Software implementation of Post-Quantum Cryptography

Peter Schwabe

Radboud University Nijmegen, The Netherlands

October 20, 2013
ASCrypto 2013, Florianópolis, Brazil

Part I

Optimizing cryptographic software with vector instructions

Computers and computer programs

A highly simplified view

- A program is a sequence of instructions
- Load/Store instructions move data between memory and registers (processed by the L/S unit)
- Branch instructions (conditionally) jump to a position in the program
- Arithmetic instructions perform simple operations on values in registers (processed by the ALU)
- Registers are fast (fixed-size) storage units, addressed "by name"

A first program
 Adding up 1000 integers

1. Set register R 1 to zero
2. Set register R2 to zero
3. Load 32-bits from address START+R2 into register R3
4. Add 32-bit integers in R1 and R3, write the result in R1
5. Increase value in register R2 by 4
6. Compare value in register R2 to 4000
7. Goto line 3 if $R 2$ was smaller than 4000

A first program

Adding up 1000 integers in readable syntax

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<
```


Running the program

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction

Running the program

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction
- Other approach: Chop instructions into smaller tasks, e.g. for addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

Running the program

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction
- Other approach: Chop instructions into smaller tasks, e.g. for addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

- Overlap instructions (e.g., while one instruction is in step 2, the next one can do step 1 etc.)
- This is called pipelined execution (many more stages possible)
- Advantage: cycles can be much shorter (higher clock speed)

Running the program

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction
- Other approach: Chop instructions into smaller tasks, e.g. for addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

- Overlap instructions (e.g., while one instruction is in step 2, the next one can do step 1 etc.)
- This is called pipelined execution (many more stages possible)
- Advantage: cycles can be much shorter (higher clock speed)
- Requirement for overlapping execution: instructions have to be independent

Throughput and latency

- While the ALU is executing an instruction the L/S and branch units are idle

Throughput and latency

- While the ALU is executing an instruction the L/S and branch units are idle
- Idea: Duplicate fetch and decode, handle two or three instructions per cycle
- While we're at it: Why not deploy two ALUs
- This concept is called superscalar execution

Throughput and latency

- While the ALU is executing an instruction the L/S and branch units are idle
- Idea: Duplicate fetch and decode, handle two or three instructions per cycle
- While we're at it: Why not deploy two ALUs
- This concept is called superscalar execution
- Number of independent instructions of one type per cycle: throughput
- Number of cycles that need to pass before the result can be used: latency

An example computer
 Still highly simplified

Latencies and throughputs

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

Adding up 1000 integers on this computer

Latencies and throughputs

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

Adding up 1000 integers on this computer

Latencies and throughputs

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

Adding up 1000 integers on this computer

Latencies and throughputs

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

Adding up 1000 integers on this computer

Latencies and throughputs

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

How about our program?

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<
```


How about our program?

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
# wait 2 cycles for tmp
result += tmp
ctr += 4
# wait 1 cycle for ctr
unsigned<? ctr - 4000
# wait 1 cycle for unsigned<
goto looptop if unsigned<
```

- Addition has to wait for load
- Comparison has to wait for addition
- Each iteration of the loop takes 8 cycles
- Total: > 8000 cycles

How about our program?

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
# wait 2 cycles for tmp
result += tmp
ctr += 4
# wait 1 cycle for ctr
unsigned<? ctr - 4000
# wait 1 cycle for unsigned<
goto looptop if unsigned<
```

- Addition has to wait for load
- Comparison has to wait for addition
- Each iteration of the loop takes 8 cycles
- Total: > 8000 cycles
- This program sucks!

Making the program fast

Step 1 - Unrolling

```
result = 0
tmp = mem32[START+0]
result += tmp
tmp = mem32[START+4]
result += tmp
tmp = mem32[START+8]
result += tmp
...
tmp = mem32[START+3996]
result += tmp
```

- Remove all the loop control: unrolling

Making the program fast

Step 1 - Unrolling

```
result = 0
tmp = mem32[START+0]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+4]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+8]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+3996]
# wait 2 cycles for tmp
result += tmp
```

- Remove all the loop control: unrolling
- Each load-and-add now takes 3 cycles
- Total: ≈ 3000 cycles

Making the program fast

Step 1 - Unrolling

```
result = 0
tmp = mem32[START+0]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+4]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+8]
# wait 2 cycles for tmp
result += tmp
.
tmp = mem32[START+3996]
# wait 2 cycles for tmp
result += tmp
```

- Remove all the loop control: unrolling
- Each load-and-add now takes 3 cycles
- Total: ≈ 3000 cycles
- Better, but still too slow

