained by
applying the preprint's transformations for determinism and correctness to the PPKE from ANTS'98
[20].

The DPKE is parameterized by coprime positive integers (n, p, q), sample spaces (Lf ,Lg,Lr,Lm),
and an injection Lift : Lm → Z[x]. We recommend two narrowly de�ned families of parameter sets
that we refer to as ntru-hps and ntru-hrss. The ntru-hps parameter sets follow Ho�stein, Pipher,
and Silverman's use of �xed-weight sample spaces [19, 20] and allow several choices of q for each n.
The ntru-hrss parameter sets follow Hülsing, Rijnveld, Schanck, and Schwabe's use of arbitrary weight

sample spaces [25] and �x q as a function of n.
This submission is a merger of the NTRUEncrypt and NTRU-HRSS-KEM submissions. We have

uni�ed all aspects of the designs except for the use of �xed-weight sampling. In that regard, our
ntru-hps parameter sets follow the NTRUEncrypt submission, and our ntru-hrss parameter sets
follow the NTRU-HRSS-KEM submission. We continue to recommend ntruhrss701 (ntru-hrss with
n = 701), which was the only parameter set recommended in the NTRU-HRSS-KEM submission. The
move toward perfect correctness forces us to deprecate the parameter sets recommended in the NTRU-
Encrypt submission. We have selected ntruhps2048509 (ntru-hps with n = 509 and q = 2048) and
ntruhps4096821 (ntru-hps with n = 821 and q = 4096) to replace the NTRUEncrypt submission's
ntru-pke-443 and ntru-pke-743 parameter sets. We have also selected ntruhps2048677 (ntru-hps with
n = 677 and q = 2048) as an alternative to ntruhrss701.

The KEM that we construct has a tight proof of IND-CCA2 security in the random oracle model
(ROM) under the assumption that our DPKE is OW-CPA secure. It also has a tight proof of IND-CCA2
security in the quantum accessible random oracle model (QROM) under a non-standard assumption
stated by Saito, Xagawa, and Yamakawa [36]. Our KEM is interoperable with the KEM constructed by

Saito, Xagawa, and Yamakawa in [36, Section 5.1], but it can also be viewed as an application of the U /⊥
m

transformation of Hofheinz, Hövelmanns, and Kiltz [21], or of the SimpleKEM transformation of Bern-
stein and Persichetti [5]. This is because our DPKE is slightly di�erent from the NTRU DPKE proposed
by Saito, Xagawa, and Yamakawa ([36, Figure 10]). Our DPKE achieves Bernstein and Persichetti's no-
tion of rigidity [5, Section 6] without applying �re-encryption.� This change a�ects the internal behavior
of the KEM, but the result remains interoperable with the Saito�Xagawa�Yamakawa NTRU KEM.

1.2 De�nitions

The following de�nitions are with respect to a �xed odd prime n.

1. (Z/n)× is the multiplicative group of integers modulo n.

2. Φ1 is the polynomial (x− 1).

3. Φn is the polynomial (xn − 1)/(x− 1) = xn−1 + xn−2 + · · ·+ 1.

4. R is the quotient ring Z[x]/(Φ1Φn).

5. S is the quotient ring Z[x]/(Φn).

6. R/3 is the quotient ring Z[x]/(3,Φ1Φn).

4

7. R/q is the quotient ring Z[x]/(q,Φ1Φn). The canonical R/q-representative of a ∈ Z[x] is the unique
polynomial b ∈ Z[x] of degree at most n−1 with coe�cients in {−q/2,−q/2+1, . . . , q/2−1} such
that a ≡ b (mod (q,Φ1Φn)). We write Rq(a) for the canonical R/q-representative of a. We write
Rq(a) when the choice of representative is not normative.

8. S/2 is the quotient ring Z[x]/(2,Φn). The canonical S/2-representative of a ∈ Z[x] is the
unique polynomial b ∈ Z[x] of degree at most n − 2 with coe�cients in {0, 1} such that a ≡ b
(mod (2,Φn)). We write S2(a) for the canonical S/2-representative of a. We write S2(a) when
the choice of representative is not normative.

9. S/3 is the quotient ring Z[x]/(3,Φn). The canonical S/3-representative of a ∈ Z[x] is the unique
polynomial b ∈ Z[x] of degree at most n − 2 with coe�cients in {−1, 0, 1} such that a ≡ b
(mod (3,Φn)). We write S3(a) for the canonical S/3-representative of a. We write S3(a) when
the choice of representative is not normative.

10. S/q is the quotient ring Z[x]/(q,Φn). The canonical S/q-representative of a ∈ Z[x] is the unique
polynomial b ∈ Z[x] of degree at most n−2 with coe�cients in {−q/2,−q/2+1, . . . , q/2−1} such
that a ≡ b (mod (q,Φn)). We write Sq(a) for the canonical S/q-representative of a. We write
Sq(a) when the choice of representative is not normative.

11. A polynomial is ternary if its coe�cients are in {−1, 0, 1}.

12. A ternary polynomial v =
∑
i vix

i has the non-negative correlation property if
∑
i vivi+1 ≥ 0.

13. T is the set of non-zero ternary polynomials of degree at most n− 2. Equivalently, T is the set of
canonical S/3-representatives.

14. T+ is the subset of T consisting of polynomials with the non-negative correlation property.

15. T (d), for an even positive integer d, is the subset of T consisting of polynomials that have exactly
d/2 coe�cients equal to +1 and d/2 coe�cients equal to −1.

1.3 Parameter sets

1.3.1 ntru

An ntru parameter set is (n, p, q,Lf ,Lg,Lr,Lm, Lift) where n, p, and q are coprime positive
integers; Lf , Lg, Lr, and Lm are sets of integer polynomials; and Lift is an injection Lm → Z[x]
for which S3(Lift(m)) = m for all m ∈ Lm. An ntru parameter set is correct if

(p · r · g + f · Lift(m)) mod (Φ1Φn) (1)

has coe�cients in {−q/2, . . . , q/2− 1} for all (f ,g, r,m) ∈ (Lf ,Lg,Lr,Lm).

1.3.2 ntru-hps

An ntru-hps parameter set is an ntru parameter set for which

− n is a prime and both 2 and 3 are of order n− 1 in (Z/n)×,

− p = 3,

− q is a power of two,

− Lf = T ,
− Lg = T (q/8− 2),

− Lr = T ,
− Lm = T (q/8− 2), and

− Lift is the identity m 7→m.

5

We only recommend parameter sets with q/8 − 2 ≤ 2n/3. Parameter sets with larger q may
replace the q/8− 2 in the de�nition of Lg and Lm with 2bn/3c. In either case, the parameters
are correct; each coe�cient in Eq. 1 is a sum of at most q/8 − 2 terms in {0,±1,±2,±3,±4}.
Speci�c ntru-hps parameter sets are denoted ntruhps[q][n], e.g. ntruhps2048509 is ntru-hps
with n = 509 and q = 2048. The recommended ntru-hps parameter sets are ntruhps2048509,
ntruhps2048677, ntruhps4096821.

1.3.3 ntru-hrss

An ntru-hrss parameter set is an ntru parameter set for which

− n is a prime and both 2 and 3 are of order n− 1 in (Z/n)×,

− p = 3,

− q = 2d7/2+log2(n)e,

− Lf = T+,
− Lg = {Φ1 · v : v ∈ T+},
− Lr = T ,
− Lm = T , and
− Lift is m 7→ Φ1 · S3(m/Φ1).

These parameters are correct for any choice of q > 8
√

2(n − 1) [25]. The q recommended here
is the smallest power of two that provides correctness. Speci�c ntru-hrss parameter sets are
denoted ntruhrss[n], e.g. ntruhrss701 is ntru-hrss with n = 701. The recommended ntru-hrss

parameter set is ntruhrss701.

1.4 Additional parameters

1.4.1 Hash

A hash function.

Recommended value: SHA3_256

1.4.2 Sample_fg

A routine for sampling from Lf × Lg.

Recommended value: The routine of Section 1.10.1.

Note: Sample_fg is listed as a parameter because the use of di�erent routines will lead to
di�erent known answer test results. The choice of Sample_fg does not a�ect interoperability of
otherwise identical parameter sets. The choice of Sample_fg may a�ect the derived constants
sample_iid_bits, sample_�xed_type_bits, and sample_key_bits. The choice may also a�ect security,
see Section 6.4.1.

1.4.3 Sample_rm

A routine for sampling from Lr × Lm.

Recommended value: The routine of Section 1.10.2.

Note: Sample_rm is listed as a parameter because the use of di�erent routines will lead to
di�erent known answer test results. The choice of Sample_rm does not a�ect interoperability of
otherwise identical parameter sets. The choice of Sample_fg may a�ect the derived constants
sample_iid_bits, sample_�xed_type_bits, and sample_plaintext_bits. The choice may also a�ect
security, see Section 6.4.1.

6

1.4.4 key_seed_bits

The number of random bits consumed by KeyGen. [1.12.1]

Recommended value: sample_key_bits + prf_key_bits

1.5 Derived constants

1.5.1 logq

Formula: log2(q)

1.5.2 sample_iid_bits

The number of random bits consumed by the Ternary routine. [1.10.3]

Formula: 8 · (n− 1)

1.5.3 sample_�xed_type_bits

The number of random bits consumed by the Fixed_Type routine. [1.10.5]

Formula: 30 · (n− 1)

1.5.4 sample_key_bits

The number of random bits consumed by the Sample_fg routine. [1.10.1]

Formula:

{
sample_iid_bits + sample_iid_bits (ntru-hrss)

sample_iid_bits + sample_fixed_type_bits (ntru-hps)
.

1.5.5 sample_plaintext_bits

The number of random bits consumed by the Sample_rm routine. [1.10.2]

Formula:

{
sample_iid_bits + sample_iid_bits (ntru-hrss)

sample_iid_bits + sample_fixed_type_bits (ntru-hps)
.

1.5.6 packed_s3_bytes

The number of bytes output by pack_S3. [1.8.7]

Formula: d(n− 1)/5e

1.5.7 packed_sq_bytes

The number of bytes output by pack_Sq. [1.8.5]

Formula: d(n− 1) · logq/8e

1.5.8 packed_rq0_bytes

The number of bytes output by pack_Rq0. [1.8.3]

Formula: d(n− 1) · logq/8e

1.5.9 dpke_public_key_bytes

The number of bytes in a public key for the DPKE.

Formula: packed_rq0_bytes

7

1.5.10 dpke_private_key_bytes

The number of bytes in a private key for the DPKE.

Formula: 2 · packed_s3_bytes + packed_sq_bytes

1.5.11 dpke_plaintext_bytes

The number of bytes in a plaintext for the DPKE.

Formula: 2 · packed_s3_bytes

1.5.12 dpke_ciphertext_bytes

The number of bytes in a ciphertext for the DPKE.

Formula: packed_rq0_bytes

1.5.13 kem_public_key_bytes

The number of bytes in a public key for the KEM.

Formula: dpke_public_key_bytes

1.5.14 kem_private_key_bytes

The number of bytes in a private key for the KEM.

Formula: dpke_private_key_bytes + dprf_key_bits/8e

1.5.15 kem_ciphertext_bytes

The number of bytes in a ciphertext for the KEM.

Formula: dpke_ciphertext_bytes

1.5.16 kem_shared_key_bits

The number of bits output by Hash.

Recommended value: 256

1.5.17 prf_key_bits

The number of bits used to key the implicit rejection mechanism.

Formula: 256

8

1.6 Summary of recommended parameters and derived constants

ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701

n 509 677 821 701

q 2048 2048 4096 8192

Hash SHA3_256 SHA3_256 SHA3_256 SHA3_256

Sample_fg [1.10.1] [1.10.1] [1.10.1] [1.10.1]

Sample_rm [1.10.2] [1.10.2] [1.10.2] [1.10.2]

sample_�xed_type_bits 15240 20280 24630 �

sample_iid_bits 4064 5408 6560 5600

sample_key_bits 19304 25688 31190 11200

sample_plaintext_bits 19304 25688 31190 11200

packed_s3_bytes 102 136 164 140

packed_rq0_bytes 699 930 1230 1138

packed_sq_bytes 699 930 1230 1138

dpke_public_key_bytes 699 930 1230 1138

dpke_private_key_bytes 903 1202 1558 1418

dpke_plaintext_bytes 204 272 328 280

dpke_ciphertext_bytes 699 930 1230 1138

kem_public_key_bytes 699 930 1230 1138

kem_private_key_bytes 935 1234 1590 1450

kem_ciphertext_bytes 699 930 1230 1138

kem_shared_key_bits 256 256 256 256

1.7 Externally de�ned algorithms

1.7.1 SHAKE256

Input:

− A bit string M of arbitrary length.

