
SHA-3 on ARM11 processors

Peter Schwabe

Joint work with Bo-Yin Yang, Shang-Yi Yang

July 11, 2012

Africacrypt 2012, Ifrane, Morocco



The SHA-3 competition

I Current situation of cryptographic hash functions:
I MD5 is broken
I SHA-1 does not even offer 80 bits of security
I SHA-2 is based on a similar design as SHA-1

I In 2007 NIST issued a public call for a new hash function: SHA-3
I By Oct. 2008: 64 submissions, 51 were selected as round-1

candidates
I July 2009: 14 candidates selected for round 2
I Dec. 2010: 5 finalists selected
I Final decision expected in 2012

SHA-3 on ARM11 processors 2



The SHA-3 competition

I Current situation of cryptographic hash functions:
I MD5 is broken
I SHA-1 does not even offer 80 bits of security
I SHA-2 is based on a similar design as SHA-1

I In 2007 NIST issued a public call for a new hash function: SHA-3
I By Oct. 2008: 64 submissions, 51 were selected as round-1

candidates
I July 2009: 14 candidates selected for round 2
I Dec. 2010: 5 finalists selected
I Final decision expected in 2012

SHA-3 on ARM11 processors 2



The SHA-3 finalists

I Blake, designed by Aumasson, Henzen, Meier, and Phan
I Grøstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,

Rechberger, Schläffer, and Thomsen
I JH, designed by Wu
I Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche
I Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,

Kohno, Callas, and Walker

I Requirement for all of these functions: Support output lengths of
224, 256, 384 and 512 bits

I In the following: Focus on 256-bit-output versions
I No attacks against NIST’s core requirements found in any of the

candidates
I Important selection criterion: Performance in software

SHA-3 on ARM11 processors 3



The SHA-3 finalists

I Blake, designed by Aumasson, Henzen, Meier, and Phan
I Grøstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,

Rechberger, Schläffer, and Thomsen
I JH, designed by Wu
I Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche
I Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,

Kohno, Callas, and Walker
I Requirement for all of these functions: Support output lengths of

224, 256, 384 and 512 bits
I In the following: Focus on 256-bit-output versions

I No attacks against NIST’s core requirements found in any of the
candidates

I Important selection criterion: Performance in software

SHA-3 on ARM11 processors 3



The SHA-3 finalists

I Blake, designed by Aumasson, Henzen, Meier, and Phan
I Grøstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,

Rechberger, Schläffer, and Thomsen
I JH, designed by Wu
I Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche
I Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,

Kohno, Callas, and Walker
I Requirement for all of these functions: Support output lengths of

224, 256, 384 and 512 bits
I In the following: Focus on 256-bit-output versions
I No attacks against NIST’s core requirements found in any of the

candidates

I Important selection criterion: Performance in software

SHA-3 on ARM11 processors 3



The SHA-3 finalists

I Blake, designed by Aumasson, Henzen, Meier, and Phan
I Grøstl, designed by Gauravaram, Knudsen, Matusiewicz, Mendel,

Rechberger, Schläffer, and Thomsen
I JH, designed by Wu
I Keccak, designed by Bertoni, Daemen, Peeters, and Van Assche
I Skein, designed by Ferguson, Lucks, Schneier, Whiting, Bellare,

Kohno, Callas, and Walker
I Requirement for all of these functions: Support output lengths of

224, 256, 384 and 512 bits
I In the following: Focus on 256-bit-output versions
I No attacks against NIST’s core requirements found in any of the

candidates
I Important selection criterion: Performance in software

SHA-3 on ARM11 processors 3



Software performance of SHA-3 candidates
From the Announcing Request for Candidate Algorithm Nominations for
a New Cryptographic Hash Algorithm (SHA–3) Family, NIST, 2007:

“At a minimum, the submitter shall state efficiency estimates
for the “NIST SHA–3 Reference Platform” (specified in section
6.B) and for 8-bit processors.”

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?
I Partial answer: eBASH – ECRYPT benchmarking of hash functions

by Bernstein and Lange
I Benchmark all submitted implementations of all candidates on > 90

computers
I Systematically try many different compilers and compiler options for

each implementation
I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates
From the Announcing Request for Candidate Algorithm Nominations for
a New Cryptographic Hash Algorithm (SHA–3) Family, NIST, 2007:

“Two optimized implementations of the candidate algorithm
shall be submitted—one implementation that is optimized for a
32-bit platform, and another for a 64-bit platform. The
optimized implementations shall be specified in the ANSI C
programming language.”

