
Semantic Foundations for Cost Analysis of
Pipeline-Optimized Programs

Gilles Barthe1, Adrien Koutsos2, Solène Mirliaz3, David Pichardie4, and Peter
Schwabe1

1 MPI-SP & IMDEA Software Institute, Bochum, Germany
2 Inria Paris, France

3 Univ Rennes, CNRS, IRISA, France
4 Meta, France

Abstract. In this paper, we develop semantic foundations for precise
cost analyses of programs running on architectures with multi-scalar pi-
pelines and in-order execution with branch prediction. This model is then
used to prove the correction of an automatic cost analysis we designed.
The analysis is implemented and evaluated in an extant framework for
high-assurance cryptography. In this field, developers aggressively hand-
optimize their code to take maximal advantage of micro-architectural
features while looking for provable semantic guarantees.

1 Introduction

Provable cost analysis, such as [29,22], provides a rich palette of methods and
tools for estimating (generally in the form of upper bounds) execution time with
respect to a mathematical operational and cost model. However, operational and
cost models commonly used in provable cost analysis elude micro-architectural
features, such as caches, predictors, and pipelines, which are performance-critical
and carefully exploited in high-performance implementations. As a consequence,
the upper bounds computed by existing cost analyses are overly coarse. In par-
ticular, they cannot be used to guide carefully crafted manual optimizations, for
instance the instruction scheduling of the program, since a typical provable cost
analysis will be oblivious to instruction scheduling.

Specific areas of computer science require high-performance and maximal
reliability. It is for example the case of cryptographic engineers who develop
high-speed implementations of common cryptographic algorithms. Increasingly,
cryptographic engineering is adopting high-assurance techniques [4] to deliver
provable guarantees that implementations are correct with respect to their high-
level specification (expressed mathematically or as pseudo-code), cryptographi-
cally secure, and protected against side-channels. Unfortunately, high-assurance
cryptography still relies on simulation or benchmarking for measuring the ef-
ficiency of implementations, largely ignoring the line of work in provable cost
analysis.

Listing 1.1 provide a classic example of an array sum program that can be
aggressively optimized in order to take advantage of modern micro-architectural

2 G. Barthe et al.

1 r = 0; //1
2 t = [A + 0]; //1
3 r += t; //3
4 t = [A + 4]; //3
5 r += t; //5
6 t = [A + 8]; //5
7 r += t; //7
8 t = [A + 12]; //7
9 r += t; //9

10 t = [A + 16]; //9
11 r += t; //11
12 t = [A + 20]; //11
13 r += t; //13
14 t = [A + 24]; //13
15 r += t; //15
16 t = [A + 28]; //15
17 r += t; //17
18

19

Listing 1.1: Straightforward

r0 = 0; //1
r1 = 0; //1
t0 = [A + 0]; //1
t1 = [A + 4]; //2
t2 = [A + 8]; //2
r0 += t0; //3
t0 = [A + 12]; //3
r1 += t1; //4
t1 = [A + 16]; //4
r0 += t2; //4
t2 = [A + 20]; //5
r1 += t0; //5
t0 = [A + 24]; //5
r0 += t1; //6
t1 = [A + 28]; //6
r1 += t2; //7
r0 += t0; //7
r1 += t1; //8
r = r0+r1; //9

Listing 1.2: Optimized

Fig. 1: Two different approaches to scheduling instructions for code that accumu-
lates 8 consecutive 32-bit integers from memory. Comments indicate execution
cycles on the microarchitecture described in Fig. 2.

mechanisms. The program computes (in variable r) the sum of the elements
of an array A. An optimized version of this program is given in Listing 1.2,
which exploits the architecture capability to perform loads in parallel, avoiding
the two cycles penalty for each element occurring in Listing 1.1. It thus uses
more registers to store the pending results. A standard cost analysis would con-
clude, wrongly, that the optimized program has a worst execution time than
the original: indeed, both programs executed the same amount of loads, but the
optimized program performs an additional assignment and addition. Summing
the delay of each instruction, as a naive cost analysis would do, concludes that
the optimized version is worse than the original. To understand the benefit of
this optimization, the programmer has to reason on the model of instruction
parallelism.

This paper develops semantic foundations for cost analysis of pipelined-
optimized programs. We focus on the instruction pipeline mechanism and do
not model caches in this work. Our work is intended for the programmer who
wants to formally check the cost impact of manual optimizations. Such program-
mers are usually happy to assume that all program code and all data is in L1
cache, in order to focus on careful instruction selection, scheduling, and regis-
ter allocation. Cryptographic primitives fall into this case. We focus on in-order
processors, as out-of-order processors will change the scheduling imagined by the

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 3

programmer. Although out-of-order processors are more common due to their
efficiency, manual optimizations are still particularly relevant for in-order em-
bedded systems. Indeed, embedded systems cannot handle the complexity and
energy cost of out-of-order processors.

Our work makes the following contributions.

– We provide a detailed semantic model, presented in Section 3, which is a
small-step semantics precisely modeling the execution cost (in processor cy-
cles) of instruction parallelism and branch prediction inside an in-order pro-
cessor.

– We then design in Section 4 a provably correct static analysis that computes
safe relational bounds on this cost. The analysis is a mix of a standard
relational numerical analysis, a standard may/must static analysis and a new
block symbolic execution that extracts a tight range for the execution time
of an instruction block. The static analysis is proven sound with respect to
the small-step semantics (Theorem 3). The full proof of correctness is given
in the companion report [6].

– We have implemented our approach into Jasmin [2,3], an existing framework
for high-performance and high-assurance cryptography. We use our analysis
to obtain relational cost bounds for scalar and vectorized implementations
of popular cryptographic algorithms. These experiments show that our esti-
mates are precise (in particular the difference between the upper and lower
bounds is tight), and significantly improve on the bounds delivered by tra-
ditional cost analyses which ignore instruction parallelism.

2 Processor Behavior on an Example

We consider a low-level language (in- A L S M J
Add/Sub (1) X X

Comp (1) X X X
Load (2) X X
Store (2) X
Mult (5) X
Jump (4) X

Fig. 2: Instructions handled by each
pipeline of our processor, with their
latencies in parenthesis

spired from Jasmin [2,3] internal repre-
sentation), with memory load/store, and
scalar operations. Programs in our lan-
guage are executed on amulti-scalar pipelined
processor. A pipelined processor decom-
poses the execution of an atomic instruc-
tion into several stages such that the next
instruction can enter the first stage as
soon as the previous instruction leaves it.
A sequence of stages constitutes a pipe-
line, and the latency of a pipeline is the
number of stages it comprises. A multi-scalar pipelined processor has several
pipelines in parallel, allowing it to execute simultaneously several instructions,
by loading them into different pipelines. All pipelines are not identical: each pi-
peline can have a different latency, and supports a different set of instructions.
The latency of a pipeline depends on the instructions supported, where basic
instructions, such as additions, will be executed quickly, while more complex

4 G. Barthe et al.

operations (e.g. multiplications and floating-point operations) will take a longer
time.

Fig. 2 describes an example of a processor with five pipelines (A, L, S, M
and J) and the instructions each pipeline can handle: for example, multiplication
has a latency of 5, and is only supported by the pipelineM . This is a simple pro-
cessor, real processors have more pipelines and can handle a larger instruction
set. Note that the method presented in this paper is not specific to this proces-
sor: the number of pipelines, the instructions supported and their latencies are
parameters of the cost semantics and of the analysis.

Instruction Fetching We now give a high-level overview of how a processor
fetches an instruction, which is done in three steps. First, the processor checks
that the instruction has no data-dependency conflict with other instructions al-
ready in the pipelines. Then, the processor resolves the instruction by evaluating
the registers read by the instruction into values – which are either integers or
memory addresses. Finally, the resolved instruction, called a transient instruc-
tion, is placed in a pipeline supporting it.

Data-dependencies Before starting executing an instruction – i.e. loading it in
the first stage of a pipeline – the processor must check that this instruction has no
conflict with other instructions being currently executed. For example, consider
the execution of lines 1 through 3 of Listing 1.1 on the processor of Fig. 2. The
resulting state of the processor can be found in Fig. 3a. The first instruction can
be placed in stage A1 (the first stage of the A pipeline), while simultaneously
loading the second instruction into stage L1. However, the instruction of the
third line cannot be loaded during the same cycle, because it depends on the
values of registers r and t, which will be written by the previous instructions:
the processor must wait for their executions to finish before fetching l.3.

Essentially, an instruction can be executed if: i) there is a pipeline available
(i.e. whose first stage is empty) supporting it; and ii), none of its variables
(a.k.a. registers or memory locations such as @A) have data-dependencies with
instructions currently in the pipelines. More precisely, an instruction atom cannot
be executed if:

– any variable it reads is written by another instruction currently in a pipeline
(read-after-write dependency);

– any variable it writes is read or written by another instruction in the pipeline
(write-after-read and write-after-write).

We refer to these dependencies using the acronyms RaW, WaR and WaW. Com-
ing back to our example, the instruction l.3 needs to wait for two cycles – the
latency of the load – to be fetched after l.2 because of a RaW dependency on t.

Instruction Resolution Before being placed in the first stage of a pipeline sup-
porting it, the instruction is resolved, by replacing the registers it reads by their
current value. We illustrate this mechanism on the array sum (Listing 1.1). Let us
suppose that the first cell of A contains value 32, stored in t after the execution

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 5

A r:=0
L t:=[@A+0]
S
M
J

(a) State of the pipelines after line 5 and
6 of the first iteration of Listing 1.1

A
L
S
M a:=4*8
J jump

(b) State of the pipelines after fetching a
jump

Fig. 3: Example of pipeline states for the processor of Fig. 2. Each cell represents
a pipeline stage, e.g. stage J4 in the second state contains a jump.

of l.2. The instruction l.3 r := r + t is resolved into the transient instruction
r := 0 + 32. Note that a transient instruction no longer reads any register,
which allows to avoid some data-dependency conflicts. After the instruction l.2
has been fetched, we can expect the pipelines to be in the state of Fig. 3a, where
@A designates the address stored in A.

Branch prediction When the processor executes a sequence, it simply incre-
ments its program counter to find the next instruction to execute. But in the
case of a conditional jump, the next instruction to execute is harder to infer. In
that case, a jump must be resolved: if the jump is taken, then its destination
is computed and used to update the program counter. Otherwise, the processor
continues its execution with an incremented program pointer. The jump must go
through all the stages of its pipeline to affect the program counter. Not fetching
any instruction during its processing would severely impact the performances of
the processor. It is more interesting to start fetching and executing one of the
two branches as soon as a jump is encountered, without waiting for the jump
to be fully processed. The branch predictor (BP) is in charge of deciding which
branch will be speculatively executed. It typically uses a history, usually in the
form of a buffer, to remember the previous branches taken and bases its decisions
upon it. When the jump has been fully processed, the prediction is checked. In
case of a correct prediction, the execution of the speculated branch continues.
Otherwise, all the modifications made by the speculated branch must be roll
backed, and the correct branch starts its execution. The roll-back requires to
buffer the speculated instructions when they are retired from their pipeline and
to identify which instructions in the pipelines are speculation.

The content of the pipelines, i.e. the instructions already loaded, is not suf-
ficient to roll back the pipelines. For example, consider the following two code
snippets. The instruction jmp(c) : T is a conditional jump: the program contin-
ues with the instruction at address T – further in the code – if c holds, or goes
to the next instruction otherwise. So the then branch of this conditional is not
displayed here, only its else branch. In the first code snippet, the else branch
contains only l.3, while it contains l.2-3 in the second.

6 G. Barthe et al.

1 a := 4 * 8;
2 jump (c) : T;
3 b := 2 + 6;

and
1 jump (c) : T;
2 a := 4 * 8;
3 b := 2 + 6;

These two programs are executed from empty pipelines and we assume here
that the else branch is speculatively executed. Let us take a snapshot of the pro-
cessor state after the three instructions have been fetched and after the processor
has executed three cycles to make the instructions progress in their pipelines. For
both executions, the pipelines should be in the state of Fig. 3b. Notice that the
speculated addition b := 2 + 6 has been fully executed and has left the pipe-
line. Also, in both cases, the multiplication is at the same depth (4) as the jump,
and there is no way of telling if it was speculatively executed, or if it was fetched
before the jump. Hence it is not possible to determine if the multiplication must
be removed simply by inspecting the pipelines.

Therefore, to be able to perform roll backs, the processor: (i) buffers the
effects of the retired instructions (here the addition); and (ii), timestamps the
instructions to track their dependencies. Any instruction that has been fully
executed is placed into a buffer, called the speculation buffer, before acting on
the memory. Once it is guaranteed that no previous jump can roll it back, it
is committed, effectively modifying the memory. When a roll back is performed,
any instruction in the buffer or the pipelines with an higher timestamp than the
jump is removed. These mechanisms are inspired from [10].

3 Concrete Small-step Pipeline Semantics

In this section we define the concrete small-step semantics of a multi-pipelined
processor where the cost in cycles is tracked. This semantics precisely models a
pipelined processor with branch prediction. It includes a speculation buffer in
order to model the roll back mechanism used after branch misprediction. In the
next section, we will present an approximation of this semantics w.r.t. the cost,
which we use to build a sound static analysis. Fig. 5 summarizes the notations
used by our semantics rules in Fig. 7, 8 and 9.

Language The syntax of our language is given in Fig. 4. Atomic instructions
atom ∈ Atoms can be basic arithmetic operations, memory loads/stores and jump
instructions. The instructions operate on registers in Reg, which can contain
integer values in Z or memory locations in MemLocs. Finally, programs are built
using sequential composition of atomic instructions, conditionals and while loops.
The jump instruction is not meant to be directly written by the programmer.
Its role will be explained in the semantic rules for conditionals. Conditionals
and loops are annotated with distinct labels ` in the set of labels L. The branch
predictor uses them to distinguish the different conditional jumps and to build
its history of past jumps.

The syntax is inspired from the Jasmin language [2,3], which features pre-
cisely such a combination of low-level atomic instructions that translate directly
to assembly and high-level structures consisting of while loops and conditionals.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 7

Operands:
o ::= r ∈ Reg Register

| n ∈ Z Integer
Atomic instructions Atoms:

atom ::= r := o1 + o2 Addition
| r := o1 − o2 Subtraction
| r := o1 ≤ o2 Comparison
| r := o1 × o2 Multiplication
| r1 := [r2 + o] Load
| [r + o1] := o2 Store
| jmp(o) Conditional jump

Labels:
` ∈ L

Statements:
s ::= atom Atomic

| s1; s2 Sequence
| ` : if o then s1

else s2 Conditional
| ` : while o

do s done Loop
| skip Skip

Fig. 4: Syntax of the language

Memory State Values are stored at locations, Location = Reg ∪ MemLocs,
comprising registers and memory locations. A memory state σ : Location 7→ Val is
a map from locations to values, which are either integers or memory locations (see
Fig. 5). For any atomic instruction atom and memory state σ, we let SJatomKσ be
the memory state obtained when evaluating atom in σ. This atomic instruction
semantics is defined as usual — we omit the details.

Pipeline State Our semantics is parametric in the processor’s architecture,
i.e. the number of pipelines, the instructions they support, and the instructions’
latencies. For simplicity, the jump instruction is handled by a single pipeline J .
This is the usual settings for branch predictors as it simplifies the design of the
processor. Formally, we assume a fixed set of pipelines Pips. For every pipeline
X ∈ Pips, we note Xi the i-th stage of X. For any atomic instruction atom, its
latency characterizes the number of stages required to execute the instruction
before it can leave the pipeline. We note |atom| its latency, and we writeX ∈ atom
if the pipeline X handles the instruction atom. We also confuse atom with the
set of all pipelines that handle atom. Then, the latency of a pipeline |X| is the
maximal latency of the instructions it supports. The pipelines are ordered so
that given an instruction handled by several pipelines, these pipelines will be
checked in a fixed order. For instance on our processor, for a comparison, the
pipelines will be checked in the order A, then L, then S. As a shorthand, we
write X = min{Y ∈ atom} to get the first pipeline handling atom.

Each stage of a pipeline is either empty (denoted ε), or contains a transient
instruction – obtained by resolving an atomic instruction – ready to be processed.
The set of transient instructions is denoted Atomst. As explained in Section 2, we
need to annotate the instructions in the pipelines to know if they are speculation
and depend on a jump retiring. Each transient instruction in a pipeline stage is
associated to a timestamp, which orders it w.r.t. the other instructions in the
pipelines. A smaller timestamp denotes an older instruction. The timestamp is

8 G. Barthe et al.

Latency
|atom| ∈ N

Values (Val) :
v ::= l ∈ MemLocs Memory location

| n ∈ Z Number
Locations (Location):

x ::= l ∈ MemLocs Memory location
| r ∈ Reg Register

Memory state (S):
σ ∈ Location→ Val

Pipelines:
X ∈ Pips Pipeline
X1, X2, . . . ∈ Stages Stage
ε Empty stage content

Transient instructions (Atomst):
atomt ::= r := v1 ./ v2 Scalar operations (./∈ {+,−,×,≤})

| r := [l + n] Load
| [l + n] := v Store
| jmp(v) Jump

Pipeline state:
Cells = ((N× Atomst) ∪ ε) Cells
π ∈ Stages→ Cells Pipeline state
π[j : j ≤ i] Roll back of instructions older than i

Branch prediction (BP):
h Branch prediction history
BP-predict (h, `) BP prediction on jump `
BP-update (h, `, taken) Update the BP history with jump results

Speculation buffer:
β ∈ P (N× Atomst) Speculation buffer
min(β, π) ∈ N Minimal index in β and π (= 0 if empty)
max(β, π) ∈ N Maximal index in β and π (= 0 if empty)
β(σ) = (©

(j,atomt)∈β
SJatomtK)(σ) Application of all instructions of β

β[j : j ≤ i] ∈ P (N× Atomst) All instructions more recent than i
Processor state:

ω = 〈σ, π, h, β〉 Processor state

Fig. 5: Concrete pipelined processor

incremented each time we fetch a new instruction. Therefore, a pipeline state π
is a function from pipeline stages Stages to pairs of an integer and a transient
instruction ((i, atomt) ∈ (N×Atomst)), or to the empty slot ε. To be able to roll
back a jump with index i, we use the pipeline state π[j : j ≤ i], which is the state
π where only instructions older than i in π have been kept. Newer instructions of
π (i.e. such that π(Xk) = (j, atomt) with j > i) are replaced with ε. We illustrate
this in Fig. 6, using the branch prediction example of Section 2. Recall that the

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 9

A
L
S
M 1, a:=4*8
J 2, jump

(a) The jump has been fetched after the
assignment

A
L
S
M 2, a:=4*8
J 1, jump

(b) The jump has been fetched before the
assignment, and thus depends on its pre-
diction

Fig. 6: The timestamps associated to the instructions records prediction depen-
dencies, and allow to perform roll backs if necessary.

two programs had the same pipelines state (described in Fig. 3b). But when
adding the timestamps, we obtain two distinct states. In the first case (Fig. 6a),
the multiplication has been fetched before the jump, and thus its timestamps
(1) is smaller than the one of the jump (2). Hence, in case of rollback due to a
misprediction of the jump, the multiplication will not be evinced. In the second
case (Fig. 6b), the multiplication is speculatively executed, and fetched after the
jump: its timestamps (2) is greater than the one of the jump (1), and will thus
be evinced if the jump destination was mispredicted.