− A positive integer d.

Output:

− A bit string of length d.

Operation:

1. Output KECCAK[512](M ||1111, d), as de�ned in [34].

1.7.2 SHA3_256

Input:

− A bit string M of arbitrary length.

Output:

− A bit string of length 256.

Operation:

1. Output KECCAK[512](M ||01, 256), as de�ned in [34].

9

1.8 Encodings

1.8.1 Bit strings and byte arrays

A bit string is an element of {0, 1}∗. A byte array is an element of ({0, 1}8)∗. The public API is de�ned
in terms of byte arrays. However, the externally de�ned functions SHA3_256 and SHAKE256operate on
bit strings, as do some internal functions. We de�ne bits_to_bytes(b) and bytes_to_bits(B, `) to handle
the conversions. When converting a bit string to a byte array the bit string is right padded with
zeros until its length is a multiple of 8. Bytes are then formed by bracketing, and the order of the
bits within each byte is reversed. For example, the bit string (b1, . . . , b7, b8, b9, . . . , b13) is encoded as
bits_to_bytes((b1, . . . , b13)) = ((b8, b7, . . . , b1), (0, 0, 0, b13, . . . , b9)). The inverse procedure takes a length
parameter: bytes_to_bits(((b8, b7, . . . , b1), (0, 0, 0, b13, . . . , b9)), 13) = (b1, . . . , b7, b8, b9, . . . , b13).

1.8.2 Polynomials

In this document polynomials are treated as zero indexed arrays. We write vi for the coe�cient of xi in
v. Implementations are free to choose their internal representation of polynomials. Only the encoding
of polynomials into byte arrays is normative.

1.8.3 pack_Rq0

Input:

− A polynomial a that satis�es a ≡ 0 (mod (q,Φ1)).

Output:

− A byte array of length packed_rq0_bytes that encodes the �rst n− 1 coe�cients of Rq(a).

Operation:

1. Set v = Rq(a)

2. Set (b1, b2, . . . , b(n−1)logq) = (0, 0, . . . , 0)

3. Set i = 0

4. While i < (n− 1)

5. Set (bilogq+1, bilogq+2, . . . , bilogq+logq) ∈ {0, 1}logq such that
∑logq−1
j=0 2jbilogq+1+j ≡ vi (mod q)

6. Set i = i+ 1

7. End

8. Output bits_to_bytes((b1, b2, . . . , b(n−1)logq))

Notes:

1. The coe�cient vn−1 is not encoded. The condition a ≡ 0 (mod (q,Φ1)) implies that

vn−1 ≡ −
∑n−2
i=0 vi (mod q), so vn−1 can be recovered from the �rst n− 1 coe�cients.

1.8.4 unpack_Rq0

Input:

− A byte array B of length packed_rq0_bytes.

Output:

− A polynomial a that satis�es a ≡ 0 (mod (q,Φ1)).

Operation:

1. Set (b1, b2, . . . , b(n−1)logq) = bytes_to_bits(B, (n− 1)logq)

10

2. Set v = 0

3. Set i = 0

4. While i < (n− 1)

5. Set c =
∑logq−1
j=0 2jbilogq+1+j

6. Set v = v + c · xi − c · xn−1

7. Set i = i+ 1

8. End

9. Output Rq(v)

1.8.5 pack_Sq

Input:

− A polynomial a.

Output:

− A byte array of length packed_sq_bytes that encodes Sq(a).

Operation:

1. Set v = Sq(a)

2. Set (b1, b2, . . . , b(n−1)logq) = (0, 0, . . . , 0)

3. Set i = 0

4. While i < (n− 1)

5. Set (bilogq+1, bilogq+2, . . . , bilogq+logq) such that
∑logq−1
j=0 2jbilogq+1+j ≡ vi (mod q)

6. Set i = i+ 1

7. End

8. Output bits_to_bytes((b1, b2, . . . , b(n−1)logq)).

1.8.6 unpack_Sq

Input:

− A byte array B of length packed_sq_bytes.

Output:

− A polynomial.

Operation:

1. Set (b1, b2, . . . , b(n−1)logq) = bytes_to_bits(B, (n− 1)logq)

2. Set v = 0

3. Set i = 0

4. While i < (n− 1)

5. Set c =
∑logq−1
j=0 2jbilogq+1+j

6. Set v = v + c · xi

7. Set i = i+ 1

8. End

9. Output Sq(v)

11

1.8.7 pack_S3

Input:

− A polynomial a.

Output:

− A byte array of length packed_s3_bytes that encodes S3(a).

Operation:

1. Set v = S3(a)

2. Set (b1, b2, . . . , b8d(n−1)/5e) = (0, 0, . . . , 0)

3. Set i = 0

4. While i < d(n− 1)/5e
5. Set (c1, c2, . . . , c5) ∈ {0, 1, 2}5 so that cj ≡ v5i+j (mod 3)

6. Set (b8i+1, b8i+2, . . . , b8i+8) so that
∑7
j=0 2jb8i+1+j =

∑4
j=0 3jc1+j

7. i = i+ 1

8. End

9. Output bits_to_bytes((b1, b2, . . . , b8d(n−1)/5e))

1.8.8 unpack_S3

Input:

− A byte array B of length packed_s3_bytes.

Output:

− A polynomial.

Operation:

1. Set (b1, b2, . . . , b8d(n−1)/5e) = bytes_to_bits(B, 8d(n− 1)/5e)
2. Set v = 0

3. Set i = 0

4. While i < d(n− 1)/5e
5. Set (c1, c2, . . . , c5) ∈ {0, 1, 2}5 so that

∑7
j=0 2jb8i+1+j =

∑4
j=0 3jc1+j .

6. Set (v5i+1, v5i+2, v5i+3, v5i+4, v5i+5) = (c1, c2, c3, c4, c5)

7. i = i+ 1

8. End

9. Output S3(v)

1.9 Arithmetic

Algorithms for integer addition, integer multiplication, polynomial addition, polynomial multiplication,
modular reduction (Rq, S2, S3, Sq), and canonical representatives (Rq, S3, Sq) are omitted.

1.9.1 S2_inverse and S3_inverse

The conditions on n in the de�nition of ntru-hps and ntru-hrss ensure that S/2 and S/3 are �nite
�elds. The routines S2_inverse and S3_inverse compute inverses in S/2 and S/3 respectively. Implement-
ing these routines in constant time is non-trivial. Pseudocode for one method is provided in [25]. A
faster S3_inverse is described in [6].

12

1.9.2 Sq_inverse

Input:

− A polynomial a.

Output:

− A polynomial b that satis�es Sq(a · b) = 1.

Operation:

1. Set v0 = S2(S2_inverse(a)) [1.9.1]

2. Set t = 1

3. While t < logq

4. Set v0 = Sq(v0 · (2− a · v0))

5. Set t = 2t

6. End

7. Output Sq(v0)

Notes:

1. Line 4 can be performed in R/q.

1.9.3 Lift

Input:

− A polynomial m.

Output:

− (ntru-hps) The polynomial S3(m).

− (ntru-hrss) The polynomial Φ1 · S3(m/Φ1).

Notes:

1. The ternary polynomial S3(1/Φ1) has periodic coe�cients. Explicitly,

S3(1/Φ1) =

S3
(∑n−2

i=0 i · xi
)

if n ≡ 1 mod 3,

S3
(∑n−2

i=0 (1− i) · xi
)

if n ≡ 2 mod 3.

This leads to a fast algorithm for computing S3(m/Φ1); pseudocode is given in [25].

1.10 Sampling

1.10.1 Sample_fg

Input:

− A bit string fg_bits of length sample_key_bits.

Output:

− A polynomial f in Lf .
− A polynomial g in Lg.

Operation:

13

− ntru-hps

1. Parse fg_bits as f_bits ‖ g_bits with
� f_bits of length sample_iid_bits

� g_bits of length sample_fixed_type_bits

2. Set f = Ternary(f_bits) [1.10.3]

3. Set g = Fixed_Type(g_bits) [1.10.5]

− ntru-hrss

1. Parse fg_bits as f_bits ‖ g_bits with
� f_bits of length sample_iid_bits

� g_bits of length sample_iid_bits

2. Set f = Ternary_Plus(f_bits) [1.10.4]

3. Set g0 = Ternary_Plus(g_bits) [1.10.4]

4. Set g = Φ1 · g0

Notes:

1. Our recommended Ternary and Ternary_Plus routines consume sample_iid_bits = 8n−8 bits,
so g_bits starts at a byte boundary.

1.10.2 Sample_rm

Input:

− A bit string rm_bits of length sample_plaintext_bits.

Output:

− A polynomial r ∈ Lr.
− A polynomial m ∈ Lm.

Operation:

− ntru-hps

1. Parse rm_bits as r_bits ‖ m_bits with

� r_bits of length sample_iid_bits

� m_bits of length sample_fixed_type_bits

2. Set r = Ternary(r_bits) [1.10.3]

3. Set m = Fixed_Type(m_bits) [1.10.5]

4. Output (r,m)

− ntru-hrss

1. Parse rm_bits as r_bits ‖ m_bits with

� r_bits of length sample_iid_bits

� m_bits of length sample_iid_bits

2. Set r = Ternary(r_bits) [1.10.3]

3. Set m = Ternary(m_bits) [1.10.3]

4. Output (r,m)

14

1.10.3 Ternary

Input:

− A bit string (b1, b2, · · · , b`) of length sample_iid_bits.

Output:

− A ternary polynomial.

Operation:

1. Set v = 0

2. Set i = 0

3. While i < n− 1

4. Set v = v +
(∑7

j=0 2jb8i+j+1

)
· xi

5. Set i = i+ 1

6. End

7. Output S3(v)

Notes:

1. This implementation assumes sample_iid_bits = 8 · (n− 1).

1.10.4 Ternary_Plus

Input:

− A bit string (b1, b2, · · · , b`) of length sample_iid_bits.

Output:

− A ternary polynomial that satis�es the non-negative correlation property.

Operation:

1. Set v = Ternary((b1, b2, · · · , b`)) [1.10.3]

2. Set t =
∑n−2
i=0 vi · vi+1

3. Set s = −1 if t < 0, otherwise set s = 1

4. Set i = 0

5. While i < n− 1

6. Set vi = s · vi
7. Set i = i+ 2

8. End

9. Output S3(v)

Notes:

1. The value t in Line 2 satis�es −n < t < n.

15

1.10.5 Fixed_Type

Input:

− A bit string (b1, b2, · · · , b`) of length sample_fixed_type_bits.

Output:

− A ternary polynomial with exactly q/16− 1 coe�cients equal to 1 and q/16− 1 coe�cients
equal to −1.

Operation:

1. Set A = [0, 0, . . . , 0] (the zero array of length n− 1)

2. Set v = 0 (the zero polynomial)

3. Set i = 0

4. While i < q/16− 1

5. Set Ai = 1 +
∑29
j=0 22+jb30i+1+j

6. Set i = i+ 1

7. End

8. While i < q/8− 2

9. Set Ai = 2 +
∑29
j=0 22+jb30i+1+j

10. Set i = i+ 1

11. End

12. While i < n− 1

13. Set Ai = 0 +
∑29
j=0 22+jb30i+1+j

14. Set i = i+ 1

15. End

16. Sort A

17. Set i = 0

18. While i < n− 1

19. Set v = v + (Ai mod 4)xi

20. Set i = i+ 1

21. End

22. Output S3(v)

Notes:

1. This implementation assumes sample_fixed_type_bits = 30 · (n− 1).

2. Sorting must be implemented in constant time.

1.11 Passively secure DPKE

1.11.1 DPKE_Key_Pair

Input:

− A bit string coins of length sample_key_bits

Output:

− A byte array packed_private_key of length dpke_private_key_bytes

16

− A byte array packed_public_key of length dpke_public_key_bytes

Operation:

1. Set (f ,g) = Sample_fg(coins) [1.10.1]

2. Set fp = S3_inverse(f) [1.9.1]

3. Set (h,hq) = DPKE_Public_Key(f ,g) [1.11.2]

4. Set packed_private_key = pack_S3(f) ‖ pack_S3(fp) ‖ pack_Sq(hq) [1.8.7, 1.8.5]

5. Set packed_public_key = pack_Rq0(h) [1.8.3]

6. Output (packed_private_key, packed_public_key)

1.11.2 DPKE_Public_Key

Input:

− A polynomial f ∈ Lf
− A polynomial g ∈ Lg

Output:

− A polynomial h that satis�es Rq(h · f) = 3 · g
− An polynomial hq that satis�es Sq(h · hq) = 1

Operation:

1. Set G = 3 · g
2. Set v0 = Sq(G · f)

3. Set v1 = Sq_inverse(v0) [1.9.2]

4. Set h = Rq(v1 ·G ·G)

5. Set hq = Rq(v1 · f · f)

6. Output (h,hq)

Notes:

1. The choice of Lg in ntru-hps and ntru-hrss ensures that G ≡ 0 (mod (q,Φ1)). As a
consequence, the output condition on h is satis�ed even though the inverse is computed in
S/q instead of R/q.