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?
I Partial answer: eBASH – ECRYPT benchmarking of hash functions

by Bernstein and Lange
I Benchmark all submitted implementations of all candidates on > 90

computers
I Systematically try many different compilers and compiler options for

each implementation
I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?
I Partial answer: eBASH – ECRYPT benchmarking of hash functions

by Bernstein and Lange
I Benchmark all submitted implementations of all candidates on > 90

computers
I Systematically try many different compilers and compiler options for

each implementation
I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?
I Partial answer: eBASH – ECRYPT benchmarking of hash functions

by Bernstein and Lange
I Benchmark all submitted implementations of all candidates on > 90

computers
I Systematically try many different compilers and compiler options for

each implementation
I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?

I Partial answer: eBASH – ECRYPT benchmarking of hash functions
by Bernstein and Lange

I Benchmark all submitted implementations of all candidates on > 90
computers

I Systematically try many different compilers and compiler options for
each implementation

I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?
I Partial answer: eBASH – ECRYPT benchmarking of hash functions

by Bernstein and Lange
I Benchmark all submitted implementations of all candidates on > 90

computers
I Systematically try many different compilers and compiler options for

each implementation

I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



Software performance of SHA-3 candidates

I From section 6.B: NIST Reference Platform: Wintel personal
computer, with an Intel Core 2 Duo Processor, 2.4GHz clock speed,
2GB RAM, running Windows Vista Ultimate 32-bit (x86) and 64-bit
(x64) Edition.

I Obvious choice for submitters and implementors: Focus on x86 and
x64

I How about performance on other platforms?
I How well do C compilers optimize the code?
I Partial answer: eBASH – ECRYPT benchmarking of hash functions

by Bernstein and Lange
I Benchmark all submitted implementations of all candidates on > 90

computers
I Systematically try many different compilers and compiler options for

each implementation
I Portable implementations in C typically fall short in performance
I Still required: Optimized (assembly) implementations for all these

platforms
I Mid-2011: Only one of the finalists optimized for ARM processors

SHA-3 on ARM11 processors 4



ARM processors

I Most smartphones and tablets and many embedded devices are
powered by ARM processors

I One of the most widespread microarchitectures: ARM11
(> 500, 000, 000 chips sold per year)

I Large portion of those chips is used in environments that want fast
crypto

I Our paper: How fast are the 256-bit output versions of the 5
remaining SHA-3 candidates on ARM11

I Implementations in hand-optimized assembly
I For comparison we also implemented SHA-256
I Further interpretations of the results:

I Performance of SHA-3 candidates on a “typical” 32-bit RISC
microarchitecture

I How good are compilers at optmizing existing C implementations for
a simple 32-bit architecture

SHA-3 on ARM11 processors 5



ARM processors

I Most smartphones and tablets and many embedded devices are
powered by ARM processors

I One of the most widespread microarchitectures: ARM11
(> 500, 000, 000 chips sold per year)

I Large portion of those chips is used in environments that want fast
crypto

I Our paper: How fast are the 256-bit output versions of the 5
remaining SHA-3 candidates on ARM11

I Implementations in hand-optimized assembly
I For comparison we also implemented SHA-256

I Further interpretations of the results:
I Performance of SHA-3 candidates on a “typical” 32-bit RISC

microarchitecture
I How good are compilers at optmizing existing C implementations for

a simple 32-bit architecture

SHA-3 on ARM11 processors 5



ARM processors

I Most smartphones and tablets and many embedded devices are
powered by ARM processors

I One of the most widespread microarchitectures: ARM11
(> 500, 000, 000 chips sold per year)

I Large portion of those chips is used in environments that want fast
crypto

I Our paper: How fast are the 256-bit output versions of the 5
remaining SHA-3 candidates on ARM11

I Implementations in hand-optimized assembly
I For comparison we also implemented SHA-256
I Further interpretations of the results:

I Performance of SHA-3 candidates on a “typical” 32-bit RISC
microarchitecture

I How good are compilers at optmizing existing C implementations for
a simple 32-bit architecture

SHA-3 on ARM11 processors 5



ARM11 development environment

I We want to run SUPERCOP (the eBASH benchmarking suite)
I Need a Linux or Unix system on an ARM11
I Need access to the CPU’s cycle counter

I One possibility: Use ARM11 development boards
(e.g., FriendlyARM, Raspberry Pi)

