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1.1. Introduction

In this chapter we give an overview of techniques for secure and efficient imple-
mentation of so-called post-quantum cryptography, the anticipated next generation
of asymmetric cryptography. Today most cryptographic systems deployed in the real
world use asymmetric primitives that rely on the hardness of factoring (most notably
RSA public-key encryption and signatures), or the (elliptic-curve) discrete-logarithm
problem. While those systems, with suitably chosen parameters, are believed to resist
attacks by classical computers, it is known since Shor’s seminal 1994 paper, that a
large universal quantum computer will be able to solve both factoring and discrete
logarithms in polynomial time.

Luckily, even if sufficiently large quantum computer become a reality, this does
not mean the end of efficient public-key cryptography. There exist various approaches
for constructing public-key encryption or key-encapsulation mechanisms (KEMs) and
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signatures that — as far as we know — resist attacks even by large universal quantum
computers. There are five main approaches to construct such post-quantum asymmet-
ric schemes:

— Problems related to finding short vectors in high-dimensional lattices can be used
to construct both efficient key-encapsulation schemes and efficient signatures.

— Hard problems in coding theory are mostly used to construct efficient public-key
encryption or key-encapsulation schemes.

— The problem of solving large systems of multivariate quadratic equations is
mostly useful to construct signature schemes.

— Cryptographic signatures can be built just from cryptographic hash functions.

— Finally, there are schemes based on the hardness of finding high-degree isogenies
between supersingular elliptic curves.

First schemes of these families reach as far back as the 1970s and the research
field of post-quantum cryptography has explicitly been established in the early 2000s.
However, research into post-quantum cryptography, in particular concrete instantia-
tions of schemes and implementations, received a huge boost in early 2016, when the
US-American National Institute of Standards and Technology (NIST) announced that
they would launch an effort of evaluating and eventually standardizing such schemes.
NIST issued a public call for proposals in late 2016 with a deadline for submissions
in November 2017.

At the time of writing this chapter, in early 2023, NIST’s post-quantum project
has just reached a major milestone with the announcement of the first batch of
algorithms NIST are planning to standardize: the lattice-based signature schemes
CRYSTALS-Dilithium and Falcon, the hash-based signature scheme SPHINCS™,
and the lattice-based key-encapsulation mechanism CRYSTALS-Kyber. However,
post-quantum schemes are still far less well understood than cryptographic schemes
considered in the other chapters of this book. The NIST standardization effort
continues with multiple KEMs forwarded to another round of evaluation and a
renewed call for signature proposals with a submission deadline in June 2023.
Consequently, the state of the art in scheme design, cryptanalysis, and techniques for
secure implementation is still very actively researched and thus likely to change over
the next years.

In order to provide a snapshot of the current state of the art, we take the follow-
ing approach: we pick one example scheme for lattice-based, one for code-based, and
one for isogeny-based key agreement and one example scheme for lattice-based sig-
natures, for multivariate signatures, and for hash-based signatures. Where possible,
we focus on schemes that are likely to be relevant for real-world deployments, i.e.,
schemes that have been selected by NIST for standardization, are still considered for
standardization in the NIST competition, or are going to be submitted to the upcoming
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on-ramp for signatures. In our description of these schemes, we focus on the essentials
of the construction and aspects that are particularly relevant for efficient and secure
implementation. We omit details that are less relevant here, for example, data serial-
ization or compression routines. We provide references to the full specifications at the
end of this chapter.

In the sections explaining secure implementation techniques, we will typically start
by discussing “constant-time” implementations of the respective primitive. We use this
term to refer to (software) implementations that systematically avoid data flow from
secret inputs into branch conditions, memory addresses, and variable-time arithmetic
instructions. This together ensures protection against classical timing attacks, i.e., tim-
ing attacks against sequential execution of the program at a fixed clock frequency.
Systematic protection against more advanced microarchitectural attacks that exploit,
for example, transient execution or data-dependent dynamic frequency scaling is still
mostly unresolved, not just for post-quantum cryptography.

1.2. Post-quantum encryption and key encapsulation

Most current systems are using some variant of the Diffie-Hellman (DH) proto-
col for key exchange and in some cases, with static keys, also for authentication.
The most common instantiation is elliptic-curve Diffie-Hellman. We do not know any
post-quantum scheme that we could use as a drop-in replacement for DH, at least not
without massively impacting system performance. The abstract primitive that comes
closest to DH are key-encapsulation mechanisms (KEMs). In many contexts, KEMs
can be used to straight-forwardly replace DH; and they have been used as a very
flexible building block in the construction of multiple post-quantum cryptographic
protocols.

Consequently, most proposals aiming at post-quantum confidentiality build a
KEM; for scenarios where a public-key encryption (PKE) scheme is needed, we can
build such a PKE from a KEM efficiently and generically. Most post-quantum KEMs
are constructed by first building a passively-secure public-key encryption scheme and
then using a generic transform on top to obtain a KEM that is secure against active,
i.e., chosen-ciphertext, attackers. We thus first consider the construction of passively
secure lattice-based PKEs (§1.2.1), code-based PKEs (§1.2.2), and isogeny-based
PKEs (§1.2.3); and then look into transforms to actively secure KEMs in §1.2.4.

1.2.1. Lattice-based KEMs — Kyber

Most lattice-based public-key encryption schemes and key-encapsulation mech-
anisms are based on variants of the Learning-with-Errors (LWE) or Learning-with-
Rounding (LWR) problems. The scheme that we are considering as an example in this
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section is the NIST PQC finalist Kyber. As outlined above, in this section we focus on
a simplified version of the passively secure PKE underlying Kyber.

Kyber is relying on the hardness of the Module-Learning-with-Errors (MLWE)
problem. Consider the ring R, = Z4[X]/(X™ + 1), where Z, is the ring of integers
modulo ¢ and n is a positive integer; in the case of Kyber we have ¢ = 3329 and
n = 256. Consider further a positive integer k; in Kyber we have k € {2,3,4},
depending on the security level. The search version of the MLWE problem is to find
s € R’;, given samples (A, As + e), where A € R’;Xk is sampled uniformly at
random and e € R’; is sampled from a so-called noise distribution ). The decisional
version of the problem is to distinguish such samples from values (U, v) sampled
uniformly at random from R’;Xk X ’R’;. In the original definition of these problems,
also s was assumed to be sampled uniformly at random, but later results showed that
the problem remains hard if s is sampled from other distributions, most importantly,
if s is sampled from the noise distribution 1.

The noise distribution outputs “small” values in Z,, centered around zero. For ex-
ample, in Kyber the noise distribution is generating polynomial coefficients in Z, from
the set {—n,...,n}. More concretely each coefficient c¢ is obtained from a centered
binomial distribution as ¢ = > (a; — b;) for bits a;, b; that are the output of a
PREF, i.e., that are assumed to be indistinguishable from uniformly random bits. Most
parameter sets of Kyber use the parameter n = 2.

1.2.1.1. Scheme definition

Let us take a closer look at a simplified version of the public-key encryption
scheme underlying Kyber. We will omit details about encoding and decoding of keys
and the ciphertext. Note however, that the complete picture involves lossy compres-
sion of the ciphertext.

Key generation of the PKE underlying Kyber consists of the following steps:
1) Sample a public 32-byte string p uniformly at random.
2) Sample a secret 32-byte string o uniformly at random.

3) Expand p through an extendable output function (XOF) and run rejection sam-
pling on the output to obtain a matrix A € R’; *k that “looks uniformly random”.

4) Use the output of a PRF with key o to obtain s € Rf and e € R} with coeffi-
cients from the noise distribution (see above).

5) Compute t = As +e.
6) Return secret key sk = s and public key (t, p).

Encryption takes as input a public key pk = (t, p), a 32-byte message m, and a
32-byte string r of random coins. It then proceeds as follows:

1) Expand p to obtain the same matrix A that was generated in key generation.



Post-Quantum Implementations 5

2) Use the output of a PRF with key r to obtain r € R’;, e € R’;, and ex € R,
with coefficients from the noise distribution (see above).

3) Compute u = ATy te;.
4) Compute v = tTr + e5 + MapToPoly(m).

5) Return ciphertext ¢ = (u, v).

In this encryption routine, the MapToPoly function maps each bit of the message
m to one coefficient of a polynomial in R,. A zero bit is mapped to 0; a one bit is

mapped to [¢/2].

Decryption takes as input a ciphertext ¢ = (u,v) and a secret key s and recovers
a message m’ as m’ = MapFromPoly(v — s”u). Here, the MapFromPoly function
maps each coefficient of a polynomial in R, to a single bit; a full polynomial is thus
mapped to a string of 256 bits or 32 bytes. A coefficient in Z, is mapped to 1, iff it is
in {[q/4],...,]3q/4]}, otherwise it is mapped to 0.

With very high probability, decryption will succeed and recover the original mes-
sage, i.e., m’ = m. Let us understand why this is the case: During encryption we add
tTr + ey to MapToPoly(m) to obtain v. In decryption we subtract s”u from v and
use MapFromPoly to obtain m/’. The difference of the two terms is

tTr —sTu
=(As+e)'r+ey—sT(ATr +e))
=sTATr+eTr+e,—sTATr +s7e;
=e'r + e2 + sTe1

As all the coefficients in s, r, e, e;, and ey are small and centered around zero,
also the coefficients of the difference are expected to be relatively small. This means
that MapFromPoly in decryption receives as input a noisy version of the output of
MapToPoly in encryption; as long as this noise has all coefficients smaller than | ¢/4],
decryption will succeed.

