SHA-3 on ARM11 processors

Peter Schwabe

Joint work with Bo-Yin Yang, Shang-Yi Yang
July 11, 2012

Africacrypt 2012, Ifrane, Morocco



The SHA-3 competition

» Current situation of cryptographic hash functions:

» MDS5 is broken
» SHA-1 does not even offer 80 bits of security
» SHA-2 is based on a similar design as SHA-1

SHA-3 on ARM11 processors



The SHA-3 competition

» Current situation of cryptographic hash functions:

» MDS5 is broken
» SHA-1 does not even offer 80 bits of security
» SHA-2 is based on a similar design as SHA-1

» In 2007 NIST issued a public call for a new hash function: SHA-3

» By Oct. 2008: 64 submissions, 51 were selected as round-1
candidates

» July 2009: 14 candidates selected for round 2
» Dec. 2010: 5 finalists selected
» Final decision expected in 2012

SHA-3 on ARM11 processors



The SHA-3 finalists

» Blake, designed by Aumasson, Henzen, Meier, and Phan

» Grgstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,
Rechberger, Schlaffer, and Thomsen

» JH, designed by Wu
» Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche

» Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,
Kohno, Callas, and Walker

SHA-3 on ARM11 processors



The SHA-3 finalists

» Blake, designed by Aumasson, Henzen, Meier, and Phan

» Grgstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,
Rechberger, Schlaffer, and Thomsen

» JH, designed by Wu
» Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche

» Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,
Kohno, Callas, and Walker

» Requirement for all of these functions: Support output lengths of
224, 256, 384 and 512 bits

> In the following: Focus on 256-bit-output versions

SHA-3 on ARM11 processors



The SHA-3 finalists

» Blake, designed by Aumasson, Henzen, Meier, and Phan

» Grgstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,
Rechberger, Schlaffer, and Thomsen

» JH, designed by Wu
» Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche

» Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,
Kohno, Callas, and Walker

» Requirement for all of these functions: Support output lengths of
224, 256, 384 and 512 bits

> In the following: Focus on 256-bit-output versions

» No attacks against NIST's core requirements found in any of the
candidates

SHA-3 on ARM11 processors



The SHA-3 finalists

» Blake, designed by Aumasson, Henzen, Meier, and Phan

» Grgstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,
Rechberger, Schlaffer, and Thomsen

» JH, designed by Wu
» Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche

» Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,
Kohno, Callas, and Walker

» Requirement for all of these functions: Support output lengths of
224, 256, 384 and 512 bits

> In the following: Focus on 256-bit-output versions

» No attacks against NIST's core requirements found in any of the
candidates

» Important selection criterion: Performance in software

SHA-3 on ARM11 processors



Software performance of SHA-3 candidates

From the Announcing Request for Candidate Algorithm Nominations for
a New Cryptographic Hash Algorithm (SHA-3) Family, NIST, 2007:

“At a minimum, the submitter shall state efficiency estimates
for the “NIST SHA-3 Reference Platform” (specified in section
6.B) and for 8-bit processors.”

SHA-3 on ARM11 processors

a4



Software performance of SHA-3 candidates

From the Announcing Request for Candidate Algorithm Nominations for
a New Cryptographic Hash Algorithm (SHA-3) Family, NIST, 2007:

“Two optimized implementations of the candidate algorithm
shall be submitted—one implementation that is optimized for a
32-bit platform, and another for a 64-bit platform. The
optimized implementations shall be specified in the ANSI C
programming language.”

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

» From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

» From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

» Obvious choice for submitters and implementors: Focus on x86 and
x64

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

» From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

» Obvious choice for submitters and implementors: Focus on x86 and
x64

» How about performance on other platforms?

» How well do C compilers optimize the code?

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

» From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

» Obvious choice for submitters and implementors: Focus on x86 and
x64

» How about performance on other platforms?

» How well do C compilers optimize the code?