I Other possibility: Use an (Android) phone
I Root the phone, install Debian in a chroot environment
I Obtain Android Linux kernel source code
I Enable cycle counter through kernel module by Bernstein
I Our development environment:

I Samsung GT i7500 Galaxy smart phone
I GAOSP Android firmware
I 2.6.29 Linux kernel
I Debian running in chroot

SHA-3 on ARM11 processors 6



ARM11 development environment

I We want to run SUPERCOP (the eBASH benchmarking suite)
I Need a Linux or Unix system on an ARM11
I Need access to the CPU’s cycle counter
I One possibility: Use ARM11 development boards

(e.g., FriendlyARM, Raspberry Pi)

I Other possibility: Use an (Android) phone
I Root the phone, install Debian in a chroot environment
I Obtain Android Linux kernel source code
I Enable cycle counter through kernel module by Bernstein
I Our development environment:

I Samsung GT i7500 Galaxy smart phone
I GAOSP Android firmware
I 2.6.29 Linux kernel
I Debian running in chroot

SHA-3 on ARM11 processors 6



ARM11 development environment

I We want to run SUPERCOP (the eBASH benchmarking suite)
I Need a Linux or Unix system on an ARM11
I Need access to the CPU’s cycle counter
I One possibility: Use ARM11 development boards

(e.g., FriendlyARM, Raspberry Pi)
I Other possibility: Use an (Android) phone
I Root the phone, install Debian in a chroot environment
I Obtain Android Linux kernel source code

I Enable cycle counter through kernel module by Bernstein
I Our development environment:

I Samsung GT i7500 Galaxy smart phone
I GAOSP Android firmware
I 2.6.29 Linux kernel
I Debian running in chroot

SHA-3 on ARM11 processors 6



ARM11 development environment

I We want to run SUPERCOP (the eBASH benchmarking suite)
I Need a Linux or Unix system on an ARM11
I Need access to the CPU’s cycle counter
I One possibility: Use ARM11 development boards

(e.g., FriendlyARM, Raspberry Pi)
I Other possibility: Use an (Android) phone
I Root the phone, install Debian in a chroot environment
I Obtain Android Linux kernel source code
I Enable cycle counter through kernel module by Bernstein

I Our development environment:
I Samsung GT i7500 Galaxy smart phone
I GAOSP Android firmware
I 2.6.29 Linux kernel
I Debian running in chroot

SHA-3 on ARM11 processors 6



ARM11 development environment

I We want to run SUPERCOP (the eBASH benchmarking suite)
I Need a Linux or Unix system on an ARM11
I Need access to the CPU’s cycle counter
I One possibility: Use ARM11 development boards

(e.g., FriendlyARM, Raspberry Pi)
I Other possibility: Use an (Android) phone
I Root the phone, install Debian in a chroot environment
I Obtain Android Linux kernel source code
I Enable cycle counter through kernel module by Bernstein
I Our development environment:

I Samsung GT i7500 Galaxy smart phone
I GAOSP Android firmware
I 2.6.29 Linux kernel
I Debian running in chroot

SHA-3 on ARM11 processors 6



The ARM11 microarchitecture

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

SHA-3 on ARM11 processors 7



The ARM11 microarchitecture

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

SHA-3 on ARM11 processors 7



The ARM11 microarchitecture

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

SHA-3 on ARM11 processors 7



Blake implementation

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I This processes 64 bytes of input

I Rotations are not applied to one input but to the output
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates

I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Blake implementation

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I This processes 64 bytes of input
I Rotations are not applied to one input but to the output
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates
I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Blake implementation

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I This processes 64 bytes of input
I Rotations are not applied to one input but to the output
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates
I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Blake implementation

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I This processes 64 bytes of input
I Rotations are not applied to one input but to the output
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates

I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Blake implementation

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I This processes 64 bytes of input
I Rotations are not applied to one input but to the output
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates
I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Grøstl implementation

I Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

I Multiple possible implementation techniques: lookup tables,
bitslicing, vector permute

I Most promising for ARM11: lookup tables (similar to AES)
I Each round, each permutation: 64 64-bit table lookups and 56 xors

of 64-bit values
I This processes 64 bytes of input

I Assembly implementation by Wieser: 140.17 cycles/byte
I Very well optimized but only uses 32-bit loads
I With suitable tables (8 KB): support 64-bit loads
I Use interleaved tables to reduce the size of constant offsets
I Speed: 110.16 cycles/byte for long messages

SHA-3 on ARM11 processors 9



Grøstl implementation

I Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

I Multiple possible implementation techniques: lookup tables,
bitslicing, vector permute