Speculation buffer After it has been executed, an instruction is stored in the
speculation buffer β. The instruction will be committed, i.e. its effect will be
applied on the memory σ, only when the processor is guaranteed that it was
not an incorrect speculation. Similarly to the pipeline state π, the speculation
buffer β keeps track of the index of the instructions to check the sequential de-
pendencies. Hence β is a set of pairs (i, atomt) ∈ (N×Atomst). We let min(β, π)
be the minimal index associated to an instruction in β and π (we define sim-
ilarly max(β, π)). Similarly to π, β[j : j ≤ i] is the buffer β where only the
instructions older than i in β have been kept. The effect of the instructions in
the speculation buffer should be taken into account as if it was already applied
on the memory state σ. The notation β(σ) corresponds to the application on σ
of these instructions, from the oldest to the most recent.

Branch prediction history The branch predictor is guided by a history of
previous jumps. Usually, it is a buffer associating a boolean taken or not taken
to each jump label `, but this can change depending on the processor. Therefore,
we chose to keep its precise implementation abstract in our model. We note h
this history and assume two operators: BP-predict(h, `) holds if the BP predicts
that the jump at ` will be taken; and h′ = BP-update(h, `, taken) updates the
history depending on whether or not the jump was actually taken. We suppose
that these operations are deterministic and that the history is not modified
by external sources. However, we make no assumption on the quality of the
prediction: it can mispredict every time for instance.

10 G. Barthe et al.

Lock RaW
x ∈ read(atom, σ) x ∈ write(atom′)

locks(atom, atom′, σ)

Lock WaW
x ∈ write(atom, σ) x ∈ write(atom′)

locks(atom, atom′, σ)

Lock WaR
x ∈ write(atom, σ) x ∈ read(atom′)

locks(atom, atom′, σ)

Jump lock

locks(jmp(_), jmp(_),_)

Fig. 7: Rules of data dependency locks

Directives The processor behaves greedily, and tries to fetch as many instruc-
tions as possible per cycle. If no pipeline is available for the next instruction
atom, or if atom has a data-dependency conflict with the instructions already
in the pipelines, then the processor cannot fetch the instruction atom and must
execute a cycle. Executing a cycle makes all instructions progress one stage fur-
ther in their pipeline. When an instruction atom has been through |atom| stages,
then it is retired and it is placed in the speculation buffer β. At each cycle, β
tries to commit its oldest instructions.

These three actions, fetching an instruction, executing a cycle and commit-
ting from the speculation buffer, are called directives. The fetch atom directive
loads the instruction atom in the first stage of an available pipeline. The commit
directive removes the oldest instruction of the speculation buffer if it does not
depend on a jump in π. Finally the cycle directive executes a processor cycle,
which makes instructions progress in their pipelines, then calls directive commit.
All those directives are defined by the rules in Fig. 8, and described below. No-
tice that the fetch directive does no need the speculation buffer β because it will
always be applied on a memory state β(σ).

Data-Dependencies An instruction is fetched only if the variables it reads or
writes are available. This is checked by the locks(atom, atom′, σ) statement (de-
fined in Fig. 7), which holds whenever the instruction atom has a data depen-
dency with the transient instruction atom′ in the memory state σ. There are
three rules — for the WaW, WaR and RaW dependencies — which are defined
using the variables used by atom. These rules rely on the auxiliary functions
read(atom, σ) and write(atom, σ) which return, respectively, the variables read
and written by atom in σ — the state σ is used to check if memory accesses are
in conflict. For instance, the atomic instruction a := [b + n] reads the value in
the memory location pointed by b + n, that is the memory location σ(b) + n.
The functions read and write are overloaded to also compute the variables read
and written by transient instructions such as atom′: read(atom′). In that case,
we do not need the memory state because transient instructions have already
been resolved.

Jumps are interdependent, and we cannot fetch a jump if one is already being
processed. This is captured by the Jump lock rule.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 11

next(π,Xi) =

{
ε if i = 1 or |π(Xi−1)|= i− 1
π(Xi−1) otherwise

retired(π) = {(k, atomt) | ∃Xi ∈ Stages, π(Xi) = (k, atomt) ∧ |atomt|= i}

Fetch
X = min{Y ∈ atom | π(Y1) = ε}
π′ = π[X1 7→ (i, resolve(atom, σ))]

(σ, π) ↪−−−−−−−−→
fetch (i,atom)

π′

Ready
∀Yi, π(Yi) 6= ε⇒ ¬ locks(atom, π(Yi), σ)

X ∈ atom π(X1) = ε

ready(atom, σ, π)

Commit
i = min(β, π)

(i, atomt) ∈ β β′ = β \ (i, atomt)
(σ, π, β) ↪−−−−→

commit
(SJatomtKσ, β

′)

One-Cycle
π′ = π[∀Xi, Xi 7→ next(π,Xi)]

(σ, π′, β ∪ retired(π)) ↪−−−−→
commit

∗(σ′, β′)

i = min(β′, π′) min(β′) 6= i

(σ, π, β) ↪→ (σ′, π′, β′)

Fig. 8: Directives in a speculative context

Fetch The Fetch rule in Fig. 8 defines the judgment (σ, π) ↪−−−−−−−−→
fetch (i,atom)

π′,

which places an instruction in the pipelines. First, it resolves the instruction
using resolve(atom, σ), and then places it into the first stage of a pipeline sup-
porting it. This fetch directive will only be applied on a state (σ, π) which
does not violate the data-dependencies. This condition will be checked using
the statement ready(atom, σ, π) defined by the Ready rule, which verifies that:
1) the state (σ, π) is ready to fetch the instruction atom, by checking that
¬ locks(atom, atom′, σ) for any atom′ in the pipelines (i.e. there are no data-
dependencies); and 2), that there is an available pipeline X supporting the in-
struction. Notice that the fetch directive does not check ready itself.

Commit The buffer β prevents mis-speculated instructions from being applied
on the memory state σ. Instructions in β are committed only if they are the
oldest, i.e. have the smallest timestamp, ensuring that they do not depend on a
jump, which would then have a smaller timestamp while still being in π. This is
captured by the judgment (σ, π, β) ↪−−−−→

commit
(σ′, β′), which is defined by the Com-

mit rule. This rule allows to commit an instruction (i, atomt) in the speculation
buffer β if it is the oldest instruction in both the buffer and the pipeline state.
Since timestamps record how old instructions are – where smaller indices de-
note older instructions – and since all instructions have distinct timestamps, we
check that (i, atomt) is the oldest instruction by verifying that i is the smallest
timestamp in both β and π.

Executing cycles (σ, π, β) ↪→ (σ′, π′, β′) represents the execution of one cycle
and is defined by the One-Cycle rule. It makes all the instructions progress

12 G. Barthe et al.

(s, ω)→t (s′, ω′)
execute t cycles and fetch
as much instructions of

s 6= skip as possible before
each cycle

Atomic
i = max(β, π) + 1 ready(atom, β(σ), π)

(β(σ), π) ↪−−−−−−−−→
fetch (i,atom)

π′

(atom; s, 〈σ, π, h, β〉)→0 (s, 〈σ, π′, h, β〉)

Cycle
¬ ready(atom, β(σ), π) (σ, π, β) ↪→ (σ′, π′, β′)

(atom; s, 〈σ, π, h, β〉)→1 (atom; s, 〈σ′, π′, h, β′〉)

Spec-Cond-True-Correct
(jmp(b); skip, ω)→t (skip, 〈σ2, π2, h, β2〉) π2(J1) = (_, jmp : v) v 6= 0

¬BP-predict(`, h) h′ = BP-update(`, h, false)

(s1; s3, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (s′, 〈σ3, π3, h, β3〉)

(` : if b then s1 else s2; s3, ω)→t+|jmp| (s′, 〈σ3, π3, h
′, β3〉)

Spec-Cond-True-Incorrect
(jmp(b); skip, ω)→t (skip, 〈σ2, π2, h, β2〉) π2(J1) = (k, jmp : v) v 6= 0

BP-predict(`, h) h′ = BP-update(`, h, false)

(s2; s3, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (_, 〈σ3, π3, h, β3〉)

(` : if b then s1 else s2; s3, ω)→t+|jmp| (s1; s3, 〈σ3, π3[j : j ≤ k], h′, β3[j : j ≤ k]〉)

Fig. 9: Selected small-step semantics rules with explicit speculation

one stage further in their pipeline, and relies on next(π,Xi) to get the new
content of the stage Xi, according to the previous stage Xi−1. The operator
next makes all instructions advance by one stage if they have not yet reached
the end of their executions. Then, all the instructions that are retired, obtained
by the operator retired, are added to β to be validated. Finally, we commit as
many instructions from β as possible — we check that we no longer commit any
instructions by verifying that the oldest instruction, with timestamp i, is not in
the new speculation buffer β′.

Small-step Given a statement s and an initial processor state ω, the judgment
(s, ω)→t (s′, ω′) states that after t cycles of fetching and executing instructions
from s, the processor ends in state ω′, and it still has to fetch and execute s′. The
statements s is always a sequence of the form s1; s2, and our rules are defined
inductively on the syntax of s1 — s2 is the continuation, which is essential for
the branch predictor. We describe the most important rules below, which are
given in Fig. 9 — the full semantics is in Appendix B.

Atomic The rules for s1 = atom are Atomic and Cycle. In the Atomic rule,
we test whether the current state of the processor is ready to fetch atom using

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 13

(s, ω)
=−−→ t (s′, ω′)

execute t cycles and fetch
as much instructions of s as
possible before each cycle

Enforce-Cycle
(s, ω)→t (s′, ω′)

(s, ω)
=−−→ t (s′, ω′)

Enforce-Cycle-Exact
(s, ω)→k (skip, ω′′)

ω′′ ↪→t−k ω′

(s, ω)
=−−→ t (skip, ω′)

Fig. 10: Small-step semantics to enforce arbitrary cycle execution

ready(atom, β(σ), π). We use the state β(σ), since an instruction to be fetched
must consider the pending instructions in the speculation buffer β for its memory
state, to be consistent with the speculation it might be in. The fetched instruction
atom is timestamped using a timestamp greater than all the timestamps in both β
and π. Finally, the fetch (i, atom) directive places the instruction in the pipelines.
Here, no new cycle is necessary, hence t = 0, and the continuation s remains to
be fetched and executed. The second rule, Cycle, is used when the state is not
ready for atom. In that case, a cycle is executed, and the processor still has to
fetch and execute atom; s.

Conditional The rules Spec-Cond-True-Correct and Spec-Cond-True-
Incorrect define the behavior of the processor when encountering a conditional
and the then-branch must be taken (i.e. when b 6= 0 in our language). The two
rules presented can be decomposed into three steps: first the processor fetches the
jmp; then executes it with the speculative execution of one of the branches; and
finally, either continues normally the execution if the speculation was correct, or
it rolls back if it mis-speculated.

The cost t is exactly the number of cycles needed to fetch the atomic jump
(since the continuation is skip). Because the continuation is skip, no more rules
can be applied, and the last rule applied is Atomic to fetch jmp(b). Hence the
jump is now in stage J1, and we can consult the pipeline state to find which
branch to take. We also obtain the timestamp k of the jump for the roll back.

In both rules, the predicted branch is then executed. The speculation lasts
exactly |jmp| cycles, which is checked by the Enforce-Cycle-* rules defined in
Fig. 10: in case the branch and continuation are too short, we let the processor
execute cycles on an empty program with judgment (s, ω)

=−−→ t (s′, ω′). After
processing the jump, the history h is updated. The processor behavior after the
speculation ends depends on the correctness of the prediction. If the processor
correctly predicted the branch, then the continuation s′ obtained after the spec-
ulation is used (rule Spec-Cond-True-Correct). Otherwise, the continuation
and all instructions in π and β that were speculated are discarded (rule Spec-
Cond-True-Incorrect). We keep the state σ3 since committed instructions
were necessarily older than the jump which was in J during the speculation.
Finally, the processor restarts its execution from the correct branch s1.

Remark that the history h does not change during the speculation. This
is because the processor does not fetch another jump while there is already

14 G. Barthe et al.

(p, σ, h) ⇓t σ′
executes the program p

from σ in t cycles

Done
(p; skip, 〈σ, πε, h, ∅〉)→t (skip, 〈σ′′, π,_, β〉)

(σ′′, π, β) ↪→t′ (σ′, πε, ∅)
(p, σ, h) ⇓t+t′ σ′

Fig. 11: Execution cost for small-step semantics

a jump in the pipeline. Therefore, two predictions cannot be interlaced: the
branch history cannot change between the prediction of rule Spec-Cond-* and
its update at the end of the rule.

Fetch and execution cost For any program p and processor state ω, the judgment
(p; skip, ω)→t (skip, ω′) states that all instructions of p have been fetched in
t cycles. If ω has empty an pipeline state πε and an empty speculation buffer,
then t is the fetch cost of p. But not all instructions have been executed and
committed after t cycles: some instructions may still be in π or β. To obtain the
full execution cost, we need to keep executing cycles until we reach a pipeline
state πε, where all the stages are empty (i.e. ∀Xi, πε(Xi) = ε), and an empty
speculation buffer. This is captured by the judgment (p, σ, h) ⇓t σ′, which gives
the execution cost t of a program p starting with memory state σ and a branch
predictor history h — see the Done rule in Fig. 11.

4 Static Analysis

We now present the static analysis technique we designed, which allows to obtain
provable relational bounds of the execution cost of a program. To do this, we first
instrument the original program s by adding a cost variable cost, such that the
set of possible run-time values of cost in the instrumented program contains the
exact value of the execution cost of s. We then perform a standard relational nu-
merical static analysis on this instrumented program to obtain relational bounds
between the original program cost and input variables (for instance the length of
an input array). The instrumentation is performed using a standard may/must
static analysis and a symbolic execution of instruction blocks.

The analysis algorithm is presented in Section 4.1, illustrated on an example
and with the soundness theorem guaranteed. The soundness proof is detailed in
Section 4.2.

4.1 Instrumentation for a numerical analysis

The instrumentation of each statement is defined by induction in Fig. 13 and the
notations of the analyses are summarized in Fig. 12. For blocks — a sequence
of atomic instructions atom1; . . . ; atomn without control-flow structure — the
instrumentation relies on a block cost approximations JblkK] which outputs the

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 15

Alias analysis notations:
σ] ∈ S]a Abstract alias memory states
JatomK]a ∈ S]a → S]a Abstract alias semantics for

an atomic instruction
./]May, ./

]
Must ∈ Atoms× Atoms× S]a → bool No data-dependency test

ι]a[s] ∈ S]a Initial abstract alias memory
state for the given statement s

γa ∈ S]a → P (S) Concretization function
Abstract states:

π] ∈ P] = Stages→ (Atoms ∪ ε) Abstract pipeline state
π]ε ∈ P] The empty abstract pipeline state

Numerical analysis notations:
σ] ∈ S]n Abstract numerical memory states
JsK]n ∈ S]n → S]n Abstract numerical analysis of

statement s
ι]n[s] ∈ S]n Initial abstract memory

state for the given statement s
γn ∈ S]n → P (S× S) Concretization function returning

pre and post states
projR ∈ S]n → S]n Projects an invariant on registers R

Instrumentation notations:
(π], σ], n) ∈ I] = P] × S]a × N Abstract processor state
JsK./] ∈ I] → I] Abstract semantics of a statement s

(parameterized by a no data-dependency test ./])
T ∈ (Stmt× S]a)→ (Stmt× S]a) Instrumentation of a statement
JblkK] ∈ S]a → (N× N× S]a) Cost analysis (lower and upper bounds)

of a block with alias information

Fig. 12: Static analysis notation

bounds [u, o] of the cost to execute blk. The instrumentation relies on an alias
analysis — whose purpose is explained later — and is thus parameterized by
an abstract memory state σ] from the alias analysis. The instrumentation adds
non-deterministic increment cost += [u, o] to the cost variable.