» Partial answer: eBASH — ECRYPT benchmarking of hash functions
by Bernstein and Lange

» Benchmark all submitted implementations of all candidates on > 90
computers

» Systematically try many different compilers and compiler options for
each implementation

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

» From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

» Obvious choice for submitters and implementors: Focus on x86 and
x64

» How about performance on other platforms?

» How well do C compilers optimize the code?

» Partial answer: eBASH — ECRYPT benchmarking of hash functions
by Bernstein and Lange

» Benchmark all submitted implementations of all candidates on > 90
computers

» Systematically try many different compilers and compiler options for
each implementation

» Portable implementations in C typically fall short in performance

» Still required: Optimized (assembly) implementations for all these
platforms

» Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors



ARM processors

» Most smartphones and tablets and many embedded devices are
powered by ARM processors

» One of the most widespread microarchitectures: ARM11
(> 500,000, 000 chips sold per year)

» Large portion of those chips is used in environments that want fast
crypto

SHA-3 on ARM11 processors



ARM processors

» Most smartphones and tablets and many embedded devices are
powered by ARM processors

» One of the most widespread microarchitectures: ARM11
(> 500,000, 000 chips sold per year)

» Large portion of those chips is used in environments that want fast
crypto

» Our paper: How fast are the 256-bit output versions of the 5
remaining SHA-3 candidates on ARM11

» Implementations in hand-optimized assembly

» For comparison we also implemented SHA-256

SHA-3 on ARM11 processors



ARM processors

» Most smartphones and tablets and many embedded devices are
powered by ARM processors

» One of the most widespread microarchitectures: ARM11
(> 500,000, 000 chips sold per year)

» Large portion of those chips is used in environments that want fast
crypto

» Our paper: How fast are the 256-bit output versions of the 5
remaining SHA-3 candidates on ARM11

» Implementations in hand-optimized assembly

» For comparison we also implemented SHA-256

» Further interpretations of the results:

> Performance of SHA-3 candidates on a “typical” 32-bit RISC
microarchitecture

» How good are compilers at optmizing existing C implementations for
a simple 32-bit architecture

SHA-3 on ARM11 processors



ARM11 development environment

» We want to run SUPERCOP (the eBASH benchmarking suite)
» Need a Linux or Unix system on an ARM11

> Need access to the CPU's cycle counter

SHA-3 on ARM11 processors 6



ARM11 development environment

We want to run SUPERCOP (the eBASH benchmarking suite)
Need a Linux or Unix system on an ARM11
Need access to the CPU's cycle counter

One possibility: Use ARM11 development boards
(e.g., FriendlyARM, Raspberry Pi)

vV v v Y

SHA-3 on ARM11 processors 6



ARM11 development environment

We want to run SUPERCOP (the eBASH benchmarking suite)
Need a Linux or Unix system on an ARM11
Need access to the CPU's cycle counter

One possibility: Use ARM11 development boards
(e.g., FriendlyARM, Raspberry Pi)

> Other possibility: Use an (Android) phone
» Root the phone, install Debian in a chroot environment

vV v v Y

» Obtain Android Linux kernel source code

SHA-3 on ARM11 processors



ARM11 development environment

We want to run SUPERCOP (the eBASH benchmarking suite)
Need a Linux or Unix system on an ARM11
Need access to the CPU's cycle counter

One possibility: Use ARM11 development boards
(e.g., FriendlyARM, Raspberry Pi)

Other possibility: Use an (Android) phone
Root the phone, install Debian in a chroot environment

vV v v Y

Obtain Android Linux kernel source code

vV v . v v

Enable cycle counter through kernel module by Bernstein

SHA-3 on ARM11 processors



ARM11 development environment

We want to run SUPERCOP (the eBASH benchmarking suite)
Need a Linux or Unix system on an ARM11
Need access to the CPU's cycle counter

One possibility: Use ARM11 development boards
(e.g., FriendlyARM, Raspberry Pi)