I Most promising for ARM11: lookup tables (similar to AES)
I Each round, each permutation: 64 64-bit table lookups and 56 xors

of 64-bit values
I This processes 64 bytes of input
I Assembly implementation by Wieser: 140.17 cycles/byte
I Very well optimized but only uses 32-bit loads

I With suitable tables (8 KB): support 64-bit loads
I Use interleaved tables to reduce the size of constant offsets
I Speed: 110.16 cycles/byte for long messages

SHA-3 on ARM11 processors 9



Grøstl implementation

I Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

I Multiple possible implementation techniques: lookup tables,
bitslicing, vector permute

I Most promising for ARM11: lookup tables (similar to AES)
I Each round, each permutation: 64 64-bit table lookups and 56 xors

of 64-bit values
I This processes 64 bytes of input
I Assembly implementation by Wieser: 140.17 cycles/byte
I Very well optimized but only uses 32-bit loads
I With suitable tables (8 KB): support 64-bit loads
I Use interleaved tables to reduce the size of constant offsets
I Speed: 110.16 cycles/byte for long messages

SHA-3 on ARM11 processors 9



JH implementation

I Designed for bitsliced implementations (128-bit or 256-bit vectors)
I Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)
I This processes 64 bytes

I Full unrolling would result in very large code: unroll 7 loop iterations
instead

I Two loops: over 4 32-bit words and over 6 blocks of 7 rounds
I Reorder loops to avoid frequent loads and stores (requires attention

in the last two rounds of each block)
I Additional operation: Swap blocks of adjacent bits (1-bit, 2-bit,

4-bit, . . . , 64-bit blocks)
I For 16-bit blocks: Use free rotation, for 8-bit blocks use rev16

instruction
I Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors 10



JH implementation

I Designed for bitsliced implementations (128-bit or 256-bit vectors)
I Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)
I This processes 64 bytes
I Full unrolling would result in very large code: unroll 7 loop iterations

instead
I Two loops: over 4 32-bit words and over 6 blocks of 7 rounds
I Reorder loops to avoid frequent loads and stores (requires attention

in the last two rounds of each block)

I Additional operation: Swap blocks of adjacent bits (1-bit, 2-bit,
4-bit, . . . , 64-bit blocks)

I For 16-bit blocks: Use free rotation, for 8-bit blocks use rev16
instruction

I Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors 10



JH implementation

I Designed for bitsliced implementations (128-bit or 256-bit vectors)
I Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)
I This processes 64 bytes
I Full unrolling would result in very large code: unroll 7 loop iterations

instead
I Two loops: over 4 32-bit words and over 6 blocks of 7 rounds
I Reorder loops to avoid frequent loads and stores (requires attention

in the last two rounds of each block)
I Additional operation: Swap blocks of adjacent bits (1-bit, 2-bit,

4-bit, . . . , 64-bit blocks)
I For 16-bit blocks: Use free rotation, for 8-bit blocks use rev16

instruction
I Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors 10



Keccak

I Keccak is operating on 64-bit words, but no additions involved
I Implementation technique suggested by designers for 32-bit

architectures: bit interleaving
I All bits of odd positions in one 32-bit word, all bits at even positions

in another 32-bit word
I Advantage: Rotations can be done as 32-bit rotations (free for

ARM11)

I Main work: 24 rounds, each round consists of 150 xors and 50 ands
(and 55 rotates)

I This processes 128 bytes
I Merge (almost) all rotations with arithmetic as for Blake
I Main trouble: Almost 50% overhead from loads and stores
I This is with use of 64-bit stores
I Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors 11



Keccak

I Keccak is operating on 64-bit words, but no additions involved
I Implementation technique suggested by designers for 32-bit

architectures: bit interleaving
I All bits of odd positions in one 32-bit word, all bits at even positions

in another 32-bit word
I Advantage: Rotations can be done as 32-bit rotations (free for

ARM11)
I Main work: 24 rounds, each round consists of 150 xors and 50 ands

(and 55 rotates)
I This processes 128 bytes
I Merge (almost) all rotations with arithmetic as for Blake

I Main trouble: Almost 50% overhead from loads and stores
I This is with use of 64-bit stores
I Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors 11



Keccak

I Keccak is operating on 64-bit words, but no additions involved
I Implementation technique suggested by designers for 32-bit

architectures: bit interleaving
I All bits of odd positions in one 32-bit word, all bits at even positions

in another 32-bit word
I Advantage: Rotations can be done as 32-bit rotations (free for