Instrumented programs are analyzed using a numerical analysis J·K]n. We let
R0 be the input registers of our programs, and denote by ι]n[s] the initial abstract
memory state of the program s. Let s′ be the instrumentation of a program s.
To obtain the cost (invariant) C of s, we project the abstract numerical invariant
of s′ on the input registers R0 and the cost variable:

C(s) = projR0∪{cost}(Js
′K]n(ι

]
n[s])) where (s′,_) = T(s, ι]a[s]))

Block instrumentation The block instrumentation computes the cost with JblkK].
It performs two simulations JblkK./]Must

and JblkK./]May
of the block to obtain

under and over approximations of the execution cost. To simulate the execution
of a block, the analysis takes the instructions of the block in order and tries to

16 G. Barthe et al.

Block instrumentation:

JaK./](π], σ], n) =

(π][X1 7→ a], JaK]σ], n) If ∃X ∈ min{Y ∈ a | Y1 = ε}

and ∀a′, ./] (a, a′, σ]) holds
(cycle(π]), σ], n+ 1) Otherwise

Ja1; . . . ; anK./]σ
] = JanK./] ◦ . . . ◦ Ja1K./](π]ε, σ

], 0)

JblkK]σ]1 = (u, o+ max(π]), σ]2) with
JblkK

./
]
Must

σ]1 = (_, σ]2, u)

JblkK
./

]
May

σ]1 = (π],_, o)

Program instrumentation:
T(blk, σ]1) = (blk; cost += [u, o], σ]2) if JblkK]σ]1 = (u, o, σ]2)

T(s1; s2, σ
]
1) = (s′1; s′2, σ

]
3) if (s′1, σ

]
2) = T(s1, σ

]
1) and (s′2, σ

]
3) = T(s2, σ

]
2)

If (s′1, σ
]
2) = T(s1, JbK]aσ

]
1) and (s′2, σ

]
3) = T(s2, J¬bK]aσ]1):

T(if b then s1 else s2, σ]1) = (cost += [0, L]; if b then s′1 else s′2, σ
]
2 t σ

]
3)

If σ] = lfp(λΣ→ σ]0 t JsK]a ◦ JbK]aΣ) and T(s, JbK]aσ]) = (s′,_):

T(while b do s done, σ]0) =

(while b do (cost += [0, L]; s′) done; cost += [0, L], J¬bK]aσ])

Fig. 13: Instrumentation of a program (L = |jmp|)

fetch them. If no instruction can be fetched, e.g. because the first stage of all
pipelines are full, or because of a data-dependency, it increments its cycle counter
and updates its abstract pipeline state π] with a function cycle — which makes
instructions advance on stage forward in their pipelines. In these simulations,
the pipeline abstract state π] is a function from stages to unresolved instructions
(the abstract simulation cannot resolve instructions, as this require a concrete
memory state).

The simulation relies on an abstract memory state σ] from an auxiliary alias
analysis conducted in parallel to the instrumentation. This alias analysis is used
to determine if there may be data-dependencies between the current instruc-
tion and any instruction in the pipelines, using an alias operator ./]. The alias
operator ./] used depends on how data-dependencies should be handled, which
depends on whether we are computing the lower or upper-bound. When comput-
ing the lower bound, we are in the best-case scenario, and assume that there is a
data-dependency — hence a delay — only if the memory location must always
alias. Hence we require that the must-alias operator ./]Must satisfies:

¬ ./]Must (atom, atom
′, σ]) =⇒ ∀σ ∈ γ(σ]), locks(atom, atom′, σ)

On the other hand, the upper bound corresponds to the worst-case scenario, and
relies on a may alias analysis to detect instructions that may induce a delay: if an
instruction is known never to alias with any instruction already in the pipeline,

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 17

no data-dependency delay needs to be added. We require that the may-alias
operator ./]May satisfies:

./]May (atom, atom′, σ]) =⇒ ∀σ ∈ γ(σ]),¬ locks(atom, atom′, σ)

If there is no data-dependency, then the simulation finds an empty stage for
atom and updates the alias analysis.

Example Consider the instrumentation of the program below. This program
computes in register p the scalar product of two vectors stored in arrays A and
B. We suppose that A and B do not alias at the beginning, and that the may
and must alias analyses are able to determine that there is no aliasing between
the address read l.14 and l.18. Each instruction is commented with the cycle at
which it is fetched in its block, starting from an empty pipeline.

1 // Initialization
2 cost := 0;
3 p := 0; // 1
4 i := 0; // 1
5 r0 := n-i; // 2
6 // Block ’s cost
7 cost += [1, 2] ;
8 while (r0 > 0) do
9 // Backtrack penalty

10 cost += [0, 4];
11 r1 := i*8; // 1
12 a := [A + r1]; // 6

17 r2 := i*8; // 6
18 b := [B + r2]; // 11
19 c := a*b; // 13
20 p := p+c; // 18
21 i := i+1; // 18
22 r0 := n-i; // 19
23 // Block ’s cost
24 cost += [18, 19];
25 done;
26 // Backtrack penalty
27 cost += [0, 4];

Finally, we use a numerical static analysis to obtain the final value of the
cost variable. On the example above, we assume that the inputs A and B are
of size n ≥ 0, and we select R0 = {n} as input register. Once projected, the
relation between cost and the initial value of n gives a cost of the program in
the interval [1 + 18n; 6 + 23n].

The soundness of the static analysis is formalized in the following theorem
where we used the concretization function γn to link the initial and final states.

Definition 1 (Initial states). A memory state σ0 is initial if it satisfies

(σ0, σ0) ∈ γn(ι]n[s]) ∧ σ0 ∈ γa(ι]a[s])

Theorem 1 (Static analysis soundness). Let s be a program and σ0 an
initial state. Then, the computed numerical relation is a sound approximation of
the execution cost of s from σ0:

∀h, t, (s, σ0, h) ⇓t _ =⇒ (σ0, {cost 7→ t}) ∈ γn ◦ C(s)

4.2 Proof of soundness

To prove Theorem 1, we need to prove that: (i) the block approximation is sound;
and (ii), the program instrumentation is sound.

The following theorem states the soundness of our block instrumentation.

18 G. Barthe et al.

Block
s a block

JblkK]σ]1 = (u, o, σ2
]) σ2 ∈ SJsKσ1

(s, σ1, σ
]
1) ⇓[u,o] (σ2, σ2

])

Seq-No-Block
s1; s2 not a block

(s1, σ1, σ
]
1) ⇓[u,o] (σ2, σ2

])

(s2, σ2, σ2
]) ⇓[u′,o′] (σ3, σ3

])

(s1; s2, σ1, σ
]
1) ⇓[u+u′,o+o′] (σ3, σ3

])

Cond-True
JbKσ1 6= 0 (jmp(b); s1, σ1, σ

]
1) ⇓[u,_] (σ2, σ2

]) (s1, σ1, σ
]
1) ⇓[_,o] (σ2, σ

]
2)

(if b then s1 else s2, σ1, σ
]
1) ⇓[u,o+|jmp|] (σ2, σ2

])

Cond-True
JbKσ1 = 0 (jmp(b); s2, σ1, σ

]
1) ⇓[u,_] (σ2, σ2

]) (s1, σ2, σ
]
1) ⇓[_,o] (σ2, σ

]
2)

(if b then s1 else s2, σ1, σ
]
1) ⇓[u,o+|jmp|] (σ2, σ2

])

While
(if b then (s; while b do s done), σ1, σ

]
1) ⇓[u,o] (σ2, σ2

])

(while b do s done, σ, σ]) ⇓[u,o] (σ2, σ2
])

Fig. 14: The big-step approximate semantics computes the cost bounds of state-
ments, with the help of an alias abstract memory state σ]

Theorem 2 (Block approximation correction). For any block blk and ab-
stract memory state σ]:

JblkK]σ] = (u, o,_) ⇒ ∀σ ∈ γ(σ]), t, h, ((blk, σ, h) ⇓t _⇒ t ∈ [u, o])

The theorem is proved by bi-simulation, by induction on the number of instruc-
tions of blk. For the lower bound, if the concrete semantics fetches an instruction,
the correction of the must analysis ensures that the simulation will fetch it too.
However, the abstract simulation of the pipeline state may fetch instruction ear-
lier than the concrete semantics, e.g. when the must alias analysis does not detect
that an aliasing always occurs. Thus the under-approximation cost is smaller or
equal to the concrete cost.

For the upper bound, the converse reasoning applies. If the concrete semantics
executes a cycle, because of a conflict, then the correction of the may alias
analysis guarantees that the over-approximation also executes a cycle. The may
analysis may not be able to statically prove that some instruction cannot alias
with an instruction already in the pipeline, which can result in more cycles in
the abstract semantics. Thus the over-approximation cost is larger or equal to
the concrete cost.

Soundness of the program instrumentation We rely on an approximate program
semantics to prove the soundness of our program instrumentation. This big-step
semantics is defined inductively on the syntax, with a special case for blocks,
and computes bounds for each statement. It abstracts away the reorder buffer

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 19

and the branch prediction history, keeping only the memory state σ and the
abstract state σ] computed by the alias analyses. Its rules are in Fig. 26 and
follows the scheme of the instrumentation. It is straightforward to show that the
cost-approximate semantics computes the same bounds than the ones of the cost
variable in the instrumented program.

The cost-approximate semantics is sound w.r.t. the small-step semantics.

Theorem 3 (Cost-approximate soundness). Let s be a program, σ1 a mem-
ory state, σ]1 an abstract alias state such that σ1 ∈ γa(σ]1), and s′ the instrumen-
tation of s (i.e. (s′,_) = T(s, σ]1)), then

∀t, h, u, o, σ2,
(

(s, σ1, h) ⇓t σ2
∧ (s, σ1, σ

]
1) ⇓[u,o] (σ2,_)

)
=⇒

(
σ2[cost 7→ t] ∈ SJs′Kσ1
∧ u ≤ t ≤ o

)
Also, the existence of an execution in the small-step semantics is enough to

guarantee the existence of bounds for the cost-approximate semantics.

Theorem 4 (Cost-approximate existence). Let s be a program and σ1 a
memory state and σ]1 an abstract alias state such that σ1 ∈ γa(σ]1)

∀t, h, σ2, (s, σ1, h) ⇓t σ2 =⇒ (∃o, u, (s, σ1, σ]1) ⇓[u,o] (σ2,_))

For Theorem 3, only the second component of the conjunction requires a
detailed proof — the other is a trivial property of the instrumentation. The
proof of this theorem is given in Appendix G, and relies on several intermediate
semantics, until we obtain a big-step semantics with immediate application of
instructions on the memory state (i.e. where the effects of an instruction are
applied immediately, and not when it is committed) and with approximations
due to dropping the branch prediction history and concrete memory state in the
block analysis.

Cost from a Non-Empty Pipeline State The difficulty of Theorem 3’s proof is that
the intermediate processor states in the small-step semantics do not necessarily
have an empty pipeline state and empty speculation buffer, while Theorem 2
consider the execution cost of a block from an empty pipeline state.

Assume that we have two blocks blk1 and blk2 that are executed one after the
other (e.g. blk1 and blk2 can be the body of a while loop). Then, blk2 is executed
starting from the processor state ω1 resulting from blk1’s execution.

(blk1, 〈σ1, πε, h, ∅〉)→t1 ω1 and (blk2, ω1)→t2 (skip, ω2) and ω2 ↪→t′2 〈σ′, πε, h′, ∅〉

Here, we need to show that t1 + t2 + t′2 ≤ o1 + o2, where:

(blk1, σ1, σ
]
1) ⇓[_,o1] (σ2, σ

]
2) and (blk2, σ2, σ

]
2) ⇓[_,o2] (σ

′, σ′
]
)

The fetch cost t1 of blk1 is smaller than its execution cost t′1. Hence using The-
orem 2:

(blk1, σ1, h) ⇓t′1 σ2 and t1 ≤ t′1 ≤ o1

20 G. Barthe et al.

But we cannot bound the execution cost of blk2 by o2, because Theorem 2 only
bounds the cost of executing blk2 starting from an empty pipeline and speculation
buffer state. Since it starts from a (potentially) non-empty state ω1, t2 may be
strictly larger than o2.

Intuitively, the cost approximation t1 + t2 + t′2 ≤ o1 + o2 holds because the
additional cost incurred when starting from an non-empty pipeline state has
already been accounted by the previous block, i.e. in o1. To formalize this, let
max(π) be the maximum delay of all resources in π:

max (π) = max
(

max
Xi∈Stages,π(Xi) 6=∅

(|π(X)|−i+ 1)︸ ︷︷ ︸
delays on locations

, max
X∈Pips

1X1 6=∅︸ ︷︷ ︸
delay for first stages

)

where 1C evaluates to 1 if the predicate C is true, 0 otherwise.
The following lemma guarantees that we do bound the cost of a statement

by computing its cost from an empty pipeline.

Lemma 1. Let 〈σ, π, h, β〉 be a processor state and s a program. Consider the
following two executions starting from the pipeline and buffer states, resp., π, β
and πε, ∅.

(s; skip, 〈σ, π, h, β〉)→t (skip, 〈_, π′,_,_〉)

and (s; skip, 〈σ, πε, h, ∅〉)→t′ (skip, 〈_, π′′,_,_〉)

Then t′ ≤ t and t+max(π′) ≤ max(π) + t′ +max(π′′)

The proof, given in Appendix J.2, is not straightforward, and requires some
care. Indeed, the two executions may not execute cycles synchronously: there
is no guarantee that the execution which started with non-empty pipelines will
execute a cycle when the other execution, which started from πε, does. To tackle
this issue, we introduce the notion of lateness, a partial order relation on pipeline
states that captures the fact that a pipeline state has already executed more
cycles than another one. We prove that this partial ordering is preserved by our
semantics.

Proof of Theorem 1 To conclude the proof of Theorem 1, let us take s a program,
σ0 an initial memory state, h a branch predictor history, such that the execution
cost of s is t in the small-step semantics: (s, σ0, h) ⇓t σ1. Recall that C(s) =
projR0∪{cost}(Js

′K]n(ι]n[s])) with T(s, ι]a[s]) = (s′,_). By Theorem 4, there exists o
and u such that (s, σ0, σ

]
0) ⇓[u,o] (σ1,_). By Theorem 3, σ1[cost 7→ t] ∈ SJs′K(σ0).

Using the soundness of the numerical abstraction J·K]n, we have

∀σ],∀(σ0, σ) ∈ γn(σ]), {σ0} × SJsKσ ⊆ γn(JsK]nσ])

and in particular {σ0}×SJs′Kσ0 ⊆ γn(Js′K]nι]n[s]). After projecting on R0 and
cost, we obtain (σ0, {cost 7→ t}) ∈ γn ◦ C(s) which concludes this proof.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 21

5 Implementation

We implemented our instrumentation technique on top of Jasmin [2,3]. This
framework allows to build high-assurance and high-speed cryptographic imple-
mentations by: i) combining low-level assembly instructions (e.g. flags and vec-
torized instructions) and high-level structured control flow; ii) using a verified
compiler (à la CompCert [24]), with a mechanized Coq proof of behavior preser-
vation; iii) verification tools for proving properties of Jasmin programs, includ-
ing an embedding of Jasmin in the Easycrypt proof assistant [5], and a static
analyzer to check the memory safety of Jasmin programs. The Jasmin compiler
performs several compilation passes, such as dead-code elimination, function call
inlining, and sharing of stack variables. All these compilation passes are proven
correct in Coq (i.e. they preserve the semantics of programs)5.

We have integrated our cost analysis late enough in the compilation chain
in order to avoid change of the cost between the intermediate representation
that is analyzed and the final assembly code that is generated by the compiler.
Our analysis is implemented in OCaml and currently not verified in Coq. The
analysis is parameterized by a user-given processor specification file, listing the
instructions, their latency and the pipelines supporting them.

By default, the instrumentation respects the approximation semantics by
making no assumption on the branch predictor. In the worst-case scenario the
instrumentation thus considers that the branching always mis-predicts. We also
provide an option that lets the user assume a basic branch predictor for the
processor, which always tries to take the same branch as previously taken. Such
a branch predictor can only mis-predict twice on a given while loop execution:
when it enters and when it leaves.

The alias and numerical static analyzer (mentioned in Section 4) have been
obtained by modifying the Jasmin static analyzer. This analyzer, which uses
abstract interpretation techniques [12], was initially introduced in [3] to prove
safety, and was executed before any compilation pass. Our cost analysis is run
later in the compilation chain and it has been necessary to enhance the Jasmin
relational numerical analysis with a dynamic packing technique, which handles
the same variable with different degrees of precision at different program points.
This a slight variation of the packing technique introduced in [13] where packs
of variable where fixed at the level of block/function.

6 Experiments

We evaluate our cost analysis on different implementations of cryptographic
primitives written in Jasmin. Examples include Poly1305 [7], a lookup-table-
based implementation of AES [15], ChaCha20 [9] and multiplication in the finite
field Fp with p = 2255 − 19. The latter is a core routine of the Curve25519
key exchange [8]. We report our experiments in Fig. 15. For some examples we
5 Currently, Jasmin only supports x86 architectures. Note however that our method
is not specific to x86, and can be applied to other architectures.

22 G. Barthe et al.

Programs Lower bound Upper bound Naive upper bound
scalar prod (ref) 44 len 44 len + 8 46 len + 11
scalar prod (opt) 17.5 len - 23.5 17.5 len + 33 20 len + 39
poly1305 (ref) 7 len + 25 7.1 len + 150 7.5 len + 177
poly1305 (opt) 2.1 len + 25 2.2 len + 1410 3.9 len + 1098
aes 44.8 len + 446 44.9 len + 1115 50.7 len + 1946
chacha (ref) 16.2 len + 23 16.4 len + 1052 17.6 len + 1040
chacha (opt) 4 len + 27 4.1 len + 2130 5.7 len + 3035
fe25519_mul 427 427 464

Fig. 15: Experimental results.

report results for both a reference (“ref”) and a hand-optimized (“opt”) imple-
mentation. When cost depends on the (length of) inputs, our tool computes
a symbolic cost w.r.t. to a variable len; for AES and ChaCha encryption and
Poly1305 authentication this variable is the length of the input message. In the
invariant computed by the numerical analysis, we only keep the best asymptotic
constraint when several bounds were available. The tests were done assuming a
basic branch predictor. The only target architecture currently supported by Jas-
min is AMD64 (also known as x86-64 or x64). There are only very few in-order
AMD64 CPUs; for our experiments we decided to approximate one of them,
namely the Intel Atom 330. The pipeline structure and instruction latencies are
modeled according to the documentation in Fog’s CPU manuals [17,18].

We compare our results with a reference naive analysis (last column in
Fig. 15) that over-approximates the cost of any block of atomic instructions by
the sum of the latencies of each instruction. This approach hence coincides with
state-of-the-art cost analyzer that do not take into account instruction pipelin-
ing. We also compare the reference programs to their hand-optimized variant,
if available. For all programs we obtain a smaller upper-bound than the naive
analysis. It shows that our bound computation is likely to improve precision over
cost analyzers that ignore instruction pipelining. Our lower and upper-bounds
are asymptotically very close, which shows that our cost analysis is asymptoti-
cally precise. For programs with hand-optimized version, the upper bound of the
optimized program is asymptotically smaller than the lower bound of the original
program. This shows our tool usefulness in proving the impact of programmer
optimizations.