1.2.1.2. Techniques for efficient implementation

The core operation of Kyber as well as for most other lattice-based KEMs is
polynomial multiplication. Specifically, Kyber requires to multiply polynomials in
Ry = Z¢[X]/(X™ + 1). Kyber’s ring is chosen in a way that allows fast polynomial
multiplication using the number-theoretic transform (NTT). The idea of NTT-based
polynomial multiplication is to transform the inputs into a different domain (called
“NTT domain” or “frequency domain”) in which multiplication is cheap (i.e., has lin-
ear complexity). The result is then transformed back to “normal domain” (or “time
domain”). To obtain the product ab with a, b € R4, we compute

ab = NTT~! (NTT(a) o NTT(b))
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where NTT and NTT ! are the transformations to and from NTT domain, and o is the
multiplication in NTT domain. These transformations are particularly fast for power-
of-two n. At the core of any (radix-2) NTT is the following ring isomorphism:

Lqla] /(XP" = %) 2 Zg[X] /(X" = €) X Zq[2] /(X" + c);

2n—1

n—1 n—1
Z f1X1<—> (Z fz+cfn+z 7Z(fi_cfn+i)Xi>'
1=0 1=0

=0

It allows to split a polynomial f € Z,[z]/(X?" — ¢?) into two half-sized poly-
nomials modulo X” + ¢ and modulo X™ — c. The inverse can be computed by ap-
plying the Chinese remainder theorem on the two elements in Z,[X]/(X™ — ¢) and
Zq[z]/(X™ + ¢) to obtain the element in Z,[z]/(X?" — ¢?). In the case of R, this
only works if a c exists, such that 1 = —c2 mod q, i.e., we require a 4-th primitive
root of unity. Note that both the splitting and re-combining only requires to work on
two coefficients of the inputs at a time which is commonly referred to as a butterfly
operation. Both the forward and the inverse transformations require n/2 multiplica-
tions by ¢ (or ¢=1/2), n/2 additions, and n/2 subtractions. Note that since straight-
forward polynomial multiplications requires n? multiplications, the multiplication of
half-sized polynomials is about 4 times faster than multiplication of full-sized poly-
nomials. Hence, the splitting does result in a net speed-up for larger n. For smaller n
(e.g., n = 2), the additions and subtractions outweigh the performance improvement.

This trick can be applied recursively to further split the resulting polynomials into
halves. However, it requires the existence of the corresponding roots of unity. The
splitting is usually referred to as an NTT layer. For a k-layer NTT starting from R,
one requires a 2°T!-th primitive root of unity. In case one splits all the way down to
degree-0 polynomials, it is called a “complete” NTT, otherwise it is called an “incom-
plete” NTT. In case of a complete NTT, o becomes a coefficient-wise (or point-wise)
multiplication of the inputs. In case of an incomplete NTT, o multiplies 2¥ polynomi-
als with n /2" coefficients. o is usually referred to as base multiplication in this case.
For the Kyber R,, a complete NTT would require a 512-th primitive root of unity
which does not exist modulo ¢ = 3329. Hence, Kyber uses an incomplete 7-layer
NTT.

Due to the use of NTTs, Kyber is particularly suitable for vectorized implemen-
tations (e.g., using AVX2 or Arm Neon). In each NTT layer, each coefficient is used
in exactly one butterfly with one other coefficient. By loading multiple coefficients
into one vector register, one can compute multiple butterflies in parallel. This works
straightforwardly while polynomials have more coefficients than fit into one register,
i.e., in the first NTT layers. Once polynomials are split into polynomials of smaller
size, one has to shuffle the registers, such that the coefficients involved in one butter-
fly are in separate registers.
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For implementing the modular coefficient multiplications within the NTT, a com-
monly used technique is Montgomery multiplication. Montgomery’s reduction ap-
proach is to replace expensive division by odd g with a cheap division by a power
of two R = 2!. Assume we have computed the product ¢ = ab of two coefficients.
When reducing a value ¢ (< ¢R) which coincidentally is a multiple of R > ¢, we can
simply store ¢/ R which reduces the size of ¢ by [ bits and is cheaply computed. Mont-
gomery'’s idea is to make sure that ¢ is a multiple of R by introducing a correction
step, i.e., we want to find a value ¢, such that, ¢ — tq is divisible by R. Montgomery
computes ¢ as cg~' mod R, such that, c — ag~'q mod R = 0. Note that the result
of the reduction is then abR~! mod ¢. To obtain the correct result, one has two mul-
tiply by R again (or by R? mod ¢ when using Montgomery multiplication). If one
of the multiplicands is a constant, one may pre-compute a R mod g. The result of the
Montgomery multiplication is then abRR~! = ab mod q. This is commonly used in
the NTT.

It is important to note that while polynomial arithmetic accounts for a large frac-
tion of the Kyber run-time, another building block is often even more dominating:
hashing based on the Keccak permutation (including both SHA-3 and SHAKE). A
hardware-accelerated Keccak implementation or, alternatively, a heavily-optimized
Keccak software implementation vastly benefits Kyber implementations. Due to the
module-structure, Kyber implementations can make good use of vectorized Keccak
implementations running multiple permutations simultaneously (e.g., 4 for AVX2, or
2 for Arm Neon).

1.2.1.3. Techniques for secure implementation

Kyber is very easy to implement following the constant-time paradigm. In fact,
the passively-secure PKE underlying Kyber is designed in such a way that even a
straight-forward implementation that simply follows the specification will be free of
secret-dependent branches and memory addresses, as long as reductions modulo ¢ do
not employ any conditional branches.

There are some common sub-routines in other lattice-based PKE schemes and
KEMs that require a bit more care for constant-time implementations. Most notably,
some schemes use noise from a fixed-weight distribution, for example, polynomials
with a fixed number of coefficients that are 1, a fixed number of coefficients that
are —1, and all other entries equal to zero. The standard way to sample a random
polynomial satisfying this property is to start with a fixed polynomial with the pre-
scribed number of 1 and -1 coefficients and then randomly shuffle the coefficients.
Performing this random shuffling in constant time is not straight-forward, standard
algorithms like Fisher—Yates shuffle are not constant time. Secure implementations
typically use permutation networks like the Benes network or sorting networks like
Batcher sort. Furthermore, some schemes involve multiplication of a random polyno-
mial by a polynomial s with coefficients in {—1,0,1}. It is tempting to implement
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such a multiplication through a sequence of conditional additions and subtractions,
but straight-forward implementations of this approach will leak information about s.

To protect against side-channel attacks beyond timing attacks, implementations of
lattice-based KEMs typically use arithmetic masking, i.e., sharing each secret element
s of Zq in d shares sg,...,S4—1, such that s = Zf;ol s; mod q. The core arith-
metic operations are, from a masking perspective, linear and thus very cheap to mask.
Clearly this is the case for addition of noise polynomials. It also holds for matrix-

vector multiplications of the form As, because A is public and therefore unmasked.

What makes masking of lattice-based KEMs costly is switching between boolean
masking used inside the PRF and arithmetic masking used for arithmetic on polyno-
mials over Z,, and operations in the CCA transform (see §1.2.4).

Another generic side-channel countermeasure that has been implemented to pro-
tect lattice-based PKE and KEMs is shuffling, i.e., executing operations in a random-
ized order. This is fairly easy and efficiently to do for polynomial addition, subtraction,
compression, and decompression, by processing coefficients in a randomized order.
Also the NTT can be efficiently shuffled by randomizing the order of butterflies in
each layer.

1.2.2. Code-based KEMs — Classic McEliece

Code-based cryptography is almost as old as RSA: It was introduced by McEliece
in 1978. The basic idea of code-based public key encryption (PKE) schemes is to use
a secret code G with a code length n and a code rank k that can correct up to t errors
as private key and its garbled generator matrix G € F’;X" as public key. The sender
encodes a message into a binary vector v € F§ and encrypts it to the ciphertext ¢ € F
by computing ¢ = vG + e using an error vector e € [F5 of weight ¢. The receiver uses
the secret code G to obtain vG = ¢ — e by correcting the ¢ bit errors and decodes vG
back to v.

A dual-variant to the McEliece cryptosystem was proposed by Niederreiter in
1986. Instead of a generator matrix G, he uses a parity-check matrix H € ]Fénik) ™ as
public key. The sender then encodes the message as error vector e € F5 and encrypts
it to a ciphertext ¢ € IF;L_’“ as syndrome ¢ = He. As in the McEliece cryptosystem,
the receiver uses the secret code G to find the error positions and hence recovers the
message. The dual-variant by Niederreiter is equivalent to the McEliece cryptosystem

in terms of security.

A common tweak to reduce the size of the public key in the McEliece and Nieder-
reiter cryptosystems is to compute the systematic form of H, i.e., apply row opera-
tions to transform H into (I,,—|T") where I, _j is an identity matrix of n — k rows
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and columns. Thus, only 7" needs to be communicated and stored and the front iden-
tity matrix can be regenerated when needed. (This, however, requires a semantically
secure conversion for the McEliece cryptosystem, which nowadays is state-of-the-art,
to ensure that the first n — k bits of the plaintext are not revealed.)