1.11.3 DPKE_Encrypt

Input:

− A byte array packed_public_key of length dpke_public_key_bytes.

− A byte array packed_rm of length dpke_plaintext_bytes.

Output:

− A byte array packed_ciphertext of length dpke_ciphertext_bytes.

Operation:

1. Parse packed_rm as packed_r ‖ packed_m with

− packed_r of length packed_s3_bytes, and

− packed_m of length packed_s3_bytes.

2. Set r = S3(unpack_S3(packed_r)) [1.10.3]

17

3. Set m0 = unpack_S3(packed_m) [1.8.8]

4. Set m1 = Lift(m0) [1.9.3]

5. Set h = unpack_Rq0(packed_public_key) [1.8.4]

6. Set c = Rq(r · h + m1)

7. Set packed_ciphertext = pack_Rq0(c) [1.8.3]

8. Output packed_ciphertext

1.11.4 DPKE_Decrypt

Input:

− A byte array packed_private_key of length dpke_private_key_bytes.

− A byte array packed_ciphertext of length dpke_ciphertext_bytes.

Output:

− A byte array packed_rm of length dpke_plaintext_bytes.

− A bit fail.

Operation:

1. Parse packed_private_key as packed_f ‖ packed_fp ‖ packed_hq with
− packed_f of length packed_s3_bytes

− packed_fp of length packed_s3_bytes

− packed_hq of length packed_sq_bytes

2. Set c = unpack_Rq0(packed_ciphertext) [1.8.4]

3. Set f = S3(unpack_S3(packed_f)) [1.8.8]

4. Set fp = unpack_S3(packed_fp) [1.8.8]

5. Set hq = unpack_Rq0(packed_hq) [1.8.4]

6. Set v1 = Rq(c · f)

7. Set m0 = S3(v1 · fp)
8. Set m1 = Lift(m0) [1.9.3]

9. Set r = Sq((c−m1) · hq)
10. Set packed_rm = pack_S3(r) ‖ pack_S3(m0). [1.8.7]

11. If r ∈ Lr and m0 ∈ Lm set fail = 0

12. Else set fail = 1

13. Output (packed_rm, fail)

Notes:

1. This implementation assumes that only the KEM interface is exposed to users. Implemen-
tations that expose the DPKE to users are required to return (pack_S3(0) ‖ pack_S3(0), 1)
on failure.

18

1.12 Strongly secure KEM

1.12.1 Key_Pair

Input:

− A bit string seed of length key_seed_bits.

Output:

− A byte array packed_private_key of length kem_private_key_bytes.

− A byte array packed_public_key of length kem_public_key_bytes.

Operation:

1. Parse seed as fg_bits ‖ prf_key with

− fg_bits of length sample_key_bits

− prf_key of length prf_key_bits

2. Set (packed_dpke_private_key, packed_public_key) = DPKE_Key_Pair(fg_bits)

3. Set packed_private_key = packed_dpke_private_key ‖ bits_to_bytes(prf_key)

4. Output (packed_private_key, packed_public_key)

Notes:

1. This implementation assumes that key_seed_bits = sample_key_bits + prf_key_bits. Imple-
mentations may expand fg_bits and prf_key from a 256 bit seed.

1.12.2 Encapsulate

Input:

− A byte array packed_public_key of length kem_public_key_bytes.

Output:

− A bit string shared_key of length kem_shared_key_bits.

− A byte array packed_ciphertext of length kem_ciphertext_bytes.

Operation:

1. Let coins be a string of sample_plaintext_bits uniform random bits

2. Set (r,m) = Sample_rm(coins) [1.10.2]

3. Set packed_rm = pack_S3(r) ‖ pack_S3(m) [1.8.7]

4. Set shared_key = Hash(bytes_to_bits(packed_rm, 8 · dpke_plaintext_bytes)) [1.7.2]

5. Set packed_ciphertext = DPKE_Encrypt(packed_public_key, packed_rm) [1.11.3]

Notes:

1. Implementations may expand coins from a 256 bit seed.

19

1.12.3 Decapsulate

Input:

− A byte array packed_private_key of length kem_private_key_bytes.

− A byte array packed_ciphertext of length kem_ciphertext_bytes.

Output:

− A bit string shared_key of length kem_shared_key_bits.

Operation:

1. Parse packed_private_key as packed_f ‖ packed_fp ‖ packed_hq ‖ prf_key with

− packed_f of length packed_s3_bytes

− packed_fp of length packed_s3_bytes

− packed_hq of length packed_sq_bytes

− prf_key of length dprf_key_bits/8e
2. Set (packed_rm, fail) = DPKE_Decrypt(packed_private_key, packed_ciphertext) [1.11.4]

3. Set shared_key = Hash(bytes_to_bits(packed_rm, 8 · dpke_plaintext_bytes)) [1.7.2]

4. Set random_key = Hash(bytes_to_bits(prf_key, prf_key_bits) ‖ bytes_to_bits(packed_ciphertext, 8·
kem_ciphertext_bytes)) [1.7.2]

5. if fail = 0 output shared_key, else output random_key.

2 Design rationale

2.1 Summary of merger

− The NTRUEncrypt submission proposes an IND-CCA2 PKE that is derived from the ANTS'98
NTRU PPKE using the NAEP padding mechanism. The IND-CCA2 security of the KEM is sup-
ported by a non-tight reduction to the OW-CPA security of the PPKE in the ROM; the reduction
does not go through in the QROM. The submission does not recommend correct parameter sets.

− The NTRU-HRSS-KEM submission proposes an IND-CCA2 KEM that is derived from the ANTS'98
NTRU PPKE using the Targhi�Unruh transformation. The IND-CCA2 security of the KEM is
supported by a non-tight reduction to the OW-CPA security of the PPKE in both the ROM and
the QROM. The QROM reduction requires a length-preserving message con�rmation hash, which
adds 141 bytes to ntruhrss701 ciphertexts. The submission insists on perfectly correct parameters.

− A paper by Saito, Xagawa, and Yamakawa [36] proposes a variant of NTRU-HRSS-KEM that
eliminates the length-preserving message con�rmation hash. The variant is an IND-CCA2 KEM
that is derived from a deterministic PKE using re-encryption and implicit rejection. The IND-
CCA2 security of the KEM is supported by a tight reduction to the OW-CPA security of the DPKE
in the ROM, and a non-tight reduction in the QROM. The QROM reduction is tight if one assumes
sparse pseudorandomness [36, De�nition 3.2] of the underlying DPKE. The tight reductions require
perfect correctness. The NTRU DPKE is slightly more expensive than the PPKE; this variant is
otherwise a clear improvement over NTRU-HRSS-KEM.

− The (merged) NTRU submission is based on the Saito�Xagawa�Yamakawa variant of NTRU-
HRSS-KEM, but it eliminates an expensive part of the decapsulation routine. This e�ciency
enhancement maintains interoperability with the Saito�Xagawa�Yamakawa variant, has no impact
on security, and cancels some of the added cost of the DPKE. All of the proposed parameter sets
are correct, and features from the NTRUEncrypt submission have been incorporated to allow for
a broader range of size vs. security vs. e�ciency trade-o�s. The submission does not recommend
a direct construction of an IND-CCA2 PKE, but this could change if the open problem in Section
2.4.5 is resolved.

20

2.2 Detailed description of previous NTRU variants

In this section we present all of the schemes that have in�uenced the design of the NTRU submission
in a uni�ed format. The ANTS'98 NTRU PPKE and DPKE are presented without comment, but we
remark on various properties of the NTRUEncrypt submission, the NTRU-HRSS-KEM submission, and
the Saito�Xagawa�Yamakawa variant of NTRU-HRSS-KEM. We take some liberties with the use of
�Sample� routines to streamline the presentation.

2.2.1 The ANTS'98 NTRU PPKE

KeyGen(seed) Encrypt(h,m, coins) Decrypt((f , fp), c)

1. c← 0 1. r← Sample_r(coins) 1. a← (c · f) mod (q,Φ1Φn)

2. do {f ← Sample_f(seed, c); c← c+ 1} 2. c← (r · h + m) mod (q,Φ1Φn) 2. m← (a · fp) mod (3,Φ1Φn)

3. until f is invertible mod (2,Φ1Φn) 3. return c 3. return m

and f is invertible mod (3,Φ1Φn)

4. g← Sample_g(seed, c)

5. h← (3 · g/f) mod (q,Φ1Φn)

6. fp ← (1/f) mod (3,Φ1Φn)

7. return ((f , fp),h)

Figure 1: The PPKE from the ANTS'98 paper.

2.2.2 The ANTS'98 NTRU DPKE

KeyGen(seed) Encrypt(h, (r,m)) Decrypt((f , fp,hq), c)

1. c← 0 1. c← (r · h + m) mod (q,Φ1Φn) 1. a← (c · f) mod (q,Φ1Φn)

2. do {f ← Sample_f(seed, c); c← c+ 1} 2. return c 2. m← (a · fp) mod (3,Φ1Φn)

3. until f is invertible mod (2,Φ1Φn) 3. r← ((c−m) · hq) mod (q,Φ1Φn)

and f is invertible mod (3,ΦnΦn) 4. return (r,m)

4. g← Sample_g(seed, c)

5. h← (3 · g/f) mod (q,Φ1Φn)

6. hq ← (1/h) mod (q,Φ1Φn)

7. fp ← (1/f) mod (3,Φ1Φn)

8. return ((f , fp,hq),h)

Figure 2: The DPKE that is obtained by applying the reasoning of [19, Section 4.2] to Figure 1.

2.2.3 The �rst round NTRUEncrypt submission

The �rst round NTRUEncrypt submission applies Howgrave-Graham, Silverman, Singer, and Whyte's
NAEP padding mechanism [23] to the ANTS'98 PPKE. The combination is sometimes referred to as
SVES-3. The presentation in Figures 3 and 4 is slightly non-standard. We have factored a PPKE out of
SVES-3 to which various generic transformations can be applied. This PPKE features message masking,
which eliminates some obstructions to the IND-CPA security of the ANTS'98 PPKE. The SVES-3 scheme
(a.k.a. ntru-pke) is reconstructed in Figure 4. The NTRUEncrypt submission also includes a KEM, which
we describe below.

21

KeyGen(seed) Encrypt(h,m, coins) Decrypt(f , c)

1. c← 0 1. r← Sample_r(coins) 1. a← (c · f) mod (q,Φ1Φn)

2. do {f ← Sample_f(seed, c); c← c+ 1} 2. s← (r · h) mod (q,Φ1Φn) 2. m′ ← a mod (3,Φ1Φn)

3. until f is invertible mod (2,Φn) 3. t← Sample_T ′(H1(s)) 3. s← c−m′ mod (q,Φ1Φn)

4. g← Sample_g(seed, c) 4. m′ ← (m− t) mod (3,Φ1Φn) 4. t← Sample_T ′(H1(s))

5. h← (3 · g/f) mod (q,Φ1Φn) 5. c← (s + m′) mod (q,Φ1Φn) 5. m← (m′ + t) mod (3,Φ1Φn)

6. return (f ,h) 6. return c 6. return m

Figure 3: A PPKE implicit in the NTRUEncrypt submission.

CCAEncrypt (h,msg) CCADecrypt ((f ,h), c)

1. coins←$ {0, 1}256 1. m← Decrypt(f , c)

2. m← Pad(msg, coins) 2. (msg, coins)← Pad−1(m)

3. c← Encrypt(h,m, H2(h,m)) 3. if Encrypt(h,m, H2(h,m)) 6= c return ⊥
4. return c 4. else return msg

Figure 4: The ntru-pke scheme from the NTRUEncrypt submission. The Pad function encodes the bit
stringmsg, the length ofmsg, and coins as a binary polynomial. A maximum message length is provided
as a parameter.