Other possibility: Use an (Android) phone
Root the phone, install Debian in a chroot environment

vV v v Y

Obtain Android Linux kernel source code

Enable cycle counter through kernel module by Bernstein

vV vy Vv V.Y

Our development environment:

» Samsung GT 7500 Galaxy smart phone
» GAOSP Android firmware

> 2.6.29 Linux kernel

» Debian running in chroot

SHA-3 on ARM11 processors



The ARM11 microarchitecture

v

16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

v

Executes at most one instruction per cycle

v

1 cycle latency for all relevant arithmetic instructions, 3 cycles for
loads from cache

Standard 32-bit RISC instruction set; two exceptions:

v

SHA-3 on ARM11 processors



The ARM11 microarchitecture

v

16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

v

Executes at most one instruction per cycle

v

1 cycle latency for all relevant arithmetic instructions, 3 cycles for
loads from cache
Standard 32-bit RISC instruction set; two exceptions:
» One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction
» This input is needed one cycle earlier in the pipeline = "“backwards
latency” + 1

v

SHA-3 on ARM11 processors



The ARM11 microarchitecture

v

16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

v

Executes at most one instruction per cycle

v

1 cycle latency for all relevant arithmetic instructions, 3 cycles for
loads from cache

Standard 32-bit RISC instruction set; two exceptions:

» One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

» This input is needed one cycle earlier in the pipeline = "“backwards
latency” + 1

» Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

v

SHA-3 on ARM11 processors



Blake implementation

» Main work: 14 rounds, each consisting of 8 evaluations of G
» Each G: 6 additions, 6 xors, 4 rotations by fixed distances
» This processes 64 bytes of input

SHA-3 on ARM11 processors



Blake implementation

» Main work: 14 rounds, each consisting of 8 evaluations of G
Each G: 6 additions, 6 xors, 4 rotations by fixed distances
This processes 64 bytes of input

Rotations are not applied to one input but to the output

vV Yy vy

Merge rotations of outputs with arithmetic:

» Do not rotate output after instruction, rotate for free when the value
is used as input

SHA-3 on ARM11 processors



Blake implementation

» Main work: 14 rounds, each consisting of 8 evaluations of G
Each G: 6 additions, 6 xors, 4 rotations by fixed distances
This processes 64 bytes of input

Rotations are not applied to one input but to the output

vV Yy vy

Merge rotations of outputs with arithmetic:

» Do not rotate output after instruction, rotate for free when the value
is used as input
» Eventually, both inputs of an instruction need to be rotated:

a <+ (b>>n1) O (c>>n).

» Compute:
a+ b0 (> (n2 —n1))

and set the implicit rotation distance of a to n1

SHA-3 on ARM11 processors



Blake implementation

» Main work: 14 rounds, each consisting of 8 evaluations of G
Each G: 6 additions, 6 xors, 4 rotations by fixed distances
This processes 64 bytes of input

Rotations are not applied to one input but to the output

vV Yy vy

Merge rotations of outputs with arithmetic:

» Do not rotate output after instruction, rotate for free when the value
is used as input
» Eventually, both inputs of an instruction need to be rotated:

a <+ (b>>n1) O (c>>n).

» Compute:
a+ b0 (> (n2 —n1))

and set the implicit rotation distance of a to n1
» With full unrolling this eliminates all but the last rotates

SHA-3 on ARM11 processors



Blake implementation

» Main work: 14 rounds, each consisting of 8 evaluations of G
Each G: 6 additions, 6 xors, 4 rotations by fixed distances
This processes 64 bytes of input

Rotations are not applied to one input but to the output

vV Yy vy

Merge rotations of outputs with arithmetic:

» Do not rotate output after instruction, rotate for free when the value
is used as input
» Eventually, both inputs of an instruction need to be rotated:

a <+ (b>>n1) O (c>>n).
» Compute:
a+ b0 (> (n2 —n1))

and set the implicit rotation distance of a to n1
» With full unrolling this eliminates all but the last rotates