7 Related work

Starting from the seminal work of Wegbreit [29], there has been a large body of
work for analyzing the cost of programs using recurrence relations [1], program
logics [26], type systems [27,21,14,23], and static analysis [19]. These approaches
rely on sophisticated methods for computing numerical invariants and inferring
iterations bounds for loops or recursive computations. Our method allows to

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 23

leverage these powerful methods in a more realistic cost model that accommo-
dates cost-critical micro-architectural features.

Cost analysis is also useful for reasoning about side-channel leakage. Ngo
et al [25] define the constant-resource policy, an observational information flow
policy which guarantees that the execution cost of a program does not depend
on its secret inputs. Their analysis is an instance of a relational cost analysis [11],
a variant of cost analysis that computes lower and upper bounds for the relative
cost of two programs. These works are carried in the setting of a simple cost
model; applying our cost model and methodology to side-channel analysis is an
interesting direction for future work.

An alternative is to carry dynamic analyses with cycle-accurate cost models.
For instance, Yourst [31] develops a model for a x86-64 processor. Dynamic
approaches trade off precision for generality — bounds are for specific inputs.
However, it would be interesting to explore if cycle-accurate cost models could
be used for refining instrumentation.

An even simpler approach is to measure execution time for a large number of
inputs. When combined with a statistical analysis, this approach yields a useful
heuristic for analyzing if cryptographic implementations leak [28]. However, this
approach does not provide any guarantee.

Worst Case Execution Time (WCET) analysis is a well-known industrial
success in cost analysis. Using Abstract Interpretation, state-of-the-art analyz-
ers are able to predict a safe upper-bound for embedded micro-architectures
with strict real-time constraints. They take into account several advanced archi-
tectural optimizations, including pipelines and caches [16,30,20]. Our approach
differs in scope, precision and semantic foundations. We focus our reasoning on
instruction scheduling and provide feedback to programmer who want to hand-
optimize their program, like in cryptographic implementation. Our abstraction is
more coarse (e.g., we do not try to merge symbolic pipelines on junction points),
but already precise enough for the cryptographic application area. WCET tools
are clearly more ambitious in term of cost model and precision but they do not
ground their work on a semantic model with the same level of mathematical
rigour than us. We consider our work as an attempt to reconcile cost precision
and rigorous semantic proofs. We also believe that our instrumentation approach
can be more easily connected to previous foundational cost analysis works [22]
by reusing off-the-shelf cost analyzers.

8 Conclusion

We developed a precise cost semantics for pipelined-optimized softwares executed
on in-order processors. The semantics is suitable for automatic cost analysis and
formal semantic proofs of soundness. Preliminary experiments demonstrate that
our automatic analysis is more accurate than a naive cost analysis.

One direction for future work would be to extend our cost semantics with a
cache model and extend our analysis with a may/must tracking of cache misses.

24 G. Barthe et al.

An other perspective is to formalize in Coq the soundness of our cost analysis
in order to integrate it with the Jasmin high-assurance Coq framework.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reason. 46, 161–203 (2011)

2. Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V.,
Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.: Jasmin: High-assurance and high-
speed cryptography. In: Proc. of CCS’2017. pp. 1807–1823. ACM (2017)

3. Almeida, J.B., Barbosa, M., Barthe, G., Grégoire, B., Koutsos, A., Laporte, V.,
Oliveira, T., Strub, P.: The last mile: High-assurance and high-speed cryptographic
implementations. In: In Proc of S&P’2020. pp. 965–982. IEEE (2020)

4. Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K.,
Parno, B.: SoK: Computer-aided cryptography. IACR Cryptol. ePrint Arch. p. 1393
(2019)

5. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.Y.: Easy-
Crypt: A tutorial. In: Foundations of Security Analysis and Design VII. pp. 146–
166. Springer (2013)

6. Barthe, G., Koutsos, A., Mirliaz, S., Pichardie, D., Schwabe, P.: Semantic founda-
tions for cost analysis of pipeline-optimized programs (2022), https://hal.inria.
fr/hal-03779257, companion report

7. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Proc. of
FSE’2005. LNCS, vol. 3557, pp. 32–49. Springer (2005)

8. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Proc of
PKC’2006. LNCS, vol. 3958, pp. 207–228. Springer-Verlag (2006)

9. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008)

10. Cauligi, S., Disselkoen, C., Gleissenthall, K.v., Tullsen, D., Stefan, D., Rezk,
T., Barthe, G.: Constant-time foundations for the new spectre era. In: Proc. of
PLDI’2020. p. 913–926. ACM (2020)

11. Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational cost anal-
ysis. In: Proc. of POPL’17. pp. 316–329. ACM (2017)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL’77. pp. 238–252. ACM (1977)

13. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The astreé analyzer. In: Proc. of ESOP 2005. LNCS, vol. 3444, pp. 21–30.
Springer (2005)

14. Crary, K., Weirich, S.: Resource bound certification. In: Proc. of POPL’00. pp.
184–198. ACM (2000)

15. Daemen, J., Rijmen, V.: AES proposal: Rijndael, version 2 (1999), http://csrc.
nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

16. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-
life processor. In: Proc. of EMSOFT’01. LNCS, vol. 2211, pp. 469–485. Springer
(2001)

17. Fog, A.: Instruction tables (2020), https://www.agner.org/optimize/
instruction_tables.pdf

https://hal.inria.fr/hal-03779257
https://hal.inria.fr/hal-03779257
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 25

18. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs – An optimization
guide for assembly programmers and compiler makers (2020), https://www.agner.
org/optimize/microarchitecture.pdf

19. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: Proc. of POPL’09. pp. 127–
139. ACM (2009)

20. Hahn, S., Reineke, J.: Design and analysis of SIC: A provably timing-predictable
pipelined processor core. In: Proc. of RTSS’18. pp. 469–481. IEEE Computer So-
ciety (2018)

21. Hughes, J., Pareto, L.: Recursion and dynamic data-structures in bounded space:
Towards embedded ML programming. In: Proc. of ICFP’99. pp. 70–81. ACM
(1999)

22. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-guided program
synthesis. In: Proc. of PLDI’19. pp. 253–268. ACM (2019)

23. Knoth, T., Wang, D., Reynolds, A., Hoffmann, J., Polikarpova, N.: Liquid resource
types. Proc. of ICFP’20 pp. 106:1–106:29 (2020)

24. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009)

25. Ngo, V.C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J.: Verifying and synthe-
sizing constant-resource implementations with types. In: Proc.of SP’17. pp. 710–
728. IEEE Computer Society (2017)

26. Nielson, H.R.: A Hoare-like proof system for analysing the computation time of
programs. Sci. Comput. Program. 9(2), 107–136 (1987)

27. Reistad, B., Gifford, D.K.: Static dependent costs for estimating execution time.
In: Proc. of ACM Conference on LISP and Functional Programming. pp. 65–78.
ACM (1994)

28. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
Proc. of DATE’17. pp. 1697–1702. IEEE (2017)

29. Wegbreit, B.: Verifying program performance. J. ACM 23(4), 691–699 (1976)
30. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.:

Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(7),
966–978 (2009)

31. Yourst, M.T.: Ptlsim: A cycle accurate full system x86-64 microarchitectural sim-
ulator. In: Proc. of ISPASS’19. pp. 23–34. IEEE Computer Society (2007)

A Auxiliary functions

Read and write The precise definition of the read and write functions on atomic
instruction are displayed below. To obtain the registers from operands we use
an operator op.

op(r) = {r} if r ∈ Reg

op(n) = ∅ otherwise, n ∈ Val

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf

26 G. Barthe et al.

For any ./ ∈ {+,−,≤,×},

read(r := o1 ./ o2, σ) = op(o1) ∪ op(o2)

read(r1 := [r2 + o], σ) = {r2, σ(r2) + σ(o)} ∪ op(o)

read([r + o1] := o2), σ) = {r} ∪ op(o1) ∪ op(o2)

read(jmp(o), σ) = op(o)

write(r := _, σ) = {r}
write([r + o] := _, σ) = {σ(r) + σ(o)}

write(jmp(o), σ) = ∅

Instruction resolution The resolution of an instruction consist in replacing all
registers read by their value in σ. For brevity, we adopt the convention that
σ(n) = n where n ∈ Val is a constant. This avoid distinct cases on the operators.

For any ./ ∈ {+,−,≤,×},

resolve(r := o1 ./ o2, σ) = (r := σ(o1) ./ σ(o2))

resolve(r1 := [r2 + o], σ) = (r1 := [σ(r2) + σ(o)])

resolve([r + o1] := o2, σ) = ([σ(r) + σ(o1)] := σ(o2))

resolve(jmp(o), σ) = (jmp(σ(o)))

The read and write functions are extended to transient instruction resulting
from resolve.

read(r := [l + n]) = {l + n}
read(_) = ∅

write(r := _) = {r}
write([l + n] := _) = {l + n}

write(jmp(o)) = ∅

B Small-step semantics with explicit speculation buffer

The section gives the complete rules of small-step semantics. In particular it
displays all the rules for skip, sequence and while loop in Fig. 16

C Proof of approximation soundness

The soundness of the cost-approximate semantics, Theorem 3, is proven gradu-
ally through two intermediate big-step semantics. Their goal is to abstract away
details of the processor state while keeping the same cost.

Fig. 17 summarizes the approach. The appendixes present the two intermedi-
ate semantics, namely the Concrete Big-Step Pipeline Semantics in Appendix D
and the Immediate Big-Step Pipeline Semantics in Appendix E, and then prove

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 27

(s, ω)→t (s′, ω′)
execute t cycles and fetch
as much instructions of s as
possible before each cycle

Atomic
i = max(β, π) + 1 ready(atom, β(σ), π)

(β(σ), π) ↪−−−−−−−−→
fetch (i,atom)

π′

(atom; s, 〈σ, π, h, β〉)→0 (s, 〈σ, π′, h, β〉)

Cycle
¬ ready(atom, β(σ), π) (σ, π, β) ↪→ (σ′, π′, β′)

(atom; s, 〈σ, π, h, β〉)→1 (atom; s, 〈σ′, π′, h, β′〉)

Steps
(s, ω)→t (s′′, ω′′)

(s′′, ω′′)→t′ (s′, ω′)

(s, ω)→t+t′ (s′, ω′)

Seq
(s1; (s2; s3), ω)→t (s′, ω′)

((s1; s2); s3, ω)→t (s′, ω′)

Skip

(skip; s, ω)→0 (s, ω)

Enforce-Cycles
(s, ω)→t (s′, ω′)

(s, ω)
=−−→ t (s′, ω′)

Enforce-Cycle-Exact
(s, ω)→k (skip, ω′′) ω′′ ↪→t−k ω′

(s, ω)
=−−→ t (skip, ω′)

Spec-Cond-True-Correct
(jmp(b); skip, ω)→t (skip, 〈σ2, π2, h, β2〉) π2(J1) = (k, jmp : v)

v 6= 0 ¬BP-predict(`, h) h′ = BP-update(`, h, false)

(s1; s3, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (s′, 〈σ3, π3, h, β3〉)

(` : if b then s1 else s2; s3, ω)→t+|jmp| (s′, 〈σ3, π3, h
′, β3〉)

Spec-Cond-True-Incorrect-Deplete
(jmp(b); skip, ω)→t (skip, 〈σ2, π2, h, β2〉) π2(J1) = (k, jmp : v)

v 6= 0 BP-predict(`, h) h′ = BP-update(`, h, false)

(s2; s3, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (_, 〈σ3, π3, h, β3〉)

(` : if b then s1 else s2; s3, ω)→t+|jmp| (s1; s3, 〈σ3, π3[j : j ≤ k], h′, β3[j : j ≤ k]〉)

While
(` : if b then (s; ` : while b do s done), ω)→t (s′, ω′)

(` : while b do s done, ω)→t (s′, ω′)

Done
(p; skip, 〈σ, πε, h, ∅〉)→t (skip, 〈σ′′, π,_, β〉) (σ′′, π, β) ↪→t′ (σ′, πε, ∅)

(p, σ, h) ⇓t+t′ σ′

Fig. 16: Small-step semantics with explicit speculation

28 G. Barthe et al.

Concrete Small-step Pipeline Semantics
(with explicit speculation buffer)

Original program s

Concrete Big-step Pipeline Semantics
(pipeline state, no speculation buffer)

Original program s

Immediate Big-step Pipeline Semantics
(partial pipeline state)
Original program s

Cost-Approximate Semantics
(no pipeline state)
Original program s

Concrete Standard Semantics
(no pipeline state, no cost)
Instrumented program T(s)

Thm 5

Thm 6

Thm 8

Thm 4

Thm 7

Thm 3

Static Numerical
Analysis (off-the-shelf)

Block Cost
Approximation

Static Aliasing
Analysis (off-the-shelf)

Cost bounds

Thm 1

Fig. 17: Summary of our approach.

the three equivalence theorems. First, the equivalence of the two concrete se-
mantics with Theorem 5, then the equivalence of the two intermediate big-step
semantics with Theorem 6 and finally the equivalence of the immediate seman-
tics with the cost-approximate semantics with Theorem 7. Together they form
the proof of Theorem 3.

D Concrete big-step semantics without speculation buffer

This section presents an intermediate semantics, between the small-step intro-
duced in Section 3 and the immediate big-step semantics introduce later in Ap-
pendix E. This semantics tracks the state of the pipeline stages, similarly to the
small-step. But it follows a big-step scheme, like the cost-approximate semantics
and drops the speculation buffer. The speculation buffer has in fact no impact
on the cost. Also, our omniscient semantics does not need to wait the end of
the jump processing to know which branch to execute, they only need to take
into account the cost of the potential mispresdiction, not its modification on the
processor that will roll backed anyway.

In this new semantics the pipeline state π is simplified since timestamps of
the instructions are no longer required. As for the processor state ω, it no longer
needs the speculation buffer β. This new processor notation is summarized in
Fig. 18.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 29

Processor state:
π ∈ Stages→ (Atomst ∪ ε) Pipeline state
ω = 〈σ, π, h〉 Processor state

Fig. 18: Processor state in the concrete big-step semantics

Fetch
X = min{Y ∈ atom | π(Y1) = ε}
π′ = π[X1 7→ resolve(atom, σ)]

(σ, π)
CB

↪−−−−−−→
fetch atom

π′

Ready
¬ locks(atom, σ, π)

X ∈ atom π(X1) = ε

ready(atom, σ, π)

retired′(π) = {π(Xi) | ∃Xi ∈ Stages, |π(Xi)|= i}

One-Cycle
π′ = π[∀Xi, Xi 7→ next(π,Xi)]
σ′ =©atom∈retired′(π)SJatomK(σ)

(σ, π) ↪→ (σ′, π′)

Cycle-Release
t > 0

(σ, π) ↪→t−1 (σ′′, π′′)
(σ′′, π′′) ↪→ (σ′, π′)
¬ ready(atom, σ′′, π′′)

ready(atom, σ′, π′)

(σ, π)
CB t

↪−−−−−−→
cycle atom

(σ′, π′)

No-Cycle-Release
ready(atom, σ, π)

(σ, π)
CB 0

↪−−−−−−→
cycle atom

(σ, π)

Fig. 19: Directives of the concrete big-step semantics

Directives The new semantics uses three directives: fetch atom, cycle and a
new directive cycle atom which executes just enough cycles so that atom can be
fetched. The rules defining these directives are given in Fig. 19. The rule for
fetch is similar to the small-step semantics, the timestamp of the instruction has
just been dropped. The statement ready is also similar to the small-step seman-
tics, checking the availability of a pipeline and the absence of data-dependency.
Applying a cycle has the combined effect of the small-step cycle and commit: in-
structions progress on their pipeline and when they retire, according to retired,
they are committed on the memory state σ. The order of this application is
irrelevant since there are no data-dependency nor control-dependency.

Executing cycle for an atomic instruction, directive cycle atom is defined
incrementally. The processor will execute just enough cycle for its state to be
ready to fetch atom.

Big-step Since we no longer need to represent speculative executions, we drop
the continuation style and simply use a big-step semantics. This big-step seman-
tics computes the cost of a whole program by relying on the directives to get
the cost of atomic instructions. Similarly to the small-step semantics, we defined
both the fetch cost and the execution cost of a program. Some selected semantics
rules are given in Fig. 20, and described below.

30 G. Barthe et al.

Atomic
(σ, π)

CB t
↪−−−−−−→
cycle atom

(σ′, π′′)

(σ′, π′′)
CB

↪−−−−−−→
fetch atom

π′

(atom, 〈σ, π, h〉) CB ⇓t 〈σ′, π′, h〉

Skip

(skip, ω) CB ⇓0 ω

Seq
(s1, ω) CB ⇓t ω′′

(s2, ω
′′) CB ⇓t

′
ω′

(s1; s2, ω) CB ⇓t+t
′
ω′

Cond-True-Correct
(jmp(b), ω) CB ⇓t 〈σ, π, h〉 σ(b) 6= 0

¬BP-predict(`, h) h′ = BP-update(`, h, false) (s1, 〈σ, π, h′〉) CB ⇓t
′
ω′

(` : if b then s1 else s2, ω) CB ⇓t+t
′
ω′

Cond-True-Incorrect
(jmp(b), ω) CB ⇓t 〈σ, π, h〉 σ(b) 6= 0 BP-predict(`, h)

h′ = BP-update(`, h, false) (σ, π) ↪→|jmp| (σ′, π′) (s1, 〈σ′, π′, h′〉) CB ⇓t
′
ω′

(` : if b then s1 else s2, ω) CB ⇓t+|jmp|+t
′
ω′

While
(` : if b then (s; ` : while b do s done), ω) CB ⇓t ω′

(` : while b do s done, ω) CB ⇓t ω′

Done
(s, 〈σ, πε, h〉) CB ⇓t (σ′′, π,_) (σ′′, π) ↪→t′ (σ′, πε)

(s, σ, h) CB ⇓t+t′ σ′X
with ∀Xi, πε(Xi) = ε

Fig. 20: Concrete big-step semantics of a multi-pipelined processor.