Sample spaces The NTRUEncrypt submission uses sample spaces of ternary polynomials of degree at
most n− 1. We write T ′ and T ′(d) to distinguish these from the sets of ternary polynomials of degree
at most n− 2 that are used elsewhere in this document. The submission does not �x d as a function of
(n, q) and, instead, has integer parameters df and dg. The recommended sample spaces are

Lf = {1 + 3 · F : F ∈ T ′(df)} , Lg = T ′(dg), Lm = T ′, and Lr = T ′.

The encryption routine also samples a polynomial t ∈ T ′.
The choice of Lf simpli�es key generation by ensuring that f is equivalent to 1 modulo (2,Φ1)

and modulo (3,Φ1). It also simpli�es decryption by ensuring that f ≡ 1 (mod (3,Φ1Φn)). However,
the choice of Lf decreases security (and/or increases communication cost) for any �xed decryption
failure probability. With Lf = T ′(d) perfect correctness requires q > 8d, but with Lf as above perfect
correctness requires q > 12d + 1. This condition can be satis�ed by increasing q (which increases
communication cost and decreases security) or by decreasing d (which decreases security).

Inverses The NTRUEncrypt submission allows prime n for which Φn is reducible modulo 2. An
invertibility test (Line 3 of KeyGen) is needed to ensure that fq exists. The choice of Lf ensures that
f 6≡ 0 (mod (2,Φ1)), so invertibility only needs to be tested modulo (2,Φn). The submission recommends
n = 443 and n = 743. The polynomial Φ443 is irreducible in (Z/2)[x], so the test never fails and can be
skipped. The polynomial Φ743 is a product of two terms of degree 371 in (Z/2)[x], so the test is unlikely
to fail but cannot be skipped.

The polynomials Φ443 and Φ743 are both reducible modulo 3. However, the choice of Lf eliminates
the need to compute inverses modulo (3,Φ1Φn).

Message masking Lines 3 and 4 of Encrypt mask m with an element of T ′. This serves two purposes.
First, lattice reduction can easily recover m from c when m is very short, so it is only safe to use the
ANTS'98 PPKE to encrypt random messages. Second, if one takes Lg = T ′(dg) and Lm = T ′ in the
ANTS'98 PPKE, then h ≡ 0 (mod (q,Φ1)) and ciphertexts satisfy c ≡m (mod (q,Φ1)). This precludes
IND-CPA security. With message masking c ≡ S3(m − t) (mod (q,Φ1)). When coins has su�ciently
large min-entropy, one can assume that t is drawn uniformly from T ′ and that c mod (q,Φ1) reveals
nothing about m.

The assumption that t is uniform could fail when the coins for the PPKE are taken to be a hash of
m. The coins internal to CCAEncrypt in Figure 4 ensure that t has large min-entropy even when msg is
chosen adversarially.

22

Security reductions Howgrave-Graham, Silverman, Singer, and Whyte provide a (non-tight) reduction
from the ROM IND-CCA2 security of SVES-3 to the OW-CPA security of the ANTS'98 PPKE. The
reduction accounts for partial correctness, but has not received much scrutiny. The transformation in
Figure 4 is equivalent to one proposed by Fujisaki and Okamoto in [13, Section 3]. The reduction in
[13] assumes IND-CPA security of the underlying PKE and does not handle partial correctness, but this
perspective may be useful for future analysis. As far as we are aware, the NAEP transformation has not
been studied in the QROM. Similar transformations have only been shown to be secure in the QROM
after non-trivial modi�cations � see Section 2.4.5 below.

KEM The NTRUEncrypt submission constructs a KEM by encrypting a random 256 bit string using
the PKE in Figure 4. The shared secret is computed as H3(msg,h). Alternatively, one could skip the
calls to Pad, choose m as Sample_m(coins), and output H3(m) as the shared secret. The resulting KEM
would then be an instance of KEM⊥m from [21]. From this perspective there are some small changes
to the scheme that would lead to tighter security reductions in the ROM [21, Section 3.3], and larger
modi�cations that would yield a security reduction in the QROM [38][21, Section 4.3].

2.2.4 The �rst round NTRU-HRSS-KEM submission

The �rst round NTRU-HRSS-KEM submission makes a few small changes to the ANTS'98 PPKE to
eliminate invertibility tests. The KEM is constructed using a variant of the Fujisaki�Okamoto transfor-
mation that is due to Targhi and Unruh [38].

KeyGen(seed) Encrypt(h,m, coins) Decrypt((f , fp), c)

1. (f ,g)← Sample_fg(seed) 1. r← Sample_r(coins) 1. a← (c · f) mod (q,Φ1Φn)

2. fq ← (1/f) mod (q,Φn) 2. m′ ← Lift(m) 2. m′ ← (a · fp) mod (3,Φn)

3. h← (3 · g · fq) mod (q,Φ1Φn) 3. c← (r · h + m′) mod (q,Φ1Φn) 3. return m′

4. fp ← (1/f) mod (3,Φn) 4. return c

5. return ((f , fp),h)

Figure 5: The PPKE from the NTRU-HRSS-KEM submission.

Encapsulate (h) Decapsulate ((f , fp,h), (c1, c2))

1. c0 ←$ {0, 1}256 1. m← Decrypt((f , fp), e)

2. m← Sample_m(c0) 2. c′1 ← Encrypt(h,m, H1(m))

3. c1 ← Encrypt(h,m, H1(m)) 3. k ← H2(m)

4. k ← H2(m) 4. c′2 ← H3(m)

5. c2 ← H3(m) 5. if (c′1, c
′
2) 6= (c1, c2) return ⊥

6. return ((c1, c2), k) 6. else return k

Figure 6: The KEM from the NTRU-HRSS-KEM submission.

Sample spaces The NTRU-HRSS-KEM submission uses

Lf = T+, Lg = {Φ1 · v : v ∈ T+}, Lr = T , Lm = T ,

and takes Lift(m) = Φ1 · S3(m/Φ1).

Invertibility tests The choice of Lg ensures that g ≡ 0 (mod (q,Φ1)). A consequence is that h can
be computed as Rq(3 · g · Sq(1/f)) instead of Rq(3 · g · Rq(1/f)). The conditions on n ensure that S/2 is
a �nite �eld and the choice of Lf ensures that 2 - f , so f has an inverse in S/q. Second, Line 2 of the
decryption procedure recovers the message modulo (p,Φn) instead of modulo (p,Φ1Φn). A consequence
is that fp can be computed as S3(1/f) instead of R3(1/f). The conditions on n also ensure that S/3 is a

23

�nite �eld. The second change does come with a small cost: the message space is restricted to ternary
polynomials of degree at most n−2 (i.e. canonical S/3-representatives) rather than ternary polynomials
of degree at most n− 1.

Lift The ciphertext is computed as an element of R/q, but the message is recovered as an element of
S/3. The choice of canonical representatives of S/3 de�nes a canonical embedding of the message space
into R/q. However, there are practical bene�ts to allowing di�erent embeddings, and the Lift parameter
allows us to select one. The choice of Lift(m) = Φ1 · S3(m/Φ1), in context with the other parameter
choices, ensures that ciphertexts satisfy c ≡ 0 (mod (q,Φ1)). This choice of Lift increases the minimum
q that provides perfect correctness, but allows the NTRU-HRSS-KEM submission to avoid �xed-weight
sampling and message masking.

Use of T+ The correctness condition (Eq. 1) involves terms of the form Φ1 · u · v with u ∈ T+ and
v ∈ T . The condition is satis�ed if, for all u ∈ T+ and v ∈ T , the coe�cients of Φ1 · u · v are between
−q/8 and q/8− 1. Lemma 1 of [25] uses the non-negative correlation property to bound the size of the
coe�cients of Φ1 · u · v by

√
2(n − 1). This implies that the scheme is correct when q > 8

√
2(n − 1),

which is a factor of
√

2 better than the naive bound.

The Targhi�Unruh transformation KEM variants of the FO transformation were studied by Dent
in [11]. The transformation in the NTRU-HRSS-KEM submission is [11, Table 5] with an additional
condition that the plaintext-con�rmation hash (c2 in Figure 6) is length-preserving. In the ROM, Dent
provides a reduction from the IND-CCA2 security of the KEM to the OW-CPA security of the PPKE
with a tightness gap that is proportional to the number of random oracle queries. Targhi and Unruh [38]
provide an analogous reduction in the QROM which requires an injective hash function for the plaintext-
con�rmation hash. Their reduction has a tightness gap proportional to the sixth power of the number
of random oracle queries. An NTRU-HRSS-KEM plaintext is a degree n − 1 polynomial with ternary
coe�cients. The plaintext-con�rmation hash adds 141 bytes to the length of a ntruhrss701 ciphertext.

2.2.5 The Saito�Xagawa�Yamakawa variant of NTRU-HRSS-KEM

Saito, Xagawa, and Yamakawa [36] present a variant of NTRU-HRSS-KEM that has a tight security
reduction in the ROM and avoids the plaintext-con�rmation hash. They achieve this with two indepen-
dent changes: 1) their KEM is based on a DPKE, and 2) their KEM responds to malformed ciphertexts
with a pseudorandom key rather than an error symbol.

KeyGen′(seed) Encrypt(h, (r,m)) Decrypt((f , fp,hq), c)

1. (f ,g)← Sample_fg(seed) 1. m′ ← Lift(m) 1. a← (c · f) mod (q,Φ1Φn)

2. fq ← (1/f) mod (q,Φn) 2. c← (r · h + m′) mod (q,Φ1Φn) 2. m← (a · fp) mod (3,Φn)

3. h← (3 · g · fq) mod (q,Φ1Φn) 3. return c 3. m′ ← Lift(m)

4. hq ← (1/h) mod (q,Φn) 4. r′ ← ((c−m′)hq) mod (q,Φn)

5. fp ← (1/f) mod (3,Φn) 5. r← r′ mod (3,Φn)

7. return ((f , fp,hq),h) 6. return (r,m)

Figure 7: The DPKE from Saito�Xagawa�Yamakawa.

KeyGen (seed) Encapsulate (h) Decapsulate (((f , fp,hq, s),h), c)

1. (f , fp,hq),h)← KeyGen′(seed) 1. coins←$ {0, 1}256 1. (r,m)← Decrypt((f , fp,hq), e)

2. s←$ {0, 1}256 2. (r,m)← Sample_rm(coins) 2. k1 ← H1(m)

7. return ((f , fp,hq, s),h) 3. c← Encrypt(h, (r,m)) 3. k2 ← H2(s, c)

4. k ← H1(r,m) 4. if Encrypt(h, (r,m)) = c return k1

5. return (c, k) 5. else return k2

Figure 8: The KEM from Saito�Xagawa�Yamakawa.

24

Sample spaces The sample spaces match those of NTRU-HRSS-KEM.

DPKE The DPKE is essentially what one would obtain by applying the reasoning of the CRYPTO'96
NTRU preprint [19, Section 4.2] to the NTRU-HRSS-KEM PPKE (Figure 5). It di�ers only in that the
r component is reduced modulo (3,Φn) during decryption (Figure 7, Line 5 of Decrypt).

Implicit rejection The KEM rejects invalid ciphertexts by returning a pseudorandom key instead of an
error symbol � a technique called implicit rejection. Implicit rejection was �rst used by Persichetti in a
code-based cryptosystem [35]. It was proposed as part of a generic OW-CPA DPKE to IND-CCA2 KEM
transformation in [21], and this transformation is supported by a tight security reduction in the ROM
[21, 5]. Saito, Xagawa, and Yamakawa give a tight reduction in the QROM when the DPKE satis�es
a non-standard sparse pseudorandomness assumption [36]. For NTRU-HRSS-KEM the unproven part
of this assumption states that an adversary who is given an honestly generated h cannot distinguish an
honestly generated ciphertext from an element of {v ∈ R/q : v ≡ 0 (mod (q,Φ1))} drawn uniformly at
random.

2.3 The NTRU submission

The second round NTRU submission is based on the Saito�Xagawa�Yamakawa variant of NTRU-HRSS-
KEM [36]. We make two small changes to the decryption procedure of the DPKE to avoid re-encryption,
but note that our Encapsulate and Decapsulate routines are identical to those Figure 8 in terms of their
input/output behavior.