The choice of the code family is crucial for the security of code-based cryptosys-
tems. McEliece proposed to use binary Goppa codes, which is still considered secure.
Binary Goppa codes are defined by a support o € F5,. for a small m € N and a Goppa
polynomial g of degree ¢. Niederreiter proposed to use a different code family in his
dual-variant, which later was broken. However, also Niederreiter’s dual-variant re-
mains secure when using, e.g., binary Goppa codes. Recent proposals for code-based
systems are using either McEliece’s or Niederreiter’s variant and, e.g, quasi-cyclic
codes or rank metric to further reduce the size of the public key matrices.

1.2.2.1. Scheme definition

Classic McEliece is the only code-based third-round finalist in the NIST standard-
ization process. While honoring the founder of code-based cryptography in its name,
Classic McEliece is using the Niederreiter variant with binary Goppa codes in its con-
struction. Its parameter sets aiming at NIST security levels 1, 3, and 5 are using m €
{12,13}, n € {3488, 4608, 6688, 6960, 8192}, k € {2720, 3360, 5024, 5283, 6528},
and ¢t € {64,96,119,128}.

The secret key is a random seed d, an irreducible Goppa polynomial g of degree
t, the support o € F7.., and a random bit string s. The public key is computed by
generating the ¢ x n matrix [ = {h; ;}, where h; ; = a;fl/g(aj) fori =1,...,t
and j = 1,...,n. Then H is converted to the (n — k) x n matrix H by expanding
each Fom entry of H into a column of m bits. Finally, H is reduced to systematic form
(I,,—x|T) and T is used as public key.

For encapsulation, a random vector e € F3 of weight ¢ is encoded to Cp =
(In_x|T)e € F3~*. The error vector e is hashed to obtain C; to obtain the cipher-
text C' = (Cy, C4). Finally, C'is hashed together with e to obtain the session key K.

For decapsulation, the ciphertext C is split into Cyy and C; and Cy is decoded to e’
using the private key. If the weight of e’ is ¢ and if Cy = (I,—;|T)e, C] is computed
by hashing ¢’. The check of Cy = (I,,_x|T)e is required to achieve CCA security. If
Cf = C1, then ¢’ = e and the session key is computed by hashing e and C'. Otherwise,
decoding has failed and a false session key is computed by hashing s and C'.

1.2.2.2. Techniques for efficient implementation

The most time consuming operation in the key generation of Classic McEliece is
the “systemization” of H, i.e., the computation of the systematic form of H, which
usually is done using Gaussian elimination. With a relatively high probability, H does
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not have a systematic form. Therefore, Classic McEliece specifies two variants of the
key-generation algorithm: For the systematic variant, the systemization is aborted in
case of failure and a new private key is computed. For the semi-systematic variant, an
alternative algorithm is specified that allows to swap columns (in constant-time) such
that a systematic public-key can be obtained without repeating key generation.

Efficient implementations of the systematic variant split H into a (n— k) x (n—k)
matrix M and a (n— k) x k matrix 7 such that H = (M|T") and (I,,_4|T) = M~'H
and first operate on M to check if H has full rank. During this computation, an LUP-
decomposition of M with PM = LU is computed such that 7" can be efficiently
obtainedas T' = (U ’1L*1P)T if  has full rank. This reduces the cost of repeatedly
computing on a (n — k) X n matrix to only computing on a (n — k) X (n — k) matrix
plus a final matrix multiplication once a public key with systematic form has been
found.

There are several decoding algorithms for binary Goppa codes. Here we introduce
the use of the Berlekamp-Massey algorithm as implemented in the Classic McEliece
reference implantation. Due to the error-correction capabilities of this decoding algo-
rithm, first a double-size 2¢ x n parity-check matrix H® = {hz(i)} where hf? =
a;_l/gQ(aj) fori = 1,...,2t and j = 1,...,n and a double syndrome s(*) =
H® (C|0) is computed. Then the Berlekamp-Massey algorithm is used to compute
an error-locator polynomial o from s(2). The error positions are then determined by
evaluating o at « = {aq,...,a,}. Instead of re-encrypting the obtained error vec-
tor ¢/ using H, the double syndrome s'(®) of the error vector can be computed as
§'® = H®e¢ and compared with s2): If s = §'(?) then also Co = (I,,_x|T)e’
and hence e = ¢’. Therefore, the large public key is not required for re-encryption
during decapsulation and hence the public key does not need to be stored alongside
the private key.

For computing H during key generation as well as for computing H® and for
obtaining the error positions from the error-locator polynomial during decapsulation,
a polynomial needs to be evaluated for all « = {ay, ..., ay}. Since a contains most
of the elements in [Fom for most parameter sets of Classic McEliece, this can efficiently
be accomplished using the additive FFT algorithm by Gao and Mateer. The syndrome
computation can efficiently performed using a transposed FFT.

Classic McEliece requires efficient sorting algorithms for the computation of a
random permutation of field elements in Fom for obtaining o as well as for computing
a random error vector of weight ¢. Furthermore, the specification of Classic McEliece
requires that the support & = {a1, ..., a,} is not stored as a list of elements in Fy
but as (2m — 1)2™~* control bits for a Bene$ network, which as well can be obtained
using an efficient sorting algorithm. Arithmetic in Fom typically can be parallelized
and hence is suitable for bitslicing.
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1.2.2.3. Techniques for secure implementation

The specification of Classic McEliece is designed to support constant-time imple-
mentations as much as possible. The rationale for storing the control bits of a Bene§
network as part of the secret key is that on the one hand the storage requirements for
the private key are significantly reduced and that on the other hand the correct val-
ues for «v can be obtained after the evaluation of a polynomial using an additive FFT
(which operates on the natural order of field elements) securely in constant time by ap-
plying the Bene$ network with the stored control bits to the output of the additive FFT.
The computation of a (transposed) additive FFT, the Berlekamp-Massey algorithm, as
well as sorting algorithms lend themselves for a straight-forward constant-time imple-
mentation.

Special care needs to be taken for the encoding routine: Both the generation of a
weight-t error vector e as well as the computation of Cy = He might leak timing in-
formation. A constant-time implementation of the decoding operation can be achieved
quite easily, as long as a transposed FFT is used for the re-encryption based on the
double syndrome. Otherwise, caution is required when multiplying the parity-check
matrix with e’.

During key generation, the Gaussian elimination on H for computing the system-
atic parity-check matrix (I,,_|7") must be performed in constant time. Here, an early
abort in case H cannot be systemized does not leak timing information since then key
generation is re-started with a fresh seed. The irreducible Goppa polynomial can be
computed using Gaussian elimination on a matrix over Fom or using the Berlekamp-
Massey algorithm, which must be implemented in constant time as well.

There is not much work on exploiting other side channels than timing for code-
based systems. A general recommendation is to mask the use of the private key. There
are message-recovery attacks against (Classic) McEliece, e.g., single-trace attacks on
encapsulation and differential attacks on decapsulation that exploit power side chan-
nels. More research on effective side-channel attacks and countermeasures for such
attacks is required.

1.2.3. Isogeny-based KEMs

Isogeny-based cryptography was proposed by Couveignes in his “Hard Homoge-
neous Spaces” manuscript, whose material was first presented during a seminar held
in the mid-nineties of the last century. One decade after, Rostovtsev and Stolbunov
independently proposed a public-key cryptosystem based on isogenies of ordinary el-
liptic curves. That same year, Charles, Lauter and Goren, proposed a hash function
whose collision resistance was provably guaranteed by the isogeny problem defined
over supersingular elliptic curves.
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Let £ and E’ be two supersingular isogenous elliptic curves defined over a finite
field Fy, with ¢ a power of a large prime p. Computing an isogeny map between E
and F’ is widely believed to be a hard computational problem in the classical an the
quantum settings. It is known as the Supersingular Isogeny Path problem. In many
scenarios, this isogeny is of known degree /¢ for some small prime ¢ and we refer
to this variant as the Supersingular Fixed-Degree Isogeny Path (SIPFD) problem. An
isogeny graph is a graph that represents the relationships between different elliptic
curves that are related to each other by isogenies. The vertices of the graph represent
elliptic curves which are determined by their j-invariant, which classify elliptic curves
in equivalence classes defined up to endomorphisms. The edges of the graph represent
isogenies between the curves.

Variants of the SIPFD problem form the basis of several isogeny-based signatures,
including: the Short Quaternion and Isogeny Signature (SQISign), which was pro-
posed in 2020 by De Feo, Kohel, Leroux, Petit and Wesolowski. This problem also
provides the security guarantees of the Commutative Supersingular Isogeny-based
Diffie-Hellman (CSIDH) key exchange scheme, which was introduced in 2018 by
Castryck, Lange, Martindale, Panny, and Renes.

In 2011, Jao and De Feo proposed the Supersingular Isogeny-based
Diffie-Hellman key exchange protocol (SIDH). Apart from disclosing the degree of
its secret isogeny, SIDH also reveals the evaluation of its secret isogenies at a large
torsion subgroup. This weaker variant of SIPFD was dubbed by the authors as the
Computational Supersingular Isogeny (CSSI) problem. SIKE, which is a variant of
SIDH equipped with a key encapsulation mechanism, was one of the few schemes
that made it to the fourth round of the NIST PQC standardization effort as an
alternate KEM candidate.