Fetch cost The judgment (s, ω) CB ⇓t ω′ states that, starting from the processor
state ω, we fetch the program s in t cycles, and end in the processor state ω′.

Atomic Rule Atomic states that the fetch cost of an atomic instruction is the
number of cycles necessary for the processor state to be ready for atom. This
amount of cycles is obtained and applied through the cycle atom directive. Then,
the directive fetch is called to update the pipeline state π.

Conditional We display in Fig. 20 the Cond-True-Correct and Cond-True-
Incorrect rules, which handle conditionals when the predicate b holds. The
rules premises are similar to their small-step semantics counter-parts. First, we
need t cycles to fetch the jmp. This yields a state σ, from which we obtain the
value of the register b. In the case of a correct prediction, the branch s1 starts
its execution. Once the prediction is confirmed, |jmp| cycles later, the history
is updated. As in the small-step semantics, the history remained unchanged
during the speculation. Since the state (σ, π) is not modified once the prediction
is confirmed, it is as if we simply fetched s1 on 〈σ, π, h′〉. This yields the premise
of rule Cond-True-Correct. In the case of a misprediction, |jmp| cycles are

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 31

Delays:
w ∈ Location→ N Writing delays
r ∈ MemLocs→ N Reading delays
p ∈ Pips→ {0, 1} Pipelines delays
j ∈ N Jump delay

Pipeline state:
π ::= 〈w, r, p, j〉 Pipeline state
ω ::= 〈σ, π, h〉 Processor state

Fig. 21: Immediate pipelined processor

Write Update
W = write ◦ resolve(atom, σ)

(atom, σ, w) ↪−−−→
write
→ w[W 7→ |atom|]

Read Update
R = read ◦ resolve(atom, σ)

r′ = r[∀x ∈ R, x 7→ max(r(x), |atom|)]
(atom, σ, r) ↪−−−→

read
→ r′

Pipeline Update
X = min{Y ∈ atom | p(Y) = 0}

(atom, p) ↪−−−−−→
pipeline

→ p[X 7→ 1]

Fetch
(atom, σ, w) ↪−−−→

write
→ w′ (atom, σ, r) ↪−−−→

read
→ r′

(atom, p) ↪−−−−−→
pipeline

→ p′ atom 6= jmp(_)

(σ, 〈w, r, p, j〉) ↪−−−−−−→
fetch atom

→ (SJatomKσ, 〈w′, r′, p′, j〉)

Fetch Jump

(σ, 〈w, r, p, j〉) ↪−−−−−−→
fetch jmp(b)

→ (σ, 〈w, r, p[J 7→ 1], |jmp|〉)

Fig. 22: Directives of the immediate semantics

executed, but once the prediction is invalidated all that was fetched and retired
is roll backed. From a external point of view, it is as if we simply executed
|jmp| cycles, without fetching anything. This is the premise of rule Cond-True-
Incorrect, which then start the fetching of the correct branch.

E Immediate Big-step Pipeline semantics

The concrete big-step semantics is still more complex than needed for cost-
computation. For instance it needs to keep the content of each stage to apply
their effect on the memory state σ when they retire. But since the processor
must respect the sequential semantics, and since it ensures that by delaying
instruction when there is a data-dependency, then there is no need to delay the
application of instruction on the memory state. And since we do not need to delay
it, we do not need to store exactly the instruction in each stage. In conclusion,
a simpler semantics can only reason on the resources (locations or pipelines) to
compute the cost of a program. This simpler semantics is the immediate big-step
semantics, detailed in this section.

Pipeline state A pipeline state comprises four components 〈w, r, p, j〉 (see
Fig. 21). The delays – in cycles – until a variable is available in writing and

32 G. Barthe et al.

Cycle
t > 0 w′ = λx.max(0, w(x)− t)

r′ = λx.max(0, r(x)− t)
p′ = λX.0 j′ = max(0, j − t)
〈w, r, p, j〉 ↪→→t 〈w′, r′, p′, j′〉

Cycle-Release-Jump
t = max (p(J), j, w(b))

〈w, r, p, j〉 ↪→→tπ′

(σ, 〈w, r, p, j〉) t
↪−−−−−−→
cycle jmp(b)

→ π′

Cycle-Release
atom 6= jmp(_) W = write(atom, σ) R = read(atom, σ)

t = max (min
X∈atom

p(X), max
v∈R

w(v), max
v∈W

w(v), max
v∈R

r(v)) 〈w, r, p, j〉 ↪→→tπ′

(σ, 〈w, r, p, j〉) t
↪−−−−−−→
cycle atom

→ π′

Fig. 23: Directives of the immediate semantics

reading are stored in w and r. This information is sufficient to check the data-
dependencies of an atomic instruction we are trying to fetch w.r.t. the other
instructions already in the pipelines. The third component, p, is the delay for
each pipeline until it is ready to fetch an instruction, i.e. until its first stage is
empty. Since instructions progress by one stage per cycle, this delay is at most
one. Finally, j is the delay in cycles until a jump will be retired — remember
that at most one jump can be in the pipelines at any time.

Directives The new semantics uses the three same directives as the concrete
big-step semantics, fetch atom, cycle and cycle atom, but adapts them to its new
pipeline state. The rules defining these directives are given in Fig. 22 and 23.

Fetch The judgment (σ, π) ↪−−−−−−→
fetch atom

→ (σ′, π′) updates the pipeline state accord-

ing to rule Fetch. Each component of π is updated by its own rule, and the
state σ is immediately updated by applying atom.

– the delay of the pipeline X receiving atom in its first stage is set to one cycle;
– the delays of all variables written by atom are equal to the latency of atom;
– the delay of any variable read by atom is the maximum between the previous

delay and the latency of atom.

Notice that the locations updated in w and r are selected with respect to the
resolved instruction.

The fetch directive for a jump is defined separately in rule Fetch Jump since
it is the only instruction updating the component j. Notice that a jump does not
write or read any location after its resolution and w and r remain unchanged.

Cycle In the small-step semantics, executing a cycle consists in making all the
instructions progress one stage further in their pipeline. In terms of delays in the
immediate semantics, executing a cycle through judgment π ↪→→1π′ means that

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 33

Atomic
(σ, π)

t
↪−−−−−−→
cycle atom

→ π′′

(σ, π′′) ↪−−−−−−→
fetch atom

→ (σ′, π′)

(atom, 〈σ, π, h〉) ↓t 〈σ′, π′, h〉

Done
(s, 〈σ, 〈λx.0, λx.0, λX.0, 0〉, h〉) ↓t 〈σ′, π′,_〉

π′ ↪→→t′ 〈λx.0, λx.0, λX.0, 0〉
(s, σ, h) ↓t+t′ σ′X

Cond-True-Correct
(jmp(b), ω) ↓t 〈σ, π, h〉

σ(b) 6= 0 ¬BP-predict(`, h)
h′ = BP-update(`, h, false)

(s1, 〈σ, π, h′〉) ↓t
′
ω′

(` : if b then s1 else s2, ω) ↓t+t
′
ω′

Cond-True-Incorrect
(jmp : b, ω) ↓t 〈σ, π, h〉

σ(b) 6= 0 BP-predict(`, h)
h′ = BP-update(`, h, false)

π ↪→→|jmp|π′ (s1, 〈σ, π′, h′〉) ↓t
′
ω′

(` : if b then s1 else s2, ω) ↓t+|jmp|+t
′
ω′

Fig. 24: Selected rules of the immediate big-step semantics

all first stages of the pipelines become empty: for any pipeline X, p(X) = 0 after
a cycle. Similarly, since all the instructions progress one stage closer to the end
of their pipeline, the delays before release of all the locations is reduced by one
(without going below 0). The judgment is extended to allow for the execution
of any number of cycles (including none), and is defined by rule Cycle.

Cycle for atom The judgment (σ, π)
t

↪−−−−−−→
cycle atom

→ π′ states that π needs to execute

t cycles to be able to fetch atom, and that after those t cycles the pipeline state
will be π′. Once we determined the set of locations needed by atom, the delay t
is immediately found as the maximum of all the delays on these locations and
of the delay until at least one pipeline handling atom has its first stage free. In
rule Cycle-Release, one can recognize the three types of locks, for instance
maxv∈R w(v) corresponds to the RaW lock: atom can only be fetched when all
locations v read by atom are no longer in writing, w(v) = 0. Again a specific rule
Cycle-Release-Jump is defined for the jump.

Big Step semantics Since we no longer need to represent speculative exe-
cutions, we drop the continuation style and simply use a big-step semantics.
This big-step semantics computes the cost of a whole program by relying on
the directives to get the cost of atomic instructions. Similarly to the small-step
semantics, we defined both the fetch cost and the execution cost of a program.
Some selected semantics rules are given in Fig. 24, and described below.

Fetch cost The judgment (s, ω) ↓t ω′ states that, starting from the processor
state ω, we fetch the program s in t cycles, and end in the processor state ω′.

Atomic Rule Atomic states that the fetch cost of an atomic instruction is the
number of cycles necessary for the processor state to be ready for atom. This

34 G. Barthe et al.

Atomic
(σ, π)

t
↪−−−−−−→
cycle atom

→ π′′

(σ, π′′) ↪−−−−−−→
fetch atom

→ (σ′, π′)

(atom, 〈σ, π, h〉) ↓t 〈σ′, π′, h〉

Skip

(skip, ω) ↓0 ω

Seq
(s1, ω) ↓t ω′′

(s2, ω
′′) ↓t

′
ω′

(s1; s2, ω) ↓t+t
′
ω′

Cond-True-Correct
(jmp(b), ω) ↓t 〈σ, π, h〉

σ(b) 6= 0 ¬BP-predict(`, h)
h′ = BP-update(`, h, false)

(s1, 〈σ, π, h′〉) ↓t
′
ω′

(` : if b then s1 else s2, ω) ↓t+t
′
ω′

Cond-True-Incorrect
(jmp : b, ω) ↓t 〈σ, π, h〉

σ(b) 6= 0 BP-predict(`, h)
h′ = BP-update(`, h, false)

π ↪→→|jmp|π′ (s1, 〈σ, π′, h′〉) ↓t
′
ω′

(` : if b then s1 else s2, ω) ↓t+|jmp|+t
′
ω′

While
(` : if b then (s; ` : while b do s done), ω) ↓t ω′

(` : while b do s done, ω) ↓t ω′

Done
(s, 〈σ, λx.0, λx.0, λX.0, 0〉, h〉) ↓t 〈σ′, π′,_〉 π′ ↪→◦ t

′
〈λx.0, λx.0, λX.0, 0〉

(s, σ, h) ↓t+t′ σ′X

Fig. 25: Immediate big-step semantics of a multi-pipelined processor.

amount of cycles is obtained and applied through the cycle atom directive. Then,
the directive fetch is called to update the delays and the memory state σ.

Conditional We display in Fig. 24 the Cond-True-Correct and Cond-True-
Incorrect rules, which handle conditionals when the condition holds. The rules
premises are similar to their small-step semantics counter-parts. First, we need
t cycles to fetch the jmp. This yields a state σ, from which we obtain the value
of the register b. In the case of a correct prediction, the branch s1 starts its
execution. Once the prediction is confirmed, |jmp| cycles later, the history is
updated. As in the small-step semantics, the history remained unchanged during
the speculation. Since the state (σ, π) is not modified once the prediction is
confirmed, it is as if we simply fetched s1 on 〈σ, π, h′〉. This yields the premise
of rule Cond-True-Correct. In the case of a misprediction, |jmp| cycles are
executed, but once the prediction is invalidated all that was fetched and retired
is roll backed. From a external point of view, it is as if we simply executed
|jmp| cycles, without fetching anything. This is the premise of rule Cond-True-
Incorrect, which then start the fetching of the correct branch.

Execution Cost Similarly to the small-step semantics, the execution cost of a
program s is the sum of its fetch cost and the cost to empty its pipelines, trans-
lated here as the cost to obtain a pipeline state with null delays. The judgment

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 35

Block
s a block

JblkK]σ]1 = (u, o, σ2
]) σ2 ∈ SJsKσ1

(s, σ1, σ
]
1) ⇓[u,o] (σ2, σ2

])

Seq-No-Block
s1; s2 not a block

(s1, σ1, σ
]
1) ⇓[u,o] (σ2, σ2

])

(s2, σ2, σ2
]) ⇓[u′,o′] (σ3, σ3

])

(s1; s2, σ1, σ
]
1) ⇓[u+u′,o+o′] (σ3, σ3

])

Cond-True
JbKσ1 6= 0 (jmp(b); s1, σ1, σ

]
1) ⇓[u,_] (σ2, σ2

]) (s1, σ1, σ
]
1) ⇓[_,o] (σ2, σ

]
2)

(if b then s1 else s2, σ1, σ
]
1) ⇓[u,o+|jmp|] (σ2, σ2

])

Cond-True
JbKσ1 = 0 (jmp(b); s2, σ1, σ

]
1) ⇓[u,_] (σ2, σ2

]) (s1, σ2, σ
]
1) ⇓[_,o] (σ2, σ

]
2)

(if b then s1 else s2, σ1, σ
]
1) ⇓[u,o+|jmp|] (σ2, σ2

])

While
(if b then (s; while b do s done), σ1, σ

]
1) ⇓[u,o] (σ2, σ2

])

(while b do s done, σ, σ]) ⇓[u,o] (σ2, σ2
])

Fig. 26: The big-step approximate semantics are based on the big-step semantics
of our immediate semantics

(s, ω) ↓t σ′X states that starting from the processor state ω, we execute the pro-
gram s in t cycles, and end in the memory state σ′. The judgment is obtained
from rule Done.

F Approximate semantics

Cost-Approximate Semantics We first show how to lift a cost-approximate
semantics on blocks to whole programs. Then we show how to compute blocks
cost-approximation.

Cost-Approximate Semantics Bounds on blocks can be computed by abstracting
away the memory state σ, but for the whole program it is inadvisable since σ
influences the control-flow. For example, the cost of while(i<len) do blk is
essentially upper-bounded by the maximal cost of blk times the number of loops
iterations, which depends on the values of i and len.

We now build our cost-approximate semantics (s, σ, σ]) ⇓[u,o] (σ1, σ]1). Fig. 26
defines the semantics rules for the cost-approximate semantics.ashed changes

Block Code blocks bounds are computed using the cost-approximate block se-
mantics JblkK]. The final memory state is computed with a standard sequential
semantics: here we lift the notation SJatomKσ = σ′ to whole blocks.

36 G. Barthe et al.

Sequence For a sequence s1; s2 of statements which are not atomic (e.g. because
s1 or s2 contains a while loop), we use the usual rule for sequences defined by
Seq-No-Block and sum the costs of both statements. This is valid thanks to
Lemma 1.

Conditional The concrete small-step semantics detail the behavior of the proces-
sor in case of branch prediction. When concerned about cost, we can simplify the
rules: we can compute the result of the predicate b to determine which branch
must be taken and compare it with the prediction made with h. In case of mis-
prediction, the program suffers a backtrack penalty, then it executes the correct
branch, starting from a pipeline state where all instructions are in stages Xi

where i ≥ |jmp|: the previous instructions have progressed during the execution
of the jump. In case of a correct prediction, the jump and the branch are fetched
in sequence, without penalty. In that case, the jump is in J1 and may prevent
some instructions to be fetched in J , delaying the execution. We rely on Lemma 1
to ensure that the cost of the two scenario can be bounded. The worst case for
the correct prediction is when |jmp| cycles are lost because the branch also start
with a conditional (or a loop) and the jumps cannot be executed simultaneously.
But this is actually the best case for the misprediction because the |jmp| cycles
will always be lost by the backtracking. Thus the over-approximation bound
o+ |jmp| in Cond-True and Cond-False. The best case of the misprediction
is under-bounded by |jmp| plus the minimal cost of the branch, which is always
worse than or equal to any case of the correct prediction. The best case for the
correct prediction, is the minimal cost of fetching the jump and the branch in
sequence, as stated in rules Cond-True and Cond-False.

Theorem 3 states the soundness of our cost-approximate semantics w.r.t. the
immediate semantics. It is proved by induction on the program syntax and using
some preliminary results on the cost computed from an empty pipeline state.

G Proofs of equivalence

This section proves the equivalence of the three semantics in term of cost and
final state σ′. The following theorems, from Theorem 5 to 8, constitute the proof
of Theorem 3: the bounds of the cost approximate semantics are sound.

Theorem 5 (Small-step and Concrete semantics equivalence). Let s be
a program, σ a memory state and h a branch history. Then

(s, σ, h) ⇓t σ′ ⇐⇒ (s, σ, h) CB ⇓t σ′X

Theorem 6 (Concrete and Immediate semantics equivalence). Let s be
a program, σ a memory state and h a branch history. Then

(s, σ, h) CB ⇓t σ′X ⇐⇒ (s, σ, h) ↓t σ′X

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 37

Theorem 7 (Approximate semantics soundness w.r.t. Immediate se-
mantics). Let s be a program, σ] an alias abstract state, and σ ∈ γa(σ

]) a
memory state,s′ the instrumentation of s: (s′,_) = T(s, σ]1), then

∀t, h, u, o, σ2,
(

(s, σ1, h) ↓t σ2X
∧ (s, σ1, σ

]
1) ⇓[u,o] (σ2,_)

)
=⇒

(
σ2[cost 7→ t] ∈ SJs′Kσ1
∧ u ≤ t ≤ o

)
Theorem 8 (Approximate semantics existence w.r.t. Immediate se-
mantics). Let s be a program, σ] an alias abstract state, and σ ∈ γa(σ

]) a
memory state,

∀h, t, (s, σ, h) ↓t σ1X =⇒ ∃u, o, (s, σ, σ]) ⇓[u,o] (σ1,_)

Bi-simulation proofs The equivalence proofs should be made by bi-simulation,
to guarantee that if a semantics makes a step (apply a directive, execute a cycle,
etc) then the other semantics can also make the step, and their final states
are in relation. We alleviate such type of proof since the semantics are fully
deterministic. Applying any directive will always have one outcome at most. In
all our lemmas the initial states are in relation so we simply prove that if any
of them can execute a step they both can (section Step condition in the proofs).
Then we can compare their unique final states to ensure the relation (section
Final states relation in the proofs).