KeyGen′(seed) Encrypt(h, (r,m)) Decrypt((f , fp,hq), c)

1. (f ,g)← Sample_fg(seed) 1. m′ ← Lift(m) 1. if c 6≡ 0 (mod (q,Φ1)) return (0, 0, 1)

2. fq ← (1/f) mod (q,Φn) 2. c← (r · h + m′) mod (q,Φ1Φn) 2. a← (c · f) mod (q,Φ1Φn)

3. h← (3 · g · fq) mod (q,Φ1Φn) 3. return c 3. m← (a · fp) mod (3,Φn)

4. hq ← (1/h) mod (q,Φn) 4. m′ ← Lift(m)

5. fp ← (1/f) mod (3,Φn) 5. r← ((c−m′) · hq) mod (q,Φn)

7. return ((f , fp,hq),h) 6. if (r,m) ∈ Lr × Lm return (r,m, 0)

7. else return (0, 0, 1)

Figure 9: The DPKE for the NTRU submission.

KeyGen (seed) Encapsulate (h) Decapsulate ((f , fp,hq, s), c)

1. (f , fp,hq),h)← KeyGen′(seed) 1. coins←$ {0, 1}256 1. (r,m, fail)← Decrypt((f , fp,hq), c)

2. s←$ {0, 1}256 2. (r,m)← Sample_rm(coins) 2. k1 ← H1(r,m)

7. return ((f , fp,hq, s),h) 3. c← Encrypt(h, (r,m)) 3. k2 ← H2(s, c)

4. k ← H1(r,m) 4. if fail = 0 return k1

5. return (c, k) 5. else return k2

Figure 10: The KEM for the NTRU submission.

Sample spaces Our ntru-hps parameter sets take

Lf = T , Lg = T (q/8− 2), Lr = T , Lm = T (q/8− 2)

and Lift(m) = m. The choice of Lg ensures that h ≡ 0 (mod (q,Φ1)), and along with the choice of Lm
this ensures that c ≡ 0 (mod (q,Φ1)). The weight parameter q/8 − 2 is the largest that is compatible
with perfect correctness.

Our ntru-hrss parameter sets use

Lf = T+, Lg = {Φ1 · v : v ∈ T+}, Lr = T , Lm = T

25

and Lift(m) = Φ1 · S3(m/Φ1). The choice of Lg ensures that h ≡ 0 (mod (q,Φ1)), and along with the
choice of Lift this ensures that c ≡ 0 (mod (q,Φ1)).

Avoiding re-encryption Bernstein and Persichetti [5] cast implicit rejection as a generic transformation
from a rigid correct DPKE to an IND-CCA2 KEM. A DPKE is rigid if, for all keys (sk, pk), ciphertexts
c, and plaintexts p, (Encrypt(pk, p) = c) ⇔ (Decrypt(sk, c) = p). Correctness implies the forward
direction. Re-encryption can be used to ensure that the reverse direction holds (as in Line 4 of Figure
8). However, as observed in [5, Section 6], it is possible to construct rigid correct DPKEs that do not
rely on re-encryption.

The DPKE in Figure 9 is rigid. If Decrypt((f , fp,hq), c) outputs (r,m, 0), then (r,m) is in the
plaintext space by Line 6 and c ≡ 0 (mod (q,Φ1)) by Line 1. Line 5 further implies that c satis�es
c ≡ rh + Lift(m) (mod (q,Φn)). Hence, c = Encrypt(h, (r,m)). Note that it is important that we
skipped the reduction modulo (3,Φn) in Line 5 of Decrypt in Figure 7.

Adam Langley has observed1 that there is no need to check c ≡ 0 (mod (q,Φ1)) when ciphertexts
are unpacked using the unpack_Rq0 (Section 1.8.4) routine.

2.4 Variants of the NTRU submission

2.4.1 Faster key generation for single-use keys

We recommend that the KEM be used as is in an ephemeral setting. However, keys that will be used
at most once may be generated in a way that does not ensure perfect correctness. The ephemeral-only

variant of an ntru-hps parameter set substitutes Lephem
f = {1 + 3F : F ∈ T } for Lf . Likewise, the

ephemeral-only variant of an ntru-hrss parameter set substitutes Lephem
f = {1 + 3F : F ∈ T+} for Lf .

A preliminary analysis suggests that the ephemeral-only variants of ntruhps2048509, ntruhps2048677,
ntruhps4096821, and ntruhrss701, have decryption failure probabilities below 2−100. Implementations
that use keys of this form may skip the computation of fp in KeyGen and the multiplication by fp in
Decrypt (since fp = 1). No change is made to the encapsulation routine, so the decision to use the
ephemeral key form is local to each user.

2.4.2 Prime q

It is relatively easy to de�ne variants of ntru-hps and ntru-hrss that use prime q. When all other
parameters are equal, these variants will be slightly less e�cient. However, there are size vs. security
trade-o�s that are not available when q is a power of two, and approximating a desired trade-o� with
a power of two q has a cost in terms of e�ciency, security, and compactness. The cost is particularly
large for ntru-hrss parameter sets for which the fractional part of log2(n) is larger than 1/2. We have
plotted the size vs. security trade-o�s that are available with prime q in Figure 11.

2.4.3 ntru-hps-like parameter sets with faster key generation

Applications that use long-term keys will likely be able to tolerate the cost of key generation in ntru-

hps. However, there are correct ntru-hps-like parameter sets that avoid the need to compute fp. For
example, one can take Lf = {1 + 3F : F ∈ T }, Lg = T (d), Lr = T , and Lm = T (d) with d the largest
even integer less than q/12− 2. We have plotted the size vs. security trade-o�s that are available with
these parameter sets in Figure 11. We have also plotted the prime q variants of these parameter sets.

2.4.4 Arbitrary weight m and �xed-weight f

The NTRUEncrypt submission uses �xed-weight f and g, arbitrary weight m and r, and trivial Lift.
Our ntru-hps parameter sets use �xed-weight m and g, arbitrary weight f and r, and trivial Lift. This
choice ensures that ciphertexts satisfy c ≡ 0 (mod (q,Φ1)), and it minimizes the least q that provides
correctness. An alternative is to de�ne Lift as in ntru-hrss. Then one can take

Lf = T+(d), Lg = T (d), Lr = T , and Lm = T
1Personal communication, Dec. 14, 2018.

26

with d the largest even integer less than q/(6 + 2
√

2). This leads to a slightly worse size vs. security
trade-o� than ntru-hps, but it limits the use of �xed-weight sampling to key generation. These may
be attractive parameters for applications in which ntru-hps encapsulation is too expensive, ntru-hrss
public keys and ciphertexts are too large, and the cost of key generation is not a concern. We are
not currently aware of any applications with these constraints, so we have chosen not to recommend
parameters of this form.

2.4.5 An IND-CCA2 PKE using Q-OAEP

Targhi and Unruh propose a modi�ed OAEP padding mechanism, Q-OAEP, in [38]. If we choose
parameters with Lr = T and Lm = T , then we can apply Q-OAEP to the DPKE in Figure 9 as follows.
The encryption routine uses three hash functions H1, H2, and H3; it takes a public key h and a message
m ∈ T as input; and it computes

coins← {0, 1}256; r← Sample_r(coins); t← (m− Sample_T (H1(r))) mod (3,Φn)

s← (r− Sample_T (H2(t))) mod (3,Φn); c← Encrypt(h, (s, t)).

It then outputs the ciphertext (c, H3(s, t)). Unfortunately the reduction given in [38] requires H3 to be
length-preserving, and this eliminates the bene�t of using a PKE instead of a KEM+DEM. Removing
the length-preserving hash, and tightening the reduction, are interesting open problems.

2.5 Available size vs. security trade-o�s

Figure 11 shows size vs. security trade-o�s for several ntru variants. Additional plots can be found in the
appendix. We have plotted all ntru-hps-like parameter sets with 461 ≤ n ≤ 941 and weight parameter
d with n/3 ≤ d ≤ 2n/3. We have plotted all ntru-hrss-like parameter sets with 461 ≤ n ≤ 941 and
the smallest q that provides perfect correctness. We have also plotted the ntru-pke-443 and ntru-pke-743
parameter sets that were recommended in the �rst round NTRUEncrypt submission. Note that these
NTRUEncrypt parameter sets do not provide perfect correctness. The security axis is explained in
Section 6.4.3.

2.6 Parameter selection

The ntruhrss701 parameter set was originally selected because n = 701 provides the highest security level
among ntru-hrss parameter sets with q := 2d7/2+log2(n)e ≤ 8192. In selecting ntru-hps parameter
sets we have also attempted to maximize security while minimizing q.

We have decided to only recommended ntru-hps parameter sets with n/3 ≤ q/8− 2 ≤ 2n/3. Recall
that q/8− 2 is the weight of vectors in Lg and Lm. We view a weight parameters outside of this range
as a potential security risk. Figure 12 shows a wider range of ntru-hps parameter sets. Each curve
represents a choice of n. Exceeding the upper bound on weight clearly leads to a sub-optimal size vs.
security trade-o�. The lower bound, however, is heuristic and excludes some potentially interesting
parameter sets, e.g. ntruhps1024557 and ntruhps2048859, which appear above and to the left of our
recommended parameter sets in Figure 12. The apparent bene�t of these parameter sets is diminished
in Figure 13, which uses a di�erent estimate for the cost of attacks.

27

80

90

100

110

120

130

140

150

160

170

180

190

200

210

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

ntruhrss701

ntruhps2048509

ntruhps2048677

ntruhps4096821

ntru-pke-443

ntru-pke-743

H
y
b
ri
d
a
tt
a
ck

co
st

a
ss
u
m
in
g
C
o
re
-S
V
P
p
re
p
ro
ce
ss
in
g
,
0
.2
9
2
b
m
et
ri
c,
lo
g
sc
a
le

Communication cost (pk + ct bytes)

ntruhps-like with q prime
ntruhps

ntruhps-like with f = 1+3F and q prime
ntruhps-like with f = 1+3F
ntruhrss-like with q prime

ntruhrss
NTRUEncrypt submission parameters

Figure 11

28

3 Performance analysis

3.1 Description of platform

In order to obtain benchmarks, we evaluate our reference implementation on a machine using the Intel
x64-86 instruction set. In particular, we use a single core of a 3.5 GHz Intel Core i7-4770K CPU. We
follow the standard practice of disabling TurboBoost and hyper-threading. The system has 32KiB L1
instruction cache, 32KiB L1 data cache, 256KiB L2 cache and 8192KiB L3 cache. Furthermore, it has
32GiB of RAM, running at 1333MHz. When performing the benchmarks, the system ran on Linux
kernel 4.9.0-4-amd64, Debian 9 (Stretch). We compiled the code using GCC version 6.3.0-18, with the
compiler optimization �ag -O3.

We used the same platform described above to evaluate our AVX2 implementation. For the AVX2
implementation, we included the additional compiler �ag `-march=native'.

3.2 Performance of reference and AVX2 implementations

Table 1: Key and ciphertext sizes and cycle counts for all of the recommended parameter sets. Cycle
counts were obtained on one core of an Intel Core i7-4770K (Haswell); �ref� refers to the C reference
implementation, �AVX2� to the implementation using AVX2 vector instructions; sk stands for secret
key, pk for public key, and ct for ciphertext. At the time of writing, we have not yet completed an
optimized AVX2 implementation of ntruhps2048509, ntruhps2048677 and ntruhps4096821. This software,
as well as the corresponding benchmarks, will be made available via https://ntru.org.

ntruhps2048509

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)

sk: 935 gen: 12 506 668 gen: TBD

pk: 699 enc: 761 236 enc: TBD

ct: 699 dec: 1 940 870 dec: TBD

ntruhps2048677

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)

sk: 1235 gen: 21 833 048 gen: TBD

pk: 931 enc: 1 313 454 enc: TBD

ct: 931 dec: 3 399 726 dec: TBD

ntruhps4096821

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)

sk: 1592 gen: 31 835 958 gen: TBD

pk: 1230 enc: 1 856 936 enc: TBD

ct: 1230 dec: 4 920 436 dec: TBD

ntruhrss701

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)

sk: 1452 gen: 23 302 424 gen: 381 476

pk: 1138 enc: 1 256 210 enc: 71 238

ct: 1138 dec: 3 642 966 dec: 77 848

29

https://ntru.org

3.3 Memory usage

The memory usage benchmarks of our reference implementations range from 11KiB for ntruhps2048509
to 18KiB for ntruhps4096821, and our AVX2 implementation of ntruhrss701 requires 47KiB. Note that
memory consumption was not an optimization target, and these numbers should not be considered to
be a lower bound.