For over a decade, the best-known algorithms for breaking SIDH or SIKE had
an exponential time complexity in both, classical and quantum settings. However, a
recent polynomial-time attack by Castryck and Decru that was quickly followed by
two other variants, ingeniously exploited the auxiliary information leaked in SIDH
and SIKE to completely break their security, and in the process, easily breaking and
claiming a bounty for an isogeny challenge proposed by Microsoft Research.

1.2.3.1. Schemes definitions

SIKE was the solely isogeny-based fourth-round scheme in the NIST standard-
ization process. The official SIKE proposal presented four parameter sets, namely,
SIKEp434, SIKEp503, SIKEp610 and SIKEp751, achieving NIST security levels 1, 2,
3 and 5, respectively. The notation used for these instantiations alludes to the bitlength
of the underlying prime field characteristic.

SIKE operates on Montgomery supersingular elliptic curves defined over I,
where p is a large prime number of the form p = 2°23° — 1. The exponents e
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and eg are chosen such that 2°2 ~ 3°%. The public parameters of SIKE are given
by a supersingular starting curve Eo/F 2 : y? = 23 + 622 + x, and a set of six
x-coordinates corresponding to the basis points P, Q2, P3, Q3 € FEy of order 2¢2
and 3°3, respectively. Additionally, the protocol also uses the auxiliary public points
Dy = P, — @9 and D3 = P3 — Q3. SIKE comprises three main algorithms: Key gen-
eration, Encapsulation and Decapsulation (which are usually called KeyGen, Encaps

and Decaps).

In KeyGen, Bob’s public and private key {pks, (s, sks)}) are computed by per-
forming the following steps. Bob’s private key sks, is a uniformly chosen integer in
the range [[1 .. 2°3=1 — 1]. Then, Bob computes the 3°-isogeny ¢3 generated by the
kernel point R3 = P5+ [sk3]Q3, obtaining his public key as the tuple of image points,
pks = (P3(Ps), ¢3(Q2), ¢3(D2)), along with a randomly selected n-bit string s.

SIKE’s Encapsulation algorithm computes Alice’s public and private key
(pk2, sk2) using an analogous procedure as the one described above. Alice then uses
a key derivation procedure to compute a secret j, which corresponds to the
j-invariant of the image supersingular elliptic curve ¢3(¢2(Ep)). This algorithm
outputs Alice’s public key along with the encryption of an n-bit random message m
XOR’ed with F'(j), where F is a hash function that maps j to bitstrings.

SIKE’s Decapsulation algorithm recovers the secret j’ corresponding to the j-
invariant of the image supersingular elliptic curve ¢2(¢3(Ep)). The value j' is then
used for finding Alice’s private key and from it her public key. If the received public
key is identical to the one recovered, this procedure returns as the shared secret the
hash of the secret key and the encapsulation output. Otherwise, it returns a random
string.

The main computation of CSIDH consists of the evaluation of its class group
action, which takes as input an elliptic curve Ej, represented by its A-coefficient,
and an ideal class a = [[;, [, represented by its list of exponents (e;, ..., €,) €

[—m .. m]". This list of exponents is the CSIDH secret key. The output of the class
group action is the A-coefficient of the elliptic curve 4 defined as,

Eq=axEy=I{" % % [{" x Ey.

One remarkable feature of the CSIDH group action is its commutative property.
This allows one to apply the group action directly to the key exchange between two
parties by mimicking the Diffie-Hellman protocol. Having agreed upon using a start-
ing elliptic curve Ej, Alice and Bob choose a secret key a and b, respectively. Then
they can produce their corresponding public keys by computing the group actions
E4 =ax Eyand Eg = b* Ey. After exchanging these public keys, Alice and Bob
can obtain a common secret by computing,

axEp=(a-b)xEy=(b-a)xEy=0bxEax.
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1.2.3.2. Techniques for efficient implementation

The two most expensive computational tasks of SIKE are the computation of large
smooth-degree isogenies of supersingular elliptic curves along with the evaluation of
the image of elliptic curve points in those isogenies and; elliptic curve scalar multi-
plication computations via three-point Montgomery ladder procedures. In their 2014
SIDH paper, De Feo, Jao, and Pliit presented optimal computation of large degree iso-
genies. The cost of optimal strategies for computing a degree-¢¢ isogeny is of about
5 log, e point multiplications by /, § log, e degree-{ isogeny evaluations, and e con-
structions of degree-¢ isogenous curves. Optimal strategies have also been applied to
achieve faster implementations of CSIDH.

Montgomery curves is the preferred curve model for SIKE and CSIDH, since they
enable the usage of z-only point arithmetic. This can be advantageously used for per-
forming scalar multiplications with z-coordinates that always lie in the base prime
field IF,,. The Montgomery model is also useful for computing close to optimal isogeny
evaluations.

For practical implementations of CSIDH, constructing and evaluating n degree-¢;
isogenies, plus O(n?) scalar multiplications by the prime factors ¢;, overwhelmingly
dominate its computational cost. CSIDH uses a prime p such that p + 1 = 4]}, ¢;,
where /1, ..., £, are small odd primes. This choice permits to compute efficiently the
degree-/; isogenies corresponding to the group action of the ideal [; of norm ¢;.

Vélu’s formulas have been profusely used in the last fifty years for constructing
and evaluating degree-/ isogenies by performing three main algorithms known as KPS,
xIS0G and xEVAL. KPS computes the first £ multiples of the kernel point P, namely,
the set {P, [2]P, ..., [¢]P = oco}. The calculations done in KPS are then used as pre-
computation database for xIS0G and xEVAL. xIS0G and xEVAL find the constants A’ €
F, that determine the codomain curve E’, and the z-coordinate ¢, () of the image
point Q, respectively. The computational cost associated to Vélu’s formulas is of O(¢)
operations. In 2020, Bernstein, De Feo, Leroux, and Smith presented a breakthrough
approach for constructing and evaluating degree-¢ isogenies at a combined cost of just
O(\/Z) operations. This approach has been referred as square-root Vélu.

1.2.3.3. Techniques for secure implementation

In July 2022, Castryck and Decru presented a devastating attack against SIKE.
This attack can heuristically solve the CSSI problem in polynomial time, as it was
convincingly shown by an accompanying Magma script, which breaks in a matter of
hours, random SIKE instances that were once aimed for achieving NIST levels 1, 2, 3,
and 5. This original attack was soon improved to break all SIKE instances in a matter
of minutes.

The Castryck and Decru attack relies on the knowledge of three crucial pieces of
information, namely, (i) The degree of the isogeny ¢-; (ii) the ring endomorphism of
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SIKE’s starting curve Fjy; and (iii) the images ¢3(P), ¢3(Q2) of Alice’s generator
points (P, Q2) = E[2°?], where the prime p = 2°23° — 1 is the underlying prime
used by SIKE instantiations. We stress here that (ii) and (iii) are only known in the
specific case of the CSSI problem, but not in the more general case of the SIPFD
problem. Furthermore, another attack by Maino and Martindale and yet another one by
Robert quickly followed. Maino and Martindale’s attack does not require knowledge
of the endomorphism ring associated to the base curve. Robert’s attack can also break
SIDH in polynomial time for any random initial supersingular elliptic curve Ej.

Since the publication of the Castryck and Decru attack, several countermeasures
have already been proposed by trying to hide the degree of the isogeny or the images
of the torsion points. These solutions are considerably less efficient and practical than
the original construction.

On the other hand, CSIDH does not leak any auxiliary information and, for a sen-
sitive choice of parameters, remains secure against all known classical and quantum
attacks. Despite its low performance, CSIDH has the smallest public keys of all post-
quantum key exchange schemes and is the only one that is commutative. Furthermore,
CSIDH admits an efficient public key validation procedure, a feature that permits its
usage in the static-dynamic and static-static key exchange settings.

The security guarantees of CSIDH (and its variant CTIDH) rest on an analogue of
the discrete logarithm problem: given the base elliptic curve Ey and the public-key
elliptic curve 4 = a * Ey, deduce the ideal class a. Hence, the classical security of
CSIDH lies in the problem of finding an isogeny path from the isogenous supersin-
gular elliptic curves Ey and E 4. From a quantum setting perspective, the best-known
attack is Kuperberg’s procedure, which has a quantum time and space sub-exponential

complexity of exp (O(\/log p)) .

1.2.4. IND-CCAZ2 Security

Most post-quantum key-encapsulation mechanisms have in common that the core
constructions only achieve chosen-plaintext attack (CPA) security, i.e., they are only
secure in the presence of a passive adversary that cannot perform chosen-ciphertext
attacks (CCA). While in some cases CPA security may be sufficient (e.g., when secret
keys are only used once), many protocols do require CCA security, i.e., assuming
an active adversary that can manipulate ciphertexts. As it is preferable to standardize
and deploy as few cryptographic systems as possible we commonly focus on CCA-
secure schemes. We distinguish between IND-CCA1 and IND-CCAZ2 security. For the
former, the adversary can query arbitrary ciphertexts from a decryption oracle only
before receiving the ciphertext he wants to attack, while for IND-CCA?2 the attacker
can perform oracle queries before and after receiving the target ciphertext. In practice,
we want to achieve IND-CCAZ2 security.
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Fortunately, generic transformations from CPA security to IND-CCA2 security
exist, such as the Fujisaki-Okamoto transform for probabilistic PKEs, which is used
for example in Kyber, and Dent’s variant for deterministic cases, which is used for
example in Classic McEliece (see decapsulation in §1.2.2.1).