» Additional optimization: Reduction of loads and stores

> Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors



Grgstl implementation

» Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

» Multiple possible implementation techniques: lookup tables,
bitslicing, vector permute

» Most promising for ARM11: lookup tables (similar to AES)

» Each round, each permutation: 64 64-bit table lookups and 56 xors
of 64-bit values

» This processes 64 bytes of input

SHA-3 on ARM11 processors



Grgstl implementation

» Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

» Multiple possible implementation techniques: lookup tables,
bitslicing, vector permute

» Most promising for ARM11: lookup tables (similar to AES)

» Each round, each permutation: 64 64-bit table lookups and 56 xors
of 64-bit values

» This processes 64 bytes of input
» Assembly implementation by Wieser: 140.17 cycles/byte
» Very well optimized but only uses 32-bit loads

SHA-3 on ARM11 processors



Grgstl

implementation

Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

Multiple possible implementation techniques: lookup tables,
bitslicing, vector permute

» Most promising for ARM11: lookup tables (similar to AES)

v

vV vVv.v v v .Y

Each round, each permutation: 64 64-bit table lookups and 56 xors
of 64-bit values

This processes 64 bytes of input

Assembly implementation by Wieser: 140.17 cycles/byte
Very well optimized but only uses 32-bit loads

With suitable tables (8 KB): support 64-bit loads

Use interleaved tables to reduce the size of constant offsets

Speed: 110.16 cycles/byte for long messages

SHA-3 on ARM11 processors



JH implementation

> Designed for bitsliced implementations (128-bit or 256-bit vectors)

» Main work: 42 rounds, each with 48 logical operations on 128-bit
vectors (4 operations on 32-bit words)

» This processes 64 bytes

SHA-3 on ARM11 processors



JH implementation

> Designed for bitsliced implementations (128-bit or 256-bit vectors)

» Main work: 42 rounds, each with 48 logical operations on 128-bit
vectors (4 operations on 32-bit words)

» This processes 64 bytes

» Full unrolling would result in very large code: unroll 7 loop iterations
instead

» Two loops: over 4 32-bit words and over 6 blocks of 7 rounds

» Reorder loops to avoid frequent loads and stores (requires attention
in the last two rounds of each block)

SHA-3 on ARM11 processors 10



JH implementation

Designed for bitsliced implementations (128-bit or 256-bit vectors)

» Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)
This processes 64 bytes

Full unrolling would result in very large code: unroll 7 loop iterations
instead

Two loops: over 4 32-bit words and over 6 blocks of 7 rounds

Reorder loops to avoid frequent loads and stores (requires attention
in the last two rounds of each block)

Additional operation: Swap blocks of adjacent bits (1-bit, 2-bit,
4-bit, ..., 64-bit blocks)

For 16-bit blocks: Use free rotation, for 8-bit blocks use revi6
instruction

Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors

10



Keccak

Keccak is operating on 64-bit words, but no additions involved

» Implementation technique suggested by designers for 32-bit

architectures: bit interleaving

All bits of odd positions in one 32-bit word, all bits at even positions
in another 32-bit word

Advantage: Rotations can be done as 32-bit rotations (free for
ARM11)

SHA-3 on ARM11 processors

11



Keccak

Keccak is operating on 64-bit words, but no additions involved

» Implementation technique suggested by designers for 32-bit

architectures: bit interleaving

All bits of odd positions in one 32-bit word, all bits at even positions
in another 32-bit word

Advantage: Rotations can be done as 32-bit rotations (free for
ARM11)

Main work: 24 rounds, each round consists of 150 xors and 50 ands
(and 55 rotates)