4 Known Answer Test values

All KAT values are included in subdirectories of the directory KAT/ of the submission package. The KAT
values were generated by the PQCgenKAT_kem program provided by NIST. The complete list of KAT �les
is:

− KAT/ntruhps2048509/PQCkemKAT_935.req,

− KAT/ntruhps2048509/PQCkemKAT_935.rsp.

− KAT/ntruhps2048677/PQCkemKAT_1234.req,

− KAT/ntruhps2048677/PQCkemKAT_1234.rsp.

− KAT/ntruhps4096821/PQCkemKAT_1590.req,

− KAT/ntruhps4096821/PQCkemKAT_1590.rsp.

− KAT/ntruhrss701/PQCkemKAT_1450.req,

− KAT/ntruhrss701/PQCkemKAT_1450.rsp.

5 Expected security

5.1 Security de�nition for key-establishment

When used with ntru-hps (Section 1.3.2) or ntru-hrss (Section 1.3.3) parameter sets, the key en-
capsulation mechanism speci�ed in Section 1.12 is perfectly correct and achieves the standard notion of
security against adaptive chosen ciphertext attacks (IND-CCA2 security) in the random oracle model.

A reduction from the IND-CCA2 security of the KEM to the OW-CPA security of the DPKE is
given in [36]. Alternative proofs of security can be obtained by viewing the KEM in Section 1.12 can as

an application of the U /⊥
m transformation of Hofheinz, Hövelmanns, and Kiltz [21], or as an application

of the �H(1, p)” variant of the SimpleKEM transformation of Bernstein and Persichetti [5]. All of these
reductions are tight in the random oracle model and non-tight in the quantum random oracle model. A
tight reduction in the QROM can be had if one assumes that the DPKE in Section 1.12 is sparse and
pseudorandom [36, De�nition 3.2]. It is clear that our DPKE is sparse, but we are not aware of any
signi�cant investigation of its pseudorandomness.

5.2 Security de�nition for ephemeral-only key-establishment

The ephemeral-only variants of our recommended parameter sets (Section 2.4.1) do not provide perfect
correctness, and cannot rely on the same security theorems as our IND-CCA2 KEM. Nevertheless, if one
assumes OW-CPA security of the DPKE, and that the private key is only used once, session keys that
are produced using these parameter sets are indistinguishable from uniform in the ROM. An adversary
who observes a transcript (h, c) for which Decapsulate((f , fp,hq, s), c) = k can only distinguish k from
k∗ ←$ {0, 1}256 if

− Decrypt((f , fp,h), c) = (r,m, 0) and the adversary queries H1(r,m), or

− Decrypt((f , fp,h), c) = (0, 0, 1) and the adversary queries H2(s, c).

30

Suppose that the adversary makes at most 2w1 queries to H1 and at most 2w2 queries to H2. The �rst
case implies either a violation of OW-CPA security or that the adversary has queried (r,m) by chance,
which occurs with probability at most 2w1−sample_plaintext_bits. The second case occurs with probability
at most 2w2−prf_key_bits.

5.3 Security categories

NIST security categories 1, 3, and 5 are de�ned relative to the �computational resources� that are required
for a key search on a block cipher with a 128-, 192-, or 256-bit key, respectively. The call for proposals
states that �computational resources may be measured using a variety of di�erent metrics� and that the
thresholds must be satis�ed �with respect to all metrics that NIST deems to be potentially relevant to
practical security.� NIST has, understandably, not speci�ed an exhaustive set of relevant metrics, so we
have chosen to provide two security evaluations: one relative to non-local models of computation, and
one relative to local models of computation.

A model of computation is non-local if it allows unit-cost communication at arbitrary distance2.
Random access machines, boolean circuits, and Cli�ord+T quantum circuits are all non-local models of
computation. A model of computation is local if signals within it propagate at �nite speed (e.g. the
speed of light). Single-tape Turing machines, VLSI models, and anyonic quantum computers are all local
models of computation. A parallel machine model that allows non-local communication between other-
wise local machines is non-local. A quantum machine model that allows non-local classical computation
is also non-local. Some non-local models can be considered local when their memory usage is restricted,
e.g. circuits of constant width and random access machines with O(1) bits of memory.

Key search attacks on block ciphers perform well in local models of computation, and it seems
unlikely that non-locality can be used to signi�cantly improve performance. The same cannot be said
for attacks on NTRU. Several of the best attack algorithms, e.g. sieve algorithms for the shortest vector
problem, achieve signi�cantly better performance in non-local models than they are known to achieve in
local models. That said, attacks in local models have not received the same level of attention, and the
situation is unstable. We discuss a conjecture by Ducas below that, if true, would cause us to revise our
security categories relative to local models.

Security categories relative

to non-local models

Parameter set Category

ntruhps2048509 �

ntruhrss701 1

ntruhps2048677 1

ntruhps4096821 3

Security categories relative

to local models

Parameter set Category

ntruhps2048509 1

ntruhrss701 3

ntruhps2048677 3

ntruhps4096821 5

6 Cost of known attacks

Some background on lattices is assumed. Throughout this section we view Z[x]/(Φ1Φn) as (Zn,+,~)
with u ~ v = uv mod (Φ1Φn). We write 〈·, ·〉 and | · | for the euclidean inner product and norm.
We present a basis of a lattice as an ordered set of vectors B = (b1, . . . ,bd). We write πB,i(v) for the
projection of v orthogonal to the �rst i−1 vectors in B. We suppress the B from πB,i when it is clear from
context. We denote the Gram-Schmidt vectors of B by (b∗1,b

∗
2, . . . ,b

∗
d) = (π1(b1), π2(b2), . . . , πd(bd))

We denote the volume of R/L by vol(L). Note that vol(L) can be computed as
∏d
i=1〈b∗i ,b∗i 〉 for any

choice of basis. We write B[`,r], with ` < r, for the block (b`,b`+1, . . .br). We write B∗[`,r] for the

projected block (π`(b`), . . . , π`(br)).

2In so far as computation is a physical process, it should be obvious how to de�ne �unit-cost communication� and
�distance� within a model of computation. That said, there's no harm in viewing, say, the lambda calculus as a non-local
model of computation.

31

6.1 Attacks based on lattices

The best known attacks on NTRU begin from the observation that the set

Mh,s :=
{

(a,b) ∈ Z2n : a ~ h ≡ b ~ s (mod q)
}

is a lattice. The choice of sample spaces in ntru-hps ensures that, for each public key h, there is some
ternary vector (f ,g) ∈ Mh,3. Hence, a key-only attack on ntru-hps might involve searching for short
vectors in Mh,3. Likewise, a key-only attack on ntru-hrss might involve Mh,3Φ1

. A decryption attack
on either system might involve a search for vectors close to (0, c) in Mh,1. We will suppress the choice
of s for the remainder.

Attacks involving Mh have gone through several reformulations. Ho�stein, Pipher, and Silverman
considered exact key recovery in [19]. Coppersmith and Shamir later observed that any short vector in
Mh, not just (f ,g), would be useful in attacks [10]. Coppersmith and Shamir also observed that the norm
of the target vector could be decreased by considering the projection ofMh orthogonal to (Φn,Φn). May
[31] reformulated the key-recovery problem as an instance of unique-SVP and considered other projected
sublattices. For example, he considered �dimension reduced� lattices obtained by projection orthogonal
to a set of standard basis vectors. May [31], and May and Silverman [32], further observed that attackers
can trade the cost of lattice reduction against the probability of guessing a projection that results in
an easier lattice problem. Howgrave-Graham's hybrid attack combines May's dimension reduction with
an exhaustive search strategy that further decreases the amount of lattice reduction that needs to be
performed [22].

In parallel with these reformulations, there have been tremendous advances in algorithms for lattice
problems. We will mention a few of the key results below.

6.2 Quality of lattice reduction

There are various ways to measure the quality of a basis B ⊂ L. The least we can ask for is that the basis
is size-reduced, which simply says that bj is the shortest vector in bj +Zbi for each i < j. The Lenstra�
Lenstra�Lovász (LLL) algorithm produces size-reduced bases with an additional guarantee that b∗i is
a shortest vector in the projected block B∗[i,i+1] for all 1 ≤ i < d. Such bases are called LLL reduced.
Similar notions of reduction can be de�ned relative to larger block sizes, i.e. with the condition on
B∗[i,i+1] replaced by a condition on B∗[i,i+b−1]. In the extreme, with block size equal to rank, a Hermite�

Korkine�Zolatarev (HKZ) reduced basis is a size-reduced bases for which b1 is a shortest vector in L, b∗2
is a shortest vector in πB,2(L), and so on. Between the two extremes there are a variety of algorithms
that produce block reduced bases by solving polynomially many instances of SVP in projected blocks.

The quality of block reduced bases can be evaluated in terms of the root hermite factor δ =(
|b1|/ vol(L)1/d

)1/d
or the basis pro�le (|b∗1|, |b∗2|, . . . , |b∗d|). In practice, these quantities are estimated

using the Gaussian heuristic and the geometric series assumption.

Gaussian heuristic The Gaussian heuristic states that the shortest vectors of a unit-volume lattice of
rank b are of length approximately

gh(b) = (vol(unit ball in dim. b))
−1/b

=
Γ(b/2 + 1)1/b√

π
.

Geometric series assumption The geometric series assumption was introduced by Schnorr in the
analysis of his Block Korkine�Zolatarev (BKZ) algorithm [37]. The output of BKZ with block size b is a
BKZ-b reduced basis. The geometric series assumption states that if B = (b1, . . . ,bd) is BKZ-b reduced
then the pro�le of B is close to a particular geometric series:

(|b∗1|, . . . , |b∗d|) ≈ vol(L)1/d · (gh(b)d, . . . , gh(b)−d).

The assumption is thought to be accurate when 50 ≤ b� d.
BKZ is heuristically expected to make polynomially many calls to SVP oracles in dimensions ≤

b before outputting a BKZ-b reduced basis. Other algorithms, like slide reduction [14] and DBKZ

32

[33], provably make polynomially many calls to SVP oracles in dimension b. These algorithms achieve
slightly di�erent notions of block reduction, but to simplify our discussion we will only refer to BKZ-b
reduced bases. We apply the geometric series assumption to bases output by any algorithm that makes
polynomially many calls to an SVP oracle in dimension ≤ b.

6.3 Cost of SVP algorithms

Table 2 gives asymptotic RAM operation counts and memory usage for state-of-the-art sieve algorithms.
HKL18 refers to the algorithm of Herold, Kirshanova, and Laarhoven [16]; BGJ15 refers to the algorithm
of Becker, Gama, and Joux [3]; BDGL16 refers to the algorithm of Becker, Ducas, Gama, and Laarhoven
[4].

The non-asymptotic performance of these algorithms is poorly understood. For instance, it is not
at all clear which sieve performs best in, say, dimension 300. The current records in lattice reduction
challenges have been set by simpler variants of these sieves [1], and these variants do not achieve the
asymptotic complexities listed in Table 2. Nevertheless, we use the asymptotic operation count of
BDGL16 to estimate the non-asymptotic operation count of the best sieve in �xed dimension. Also note
that the memory usage for BDGL16 given in Table 2 is for a variant of the algorithm that �performs
quite poorly in practice� according to the authors [4].

Cost of sieving in the RAM model

Sieve log2(operations) log2(memory)

HKL18 (0.3588 . . .+ o(1)) · b (0.1887 · · ·+ o(1)) · b
BGJ15 (0.3112 . . .+ o(1)) · b (0.2075 . . .+ o(1)) · b
BDGL16 (0.2925 . . .+ o(1)) · b (0.2075 . . .+ o(1)) · b

Table 2

Table 3 gives the asymptotic operation count and memory usage for sieves that do not require random
access. Systolic NV08 refers to Kirchner's observation that the Nguyen�Vidick sieve can be implemented
on a ring of data processing units [28]. The simpli�ed variant of BGJ15 from [1] is called bgj1. Local
bgj1∗ refers to Ducas' conjecture [12] that bgj1 can be implemented locally with complexity matching
its RAM complexity.

Cost of sieving in local models

Sieve log2(operations) log2(memory)

Systolic NV08 (0.4150 . . .+ o(1)) · b (0.2075 . . .+ o(1)) · b
Local bgj1∗ (0.3496 . . .+ o(1)) · b (0.2075 . . .+ o(1)) · b

Table 3

6.3.1 Non-asymptotic memory usage of sieving

The memory usage of sieving only a�ects our security analysis in so far as it motivates the distinction
between local and non-local models. However, it is still interesting to consider the non-asymptotic
memory usage of sieving, as it represents a signi�cant barrier to attacks.