1.2.4.1. The Fujisaki-Okamoto transform

The general idea of CCA transforms is simple: We have to ensure that a given
ciphertext was honestly generated before revealing the decryption. The
Fujisaki-Okamoto achieves this by re-encrypting the decrypted plaintext and then
comparing the re-encryption to the ciphertext. In case the re-encryption matches the
ciphertext, the ciphertext was generated honestly. If there is a mismatch this indicates
that the input ciphertext was faulty and possibly malicious. In that case, the plaintext
must not be revealed, but instead either a random value (implicit rejection) or an error
message (explicit rejection) needs to be returned.

For allowing the re-encryption to produce the same ciphertext, the encryption
procedure requires to be fully deterministic, which is achieved by generating all re-
quired randomness pseudo-randomly from the (random) message. In its simplest form,
the FO transform constructs an IND-CCA2-secure KEM from a CPA public-key en-
cryption system consisting of the algorithms CPA.KeyGen (), CPA.Encrypt (pk, m,
coins), and CPA.Decrypt(sk, c) (with coins corresponding to the required ran-
domness) using a hash-function H in the following way:

— CCA.KeyGen() :
- pk, sk < CPA.KeyGen()

— CCA.Encaps (pk) :
-x <« {0,1}2°¢
-k, coins « H(x)
- ¢ < CPA.Encrypt(pk, x, coins)
— CCA.Decaps(sk, c):
- x’ < CPA.Decrypt(sk, c)
-k, coins’ + H(x?)
- ¢’ < CPA.Encrypt(pk, x’, coins’)
- verify thatc’ = ¢

Variants of the FO transform (as for example used by Kyber) additionally apply
two tweaks to this construction: Firstly, the shared secret is derived from the so-called
pre-key k by hashing it together with the ciphertext c. Secondly, the public key gets
added as input to the hash deriving coins for protecting against multi-target attacks
and turning the construction into a contributory KEM.

1.2.4.2. Secure implementation

Implementing the FO transform securely is an astonishingly hard problem that has
not been entirely solved in the literature so far. For passive side-channel attacks this is
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primarily caused by the much larger attack surface. The processed plaintext has to be
considered secret requiring the entire FO re-encryption to be protected against side-
channel attacks. Furthermore, it often sufficient for an adversary to distinguish if two
ciphertexts decrypt to the same plaintext or not to mount so-called plaintext-checking
oracle (PC oracle) attacks. PC-oracle attacks have been demonstrated for code-based
KEMs exploiting tiny timing differences in the re-encryption depending on the plain-
text. While these timing-based PC-oracle attacks can be thwarted by ensuring that
no timing leakage occurs in re-encryption revealing information about the processed
plaintext, protection is much harder when considering more powerful side-channel
attacks. When using masking as a countermeasure against power-consumption-based
side-channel attacks, this primarily requires to use a much higher masking order than
commonly used on other cryptography. For example, while cryptography without the
FO transformation may be sufficiently secure at masking order 2 or 3, post-quantum
schemes require much higher masking order with some literature showing that even
5th order masking is insufficient.

The FO transform can also be attacked using fault injection attacks. In the most-
straightforward attack, the attacker simply skips the comparison of the ciphertext and
the re-encryption, hence completely disabling the purpose of the FO. Another attack
avenue is to transmit a faulty ciphertext and to use fault injection to fault the ciphertext
back to the original ciphertext causing the FO to accept the faulty ciphertext in case
it decrypt to the same message, i.e., providing a PC oracle to the attacker. Counter-
measures against fault attacks on the FO are thus far limited to generic countermea-
sures like fault detection using redundant computation or shuffling computations to
increase the attack complexity. The efficacy of such countermeasures is not yet well
understood.

1.3. Post-quantum signatures

Just like for KEMs, also post-quantum signature schemes are constructed for a va-
riety of underlying assumptions. The first batch of signatures that will be standardized
by NIST includes two lattice-based schemes and one hash-based scheme. In addition,
schemes based on the hardness of solving large multivariate systems of equations were
prominently represented in the first 3 rounds of the NIST competition, and we expect
that more schemes following this approach will be submitted to the upcoming NIST
call for additional post-quantum signatures. Also multiple signature schemes based on
isogenies of elliptic curves (see §1.2.3) have been proposed in the last couple of years
and are likely to enter the NIST competition for additional signatures.

Unlike KEMs, post-quantum signatures are diverse also from a different point of
view: While all CCA-secure KEMs follow the approach of first constructing a pas-
sively secure PKE and then using some generic transform to construct a CCA-secure
KEM, signature schemes are built using very different “templates”: Dilithium is us-
ing Fiat-Shamir, Falcon is using a hash-and-sign approach, hash-based signatures like
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SPHINCS™ are typically constructed using Merkle trees, yet other schemes (like the
round-3 alternate scheme Picnic) use multiparty-computation in the head.

1.3.1. Lattice-based signatures — Dilithium

Lattice-based signatures are divided into two major families either following the
hash-and-sign paradigm or the Fiat—Shamir-with-aborts approach. Hash-and-sign
schemes are represented in the NIST competition by Falcon and date back to 2003
when Hoffstein, Howgrave-Graham, Pipher, Silverman, and Whyte introduced
NTRUSign. Fiat-Shamir-with-aborts signatures date back to work by Lyubashevsky
in 2009. The corresponding finalist in the NIST competition is Dilithium. In the
following we focus on the Fiat—Shamir-with-aborts signatures and Dilithium.

Dilithium relies on the hardness of the MLWE problem (as introduced in §1.2.1)
and the Module-short-integer-solutions (MSIS) problem. The MSIS problem is to find
a “short” v € Ry, given a matrix A € R¥*‘, such that Av = 0 mod ¢. In particu-
lar, Dilithium requires a variant of MSIS called SelfTargetMSIS which asks to find a
vector [z c V] T with small coefficients and a hash of a message (i, such that

Z
H | pll[A[T] -

)
I
)

\%

with H arandom oracle, A € RZ” and t € RI; uniformly random, and I the identity
matrix.

1.3.1.1. Scheme definition

Dilithium is one of the two lattice-based signature finalists in the NIST standard-
ization process. It consists of three parameter sets aiming at the security levels 2, 3,
and 5. Across all parameter sets, the same polynomial ring R, = Z,[X]/(X" + 1)
with n = 256 and ¢ = 223 — 213 + 1 is used, allowing efficient polynomial multipli-
cation using NTTs. The core differences for each security level are the dimensions of
the matrix (k x £), the range of the masking vector (7 ), and the range of the secret
key (n). The parameters (k, £, v1,7) are (4,4, 217, 2) for security level 2, (6, 5,219, 4)
for security level 3, and (8, 7,29, 2) for security level 5. The remaining parameters
(d, T,72,w) are chosen accordingly.

We describe a simplified form of Dilithium without public key compression and
deterministic signing. The public key is (p, t) consisting of the seed p used to pseudo-
randomly sample the uniform matrix A € R’;Xf and t = As; + ss. The private key
is (p, t,s1, s2) consisting of the public key, and the two secret vectors s; and ss.

To sign a hash M of a message, a uniformly random masking vector y € Rfl with
coefficients in [—v1, 1] is sampled. The signer then computes w = Ay and computes
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the high bits of w (referred to as wy), such that w = 2yo,w; + wq. The challenge
polynomial c is derived from the hash H (M ||w1). Here H () is a special hash function
that outputs a “short” polynomial which has a small number of coefficients (7) set to
-1 or 1. A potential signature is computed as z = y + cs;. Outputting this signature
directly would potentially leak information about the secret s; and, hence, rejection
sampling has to be used. If a signature is rejected, the signer starts with a fresh masking
vector y and tries again. The signer rejects z checks if any coefficient of z is larger
than ; — 7. Additionally, the signer rejects if the lower bits of Ay — cs, are larger
than v, — 77 as this would result in a carry from the lower bits into the higher bits
of w during verification and, consequently, an invalid signature. The signature then
consists of (z, ¢).

To check a signature (z, ¢), the verifier re-computes the high bits of w as w} =
Az — ct. They can then check that ¢ = H (M ||w}). One also needs to verify that z
does not contain any coefficients larger than v; — 7).

There are two main differences between the simplified version of Dilithium above
compared to the specification submitted to NIST. A major difference is that Dilithium
uses compressed public keys, i.e., only the high bits t; of t = 2%, + t, are stored
in the public key. While this reduces public key size, it also slightly complicates the
scheme as the verifier is no longer able to reliably compute w; from z, ¢, and t;.
This is due to the carries introduced by cty from the lower part to the higher part of
w. This is resolved by adding a hint vector h containing the position of said carries
to the signature. Another difference is that Dilithium is deterministic rather than the
probabilistic scheme presented above. Instead of sampling y at random, Dilithium
derives it pseudo-randomly from a seed K (part of the secret key), the hash of the
message M, a hash of the public key ¢r (precomputed as a part of the secret key),
and a counter that is incremented in case of rejections. This results in a deterministic
signature scheme which is needed by some of the security proofs and is also preferable
in case no good randomness source is available.

1.3.1.2. Techniques for efficient implementation

Similar to Kyber, the core arithmetic operation is polynomial multiplication and
‘Rq is chosen, such that fast NTTs can be used. Dilithium uses a modulus ¢ for which
512-th roots of unity exist and, hence, a complete NTT is used. The implementation
techniques for NTTs described in §1.2.1 carry over to Dilithium. The core difference
to the Kyber NTTs is the much larger gq. As the modulus is 23 bits, the natural size of
coefficients in software implementations is 32 bits.