H Small-step to Concrete semantics

In this section we want to prove that the concrete big-step semantics is equivalent
to the small-step semantics in terms of cost, as stated by Theorem 5. First, we
define a relation of simulation between the states of the two semantics. Then we
prove that the directives to fetch instructions and execute cycles preserves the
relation. Finally we prove Theorem 5 by induction on the derivation tree of the
execution of the program.

H.1 Relation of simulation

A proof by simulation requires to define a relation of simulation between states
of the small-step semantics and the ones of the concrete semantics.

Definition 2 (Small-step - Concrete Relation of simulation). Let ωS =
〈σS , πS , h, β〉 be a small-step state and ωC = 〈σC , πC , h〉 a concrete big-step one.
ωS and ωC are in a simulation relation, noted ωS

SC
v ωC , if and only if

– Pipeline stages are the same, save for the timestamp:

∀Xi,∃k, πS(Xi) = (k, atom) ⇐⇒ πC(Xi) = atom

– Applying the buffer on σS results in σC : σC = β(σS)

38 G. Barthe et al.

H.2 Directives preserves the relation

In both semantics the execution cost is only obtained through a rule Done which
decomposed the cost into the fetch cost and the execution cost (to empty the
pipelines). We prove that the execution of cycles preserves the relation in the
following lemma.

Lemma 2 (Cycle preservation). Executing cycles preserves the simulation
relation.

ωS
t ω′S

ωC
t ω′C

SC
v

SC
v

Corollary 1. Let ωS and ωC be two state in a simulation relation, then both
semantics requires the same amount of cycles to empty their pipelines.

ωS
t 〈σ, πε, h, ∅〉

ωC
t 〈σ, πε, h〉

SC
v

SC
v

Proof. Each semantics has exactly one rule to execute cycle, without premises
that may block the execution. First, let us compare the pipeline states π′S and
π′C . They are obtain through the application of next and next′ on each of their
stage. Both functions act similarly and trivially preserve the equivalence. Now
let us check the buffer and memory states. By hypothesis, σC = β(σS). Before
considering the buffer β′, we prove that ω′C

SC
v 〈σS , πS , h, β ∪ retired(πS)〉, that

is the states are in relation before the commit. We need to show that

σ′C =©a′∈retired′(πC)SJa′K(β(σS)) = (β ∪ retired(πS))(σS)

By relation, the sets retired(πS) and retired′(πC) are equal if we drop the times-
tamps. The equality above is thus only a matter of permuting the instruction
applications.

All the instructions in retired(πC) are independents so they can be ordered
by decreasing timestamps. Let us suppose that (i, atomi) ∈ retired(πS) and
(j, atomj) is in β with i < j. We can permute their application because they can-
not have data-dependencies. Indeed atomj is more recent than atomi but atomi
just left the pipelines. Thus atomj was fetched while atomi was in the pipelines
and thus they cannot have data-dependencies. Since their applications can be
permuted, it is possible to reorder all the application by decreasing timestamps
and thus ensuring the equality.

Committing an instruction trivially preserves the relation, thus executing
cycles preserves the relation too.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 39

Lemma 3 (Readiness equivalence). Let ωS = 〈σS , πS , h, β〉 and ωC =
〈σC , πC , h〉 be two states in a simulation relation, then for any instruction atom,
their readiness is equivalent.

ready(atom, β(σS), πS) ⇐⇒ ready(atom, σC , πC)

Proof. The proof is trivial by definition of the rule Ready in both semantics
and the relation of simulation stating that β(σS) = σC .

Lemma 4 (Fetch preservation). Let ωS = 〈σS , πS , h, β〉 and ωC = 〈σC , πC , h〉
be two states in a simulation relation, ωS SC

v ωC , and let atom be an instruction
such that ωS is ready to fetch atom (and so ωC too by Lemma 3):

ready(atom, β(σS), πS) and ready(atom, σC , πC)

Let i be the next timestamp for ωS: i = max(β, πS)+ 1. Then the fetch directive
preserves the simulation relation.

ωS
t ω′S

ωC
t ω′C

fetch (i. atom)

SC
v

SC
v

CB

fetch atom

Note that the fetch directive applied on ωS is actually the fetch directive
applied on (β(σS), πS).

Proof. The proof is trivial by definition of rule Fetch in both semantics and
the relation of simulation stating β(σS) = σC .

H.3 Execution cost equivalence

The two semantics do not have the same fetch cost due to the speculation. Indeed,
the speculation imposes the execution of cycles even when the continuation has
been depleted, which correspond to more cycles than for the fetch cost in the
big-step semantics. Thus we only prove the equivalence of the execution cost.
Note that in the concrete big-step semantics, the cost of s; skip is trivially equal
to the cost of s.

Theorem 5 is proved through a lemma stating that whatever small-step the
semantics made, the big-step can terminate it and the sum of the costs is the
cost of the big-step on the whole statement.

Lemma 5 (Split execution). Let ωS and ωC be two states in a simulation
relation and let s be a sequence s1; s2.

40 G. Barthe et al.

(s, ωS) t (s′, ωS2)

(s′, ωC2) ωC3

(s, ωC) ωC3

SC
v

SC
v

⇓t′

=

CB⇓t+t′

If s′ = skip then the cost t′ is simply the cost to empty the pipelines, thus
t+t′ is the execution cost in both semantics. Hence proving this lemma is enough
to prove Theorem 5.

Proof. The proof is made by induction on the derivation tree of the statement
(s1; s2, ω

S) →t (s′, ωS2). We suppose that (s′, ωC2)
CB ⇓t′ ωC3 X and decompose

this cost into the fetch cost tf and the cost to empty the pipelines te, with an
intermediate state ωC4 :

(s′, ωC2)
CB ⇓tf ωC4 ωC4 ↪→te 〈_, πε,_〉 t′ = tf + te

Atomic If the rule Atomic was applied, then s1 = atom, t = 0, s′ = s2 and the
state ωS was ready for the instruction atom. We note ωS = 〈σS , πS , h, β〉.

(atom; s2, ωS)→0 (s2, ω
S
2) and ready(atom, β(σS), πS)

By Lemma 3, the big-step state ωC is ready too. By Lemma 4, the fetch direc-
tive preserves the relation. Thus noting ωC = 〈σ, π, h〉 and ωC2 = 〈σ, π′′, h〉.

Atomic

No-Cycle
ready(atom, σ, π)

(σ, π)
CB 0

↪−−−−−−→
cycle atom

(σ, π)
(σ, π)

CB
↪−−−−−−→
fetch atom

π′′

(atom, 〈σ, π, h〉) CB ⇓0 〈σ, π′′, h〉

Seq

Atomic
. . .

(atom, ωC) CB ⇓0 ωC2
(hypothesis)

(s2, ω
C
2)

CB ⇓tf ωC4
(atom; s2, ωC) CB ⇓0+tf ωC4

Finally applying the rule Done ensures that (atom; s2, ωC) CB ⇓t′ ωC3 X
Cycle If the rule Cycle was applied, then s1 = atom, t = 1 and the state ωS

was not ready for the instruction atom. By Lemma 3, ωC is not ready either.

(atom; s2, ωS)→1 (atom; s2, ωS2)

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 41

By hypothesis, ωC2 can fetch atom; s2 in tf cycles. This cost is obtained by
first fetching atom, we note t′′ the cost of this fetch, then by fetching s2 in
tf − t′′ cycles. So the following derivation tree can deduce the fetch cost in
the concrete semantics.

Atomic

Cycle-Release

t′′ + 1 > 0

(σ, π) ↪→t′′ (σ′′, π′′)
(σ′′, π′′) ↪→ (σ′, π′)
¬ ready(atom, σ′′, π′′)
ready(atom, σ′, π′)

(σ, π)
CB t′′+1
↪−−−−−−−→
cycle atom

(σ, π)
(σ, π)

CB
↪−−−−−−→
fetch atom

π′′

(atom, 〈σ, π, h〉) CB ⇓t
′′+1 (σ, ω′′)

Seq

Atomic
. . .

(atom, ωC) CB ⇓t
′′+1 (σ, ω′′)

(hypothesis)

(s2, ω
′′) CB ⇓tf−t

′′
ωC4

(atom; s2, ωC) CB ⇓1+tf ωC4

Again, the Done rule allows to conclude that the execution in the concrete
semantics is 1 + t′ as expected.

Seq The rule Seq simply performs a re-parenthesizing, and the property can
be proved by the induction hypothesis.

Steps If the rule Steps is applied, then there exists t1, t2 and s′′ and ωS5 such
that (s1; s2, ω) →t1 (s′′, ωS5) and (s2, ω

S
5) →t2 (s′, ωS2) and t = t1 + t2. We

can build a ωC5
SC
v ωS5 , by dropping the timestamps and applying the content

of the speculation buffer on memory.
By induction hypothesis, since (s′, ωC2)

CB ⇓t′ ωC5 X, then (s2, ω
C
5)

CB ⇓t2+t′
ωC3 X. Then again by induction hypothesis (s1; s2, ωC) CB ⇓t1+t2+t′ ωC3 X.

Skip This case is trivial, here ωS = ωS2 and thus ωC = ωC2 .

Seq

Skip
(skip, ωC) CB ⇓0 (σ, ωC)

(hypothesis)
(s, ωC) CB ⇓tf ωC4

(skip; s2, ωC) CB ⇓0+tf ωC4

Applying the Done rule concludes on the execution cost:

(skip; s2, ωC) CB ⇓0+t
′
ωC3

Conditional If s1 = if b then s3 else s4, then there are two options, either the
branch prediction is correct or a misprediction happens. We make the proof
only in the case where the condition holds, the other case is symmetrical.

42 G. Barthe et al.

First, a jmp(b); skip is fetched by both semantics. Given that the initial state
are in a simulation relation, and following the cases of Atomic and Cycle,
one can easily prove that the final state will be in a simulation relation.
Because the variable b must be available (not written by an instruction being
processed) in both semantics, its valuation should be the same in β(σS) and
in σC . So both semantics will execute the same branch. Also, the simulation
relation imposes the same branch prediction history so the two semantics
will make the same prediction.
Let us consider that it is a correct prediction.

Spec-Cond-True-Correct
(jmp(b); skip, ωS)→t1 (skip, 〈σ2, π2, h, β2〉) π2(J1) = (_, jmp(v))

v 6= 0 ¬BP-predict(`, h) h′ = BP-update(`, h, false)

(s3; s2, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (s′, 〈σ3, π3, h, β3〉)

(` : if b then s3 else s4; s2, ωS)→t1+|jmp| (s′, 〈σ3, π3, h′, β3〉)

The big-step is able to continue the execution after the |jmp| cycles were
executed by the small-step on s3; s2. The |jmp| cycles were executed even
if there were nothing left from s3; s2. We will distinguish the two cases,
corresponding to rules Enforce-Cycles and Enforce-Cycle-Exact.
If rule Enforce-Cycles has been applied we can apply the induction hy-
pothesis on s3; s2 because no extra cycles were executed. The property can
be checked similarly to a sequence, the other premises (branch-prediction
and value checked) are equivalent in both semantics.
However, if Enforce-Cycle-Exact was applied, then we decompose the
cycles:

Enforce-Cycle-Exact
(s3; s2, 〈σ2, π2, h, β2〉)→k (skip, ω′′) ω′′ ↪→|jmp|−k ω′

(s3; s2, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (skip, ω′)

Let us note ωS5 = 〈σ2, π2, h, β2〉 and let us define ωC5 = 〈β2(σ2), π′2, h〉 where
π′2 is equal to π2 but with the timestamps dropped.
From the derivation tree, s′ = skip and t′ = 0. By induction hypothesis,
the big-step semantics also fetches the jump in t1 cycles, and it executes the
branch and s2 in k cycles. Executing cycles preserves the simulation relation

ω′′ |jmp|−k ω′ t′ω′

ωC2
|jmp|−k+t′ωC3

SC
v

SC
v

By induction hypothesis applied on (s3; s2, ω
S
5)→k (skip, ω′′) and the rela-

tion above, we have that

(s3; s2, ω
C
5)

CB ⇓k+|jmp|−k+t′ ωC3 X

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 43

We separate this execution, and its cost |jmp|+t′ between the fetch of s3, the
fetch of s2 and finally emptying the pipelines.

ωC5 ωC6 ωC7
t4 ωC3

s3⇓t3 s2⇓t2

with t3 + t2 + t4 = |jmp|+t′.
We trivially have (jmp(b), ωC) CB ⇓t1 ωC5 , thus

Cond-T.-C.

(jmp(b), ωC) CB ⇓t1 〈σ, π, h〉
(hypothesis)

(s3, 〈σ, π, h′〉) CB ⇓t3 ωC6
π(J1) = jmp(v)

v 6= 0 ¬BP-predict(`, h) h′ = BP-update(`, h, false)

(` : if b then s3 else s4, ω) CB ⇓t1+t3 ω′

Seq

Cond-True-Correct
. . .

(` : if b then s3 else s4, ω) CB ⇓t1+t3 ωC6

(hypothesis)
(s2, ω

C
6)

CB ⇓t2 ωC7
(` : if b then s3 else s4; s2, ωC) CB ⇓t1+t3+t2 ωC7

To empty the pipelines of ωC7 requires t4 cycles since ωC3 is the final state
after execution of s2; s3 and thus its pipelines are empty. The execution cost
in the big-step semantics is thus t1 + t3 + t2 + t4 = t1 + |jmp|+t′ which
concludes the case of the correct prediction of a jump.
The misprediction is easier and can be proved similarly to a sequence.

While loop The loop is recursively rewritten into a conditional and can be
proved similarly, the simulation relation ensures the same branch (loop body
or exiting the loop) are taken, hence the same iterations.

This lemma concludes the proof that the small-step can be simulated with
the concrete big-step semantics. Since both semantics are deterministic and non-
blocking, the concrete big-step semantics can also be simulated by the small-step
one, which concludes the proof of Theorem 5.

I Concrete to Immediate semantics

In this section we want to prove that the immediate big-step semantics is equiv-
alent to the concrete big-step semantics in terms of cost, as stated by The-
orem 6. The two semantics do not apply the effect of an instruction at the
same time. We need to define an equivalence between a concrete state, noted
(σC , πC , hC) and an immediate one (σI , πI , hI). To define it we consider the
application of an instruction currently in πC on the state σC . Like a directive,

44 G. Barthe et al.

we note (σC , πC) ↪−−−−−→
apply Xi

(σ′
C
, πC) the application of the instruction currently

in Xi:

σ′
C
=

{
SJπC(Xi)KσC if πC(Xi) 6= ε
σC otherwise

Interestingly, the order in which we apply the stages does not change the
final state if there is no data-dependencies between the instruction in πC .

We say that a state is conflict-free if it does not contain two instructions that
depends on each other in the pipeline state, and we ensure that the directives
preserve this property. Then, we ensure that starting with a conflict-free state,
the order in which we execute the pipelines is irrelevant. To do so we show that
a permutation in the order is irrelevant.

Definition 3. The rule below defines the cases where π is conflicting. It is said
to be conflict-free if it is not conflicting.

RW Conflict
Xi, Yj ∈ Stages

v ∈ read ◦π(Xi) v ∈ write ◦π(Yj)
π is conflicting

WW Conflict
Xi, Yj ∈ Stages

v ∈ write ◦π(Xi) v ∈ write ◦π(Yj)
π is conflicting

Lemma 6. Let (σ, π) be a state such that π is conflict-free. Then for any two
stages Xi and Yj,

(σ1, π)

(σ, π) (σ′, π)

(σ2, π)

apply Yjapply Xi

apply Yj apply Xi

In a conflict-free state, the instruction in Xi and Yj (if any) do not write in
the same locations, and they do not read a location written by the other. Their
application can be trivially permuted. Therefore, we can define the equivalence
of two states without precising the order of application in the relation CI

v between
concrete and immediate states.

Definition 4 (Semantics simulation relation). A concrete state (σC , π)
and an instantaneous state (σI , 〈w, r, p, j〉) are in relation if and only if:

1. Applying all instructions in π on the state σC results in the state σI .

(σC , π) ↪−−→
X1

. . . ↪−→
Yn

(σI , π) with X1, . . . , Yn = Stages

2. For any pipeline X, π(X1) = ε ⇐⇒ p(X) = 0

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 45

3. For any memory location l, let R be the set of stages Xi that reads at l,
l ∈ read ◦π(Xi), then r(l) = maxXi∈R (|π(Xi)|−i+ 1) with the maximum
being 0 if R = ∅.

4. For any location x, if there exists (a unique) Xi such that x ∈ write ◦π(Xi),
then w(x) = |π(Xi)|−i+ 1, otherwise w(x) = 0.

5. For any k, π(Jk) 6= ε ⇐⇒ j = |jmp|−k + 1

This equivalence is noted (σC , π)
CI
v (σI , 〈w, r, p, j〉).

In the rest of the section we prove that the directives preserve the relation.
We then prove that the big-step semantics of each statement also preserves the
relation.

First, we observe an implication of the simulation relation on the variable
written.

Lemma 7 (Relation of writings). Let two states from the two semantics
be in relation (σC , π)

CI
v (σI , 〈w, r, p, j〉). If a location x is not written by any

instruction in π then σC(x) = σI(x).

Then, we observe that cycles preserves the simulation relation.

Lemma 8 (Cycle relation). Let (σC , π) and (σI , 〈w, r, p, j〉) be in relation.
Then applying the same number of cycles t will result in states in relation.

(σC , π) t (σ′
C
, π′)

(σI , 〈w, r, p, j〉) t (σI , 〈w′, r′, p′, j′〉)

CI
v

CI
v

Proof. Step condition There is no condition to apply a step in both semantics.
Final states relation This proof is made my induction on t.

– (Case t = 0) In both semantics the final states when executing no cycle
are the initial states so the relation is trivially ensured.

– (Case t > 0) We suppose that the relation holds after t cycles and we
want to prove that it holds after t + 1. Remark that in the immediate
semantics for any t ≥ 0.