This processes 128 bytes

Merge (almost) all rotations with arithmetic as for Blake

SHA-3 on ARM11 processors

11



Keccak

Keccak is operating on 64-bit words, but no additions involved

» Implementation technique suggested by designers for 32-bit

vV v.v. v .Yy

architectures: bit interleaving

All bits of odd positions in one 32-bit word, all bits at even positions
in another 32-bit word

Advantage: Rotations can be done as 32-bit rotations (free for
ARM11)

Main work: 24 rounds, each round consists of 150 xors and 50 ands
(and 55 rotates)

This processes 128 bytes

Merge (almost) all rotations with arithmetic as for Blake
Main trouble: Almost 50% overhead from loads and stores
This is with use of 64-bit stores

Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors

11



Skein

v

v

v

v

Main work: 72 rounds, each performing 4 MIX operations

Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit
rotation

After each 4 rounds: “key injection” (round-constant injection)

This processes 64 bytes

SHA-3 on ARM11 processors



Skein

» Main work: 72 rounds, each performing 4 MIX operations
» Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

vV v . v v

rotation

After each 4 rounds: “key injection” (round-constant injection)
This processes 64 bytes

Naive implementation has huge overhead from register spills

Optimization consists in rearranging independent MIX operations to
reduce number of spills

SHA-3 on ARM11 processors

12



Skein

» Main work: 72 rounds, each performing 4 MIX operations
» Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

vV v . v v

rotation

After each 4 rounds: “key injection” (round-constant injection)
This processes 64 bytes

Naive implementation has huge overhead from register spills

Optimization consists in rearranging independent MIX operations to
reduce number of spills

Furthermore, we precompute part of the key injection: speedup by
1.78 cycles/byte

Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors

12



Results

Cycles/byte reported by eBASH on a Samsung Galaxy i7500 smart phone

(528 MHz ARM11) for long messages (median):

This paper | Previously fastest in eBASH

Blake 33.93 46.29 (sphlib v3.0)
Grgstl 110.16 | 140.17 (arm32, assembly!)
JH 156.43 262.34 (bitslice_opt32,
(benchmark from diablo)

Keccak 71.73 86.95 (simple32bi)
Skein 42.10 94.57 (sphlib-small v3.0)
SHA-256 26.60 30.19 (sphlib v3.0)

Details for various message lengths and quartiles in the paper.

SHA-3 on ARM11 processors

13



Some remarks and conclusion

Why is every SHA-3 finalist slower than SHA-256 on ARM117

» SHA-256 (as Blake-256) is designed for 32-bit processors
» SHA-256 uses smaller state that fits into registers (fewer spills)

SHA-3 on ARM11 processors 14



Some remarks and conclusion

Why is every SHA-3 finalist slower than SHA-256 on ARM117

» SHA-256 (as Blake-256) is designed for 32-bit processors
» SHA-256 uses smaller state that fits into registers (fewer spills)

How about software side channels?

» Grgstl implementation is vulnerable to timing attacks
» All other implementations run in constant time
» Constant-time Grgstl would be much (?) slower on ARM11

SHA-3 on ARM11 processors 14



Some remarks and conclusion

Why is every SHA-3 finalist slower than SHA-256 on ARM117

» SHA-256 (as Blake-256) is designed for 32-bit processors
» SHA-256 uses smaller state that fits into registers (fewer spills)

How about software side channels?
» Grgstl implementation is vulnerable to timing attacks
» All other implementations run in constant time

» Constant-time Grgstl would be much (?) slower on ARM11

How fast can you be with C implementations?

» Compilers don't optimize generic C implementations well enough
» Some tricks would have been possible also in C

» Then again: Writing micro-architecture-optimized code in C cannot
really be the point

SHA-3 on ARM11 processors 14



Results online

» All software is in the public domain and included in SUPERCOP
http://bench.cr.yp.to/supercop.html

» Paper is online at http://cryptojedi.org/papers/#sha3arm
» Slides will be online http://cryptojedi.org/users/peter/#talks

SHA-3 on ARM11 processors