The large modulus, however, presents a challenge for some architectures as a long
32 x 32-bit constant-time multiplier is not always available. For example, the Arm
Cortex-M3 only has a variable-time long-multiply instruction which cannot be safely
used for computing 32-bit NTTs on secret inputs. Note that not all NTTs in Dilithium
are operating on secret inputs. For example, all NTTs in verifications as well as the
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NTT of ¢ and ty, may be performed using variable-time instructions. Another chal-
lenge is that, for example, AVX2 does not have a high-multiply for 32-bit inputs, but
only for 16-bit inputs. However, such an instruction is needed for fast Montgomery
multiplications. This is results in a much slower implementation as one has to fall
back to widening multiplications.

1.3.1.3. Techniques for secure implementation

For Dilithium implementations protected from timing side-channel attacks one has
to slightly deviate from the standard definition of constant-time implementations. Usu-
ally, a constant-time implementation is defined as not having any data flow from secret
data into branching conditions, memory addresses, or into instructions that have data-
dependent timing. However, Dilithium does have data flow from the secret key to the
signature which is used in a branching condition in the rejection sampling. However,
since the (candidate) signature is public according to the security proof, this does not
present any problem. When using standard tools for finding timing leaks in Dilithium
implementations, this branch will likely be found as a false positive.

Protecting Dilithium from other side-channel attacks proves to be significantly
harder than for lattice-based encryption. The polynomial arithmetic itself is easily
masked using arithmetic masking. However, the remainder of the scheme is much
harder to mask. In particular, the sampling of y and the rejection sampling are best
implemented using Boolean masking requiring a conversion between arithmetic and
Boolean masking. As of today, there is no fully masked implementation of Dilithium
available. The available masked implementations either implement the predecessor
GLP or modify Dilithium to use a power-of-two modulus allowing for more efficient
masking.

Differential fault attacks present a serious threat to Dilithium. When using the de-
terministic variant of Dilithium an adversary can inject a fault into the computation of
c. The faulty ¢’ is then used to compute a faulty signature z’ = y + ¢’s;. By subtract-
ing the faulty signature from a valid signature z = y + csy, it is easy to compute s;.
To prevent this attack, one should use the randomized variant of Dilithium whenever
fault attacks present a viable attack vector. For protecting against weak randomness,
Dilithium derives the masking vector from a secret seed K, the hash of the message
M, the hash of the public key tr, and a random value p'. If p’ is weak, the resulting
scheme is still secure.

1.3.2. Multivariate-quadratic-based signatures — UOV

Multivariate cryptography is based on the NP-hardness of solving a system of
multivariate polynomials. The public key is a multivariate polynomial system P :
F™ +— F™ over some finite field F, while the private key is a trapdoor secret that
allows the owner of the key to invert the multivariate system and to compute P~ !. For
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a multivariate encryption scheme, the ciphertext c is obtained by evaluating the system
for the plain text m as ¢ = P(m). In order to decrypt, the receiver computes m =
P~1(c) using the trapdoor secret. A signature scheme is constructed correspondingly
by computing the signature s as s = P~!(m). This signature can be verified by
evaluating the public map m’ = P(s) and by verifying that m = m/’.

The first multivariate-quadratic (MQ) signature scheme called C* was proposed by
Matsumoto and Imai in 1988. However, C* was later found to insecure by Patarin in
1995. Shortly after, in 1996, Patarin introduced an improved cryptosystem following
the idea of Matsumoto and Imai called Hidden Field Equations (HFE). While HFE in
general remains unbroken up until today, all efficient instantiation have been shown to
be insecure. Besides the HFE proposals there have been a number of proposals based
on the “Oil and Vinegar” scheme proposed by Patarin in 1997. Soon after, in 1998 the
original OV was shown to be insecure by Kipnis and Shamir. However, another year
later, in 1999, Kipnis, Patarin, and Goubin proposed an improved cryptosystem called
“Unbalanced oil and vinegar” (UOV). In the third round of the NIST PQC compe-
tition, there were two schemes based on MQ: the finalist Rainbow and the alternate
GeMSS. Rainbow is an extension of UOV, while GeMSS is based on HFE. In addition,
there was a third MQ-based scheme in the second round of the NIST PQC competition
called MQDSS neither based on UOV nor HFE. Unfortunately, all three have suffered
severe attacks in the process of the NIST PQC competition. We restrict this chapter to
the original UOV which remains unbroken up until today.

1.3.2.1. Scheme definition

The core construction of all MQ schemes is similar: Let I, be a finite field. A
common choice is Fyr, e.g., F15 or Fa56. A MQ scheme has a public map P = S o
QoT : IFg — IF;” where S : an — ]F;" and T : ]Fg — IFZ are randomly chosen affine
and easy to invert maps, i.e., S : w— = Mgw +wvgand T : y — z = Mpy + vp.
The central map Q : = — y, however, is quadratic and easy to invert. For UOV, the
map S may be omitted, and hence, P = Qo 7. This is, however, not the case for more
advanced schemes schemes like Rainbow and HFE.

Key generation consists of choosing S, 9, and 7, and computing P. To sign (a
hash of) a message w € 7", one applies the inverse of S, Q, and 7 to obtain the
signature z € [y To verify a signature z € Fj, one checks if (the hash of) the
message w’ is equal to P(z). For an MQ scheme to be secure P must be hard to invert

without the knowledge of S, Q, or T.

The security of any MQ scheme stems from the construction of the central map O.
For UOV, Q consists of m quadratic equations of the form

Yk = iiagf)xiwj + zv: zn: ﬁfjk)xz% + zn:’yi(k)xi + 6

i=1 j=1 i=1 j=v+1 i=1
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with v being the number of vinegar variables (z; for 1 < ¢ < v) and n being g the
total number of variables. It is easy to see that the 0 = n — v oil variables are not
combined with other oil variables in the quadratic terms. Without a loss of security,
the linear and constant terms can be left out, i.e., *yi(k) = 0 and 6(*) = 0 To compute
the inverse of Q, one choses the vinegar variables at random which turns the quadratic
equations into a linear system of equations which can be solved for the oil variables
(x; for v < 7 < n). In case no solution exists one restarts with another set of randomly
chosen vinegar variables.

A common optimization that does not affect the security is to restrict the map T
to linear maps, i.e., v = 0. Another optimization is to chose 7 to have a special

structure .
- {zmnsgo] |

OOX'UIOXO

This optimization does not impact the security of the schemes as for any public
key P there exists a 7 and Q and finding any pair 7, Q, such that P = Q o T breaks
the security of the scheme.

The public key consists of the m polynomials in P(z). Each polynomial has

WSH) coefficients corresponding to z;z; for 1 < i < j < n. For efficient implemen-

tation, we represent these polynomials as a Macauley matrix with m rows and %
columns. The columns are ordered, such that they correspond to the monomials z;z;

in lexicographic order. The matrix is stored in a column-major form.

1.3.2.2. Techniques for efficient implementation

Throughout key generation, signing, and verification, one needs efficient I, arith-
metic. We restrict the following to the most common case where ¢ = 2*. For other
choices (e.g., the popular choice ¢ = 31), other techniques are used. While addition is
trivial for Fox, multiplication and inversion require more attention. Multiplication is
much more dominant than inversion. It benefits well from vectorization as one always
operated on many field elements in parallel. If available, specialized instructions for
For should be used. For example, Intel’s Galois Field New Instructions (GFNI) and
Arm’s binary polynomial multiplication instructions can be beneficial with the for-
mer being much more powerful than the latter. Alternatively, in-register table lookups
(e.g., Arm Neon’s VTBL or Intel AVX2’s VPSHUFB) should be used if supported by
the platform. On platforms without either of the above, bitslicing is the preferred ap-
proach for implementing [Fo« multiplication. On platforms without a cache, one may
want to consider using table look-ups from memory.

During signing, the most time-consuming operation is the inversion of the central
map Q which requires to solve a linear system of equation. This is achieved using
constant-time Gaussian elimination. It proceeds as normal Gauss elimination, except
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when making sure that the pivot element is non-zero, one has to conditionally add all
the subsequent rows instead of just one. In case the system of linear equations does
not have a solution, one may abort early as one has to start with a fresh set of vinegar
variables.

For verification, the only operation besides hashing of the message, is the evalu-
ation of the public map. This consists of the computation of all monomials z;z; for
1 <4 < j < nfollowed by a multiplication of the product with the corresponding col-
umn in the Macauley matrix. The products are then accumulated. Since multiplication
is much more expensive than accumulation, it is beneficial to minimize the number
of field multiplications. This can be done by using one accumulator for each possi-
ble value of z;z; # 0, i.e., 15 accumulators for [F16. For Fa56, one can use two sets
of accumulators for the lower and higher nibble of z;z; separately, i.e., one requires
2 x 15 accumulators. Note that this results in a signature-dependent memory access
pattern, which can only be used if the signature is considered public or memory access
is constant-time.