〈w, r, p, j〉 ↪→→t 〈w′′, r′′, p′′, j′′〉 ∧ 〈w′′, r′′, p′′, j′′〉 ↪→→ 〈w′, r′, p′, j′〉

⇐⇒

〈w, r, p, j〉 ↪→→t+1 〈w′, r′, p′, j′〉
So we decompose the application of t+1 cycles and we want to prove the
relation between the final states on the right in the following diagram.
The other relation are ensured by hypothesis and by induction on t.
For convenience we include the state σI in the rules although executing
cycles only involves the pipeline states in the immediate semantics.

46 G. Barthe et al.

(σC , π) t (σ′′
C
, π′′) (σ′

C
, π′)

(σI , 〈w, r, p, j〉) t (σI , 〈w′′, r′′, p′′, j′′〉) (σI , 〈w′, r′, p′, j′〉)

CI
v

CI
v

CI
v

Let us prove each point of the relation.
1. By induction, (σ′′C , π′′) is in relation with (σI , 〈w′′, r′′, p′′〉) so applying

all instructions of π′′ on σ′′
C results in σI . The order of these appli-

cations can be permuted in our semantics because there should be no
data-dependency between the instructions. We thus apply all instruc-
tions in retired(π′′) first and then the others. Applying all instruction in
retired(π′′) on σ′′

C results exactly in σ′
C . Applying all of the instruc-

tion of π′′ results in σI . If we note S the set of stages which contain an
instruction in retired(π′′), then

(σ′′
C
, π′′) ↪−−−−→

apply S
(σ′

C
, π′′) ↪−−−−−→

apply 6∈S
(σI , π′′)

As the instructions of π′′ not in retired(π′′) are exactly the ones in π′,
we do have that applying all instructions of π′ on σ′C results in σI .

2. No matter the states π′′ and p′′, after executing a cycle π′(X1) = ε
by definition of next and p′(X) = 0 by rule Cycle so the equivalence
trivially holds.

3. Let l be a memory location and R be the set of stages Xi such that l ∈
read ◦π′′(Xi). By induction hypothesis, r′′(l) = maxXi∈R|π′′(Xi)|−i+1.
Again we separate the set R between the stages that will be retired and
the others. We note S the first group, such that Xi ∈ S ⇐⇒ |π′′(Xi)|=
i, and S′ the latter. In π′, by definition of next, a stage Xi can read
l if and only if π′(Xi−1) was reading it and if |π′′(Xi−1)|6= i − 1. So
Xi reads l in π′ iff Xi−1 is in S′. Let R′ be this set of stages, we have
Xi−1 ∈ S′ ⇐⇒ Xi ∈ R′.

r′(l) =max(0, r′′(l)− 1)

=max(0, max
Xi∈R

|π′′(Xi)|−i)

=max(0, max
Xi∈S′

|π′′(Xi)|−i) by definition of S

=max(0, max
Xi−1∈S′

|π′′(Xi−1)|−i− 1)

=max(0, max
Xi−1∈S′

|π′(Xi)|−i+ 1)

=max(0, max
Xi∈R′

|π′(Xi)|−i+ 1)

which concludes the third point of the relation.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 47

4. The property on w′ is proved similarly to r′ as it is only a particular
case where the set of stages is either empty or a singleton.

5. If there is a jump in a stage Jk in π′′ then by relation j′′ = |jmp|−k+1.
If k = |jmp| then j′′ = 1 and after a cycle the jump leaves the pipeline.
In that case, j′ = 0 and there is no jump in the pipeline as expected.
Otherwise, if k < |jmp| then j′ = j′′ − 1. After the cycle, the jump is in
pipeline Jk+1, thus preserving the relation. Finally, we can consider the
case where there is no jump in π′′ and where, by relation, j′′ = 0. The
execution of a cycle does not add a jump in π′ and j′ = j′′ = 0 thus the
relation is preserved.

The final states are in relations and by induction, executing any amount of
cycles preserves the relation.

There is no notion of readiness in the immediate semantics since we compute
the exact number of cycles to release all the resources needed for atom. In the
following lemma the readiness of the immediate state is defined as the number of
cycles needed being equal to zero. The following lemma also ensures a key aspect
of our relation: if both states are ready then the set of locations computed by
the read and write functions should be the same, despite the two different states
of the memory σC and σI .

Lemma 9 (Ready in immediate). Let atom be an atomic instruction and
let (σC , π) and (σI , 〈w, r, p, j〉) be in relation, then

ready(atom, σC , π) ⇐⇒ max

(
min

X∈atom
p(X),max

v∈R
w(v),max

v∈W
w(v),max

v∈R
r(v)

)
= 0

and

ready(atom, σC , π) =⇒ write(atom, σC) =W ∧ read(atom, σC) = R

with W = write(atom, σI) and R = read(atom, σI).

Proof. Let us prove each side of the equivalence.

⇒ We suppose that ready(atom, σC , π) holds. First let us check the equali-
ties read(atom, σI) = read(atom, σC) and write(atom, σI) = write(atom, σC). By
point (1) of the relation, applying all instructions of π on σC results in σI . Since
ready(atom, σC , π), none of these instructions can write a location needed by
atom (it would violate WaR or WaW dependency). So for any x ∈ read(atom, π),
applying a stage Xi of π on σC will not change the value associated to x.

ready(atom, σC , π) =⇒ ∀x ∈ read(atom, π), σC(x) = σI(x)

In the sets computed by read and write, the values in σ are only used to get the
value of registers read by atom. So

read(atom, σI) = read(atom, σC) and write(atom, σI) = write(atom, σC)

Now we need to prove that the delay in the immediate semantics is null. We
prove that each component of the maximum is null.

48 G. Barthe et al.

– For the minimum on p, we now that since ready(atom, σC , π) holds, there
exists a pipeline X ∈ atom such that π(X1) = ε. By point (2) of the relation,
this implies that p(X) = 0 so minX∈atom p(X) = 0.

– For the maximum of w on read(atom, σI), let us take any x ∈ read(atom, σI) =
read(atom, σC). Then the set of pipelines that write x in π is empty, other-
wise the locks(atom, atom′, σC) statement would hold for some atom′ writing
x, and the state would not be ready for atom. This set of pipeline being
empty, the maximum is defined as 0.

– The case of w on write(atom, σI) and of r on write(atom, σI) are handled
similarly, the set of pipelines are empty and thus the maximum is 0.

As each component is null, the maximum is also null which concludes this im-
plication.

⇐ We suppose now that the delay computed by the immediate semantics is
null and we want to prove that ready(atom, σC , π) holds. We need to ensure the
existence of a pipeline for atom in π and that locks(atom, atom′, σC) cannot hold
for any atom′ in π.

First, let us find a pipeline for atom in π. None of the component of the
maximum can be negative so they are all null, in particular, minX∈atom p(X) = 0
and there exists X ∈ atom such that p(X) = 0. By point (2) of the relation
π(X1) = ε, and so there exists a pipeline in π that can fetch atom.

Then let us ensure that locks(atom, atom′, σC) does not hold for any atom′

in π. We reason by contradiction, let us suppose that there is a RaW or WaW
conflict: then there exists a location x ∈ read(atom, σC) or in write(atom, σC)
such that there is a stage Xi satisfying x ∈ write ◦π(Xi). Then, by point (4) of
the relation, w(x) = |π(Xi)|−i + 1 = 0. So |π(Xi)|= i − 1, which is impossible
in our semantics because the instruction in π(Xi) should have been retired.
Let us suppose that there is a WaR conflict: then there exists a location x ∈
write(atom, σC) such that there is a stage Xi satisfying x ∈ read ◦π(Xi). By
point (3) of the relation, r(x) = 0 ≥ |π(Xi)|−i+ 1 and similarly to the previous
case it is impossible because the instruction should have been retired. So there
is no locks possible and ready(atom, σC , π) holds.

A similar statement can be made in case of a jmp, where the j component is
used. We admit that the lemma above cover this case.

Lemma 10 (Cycle for atomic relation). Let atom be an atomic instruction
and let (σC , π) and (σI , 〈w, r, p, j〉) be in relation. Then the number of cycles
needed by both states to fetch atom is the same and the final states are in relation.

(σC , π) (σ′
C
, π′)

(σI , 〈w, r, p, j〉) (σI , 〈w′, r′, p′, j′〉)

t

cycle atom

CI
v

CI
v

t

cycle atom

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 49

Proof. Lemma 8 ensures that if both semantics execute the same amount of
cycles then they remain in relation, so proving the Final states relation is trivial.
Thus the main goal of this proof is to justify that they both execute t cycles
(proof of the Step condition). Let us suppose that they do not, that the concrete
semantics executes tC cycles to fetch atom and the immediate semantics executes
tI cycles.

Case (tC < tI) Let us execute tC cycles on 〈w, r, p〉. By lemma 8, the states are
in relation: (σ′C , π′) CIv (σI , 〈w′′, r′′, p′′〉). After tC cycles the concrete state is
ready so by lemma 9, read(atom, σI) = read(atom, σ′C) and write(atom, σI) =

write(atom, σ′C). We named these two sets R and W as in the lemma.
Let us note δ = tI − tC > 0, the number of cycles that the immediate state

〈w′′, r′′, p′′〉 still needs to execute to be ready to fetch atom. Then

δ = max

(
min

X∈atom
p′′(X),max

v∈R
w′′(v),max

v∈W
w′′(v),max

v∈R
r′′(v)

)
> 0

But by lemma 9, since (σC , π)
CI
v (σI , 〈w′′, r′′, p′′〉, δ = 0 which is absurd. Thus

tI ≥ tC .

Case tC > tI Let us execute tI cycles on (σC , π) to get (σ′′
C
, π′′), which is in

relation with (σI , 〈w′, r′, p′〉) by lemma 8. The concrete semantics needs more
cycles, which implies that ¬ ready(atom, σ′′C , π′′).

Since tI = max (minX∈atom p(X),maxv∈R w(v),maxv∈W w(v),maxv∈R r(v))
then all the components of the maximum are null in 〈w′, r′, p′〉, after we executed
tI cycles. It is obvious for the components on w and r since tI is greater than
their maximum. But the case of component minX∈atom p

′(X) = 0 is particular.
If tI ≥ 1 then the nullity is trivial: p′(X) = 0 for all X. Otherwise, if tI = 0 then
it implies that minX∈atom p(X) = 0, and that p = p′. So minX∈atom p

′(X) = 0.

max

(
min

X∈atom
p′(X),max

v∈R
w′(v),max

v∈W
w′(v),max

v∈R
r′(v)

)
=max

(
0,max

v∈R
max(w(v)− tI , 0),max

v∈W
max(w(v)− tI , 0),max

v∈R
max(r(v)− tI , 0)

)
=0

By lemma 9, π′′ must be ready for atom too, which is absurd, so tC ≤ tI .
These two absurd cases proves that tC = tI which concludes that both se-

mantics can apply the same amount of cycles for atom.

The lemma can also be applied to the jmp instruction, using the j component.

Lemma 11 (Fetch relation). Let atom be an atomic instruction and let
(σC , π) and (σI , 〈w, r, p, j〉) be in relation. Let us suppose that ready(atom, atom′, σC)
holds, then their final states after fetching it are in relation.

50 G. Barthe et al.

(σC , π) (σ′
C
, π′)

(σI , 〈w, r, p, j〉) (σ′
I
, 〈w′, r′, p′, j′〉)

fetch atom

CI
v

CI
v

fetch atom

Proof. Step condition Both semantics requires the existence of a pipeline X
ready to fetch atom. By point (2) of the relation, p(X) = 0 if and only if
π(X1) = ε so they will both be able to apply the fetch directive.

Final states relation In the immediate semantics, each component w, r, p and
σI is updated separately and we can check each point of the relation.
1. The new state of the memory in the immediate semantics is σ′I =

SJatomKσI . As for the concrete semantics, σC remains the same but
we added exactly one instruction in π: resolve(atom, σC). It is placed
in a stage X1 which was empty, so no instruction is removed from
π in π′. By point (1) of the relation on the initial states, applying
all instructions of π on σC results in σI so applying all instructions
of π′ on σC results in SJresolve(atom, σC)KσI . So we need to ensure
that SJresolve(atom, σC)KσI = SJatomKσI . As the resolve operation re-
places the registers read by their value in σC , we must ensure that
σC(x) = σI(x) for any register x read by atom. These registers have the
same value by point (1) if and only if none of the instruction in π modi-
fies them. Let us suppose that there exists a register read by atom and a
stage Yi such that x ∈ write ◦πC(atom). Then locks(atom, πC(atom), σC)
holds (rule Lock RaW) and ready(atom, πC(atom), σC) cannot holds
which is against our hypothesis. So

∀x ∈ read(atom, σC) ∩ Reg, σC(x) = σI(x)

and thus
SJresolve(atom, σC)KσI = SJatomKσI

Point (1) of the relation holds for (σC , π′) and σI .
2. Both semantics will chose the same pipelineX to fetch atom if their states

are in relation. Indeed by point (2) of the relation, the set of pipelines
{Y ∈ atom | π(Y1) = ε} is the same as {Y ∈ atom | p(Y) = 0}. The
minimumX is the same in both semantics. For any pipeline Y other than
X nothing has changed so π(Y1) = π′(Y1) = ε ⇐⇒ p(Y) = p′(Y) = 0.
As for X, we now have π′(X1) = resolve(atom, σC , π) 6= ε and p′(X) = 1.
Point (2) of the relation is thus satisfied by the final states π′ and p′, for
any pipeline.

3. For any location not read by atom, nothing as changed in r′ and in π′ and
the property is still valid. Now let us consider l ∈ read ◦π′(X1) (where
X1 is the stage where atom was put). Let R be the set of stages that

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 51

read l in π. Then the set that read l in π′ is R ∪ {X1}.

r′(l) =max(r(l), |atom|)
=max(max

Yi∈R
(|π(Yi)|−i+ 1), |π(X1)|)

=max(max
Yi∈R

(|π(Yi)|−i+ 1), |π(X1)|−1 + 1)

= max
Yi∈R∪{X1}

(|π(Yi)|−i+ 1)

Thus point (3) is satisfied.
4. The same reasoning applies to point (4).
5. For atom 6= jmp, the j component remain unchanged and thus the re-

lation is preserved since no jump is added to the pipelines either. If
atom = jmp(v) then j = 0 and after the fetch j′ = |jmp|+1 while J1
contains a jump, the relation is also preserved.

Thus for all directives the two semantics preserves the relation. This can
be extended to show that the big-step semantics preserves the relation for any
statement, by induction on the syntax of the statement. Below we consider the
case of the conditional since we must ensure that the two semantics will make
the same predictions and that they take the same branch.

Lemma 12 (Atomic preservation). Any atomic instruction atom preserves
the relation.

(σC , π, h) (σ′
C
, π′, h′)

(σI , 〈w, r, p〉, h) (σ′
I
, 〈w′, r′, p′〉, h′)

(atom,·)CB⇓t·

CI
v

CI
v

(atom,·)↓t·

Proof. Lemmas 10 and 11 are enough to prove this lemma.

Lemma 13 (Conditional preservation). Let us take b an operand, s1 and
s2 two statements, then the two big-step semantics applied on the conditional
if b then s1 else s2 preserves the relation.

(σC , π, h) (σ′
C
, π′, h′)

(σI , 〈w, r, p, j〉, h) (σ′
I
, 〈w′, r′, p′, j′〉, h′)

(if b then s1 else s2,·)CB⇓t·

CI
v

CI
v

(if b then s1 else s2,·)↓t·

Proof. Let us show that if the concrete semantics makes a step, then so does the
immediate semantics. First, let us recall the concrete and immediate semantics
rules in case of correct prediction, with some renaming to ease the proof. Each

52 G. Barthe et al.

processor state is indexed. The memory states σ are commons to the two se-
mantics so we add an C or I exponent on these elements, for the concrete and
immediate semantics respectively. For the branch predictor history, we keep the
same notation without indexes because they are equal in both semantics, going
through the same modifications by BP-update.

Cond-True-Correct-Concrete
(jmp(b), 〈σC0 , π0, h0〉) CB ⇓t

C

〈σC1 , π1, h1〉 σC1 (b) 6= 0
¬BP-predict(`, h1) h2 = BP-update(`, h1, false)

(s1, 〈σC1 , π1, h2〉) CB ⇓t
′C
〈σC2 , π2, h3〉

(` : if b then s1 else s2, 〈σC0 , π0, h0〉) CB ⇓t
C+t′C 〈σC2 , π2, h3〉

Cond-True-Correct-Immediate
(jmp(b), 〈σI0 , 〈w0, r0, p0, j0〉, h0〉) ↓t

I

〈σI1 , 〈w1, r1, p1, |jmp|〉, h1〉 σI1(b) 6= 0
¬BP-predict(`, h1) h2 = BP-update(`, h1, false)

(s1, 〈σI1 , 〈w1, r1, p1, |jmp|〉, h2〉) ↓t
′I
〈σI2 , 〈w2, r2, p2, j2〉, h3〉

(` : if b then s1 else s2, 〈σI0 , 〈w0, r0, p0, j0〉, h0〉) ↓t
I+t′I 〈σI2 , 〈w2, r2, p2, j2〉, h3〉

Since the concrete semantics can make a step, all the premises of rule Cond-
True-Correct-Concrete holds. By hypothesis the initial states are in re-
lation: 〈σC0 , π0, h0〉

CI
v 〈σI0 , 〈w0, r0, p0, j0〉, h0〉. Finally, by induction, we sup-

pose that if the initial processors states are in relations, then they remain
in relation and have the same fetch time for sub-program s1. Let us show
that all the premises of rule Cond-True-Correct-Immediate holds and that
tC = tI ∧ t′C = t′

I .

Jump By lemma 12, and since 〈σC0 , π0, h0〉
CI
v 〈σI0 , 〈w0, r0, p0, j0〉, h0〉 then the

two semantics will have the same fetch time for the jump instruction and
the final states will be in relation:

tC = tI ∧ 〈σC1 , π1, h1〉
CI
v 〈σI1 , 〈w1, r1, p1, |jmp|〉, h1〉

Conditional value The concrete semantics checks that the value of operand b
now that the register has been replaced by value v. The concrete semantics of
an atomic fetch imposes that v = σC1 (b). If b is a constant then σI1(b) = v 6= 0.
Otherwise, i.e. if b is a register, then no instruction in π1 can be writing in
b has it would block the fetch of the jump instruction. So, by lemma 7,
σI1(b) = σC1 (b) 6= 0.