ARM11)
I Main work: 24 rounds, each round consists of 150 xors and 50 ands

(and 55 rotates)
I This processes 128 bytes
I Merge (almost) all rotations with arithmetic as for Blake
I Main trouble: Almost 50% overhead from loads and stores
I This is with use of 64-bit stores
I Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors 11



Skein

I Main work: 72 rounds, each performing 4 MIX operations
I Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

rotation
I After each 4 rounds: “key injection” (round-constant injection)
I This processes 64 bytes

I Naive implementation has huge overhead from register spills
I Optimization consists in rearranging independent MIX operations to

reduce number of spills
I Furthermore, we precompute part of the key injection: speedup by

1.78 cycles/byte
I Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors 12



Skein

I Main work: 72 rounds, each performing 4 MIX operations
I Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

rotation
I After each 4 rounds: “key injection” (round-constant injection)
I This processes 64 bytes
I Naive implementation has huge overhead from register spills
I Optimization consists in rearranging independent MIX operations to

reduce number of spills

I Furthermore, we precompute part of the key injection: speedup by
1.78 cycles/byte

I Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors 12



Skein

I Main work: 72 rounds, each performing 4 MIX operations
I Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

rotation
I After each 4 rounds: “key injection” (round-constant injection)
I This processes 64 bytes
I Naive implementation has huge overhead from register spills
I Optimization consists in rearranging independent MIX operations to

reduce number of spills
I Furthermore, we precompute part of the key injection: speedup by

1.78 cycles/byte
I Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors 12



Results

Cycles/byte reported by eBASH on a Samsung Galaxy i7500 smart phone
(528 MHz ARM11) for long messages (median):

This paper Previously fastest in eBASH
Blake 33.93 46.29 (sphlib v3.0)
Grøstl 110.16 140.17 (arm32, assembly!)
JH 156.43 262.34 (bitslice_opt32,

(benchmark from diablo)
Keccak 71.73 86.95 (simple32bi)
Skein 42.10 94.57 (sphlib-small v3.0)
SHA-256 26.60 39.19 (sphlib v3.0)

Details for various message lengths and quartiles in the paper.

SHA-3 on ARM11 processors 13



Some remarks and conclusion

Why is every SHA-3 finalist slower than SHA-256 on ARM11?
I SHA-256 (as Blake-256) is designed for 32-bit processors
I SHA-256 uses smaller state that fits into registers (fewer spills)

How about software side channels?
I Grøstl implementation is vulnerable to timing attacks
I All other implementations run in constant time
I Constant-time Grøstl would be much (?) slower on ARM11

How fast can you be with C implementations?
I Compilers don’t optimize generic C implementations well enough
I Some tricks would have been possible also in C
I Then again: Writing micro-architecture-optimized code in C cannot

really be the point

SHA-3 on ARM11 processors 14



Some remarks and conclusion

Why is every SHA-3 finalist slower than SHA-256 on ARM11?
I SHA-256 (as Blake-256) is designed for 32-bit processors
I SHA-256 uses smaller state that fits into registers (fewer spills)

How about software side channels?
I Grøstl implementation is vulnerable to timing attacks
I All other implementations run in constant time
I Constant-time Grøstl would be much (?) slower on ARM11

How fast can you be with C implementations?
I Compilers don’t optimize generic C implementations well enough
I Some tricks would have been possible also in C
I Then again: Writing micro-architecture-optimized code in C cannot

really be the point

SHA-3 on ARM11 processors 14



Some remarks and conclusion

Why is every SHA-3 finalist slower than SHA-256 on ARM11?
I SHA-256 (as Blake-256) is designed for 32-bit processors
I SHA-256 uses smaller state that fits into registers (fewer spills)

How about software side channels?
I Grøstl implementation is vulnerable to timing attacks
I All other implementations run in constant time
I Constant-time Grøstl would be much (?) slower on ARM11

How fast can you be with C implementations?
I Compilers don’t optimize generic C implementations well enough
I Some tricks would have been possible also in C
I Then again: Writing micro-architecture-optimized code in C cannot

really be the point

SHA-3 on ARM11 processors 14



Results online

I All software is in the public domain and included in SUPERCOP
http://bench.cr.yp.to/supercop.html

I Paper is online at http://cryptojedi.org/papers/#sha3arm
I Slides will be online http://cryptojedi.org/users/peter/#talks

SHA-3 on ARM11 processors 15