1.3.2.3. Techniques for secure implementation

Work on protecting UOV or Rainbow from other side-channel attacks other than
timing attacks is very limited. For Rainbow, the straightforward target for DPA during
the signing operation is to attack the 7! computation which processes the secret
key 7! and the known input w. In UOV, the knowledge of 7! is sufficient to
forge signatures. In Rainbow, one additionally needs to recover S~! which can either
be done using algebraic attacks or by another side-channel attacks. The side-channel
attacks is possible since the signature z is known and S ! has a special sparse structure
allowing for a full recovery using CPA. Protection against CPA is not sufficiently
studied yet and up until today no masked implementations of either UOV or Rainbow
are available.

1.3.3. Hash-based signatures — XMSS and SPHINCS*

Hash-based signature schemes go back to the work by Lamport in 1979 on one-
time signature schemes constructed from a one-way function. The basic idea is to use
a secret bit string as private key and its hash value as public key. The most basic con-
struction is a one-time one-bit signature scheme: Alice generates two secret strings sg
and s; and publishes their hash values hg = h(sg) and h; = h(sy) as public verifi-
cation key. Since Alice is using a cryptographically secure hash function h(), nobody
can obtain sg and s; from hg and h;. If later Alice wants to sign the one-bit message
m, she releases the secret string s,,, alongside m. Anyone that earlier obtained the
public key (hg, h1) from Alice can now verify that h,, = h(s,,). Since previously
only Alice knew sg and sp, the one-bit message m must be from Alice. However,
since Alice released part of the secret information, she cannot use this private-public
key pair again. Hence, this simple scheme is a one-bit one-time signature scheme.
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To construct signature schemes for longer messages, more hash values can be pub-
lished as public key: To sign a 256-bit message, we could generate 2 x 256 hash val-
ues, using one pair to sign each bit of a 256-bit message. More efficiently, hash chains
can be used instead: Winternitz proposed to split a message of n bit into Iy = n/w
words of w bits and to concatenate the message with its check sum computed over the
message words, also split into /; words of w bits. The Winternitz one-time signature
scheme (WOTS) then uses [ = [y + [; hash chains, each of length 2" steps. To gen-
erate a public key, Alice starts out with [ secret bit strings 7; o with 0 < ¢ < [, she
hashes these strings 2* times such thatr; ;1 = h(r;, j) for 0 < ¢ < 2", and publishes
73,2+ as public key. To sign, she takes the 7th w-bit word of the message for 0 < i <[,
treats the w-bit word as an integer M; and recomputes the A;th chain step 7; s, of the
tth hash chain. The corresponding elements of all chains are then the signature. For
verification, Bob also for all 0 < ¢ < [ takes the ith w-bit word of the message and
treats it as an integer M;. He then hashes the signature element r; 57, another 2 — M;
times and verifies that he reaches the public key element 7; 2w . If that is the case for
all [ w-bit words of the message, the signature is successfully verified. This gives us a
fairly efficient arbitrary-length one-time signature scheme.

To get from arbitrary-length one-time signature schemes to arbitrary-length many-
time signature schemes, we can use binary Merkle trees as proposed by Merkle in
1989. The leave nodes of the Merkle tree are (a hash of) the public keys of one-time
signature schemes. The leave nodes are pairwise hashed over several layers of a binary
tree until a single root node is computed. The value of this root node is the public key.
For generating a signature in a Merkle tree, a verification path needs to be provided,
i.e., the pair-nodes on the layers of the Merkle tree that are required to reach the root
node from a given leave node such that for verification, the verifier can re-compute the
root node from a leave node and compare it to the public key. Using many arbitrary-
length one-time signature schemes as leave nodes of a binary Merkle hash-tree, we
obtain a arbitrary-length many-time signature scheme. Observe that the number of
possible signatures per signature key pair is limited by the height of the Merkle tree
and hence needs to be decided and fixed at key-generation time.

1.3.3.1. Scheme definition

Common hash-based signature schemes are the stateful signature schemes XMSS
and LMS as well as the stateless signature scheme SPHINCS™. In stateful signature
schemes, information needs to be stored at the signers side which one-time signature
schemes at the leaves of the Merkle tree already have been used; in stateless signature
scheme, such a state does not need to be maintained.

Both XMSS and LMS work as described above: They are using variants of WOTS
at the leaves of a binary Merkle tree. There are multi-tree versions of XMSS and
LMS were a leave node on one tree is used to sign a root node of another tree, which
provides a trade-off between computation time (key generation and signing) as well
as the signature length.
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As mentioned above, SPHINCS™ is a stateless signature scheme. This is achieved
by on the one hand using many layers in a multi-tree setting and on the other hand few-
time signature schemes at the highest tree level such that the probability is negligible
that a randomly selected leave is used more often than the few-time signature scheme
tolerates.

Both XMSS and SPHINCS™ are using masks as well as keyed hash-functions to
ward of multi-target attacks and provide strong security proofs while the construction
of LMS is slightly simpler and cheaper at the cost of reduced security guarantees.

1.3.3.2. Techniques for efficient implementation

The main cost factor of hash-based signature schemes is the computation of a hash
function with small inputs and small outputs many times. Hence, any optimization that
is applied to the hash function directly translates into a speed-up of key-generation,
signing, and verification. Common techniques for accelerating hash functions are to
provide hardware accelerators or instruction set extensions. Since many of the hash
operations are independent (e.g., hashing in the different WOTS chains), vectorization
and SIMD parallelization can be used.

Depending on the hash function and the parameter set, some prefixes in the hash
inputs may be repeated frequently during the hash computations. If these common
prefixes fit into one hash block, the resulting intermediate state can be stored and
restored instead of repeating corresponding hash computations.

For signing of stateful hash-based signature schemes, the Merkle trees are tra-
versed in order. Hence, some of the computations and some parts of the signature can
be shared between consecutive signing operations. Such information can be cached
and elaborate tree-traversal algorithms can be used to balance computational cost and
storage requirements for efficient signing operations. Such approaches typically are
less helpful for stateless signature schemes since the Merkle trees here are not tra-
versed in-order but the starting leaves are selected randomly between consecutive sig-
nature operations.

1.3.3.3. Techniques for secure implementation

The attack surface for side-channel attacks on hash-based signature schemes is
small. The majority of the computation occurs in the Merkle trees which only consist
of public data and is, hence, not relevant for passive side-channel attacks. The only
place where secret data is processed is the hash chains of the WOTS signatures and,
for SPHINCS™, the few-time signatures. However, these are only processing the secret
key and no other variable data known to the attacker. Hence, differential attacks (e.g.,
CPA) are not possible. The only viable attack type for these schemes appears to be
single-trace attacks. Another target is the generation of the secret keys. Those are
expanded from a seed together with the address of the corresponding secret key in the
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tree using a pseudo-random function. As the seed is global for the entire (hyper-)tree, it
is called many times with different addresses within a single signature generation. As
the address is known to the attacker, it allows attacking the seed in multiple invocations
of the pseudo-random function in a differential attack. Hence, the pseudo-random
function needs to be protected against side-channel attacks.

Fault attacks present a much larger threat for hash-based signatures, in particular if
they are stateless. The multi-tree structure of SPHINCS+ works and is secure despite
the use of one-time signatures at the leaves of the inner trees, because the entire struc-
ture is deterministically defined: Whenever the same inner leave node is visited during
a signing operation, then the same three node of the next higher tree is being signed —
hence, the same chain nodes of the one-time signature scheme are computed and re-
leased as part of the signature. If, however, a fault is introduced randomly at any time
during the signing process (e.g., during the pair-wise hashing in one of the Merkle
trees), then with high probability, the root node of the corresponding tree is going to
be different than in a non-faulted signature generation. Therefore, a different root node
is signed by the next lower one-time signature scheme. Signing different message with
the same one-time signature scheme breaks its security. Hence, if an attacker can inject
different faults during the computation of a specific sub-tree, an alternative private key
for the following one-time signature scheme can be derived, allowing the attacker to
sign arbitrary messages. A signature that has been faulted as described above still ver-
ifies correctly (as long as the lowest tree is not affected by the fault). Therefore, such a
faulty signature cannot simply be detected by verification. This puts SPHINCS+ (and
other hash-based signature schemes using a multi-tree structure such as XMSS-MT)
into significant risk in scenarios were an attacker can inject faults during signature
generation. For stateful schemes this can be prevented by caching intermediate signa-
tures, which is usually done to improve performance anyway.

NOTES AND FURTHER REFERENCES

§1.2.1 Lattice-based KEMs — Kyber: Lattice-based public-key encryption and key encapsulation
goes back to the NTRU scheme by Hoffstein, Pipher, and Silverman Hoffstein ef al. (1998). The
public-key encryption scheme used in Kyber was introduced by Lyubashevsky, Peikert, and Regev
in Lyubashevsky et al. (2010, 2013) and goes back to the work by Regev in Regev (2005, 2009).
Kyber was introduced in Bos et al. (2018); the latest version of the specification is in Schwabe
et al. (2022). It also draws many ideas, in particular with regards to a design enabling efficient
and secure implementations from the NewHope scheme from Alkim, Ducas, Poppelmann, and
Schwabe Alkim et al. (2016). The other two lattice-based KEM finalist schemes in the NIST PQC
project were NTRU Chen et al. (2020) and Saber D’ Anvers et al. (2020).

Over the last decade, many works improved the performance of multiplication in polynomial
rings that are used by lattice-based encryption schemes and KEMs. Some of these works em-
ploy Karatsuba or Toom techniques Bernstein et al. (2017); Karmakar et al. (2018); Kannwis-
cher et al. (2019), but most recent works focus on NTT-based multiplication in NTT-friendly
rings Alkim et al. (2020); Becker et al. (2021); Abdulrahman et al. (2022) and also in NTT-
unfriendly rings Alkim et al. (2021); Chung et al. (2021). Another recent direction of work on
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implementations of lattice-based crypto is formally verifying correctness of arithmetic Hwang
et al. (2022) or full schemes Almeida et al. (2023).