We expect that the best sieve in dimension b < 1000 requires signi�cantly more than b · 20.2075·b
bits of storage. The linear factor in b accounts for storage of Ω(b) bits per vector. The constant
0.2075 is based on the Chabauty�Shannon�Wyner lower bound, CSW(b, θ), for the number of spherical
caps of angle θ = π/3 that are needed to cover the surface of the unit ball in dimension b. While
log2(CSW(b, π/3)) = (0.2075 . . . + o(1)) · b, the polynomial terms are signi�cant for small b. Moreover,
Jenssen, Joos, and Perkins [27] have recently shown a lower bound, JJP(b, θ), that improves on the CSW

33

lower bound by a linear factor in b. While log2(JJP(b, π/3)) = (0.2075 . . .+o(1)) ·b, the additional linear
factor in b further supports our belief that memory usage of b · 20.2075·b bits is exceedingly conservative.

Explicit formulas for CSW(b, θ) and JJP(b, θ) can be found in [27]. These quantities are relevant to
the analysis of the memory usage of all of the sieves we have mentioned, although only NV08 makes
explicit use of θ = π/3. Table 4 makes it clear that the polynomial terms will be signi�cant for NV08.

b 350 400 450 500 550 600

log2(CSW(b, π/3))/b 0.219 . . . 0.218 . . . 0.217 . . . 0.216 . . . 0.216 . . . 0.215 . . .

log2(JJP(b, π/3))/b 0.232 . . . 0.230 . . . 0.228 . . . 0.226 . . . 0.225 . . . 0.223 . . .

Table 4

6.3.2 E�ect of quantum search

Quantum variants of sieve algorithms have been studied, e.g. [30]. All of the known improvements
come from applying Grover search to exponentially large lists of vectors. The improvements thus rely
on unit-cost superposition queries to classical memory (QRAM), which is an even stronger non-local
resource than standard Cli�ord+T quantum circuits3 Even with this very strong resource the best
claimed operation count is 2(0.265...+o(1))·b [29]. We do not believe that this translates into an attack
that is relevant to the security of NTRU in practice.

6.4 The cost of lattice attacks

Recent work on sieve algorithms has made it clear that the community's understanding of the asymptotic
cost of solving the shortest vector problem is still in �ux. Consequently, there has been a push to ignore
polynomial factors in the cost of lattice reduction and to focus on the cost of solving SVP in projected
blocks of a given size. We follow this approach here, and we assess only the core-SVP cost of lattice
attacks. Core-SVP cost was de�ned in [2]; the core-SVP cost of block reduction with block size b is the
cost of one call to an SVP solver in dimension b.

6.4.1 Short vectors in NTRU lattices

We write (f ,g) for the target vector4. We write s for (a lower bound on) the expected size of a coe�cient
in (f ,g). For ntru-hps we take s = (q/8− 2)/(n− 1). This gives 1/2 for ntruhps2048509, 127/338 for
ntruhps2048677, and 51/82 for ntruhps4096821. The NTRU-HRSS-KEM submission proposed a sampler
with s = 10/16, and we use this value for ntru-hrss even though our recommended sampler (1.10.3)
produces vectors with s = 170/256. This results in a slight security underestimate.

6.4.2 Costing the primal attack

The primal attack on NTRU applies May's dimension reduction and Coppersmith and Shamir's pro-
jection orthogonal to (Φn,Φn). The dimension reduction is chosen based on a volume parameter m.
The attack computes a BKZ-b reduced basis V = (v1, . . . ,vd) of a projected sublattice of Mh of rank
d = (n−1)+m and volume qm. The block size b is chosen to be the minimal value for which |v∗d−b| ≥ s

√
b

under the geometric series assumption. In our analysis, we minimize the block size over all choices of m.

3Cli�ord+T circuits already require non-locality in the form of controlled-NOT gates that can be applied between
arbitrary qubits. An analogous form of non-locality is provided in the boolean circuit model. A general purpose random
access memory requires a number of gates that grows linearly with the memory size in either model. We maintain that
QRAM is a stronger resource. If a program is �compiled� to a boolean circuit, a bit access with �xed address can be replaced
by a single fan-out gate (or similar). On the other hand, if a program is compiled to a Cli�ord+T circuit, a bit access
with a �xed superposition of addresses requires a number of controlled-NOT gates that grows linearly with the number of
addresses in the support of the superposition. Quantum variants of sieve algorithms repeatedly query exponentially many
addresses in superposition.

4The primal attack can be adapted for message recovery using Kannan's embedding technique. The cost is essentially
identical to key recovery, and can be computed using the scripts provided with the submission package.

34

Non-local Local

b b0.2925 · bc b b0.3496 · bc b b0.4150 · bc
ntruhps2048509 364 106 364 127 364 151

ntruhrss701 470 136 470 164 470 195

ntruhps2048677 496 145 496 173 496 205

ntruhps4096821 612 179 612 213 612 253

Table 5: Core-SVP cost of the primal attack

6.4.3 Costing the hybrid attack

Howgrave-Graham's hybrid attack [22] partitionsMh into three sublattices L1, L2, and L3. The partition
is chosen according to two parameters: a combinatorial search parameter k, and a volume parameter m.
The sublattice L1 is the integer span of {(xi,xi~h) : 0 ≤ i < k}; it is of rank k and unit volume. The
sublattice L2 is the integer span of {(xi,xi ~ h) : k ≤ i < n} ∪ {(0, qxi) : 0 ≤ i < m}; it is of rank
d = n− k +m and volume qm. The sublattice L3 is the integer span of the remaining q vectors; it is of
rank n−m and volume qn−m.

The attacker produces a BKZ-b reduced basis V = (v1, . . . ,vd) for L2. The block size b is chosen so

that |v∗d| ≥ 2s. Heuristically, we expect that the result of size-reducing
∑k−1
i=0 fi · (xi,xi ~ h) against V

will be equivalent to (f ,g) modulo q. The attacker can choose k to balance the cost of lattice reduction
against the cost of guessing the �rst k coe�cients of f . The enumeration of vectors in L1 can be pruned
based on the secret key distribution. The sublattice L3 can be used in a meet-in-the-middle search
strategy [22] or for a �checking routine� in a quantum search.

For each k we compute the b for which the cost of a single call to an SVP solver in dimension b
matches the cost of guessing k coe�cients of f . Among these values of b we �nd the minimum for which
|v∗d| ≥ 2s under the geometric series assumption.

We assume that guessing k coe�cients of f costs 2(1/2+o(1))νk operations where νk is Shannon entropy
of the �rst k coe�cients of f (with randomness taken over the coins in key generation). For non-local
models of computation we assume this search is performed using a classical meet-in-the-middle strategy.
For local models of computation we assume this search is performed using (parallel) quantum search
with a 296 gate limit on circuit depth.

In our analysis, we take ν to be the Shannon entropy of f1. This will slightly overestimate νk for
ntru-hps, however we expect it to be a good approximation when k � n. A larger source of error is
that we ignore the n−1 other short vectors of the form (xi~ f ,xi~g) with 1 ≤ i ≤ n−1. Both of these
sources of error lead to security overestimates. However, we believe they are more than compensated
for by security underestimates that come from 1) costing only a single call to the SVP solver, and 2)
ignoring the probability that the attack fails. See [39] for a detailed discussion of the failure probability.

Non-local Local

b b0.2925 · bc b b0.3495 · bc b b0.4150 · bc
ntruhps2048509 359 105 351 122 335 139

ntruhrss701 459 134 465 162 448 185

ntruhps2048677 494 144 � � 483 200

ntruhps4096821 612 178 � � � �

Table 6: Core-SVP cost of the hybrid attack. Dashes indicate that hybrid attack is outperformed by the
primal attack. The poor performance of the hybrid attack in these cases is due to the depth restriction
on quantum search.

35

6.5 Rationale for security categories

The security categories given in Section 5.3 are based on the b0.2925 · bc and b0.4150 · bc columns of
Tables 5 and 6. We emphasize that these tables represent very conservative security estimates, and the
values in these tables do not have units of bit operations. NIST's recommended classical gate count
thresholds for security categories 1, 3, and 5 are 2143, 2207, and 2272, respectively. In some cases, e.g.
the assignment of category 1 to ntruhps2048677 relative to the RAM model, our estimates clearly exceed
these thresholds. In other cases, e.g. the assignment of category 3 to ntruhps4096821 relative to the
RAM model, we are assuming that the overhead that is missing from our analysis covers the gap.

The b0.3495 ·bc columns in Tables 5 and 6 give security estimates relative to Ducas' conjecture about
the complexity of bgj1 in a local model. If this conjecture is true, then our security categories in local
models may need to be revised downwards.

7 Advantages and limitations

Our submission has a number of advantages.

− It is correct. The IND-CCA2 KEM always establishes a key; it never aborts because of a de-
cryption failure. This simpli�es the analysis of the scheme, and makes it an attractive drop-in
replacement for KEMs that are in use today.

− It is well studied. Among the assumptions underlying post-quantum cryptosystems, the OW-
CPA security of NTRU is well studied. NTRU, and similar systems, have frequently been used to
benchmark new techniques in lattice reduction [37, 7, 15, 8]. This history of concrete cryptanalysis
should inspire some con�dence in NTRU. The tight reduction from the IND-CCA2 security of our
KEM to the OW-CPA security of the ANTS'98 DPKE means that this history is relevant to the
concrete security of our KEM.

− It is �exible. The underlying DPKE can be parameterized for a variety of use cases with di�erent
size, security, and e�ciency requirements. We have discussed this in Section 2.4 and depicted some
of the trade-o�s in Figures 11, 12, and 13.

− It is simple. The DPKE has only two parameters, n and q, and can be described entirely in
terms of simple integer polynomial arithmetic. The transformation to an IND-CCA2 secure KEM
is conceptually simple.

− It is fast. ntruhrss701 was among the fastest submissions in the �rst round. We expect that this
will remain true in the second round.

− It is compact. Our ntruhps2048677 parameter set achieves level one security with a wide security
margin, level three security under a reasonable assumption, and has public keys and ciphertexts
of only 930 bytes.

− It is patent free. The relevant patents have expired.

It also has several limitations.

− NTRU is unlikely to be the fastest submission, unlikely to be the most compact submission, and
unlikely to be the most secure submission. However, it will be competitive on products of these
measures.

− The choice of optimal parameters for NTRU is currently limited by a poor understanding of the
non-asymptotic behavior of new algorithms for SVP. This is a limitation that is shared with all
lattice based cryptosystems.

− There is structure in NTRU that is not strictly necessary, and this may also be seen as a limitation.
It is possible to eliminate the structure of a sparse ternary secret at a cost in terms of correctness
or compactness. It is also possible to eliminate the cyclotomic structure of the ring; comparisons
with NTRU Prime will reveal the cost of doing so.

36

Addition parameter plots

80

90

100

110

120

130

140

150

160

170

180

190

200

210

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

ntruhrss701

ntruhps2048509

ntruhps2048677

ntruhps4096821

ntru-pke-443

ntru-pke-743

H
y
b
ri
d
a
tt
a
ck

co
st

a
ss
u
m
in
g
C
o
re
-S
V
P
p
re
p
ro
ce
ss
in
g
,
0
.2
9
2
b
m
et
ri
c,
lo
g
sc
a
le

Communication cost (pk + ct bytes)

ntruhps-like with q prime
ntruhps

ntruhps-like with f = 1+3F and q prime
ntruhps-like with f = 1+3F
ntruhrss-like with q prime

ntruhrss
NTRUEncrypt submission parameters

Figure 12: The same analysis as Figure 11 with a wider range of weight parameters.

37

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

ntruhrss701

ntruhps2048509

ntruhps2048677

ntruhps4096821

ntru-pke-443

ntru-pke-743

H
y
b
ri
d
a
tt
a
ck

co
st

a
ss
u
m
in
g
C
o
re
-S
V
P
p
re
p
ro
ce
ss
in
g
,
0
.4
1
5
b
m
et
ri
c,
lo
g
sc
a
le

Communication cost (pk + ct bytes)

ntruhps-like with q prime
ntruhps

ntruhps-like with f = 1+3F and q prime
ntruhps-like with f = 1+3F
ntruhrss-like with q prime

ntruhrss
NTRUEncrypt submission parameters

Figure 13: The same parameters as Figure 12, but using a cost of 20.415b for SVP in dimension b. More
expensive lattice reduction degrades the apparent bene�t of a low weight parameter.