Branch prediction The two semantics have the same treatment of the branch
prediction history.

Branch fetch time The initials states for the branch execution are in relation,
thus by induction on the syntax, the two final states are in relation and the
two semantics compute the same cost t′ = t′

I
= t′

C

The final state are in relation and the costs computed are equal tC+t′C = tI+t′
I ,

proving the equivalence of the semantics on conditionals.

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 53

Lemma 14 (Loop preservation). Let us take b an operand, s a statement,
then the two big-step semantics applied on the loop while b do s done preserves
the relation.

(σC , π, h) (σ′
C
, π′, h′)

(σI , 〈w, r, p, j〉, h) (σ′
I
, 〈w′, r′, p′, j′〉, h′)

(while b do s done,·)CB⇓t·

CI
v

CI
v

(while b do s done,·)↓t·

Proof. The while loop will be unrolled in as many conditional as necessary to
end the iteration. By recurrence on the number of unrolling the lemma can be
proved using the previous one on conditionals.

J Immediate semantics to cost-approximate semantics

In this section we want to prove that the cost-approximate semantics is sound
w.r.t. the Immediate big-step semantics in terms of cost, as stated by Theorem 7
as well as proving Theorem 8. Theorem 8 is trivially proven by induction on the
syntax of the program and we do not detail it.

In a first time, we suppose that the approximation of blocks JblkK] is sound,
but we are more precise than Theorem 2, by differentiating the fetch cost f and
the execution cost e.

Lemma 15 (Block approximation soundness). For any block blk, any ab-
stract alias memory state σ], any bounds u, o:

JblkK]σ] = (u, o,_) ⇒ ∀σ ∈ γa(σ]), h, (∀e, (blk, 〈σ, πε, h〉) ↓e _X⇒ e ≤ o)
(1)

∧
(
∀f, (blk, 〈σ, πε, h〉) ↓f _⇒ f ≥ u

)
(2)

We use this hypothesis to prove that the over-approximation is sound w.r.t.
the immediate semantics execution cost, while the under-approximation is sound
w.r.t. the fetch cost. The expression of the execution cost t′ can be simplified in
the immediate semantics. Indeed, given the fetch cost t, and the final pipeline
state π′′ after the program has been fetched, the execution cost is t′ = t+max(π′′)
since max(π′′) is exactly the cost of emptying the pipelines (if all instructions
have at least one dependency, which is the case in our language6). The following
lemma is thus a sub-part of Theorem 7.

Lemma 16. Let s be a program, σ] an alias abstract memory state and σ ∈
γa(σ

]):

∀h, t, u, o, π′, σ′
(

(s, 〈σ, πε, h〉) ↓t 〈σ′, π′,_〉
∧ (s, σ, σ]) ⇓[u,o] (σ′,_)

)
⇒ u ≤ t ∧ t+max(π′) ≤ o

6 In a language where this is not the case we could add artificial dependencies, with
temporary registers.

54 G. Barthe et al.

Proof. The proof is inductive on the syntax of s.

Block First, let us consider that s is a block of atomic instructions a1; . . . ; an. In
that case, the two approximation semantics both rely on the approximation
of blocks which is sound by hypothesis. So the proof is trivial.

Sequence Then, let us consider that s = s1; s2 is a sequence (but not a block).
In the immediate semantics, the fetch cost of s is the sum of the fetch costs of
s1 and s2. The execution cost of s is obtained by adding the cost of emptying
the final pipeline, that is max(π′).

(s1, 〈σ, πε, h〉) ↓t 〈σ1, π1, h1〉 (s2, 〈σ1, π1, h1〉) ↓t
′
〈σ′, π′,_〉

(s, σ, πε) ↓t+t′+max(π′) σ
′X

In the two approximate semantics, we will also have bounds for s1 and s2.
We apply the induction hypothesis on s1 which starts with empty pipelines,
the bounds of s1 are sound.

(s1, σ, σ
]) ⇓[u,o] (σ1, σ]1)

u ≤ t and t+max(π1) ≤ o

As for s2, our immediate execution is not from an empty pipeline. The
Lemma 1 gives us however additional information: if we note e the cost
to fetch s2 from the empty pipeline, (s2, 〈σ1, πε, h1〉) ↓e 〈σ′, πe,_〉, then

e ≤ t′ and t′ +max(π′) ≤ max(π1) + e+max(πe)

(It is more efficient to start the execution of s2 from the current pipeline
state π1 than to empty it first and then to execute s2 on an empty pipeline.)
Thus we have by induction hypothesis that the approximated cost of s2,
noted o′ and u′ bounds the retire cost of s2 from the empty pipeline:

(s2, σ1, σ
]
1) ⇓[u′,o′] (σ′,_)

u′ ≤ e e+max(πe) ≤ o′

With this defined, our goal is to prove that

u+ u′ ≤ t+ t′ +max(π′) ≤ o+ o′

u+ u′ ≤ t+ e ≤ t+ t′

≤ t+ t′ +max(π′) / Execution cost of the sequence
≤ t+max(π1) + e+max(πe)

≤ o+ o′

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 55

Conditional Finally, let us treat conditionals as loops are directly derived from
them. Let s = ` : if b then s1 else s2. First let us suppose that the branch
prediction is correct, and that σ(b) 6= 0 (the then branch must be taken),
the other branch being symmetrical. In that case, the cost of the conditional
is t+ t′ where

(jmp(b), 〈σε, π, h〉) ↓t 〈σ1, π1, h〉 and (s1, 〈σ1, π1, h1〉 ↓t
′
〈σ′, π′, h′〉

and h1 = BP-update(h, `, false). The proof is thus exactly the same as in the
case of the sequence, the value of the branch predictor history being irrele-
vant. The under-approximated cost of the conditional corresponds exactly to
the under-approximated cost of the sequence, while the over-approximation
adds a constant |jmp| to the over-approximated cost of the sequence, it is
thus still a sound over-approximation.
For the other case, a misprediction, we need to take the backtrack penalty
into account. In the immediate semantics, the fetch cost is t+ t′+ |jmp| given
the costs of the immediate semantics

(jmp(b), 〈σε, π, h〉) ↓t 〈σ1, π1, h1〉 and (s1, 〈σ1, π2, h1〉) ↓t
′
〈σ′, π′, h′〉

π1 ↪→|jmp| π2
Interestingly, the max of π2 is the max of π1 minus the latency of the jump,
which is strictly positive since π1 has at least the delay to retire the jump it
just fetched.

max(π2) = max(π1)− |jmp|
Similarly to the sequence we define the fetch cost e of the branch s1 from an
empty pipeline state.

(s1, 〈σ1, πε, h1〉) ↓e 〈σ′, πe, h′〉 and

with e ≤ t′ and t′ + max(π′) ≤ max(π2) + e + max(πe). The approximated
costs are

(jmp(b), σ, σ]) ⇓[u,o] (σ1, σ]1) and (s1, σ, σ
]) ⇓[u′,o′] (σ1, σ]1)

such that
u ≤ t and t+max(π1) ≤ o
u′ ≤ e and e+max(πe) ≤ o′

Then, similarly to the sequence

u+ u′ ≤ t+ e ≤ t+ t′

≤ t+ t′ + |jmp|
≤ t+ t′ + |jmp|+max(π′) / Execution cost of the conditional
≤ t+max(π2) + e+max(πe) + |jmp|
≤ t+max(π1) + e+max(πe)

≤ o+ o′

56 G. Barthe et al.

After this lemma it remains to prove that in the instrumentation, there is an
execution which will output the cost t of the concrete semantics, thanks to the
non-deterministic assignments.

Lemma 17. Let s be a program, σ] an alias abstract memory state, σ ∈ γa(σ])
and s′ the instrumentation of s: (s′,_) = T(s, σ]1), then

∀h, t, u, o, π′, σ′
(

(s, 〈σ, πε, h〉) ↓t 〈σ′, π′,_〉
∧ (s, σ, σ]) ⇓[u,o] (σ′,_)

)
⇒ σ2[cost 7→ t] ∈ SJs′Kσ1

Proof. The proof is also made by induction on the syntax of s. The instrumenta-
tion insert non-deterministic assignments to cost inductively on the syntax of s
by respecting the range [u, o] of the approximate semantics. Thanks to the pre-
vious lemma, we can select t ∈ [u, o] the cost to execute the current statement,
thus ensuring a correct final value for cost in a sequential semantics.

J.1 Block approximation

In this section we prove Lemma 15: the bounds computed by simulating the
block with an alias analysis are sound.

Proof. Let blk = a1; . . . ; an, and σ]. The proof is made by recurrence on n. We
rely again on a bi-simulation proof between the immediate semantics and the
simulation semantics JaK./] to keep an under or over-approximation.

The main issue of this proof is that the instruction in the simulated pipeline
are not resolved: the simulation does not have access to the memory location
pointed by registers. Thus it cannot tell if there is any data-dependencies between
an instruction atom′ in the pipelines and the current one atom being fetched. As
stated in Section 4.1, the operators ./]Must and ./

]
May must satisfies the following

two conditions.

¬ ./]Must (atom, atom
′, σ]) =⇒ ∀σ ∈ γ(σ]), locks(atom, atom′, σ)

./]May (atom, atom′, σ]) =⇒ ∀σ ∈ γ(σ]),¬ locks(atom, atom′, σ)

The operators first check the registers. Any registers that would be resolved
(i.e. read) in atom′ is ignored and the WAW, RAW and WAR dependencies
are checked. Once we have the guarantee that there is no data-dependencies
between the registers, the alias analyses check that the content of these registers,
if they are memory locations, may or must alias, depending on the bound being
computed.

For the under-estimation, the condition on the must alias analysis is enough
to ensure that the simulation will execute as much as or less cycles than the con-
crete semantics. If the simulation cannot fetched, i.e. if ¬ ./]Must (atom, atom

′, σ]),
then there is a data-dependency between atom and atom′ for all possible concrete
states σ. So the concrete semantics cannot fetch either. Both execute cycle, and
executing cycles preserve the bi-simulation relation. On the other hand, if the

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 57

must analysis does not detect any conflict, then the simulation will not execute
cycle while the concrete semantics may actually do. In this case, the simulation
ends up late, a notion formalized in Appendix J.2, with its proof of Lemma 1. The
simulation has executed less cycles, but its pipeline contains more instructions
than the concrete state, which may result in more conflicts later. The simulation
can recover from this lateness but can never outrun it: even if it executes cycles
while the concrete state do not, in total it will never execute more cycles than
the concrete execution.

Similarly for the over-estimation, the condition on the may alias analysis is
enough to ensure that the simulation will execute as much as or more cycles
than the concrete semantics. Indeed, if the simulation does not detect a conflict
and fetches the instruction, then the concrete semantics cannot be delayed either
and will fetch the instruction too. However, the simulation may detect a conflict
which does not exists in the concrete state. In that case, the simulation will
execute a cycle while the concrete semantics does not, and so it is the concrete
semantics which is late. In total, the concrete semantics cannot execute more
cycle than the simulation from a may alias analysis.

J.2 Partial order on dependencies

The soundness of the approximated bound semantics heavily relies on the fol-
lowing lemma (adapted from Lemma 1).

Lemma 18. Let (σ, π, h) be a processor state and let s be a program. If

– s is processed in t cycles from (σ, π, h): (s, σ, π, h) ↓t (σ′, π′, h′)
– and it is processed in t′ cycles from (σ, πε): (s, σ, πε, h) ↓t′ (σ′, π′′, h′′)

Then t′ ≤ t and t+max(π′) ≤ max(π) + t′ +max(π′′)

The proof of this lemma relies on the proof of preservation of the partial
order by the directives and then by the big-step semantics. Then we use the fact
that the lateness is a positive number to ensure the correct ordering of the costs.

Preservation of the Lateness Relation

Lemma 19. Fetching an atomic instruction atom respects the following lockstep-
simulation diagram. Black terms are hypothesis, blue ones are conclusions.

(σ, π1) (σ′, π2)

(σ, π′1) (σ′, π′2)

fetch atom

vk vk

fetch atom

with k ≥ 0

58 G. Barthe et al.

Proof. For all the variables written, the delay will be the same in π2 and π′2:
exactly |atom|. For the variables read, the delay is the maximum between the
old delay and |atom|, the order between π2 and π′2 is thus preserved. Now for the
pipelines, we have four cases. First case, they take the same pipeline. This is the
only delay in the p component that changes and it is set to 1 in both pipeline
state. As k ≥ 0 we preserve the order in that case. If π1 chooses a pipeline X
with a higher priority than the one, let say Y , chosen π′1, then we also respects
the order. Indeed it means that the pipeline X was already occupied in π′1. So
p2(X) = 1 ≤ p′1(X)+k = p′2(X)+k = 1+k As for the pipeline Y its delay in π2
is either 0 or 1 so is always bounded by p′2(Y)+k = k+1. Now if on the contrary
X has a lower priority than Y , then the only explanation is that Y was already
occupied in π1. But Y was available in π′1, so p1(X) = 1 ≤ p′1(X) + k = k. As
the lateness k is at least of one cycles, the order is trivially respected for the
pipelines: ∀X ∈ Pips, p2(X) ≤ p′2(X) + k.

Lemma 20. Executing cycles to fetch an atomic instruction atom respects the
following lockstep-simulation diagram. Black terms are hypothesis, blue ones are
conclusions.

(σ, π1)
t π2

(σ, π′1)
t′ π′2

cycle atom

vk
vk′

cycle atom

with k′ = k + t′ − t ≥ 0.

Proof. The number of cycles t required by π1 is the maximum latency of all
resources (pipeline and variable) needed by atom in (σ, π1). The same applies to
π′1. We need to show that t is less than t′+ k, to ensure that k′ = k+ t′− t ≥ 0.
The order π1 vk π′1 implies that for any resources needed by atom in π1, the
delay d to get that resource is less than d′ + k where d′ is the delay to get that
same resource in π′1. So the maximum of all delays in π1, a.k.a t, is less than the
t′ + k, the maximum of all delays in π′1 plus k.

We now need to ensure that π2 vk′ π′2. Let d1 denotes the delay of any
resource in π1, that is either w1(v) or r1(v) for some v ∈ Location or p1(X) for
some X ∈ Pips. Let d′1 be the delay of the same resource but with respect to π′1,
and d2 and d′2 be the ones in π2 and π′2 respectively. Executing cycles decrements
these delay (without going below zero).

d2 = max(0, d1 − t) and d′2 = max(0, d′1 − t′)

Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 59

d2 = max(0, d1 − t)
≤ max(0, d′1 + k − t) By π1 vk π′1
≤ max(0, d′1 + k − t+ t′ − t′)
≤ max(0, d′1 + k′ − t′)
≤ max(0, d′1 − t′) + k′ Since k′ ≥ 0

≤ d′2 + k′

Which confirms that π3 vk′ π′3.

Lemma 21. Executing cycles to empty the pipelines respects the following lockstep-
simulation diagram. Black terms are hypothesis, blue ones are conclusions.

π t πε

π′ t′ πε

vk vk′

with k′ = k + t′ − t ≥ 0.

Proof. Executing cycles to empty the pipelines is actually the same as executing
cycles for an artificial instruction that would need all variables currently in the
pipelines π and π′ (we join these two sets of variables). So we can apply Lemma 20
to prove this lemma.

These two lemmas are enough to prove the preservation by the big-step se-
mantics, by chaining the directives applied.

Lemma 22 (Lateness preservation). Executing a statement s respects the
following lockstep-simulation diagram. Black terms are hypothesis, blue ones are
conclusions.

π1 π2

π′1 π′2

(s,σ,·)↓t(σ′,·)

vk vk′

(s,σ,·)↓t′ (σ
′,·)

with k′ = k + t′ − t ≥ 0

Proof of approximated bounds In this section we prove the Lemma 1. Let
π be a pipeline state, σ a variable state and s a program with s0 the first
instruction that will be fetched. We note s1 the statement that will be executed
after s0 according to the semantics of s. Consider now a pipeline state π′, having
the same delay as π for every resource, except for the variables needed by s0
where we impose a delay n = max(π).

∀v ∈ write(s0, σ), r
′(v) = w′(v) = n ∀v ∈ read(s0, σ), w

′(v) = n

60 G. Barthe et al.

We have π v0 π′, as the delay we put in π′ on the needed variables is
necessarily greater than the delay in π.

We then execute the instruction s0. Due to our artificial constraints, π′ needs
to wait exactly n cycles to be able to fetched it. Once it has executed these n
cycles it is absolutely empty, thus the resulting state after the fetch of s0, which
we would note π′2 is actually equal to the state πε2, that is πε after executing s0.

We also have πε v0 π (no constraint on πε so all delays are equal to zero).
We can have the following diagram due to Lemma 22. On the first line, we

have the cost starting from the empty pipelines πε, that is first 0 as there is
no constraint and then t′ by hypothesis. On the second line we have the cost
starting from π which we decomposed into t0 and t1 such that t = t0 + t1 by
hypothesis. Finally the third line corresponds to the cost starting from π′ which
first takes n steps as explained, and then the same as πε2 that is t′. The partial
order delays are deduced from the Lemma 22.

πε πε2 π′′

π π2 π′

π′ π′2 = πε2 π′′

(s0,σ,·)↓0(σ′,·)

v0

(s1,σ
′,·)↓t′ (σ

′′,·)

vt0
vt−t′

(s0,σ,·)↓t0 (σ
′,·)

v0

(s1,σ
′,·)↓t1 (σ

′′,·)

vn−t0
vn+t′−t

(s0,σ,·)↓n(σ′,·) (s1,σ
′,·)↓t′ (σ

′′,·)

With t− t′ ≥ 0 and n+ t′ − t ≥ 0 which gives us the first bound t′ ≤ t.
Then we continue to empty the pipelines π′ and π′′.

π′ teπε

π′′ t′eπε

vn+t′−t
vn+t′−t+t′e−te

where

n+ t′ − t+ t′e − te ≥ 0

max(π) + t′ − t+max(π′′)−max(π′) ≥ 0

max(π) + t′ +max(π′′) ≥ t+max(π′)

We have the upper bound of the cost, which concludes the proof of Lemma 1.