Various papers present masked implementations of lattice-based public-key encryption schemes
and KEMs Oder et al. (2018); Bos et al. (2021); Heinz et al. (2022); Kamucheka et al. (2022);
Beirendonck et al. (2021); Kundu et al. (2022) and building blocks D’ Anvers et al. (2023). Com-
bined countermeasures against side-channel and fault analysis are presented in Heinz and Poppel-
mann (2022); these are based on a redundant representation of coefficients in Z4 and adding a sort
of “checksum computations” through a CRT-based technique. A survey of side-channel protections
of lattice-based schemes is given in Ravi et al. (2022).

Even more papers present side-channel and fault attacks against lattice-based KEMs, some also
against protected implementations; see, e.g., Hamburg ef al. (2021); Ngo et al. (2021); Delvaux
and Merino Del Pozo (2021); Ngo et al. (2022,?); Backlund et al. (2022); Dubrova et al. (2022).
Another class of attack papers considers chosen-ciphertext attacks against the passively secure
PKE schemes that are typically underlying CCA-secure KEMs; see e.g., Fluhrer (2016); Bauer
et al. (2019); Qin et al. (2021). Although these attacks do not violate any security claims of the
schemes, they become relevant in a scenario where the information hidden by the FO transform
(i.e., the information if decryption succeeded) can be recovered from side-channel information.

§1.2.2 Code-based KEMs — Classic McEliece: The McEliece cryptosystem has been introduced in
McEliece (1978) and its dual variant by Niederreiter in Niederreiter (1986). The third-round spec-
ification of Classic McEliece can be found in Albrecht et al. (2020). Implementation tricks using
additive FFT and transpose FFT as well as a Bene$ network are expained in Chou (2017). Further
implementation tweaks can be found in Chen and Chou (2021). The hardware implementations
accompanying the Classic McEliece submission is described in Wang et al. (2017, 2018).
Code-based alternative candidates in the third round of the NIST standardizaton process are BIKE
(see Aragon et al. (2020)) and HQC (see Aguilar Melchor et al. (2020)). Since both BIKE and
HQC are using quasi-cyclic codes, their implementation requires efficient polynomial arithmetic.
BIKE is using a bit-flipping decoder while HQC uses the Berlekamp-Massey algorithm.

Another interesting code-family for the use in code-based cryptography are rank codes. Low Rank
Parity Check (LRPC) cods are used, e.g., for the round-1 schemes Ouroboros-R (see Aguilar Mel-
chor et al. (2017)), LAKE (see Aragon et al. (2017a)) and LOCKER (see Aragon et al. (2017b)).
These schemes havee been joined to ROLLO in round 2 (see Aragon et al. (2019)) and strongly
depend on efficient Gaussian reduction for rank computations during decapsulation.

Besides cryptanalytic attacks that attempt to exploit the code structure of a code-based scheme,
Information Set Decoding (ISD) is the most relevant generic attack. ISD goes back to Prange
(1962) and has been improved over time, e.g., by Lee and Brickell (1988); Stern (1988); Finiasz
and Sendrier (2009) and Becker et al. (2012). Security analyses of code-based schemes can be
found in, e.g., Baldi e al. (2019) and Esser and Bellini (2021).

§1.2.3 Isogeny-based KEMs: In a seminar held in 1997, Couveignes proposed an isogeny-based
scheme for mimicking the Diffie-Hellman key exchange protocol. Couveignes notes were later
posted in Couveignes (2006). The first concrete isogeny-based cryptographic primitive was pre-
sented by Charles, Lauter and Goren in Charles et al. (2009), where the authors proposed a hash
function whose collision resistance was extracted from the problem of path-finding in supersin-
gular isogeny graphs. As early as 2006, Rostovtsev and Stulbunov introduced in Rostovtsev and
Stolbunov (2006) isogeny-based cryptographic schemes, proposing a Diffie-Hellman-like proto-
col whose security guarantees were based on the difficulty of finding smooth-degree isogenies
between ordinary elliptic curves. While the best classical algorithm by Galbraith and Stolbunov,
solves this problem in full exponential time, Childs, Jao and Soukharev devised in 2014 a quan-
tum algorithm computing such isogenies in subexponential time. Jao and De Feo Jao and De Feo
(2011) proposed in late 2011 a Diffie-Hellman key-exchange scheme, this time relying on the dif-
ficulty of constructing isogenies between supersingular elliptic curves. Since the endomorphism
ring of a supersingular elliptic curve is no longer commutative, the underlying isogeny problem
was, for more than a decade, supposed to be much more difficult to solve. Within the context of
the NIST standardization process, it was proposed in Jao et al. (2020) a SIDH variant equipped
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with a key encapsulation mechanism called SIKE. SIKE was selected as one of the fourth-round
alternate KEM candidates of the NIST contest. Castryck and Decru Castryck and Decru (2022)
presented in July 2022 a devastating attack against SIKE that was quickly followed by Maino and
Martindale (2022); Robert (2022). Quickly after that, the authors of ISKE officially withdrawn
their NIST submission.

§1.2.4 IND-CCA?2 Security: The Fujisaki-Okamoto transform was introduced in 1999 in Fujisaki
and Okamoto (1999). The security as part of post-quantum constructions was extensively studied
in Hofheinz et al. (2017). Higher-order masking of the FO transform within lattice-based cryptog-
raphy is covered in Bos et al. (2021). PC oracle attacks were introduced and analyzed in D’ Anvers
et al. (2019) and Guo et al. (2022). Fault attacks on CCA-secure lattice schemes was first studied
in Pessl and Prokop (2021) and Hermelink et al. (2021).

§1.3.1 Lattice-based signatures — Dilithium: Lattice-based signature have a rather young history and
date back to NTRUSign Hoffstein et al. (2003). The NIST finalist Falcon Prest et al. (2020) is
based on NTRUSign. However, Dilithium Ducas et al. (2018); Lyubashevsky et al. (2020) is un-
related to NTRUSign and instead is based on Fiat—Shamir-with-aborts Lyubashevsky (2009). Ef-
ficient implementations of Dilithium are described in Seiler (2018) (AVX2) and Greconici et al.
(2021) (Cortex-M4). Fault attacks on Dilithium have been studied in Bruinderink and Pessl (2018).
In Barthe et al. (2018) masking GLP Giineysu et al. (2012) is studied. Masking Dilithium was
studied in Migliore et al. (2019).

§1.3.2 Multivariate-quadratic-based signatures — UOV: Multivariate-quadratic signature date back
to Matsumoto and Imai (1988). However, their original proposal C* got broken in Patarin (1995).
Later proposals include HFE Patarin (1996) and OV Patarin (1997). While the original OV pa-
rameters got broken in Kipnis and Shamir (1998), the variation UOV described in Kipnis et al.
(1999) remains unbroken up until today. Rainbow was proposed in Ding and Schmidt (2005) and
uses multiple layers of the UOV scheme. It was shown in Ding et al. (2008), that it can only be
secure with at most two layers. Rainbow is also a third-round finalist in the NIST PQC project. The
specification can be found in Ding et al. (2020). Other proposals in the NIST PQC competition
include GeMSS (specified in Casanova et al. (2020)), LUOV (specified in Beullens et al. (2019)),
and MQDSS (specified in Samardjiska et al. (2019)). However, all three have been shown to be
not secure in Tao et al. (2021), Ding et al. (2021), and Kales and Zaverucha (2020), respectively.
Rainbow also suffered numerous attacks Beullens (2021); Baena et al. (2022); Beullens (2022).
The most serious attack by Beullens in 2022 vastly reduces the security of Rainbow, essentially
breaking the level 1 parameter sets. The use of GFNI for Rainbow was studied in Drucker and
Gueron (2020). Rainbow implementations on x86 were studied in Chen et al. (2009). Bitsliced
implementations of Rainbow on the Cortex-M4 were studied in Chou et al. (2021). Constant-time
Gauss elimination was first described in Bernstein et al. (2013). The only work studying side-
channel attacks on Rainbow is Park er al. (2018). Fault attacks on Rainbow and UOV were studied
in Kriamer and Loiero (2019).

§1.3.3 Hash-based signatures — XMSS and SPHINCS™: The initial work on hash-based signatures by
Lamport is described in Lamport (1979) and the following constructions by Winternitz and Merkle
in Merkle (1990). The stateful signature schemes XMSS and LMS have been introduced in in
Buchmann et al. (2011) and Leighton and Micali (1995) and specified in IETF RFC 8391 Huelsing
et al. (2018) and RFC 8554 McGrew et al. (2019). The NIST PQC submission SPHINCS+ is
specified in Hulsing ef al. (2020). Parallelized vector implementations are described in, e.g., Ko1bl
(2018); Becker and Kannwischer (2022). Embedded and hardware implementations of hash-based
schemes are provided in, e.g., Wang et al. (2019); Campos et al. (2020). Side-channel analysis of
hash-based schemes is described in, e.g., Kannwischer et al. (2018). Fault-attacks are described
in, e.g., Castelnovi et al. (2018); Genét et al. (2018).
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