38

References

[1] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W. Postlethwaite,
and Marc Stevens. The general sieve kernel and new records in lattice reduction. Cryptology ePrint
Archive, Report 2019/089, 2019. https://eprint.iacr.org/2019/089. 33

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange �
a new hope. In Thorsten Holz and Stefan Savage, editors, Proceedings of the 25th USENIX Security

Symposium. USENIX Association, 2016. https://cryptojedi.org/papers/#newhope. 34

[3] Antoine Joux Anja Becker, Nicolas Gama. Speeding-up lattice sieving without increasing the mem-
ory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Report 2015/522,
2015. https://eprint.iacr.org/2015/522. 33

[4] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neigh-
bor searching with applications to lattice sieving. In Proceedings of the twenty-seventh annual

ACM-SIAM symposium on Discrete algorithms, pages 10�24. Society for Industrial and Applied
Mathematics, 2016. 33

[5] Daniel J. Bernstein and Edoardo Persichetti. Towards kem uni�cation. Cryptology ePrint Archive,
Report 2018/526, 2018. https://eprint.iacr.org/2018/526. 4, 25, 26, 30

[6] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular inversion.
Cryptology ePrint Archive, Report 2019/266, 2019. https://eprint.iacr.org/2019/266. 12

[7] Johannes Buchmann and Christoph Ludwig. Practical lattice basis sampling reduction. In Florian
Hess, Sebastian Pauli, and Michael Pohst, editors, Algorithmic Number Theory � ANTS-VII, LNCS,
pages 222�237. Springer, 2006. https://eprint.iacr.org/2005/072. 36

[8] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon
Lee and Xiaoyun Wang, editors, Advances in Cryptology � ASIACRYPT 2011, volume 7073 of
LNCS, pages 1�20. Springer, 2011. http://www.iacr.org/archive/asiacrypt2011/70730001/

70730001.pdf. 36

[9] Consortium for E�cient Embedded Security. EESS #1: Implementation aspects of NTRU-
Encrypt and NTRUSign v. 2.0, June 2003. http://grouper.ieee.org/groups/1363/lattPK/

submissions/EESS1v2.pdf. 4

[10] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In Walter Fumy, editor, Advances
in Cryptology � EUROCRYPT `97, volume 1233 of LNCS, pages 52�61. Springer, 1997. http:

//dx.doi.org/10.1007/3-540-69053-0_5. 32

[11] Alexander W. Dent. A designer's guide to KEMs. In Kenneth G. Paterson, editor, Cryptography and
Coding, volume 2898 of LNCS, pages 133�151. Springer, 2003. http://www.cogentcryptography.
com/papers/designer.pdf. 24

[12] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free. Conference talk, April
2018. https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf. 33

[13] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key encryption at
minimum cost. In Public Key Cryptography, pages 53�68, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg. 23

[14] Nicolas Gama and Phong Q Nguyen. Finding short lattice vectors within mordell's inequality. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 207�216. ACM,
2008. 32

39

https://eprint.iacr.org/2019/089
https://cryptojedi.org/papers/#newhope
https://eprint.iacr.org/2015/522
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2019/266
https://eprint.iacr.org/2005/072
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf
http://dx.doi.org/10.1007/3-540-69053-0_5
http://dx.doi.org/10.1007/3-540-69053-0_5
http://www.cogentcryptography.com/papers/designer.pdf
http://www.cogentcryptography.com/papers/designer.pdf
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf

[15] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel Smart, editor, Ad-
vances in Cryptology � EUROCRYPT 2008: 27th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings,
LNCS, pages 31�51. Springer, 2008. https://www.iacr.org/archive/eurocrypt2008/49650031/
49650031.pdf. 36

[16] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and time�memory trade-o�s
for tuple lattice sieving. In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptography

� PKC 2018, pages 407�436, Cham, 2018. Springer International Publishing. 33

[17] Philip S. Hirschhorn, Je�rey Ho�stein, Nick Howgrave-Graham, and William Whyte. Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In Michel
Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied Cryptog-

raphy and Network Security � ACNS 2009, volume 5536 of LNCS, pages 437�455. Springer, 2009.
https://eprint.iacr.org/2005/045. 4

[18] Je� Ho�stein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, and Zhenfei
Zhang. Choosing parameters for NTRUEncrypt. In Helena Handschuh, editor, Cryptographers'
Track at the RSA Conference � CTA-RSA 2017, volume 10159 of LNCS, pages 3�18. Springer,
2017. https://eprint.iacr.org/2015/708. 4

[19] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A new high speed public key
cryptosystem, 1996. draft from at CRYPTO `96 rump session. http://web.securityinnovation.
com/hubfs/files/ntru-orig.pdf. 4, 21, 25, 32

[20] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosys-
tem. In Joe P. Buhler, editor, Algorithmic Number Theory � ANTS-III, volume 1423 of LNCS,
pages 267�288. Springer, 1998. http://dx.doi.org/10.1007/BFb0054868. 4

[21] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the fujisaki-okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, pages 341�371,
Cham, 2017. Springer International Publishing. 4, 23, 25, 30

[22] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU.
In Alfred Menezes, editor, Advances in Cryptology � CRYPTO 2007, volume 4622 of LNCS, pages
150�169. Springer, 2007. http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf.
32, 35

[23] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. NAEP: Provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report 2003/172, 2003.
https://eprint.iacr.org/2003/172. 21

[24] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing parameter sets for
NTRUEncrypt with NAEP and SVES-3. In Alfred Menezes, editor, Cryptographers' Track at the

RSA Conference � CT-RSA 2005, volume 3376 of LNCS, pages 118�135. Springer, 2005. https:

//eprint.iacr.org/2005/045. 4

[25] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-speed key encapsulation
from NTRU. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and Em-

bedded Systems � CHES 2017, LNCS. Springer, 2017. http://cryptojedi.org/papers/#ntrukem.
4, 6, 12, 13, 24

[26] IEEE. IEEE Standard Speci�cation for Public Key Cryptographic Techniques Based on Hard
Problems over Lattices. IEEE Std 1363.1-2008, 2009. http://dx.doi.org/10.1109/IEEESTD.

2009.4800404. 4

[27] Matthew Jenssen, Felix Joos, and Will Perkins. On kissing numbers and spherical codes in high
dimensions. Advances in Mathematics, 335:307�321, 2018. 33, 34

40

https://www.iacr.org/archive/eurocrypt2008/49650031/49650031.pdf
https://www.iacr.org/archive/eurocrypt2008/49650031/49650031.pdf
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2015/708
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://dx.doi.org/10.1007/BFb0054868
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://eprint.iacr.org/2003/172
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2005/045
http://cryptojedi.org/papers/#ntrukem
http://dx.doi.org/10.1109/IEEESTD.2009.4800404
http://dx.doi.org/10.1109/IEEESTD.2009.4800404

[28] Paul Kirchner. Re: Sieving vs. enumeration. Message to cryptanalytic-algorithms mail-
ing list. https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/
wAkZQlwRAgAJ. 33

[29] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology,
2015. http://www.thijs.com/docs/phd-final.pdf. 34

[30] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vec-
tors faster using quantum search. Designs, Codes and Cryptography, 77(2):375�400, 2015.
https://eprint.iacr.org/2014/907/. 34

[31] Alexander May. Cryptanalysis of NTRU, 1999. https://www.cits.ruhr-uni-bochum.de/

imperia/md/content/may/paper/cryptanalysisofntru.ps. 32

[32] Alexander May and Joseph H. Silverman. Dimension reduction methods for convolution modular
lattices. In Joseph H. Silverman, editor, Cryptography and Lattices: International Conference �

CaLC 2001, volume 2146 of LNCS, pages 110�125. Springer, 2001. http://dx.doi.org/10.1007/
3-540-44670-2_10. 32

[33] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 820�
849. Springer, 2016. 33

[34] NIST. FIPS PUB 202 � SHA-3 standard: Permutation-based hash and extendable-output functions,
2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf. 9

[35] Edoardo Persichetti. Improving the e�ciency of code-based cryptography. Ph.D. thesis, 2012.
http://persichetti.webs.com/Thesis%20Final.pdf. 25

[36] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 520�551. Springer, 2018. 4, 20, 24, 25, 30

[37] Claus Peter Schnorr. Lattice reduction by random sampling and birthday methods. In Helmut
Alt and Michel Habib, editors, Symposium on Theoretical Aspects of Computer Science � STACS

2003, volume 2607 of LNCS, pages 145�156. Springer, 2003. https://pdfs.semanticscholar.

org/a323/ef7dcaaf2f8d4a52b63393986ba23140faa6.pdf. 32, 36

[38] Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum security of the Fujisaki-Okamoto and
OAEP transforms. Cryptology ePrint Archive, Report 2015/1210, 2015. https://eprint.iacr.

org/2015/1210. 23, 24, 27

[39] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and re�ned security estimates.
Cryptology ePrint Archive, Report 2016/733, 2016. https://eprint.iacr.org/2016/733. 35

41

https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ
https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ
http://www.thijs.com/docs/phd-final.pdf
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/cryptanalysisofntru.ps
https://www.cits.ruhr-uni-bochum.de/imperia/md/content/may/paper/cryptanalysisofntru.ps
http://dx.doi.org/10.1007/3-540-44670-2_10
http://dx.doi.org/10.1007/3-540-44670-2_10
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://persichetti.webs.com/Thesis%20Final.pdf
https://pdfs.semanticscholar.org/a323/ef7dcaaf2f8d4a52b63393986ba23140faa6.pdf
https://pdfs.semanticscholar.org/a323/ef7dcaaf2f8d4a52b63393986ba23140faa6.pdf
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2016/733

	Written specification
	Overview
	Definitions
	Parameter sets
	ntru
	ntru-hps
	ntru-hrss

	Additional parameters
	Hash
	Sample_fg
	Sample_rm
	key_seed_bits

	Derived constants
	logq
	sample_iid_bits
	sample_fixed_type_bits
	sample_key_bits
	sample_plaintext_bits
	packed_s3_bytes
	packed_sq_bytes
	packed_rq0_bytes
	dpke_public_key_bytes
	dpke_private_key_bytes
	dpke_plaintext_bytes
	dpke_ciphertext_bytes
	kem_public_key_bytes
	kem_private_key_bytes
	kem_ciphertext_bytes
	kem_shared_key_bits
	prf_key_bits

	Summary of recommended parameters and derived constants
	Externally defined algorithms
	SHAKE256
	SHA3_256

	Encodings
	Bit strings and byte arrays
	Polynomials
	pack_Rq0
	unpack_Rq0
	pack_Sq
	unpack_Sq
	pack_S3
	unpack_S3

	Arithmetic
	S2_inverse and S3_inverse
	Sq_inverse
	Lift

	Sampling
	Sample_fg
	Sample_rm
	Ternary
	Ternary_Plus
	Fixed_Type

	Passively secure DPKE
	DPKE_Key_Pair
	DPKE_Public_Key
	DPKE_Encrypt
	DPKE_Decrypt

	Strongly secure KEM
	Key_Pair
	Encapsulate
	Decapsulate

	Design rationale
	Summary of merger
	Detailed description of previous NTRU variants
	The ANTS'98 NTRU PPKE
	The ANTS'98 NTRU DPKE
	The first round NTRUEncrypt submission
	The first round NTRU-HRSS-KEM submission
	The Saito–Xagawa–Yamakawa variant of NTRU-HRSS-KEM

	The NTRU submission
	Variants of the NTRU submission
	Faster key generation for single-use keys
	Prime q
	ntru-hps-like parameter sets with faster key generation
	Arbitrary weight m and fixed-weight f
	An IND-CCA2 PKE using Q-OAEP

	Available size vs. security trade-offs
	Parameter selection

	Performance analysis
	Description of platform
	Performance of reference and AVX2 implementations
	Memory usage

	Known Answer Test values
	Expected security
	Security definition for key-establishment
	Security definition for ephemeral-only key-establishment
	Security categories

	Cost of known attacks
	Attacks based on lattices
	Quality of lattice reduction
	Cost of SVP algorithms
	Non-asymptotic memory usage of sieving
	Effect of quantum search

	The cost of lattice attacks
	Short vectors in NTRU lattices
	Costing the primal attack
	Costing the hybrid attack

	Rationale for security categories

	Advantages and limitations