Making the program fast

Step 2 - Instruction Scheduling

```
result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START +12]
result += tmp0
tmp0 = mem32[START+16]
result += tmp1
tmp1 = mem32[START+20]
result += tmp2
tmp2 = mem32[START +24]
```

result $+=$ tmp2
tmp2 $=$ mem32[START+3996]
result $+=$ tmp0
result $+=$ tmp1
result $+=$ tmp2

- Load values earlier
- Load latencies are hidden
- Use more registers for loaded values (tmp0, tmp1, tmp2)
- Get rid of one addition to zero

Making the program fast

```
Step 2- Instruction Scheduling
result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START +12]
result += tmp0
tmp0 = mem32[START+16]
# wait 1 cycle for result
result += tmp1
tmp1 = mem32[START+20]
# wait 1 cycle for result
result += tmp2
tmp2 = mem32[START+24]
```

```
result += tmp2
tmp2 = mem32[START+3996]
# wait 1 cycle for result
result += tmp0
# wait 1 cycle for result
result += tmp1
# wait 1 cycle for result
result += tmp2
```

- Load values earlier
- Load latencies are hidden
- Use more registers for loaded values (tmp0, tmp1, tmp2)
- Get rid of one addition to zero
- Now arithmetic latencies kick in
- Total: ≈ 2000 cycles

Making the program fast

Step 3 - More Instruction Scheduling (two accumulators)

```
result0 = mem32[START + 0]
tmp0 = mem32[START + 8]
result1 = mem32[START + 4]
tmp1 = mem32[START +12]
tmp2 = mem32[START +16]
```

result0 += tmp0
tmp0 = mem32[START+20]
result1 += tmp1
tmp1 = mem32[START+24]
result0 += tmp2
tmp2 = mem32[START+28]
...

```
result0 += tmp1
tmp1 = mem32[START+3996]
result1 += tmp2
resultO += tmpO
result1 += tmp1
result0 += result1
```

- Use one more accumulator register (result1)
- All latencies hidden
- Total: 1004 cycles
- Asymptotically n cycles for n additions

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
- Unroll the loop

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
- Unroll the loop
- Interleave independent instructions (instruction scheduling)

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
- Unroll the loop
- Interleave independent instructions (instruction scheduling)
- Resulting program is larger and requires more registers!

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
- Unroll the loop
- Interleave independent instructions (instruction scheduling)
- Resulting program is larger and requires more registers!
- Note: Good instruction scheduling typically requires more registers

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
- Unroll the loop
- Interleave independent instructions (instruction scheduling)
- Resulting program is larger and requires more registers!
- Note: Good instruction scheduling typically requires more registers
- Opposing requirements to register allocation (assigning registers to live variables, minimizing memory access)

Summary of what we did

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
- Unroll the loop
- Interleave independent instructions (instruction scheduling)
- Resulting program is larger and requires more registers!
- Note: Good instruction scheduling typically requires more registers
- Opposing requirements to register allocation (assigning registers to live variables, minimizing memory access)
- Both instruction scheduling and register allocation are NP hard
- So is the joint problem
- Many instances are efficiently solvable

Architectures and microarchitectures

What instructions and how many registers do we have?

- Instructions are defined by the instruction set
- Supported register names are defined by the set of architectural registers
- Instruction set and set of architectural registers together define the architecture
- Examples for architectures: x86, AMD64, ARMv6, ARMv7, UltraSPARC
- Sometimes base architectures are extended, e.g., MMX, SSE, NEON

Architectures and microarchitectures

What instructions and how many registers do we have?

- Instructions are defined by the instruction set
- Supported register names are defined by the set of architectural registers
- Instruction set and set of architectural registers together define the architecture
- Examples for architectures: x86, AMD64, ARMv6, ARMv7, UltraSPARC
- Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?

- Different microarchitectures implement an architecture
- Latencies and throughputs are specific to a microarchitecture
- Example: Intel Core 2 Quad Q9550 implements the AMD64 architecture

Out-of-order execution

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)

Out-of-order execution

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution

Out-of-order execution

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution
- Typically requires more physical than architectural registers and register renaming

Out-of-order execution

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution
- Typically requires more physical than architectural registers and register renaming
- Harder for the (assembly) programmer to understand what exactly will happen with the code
- Harder to come up with optimal scheduling

Out-of-order execution

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution
- Typically requires more physical than architectural registers and register renaming
- Harder for the (assembly) programmer to understand what exactly will happen with the code
- Harder to come up with optimal scheduling
- Harder to screw up completely

Optimizing Crypto vs. optimizing "something"

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?

Optimizing Crypto vs. optimizing "something"

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?
- No.

Optimizing Crypto vs. optimizing "something"

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?
- No. Cryptographic software deals with secret data (keys)
- Information about secret data must not leak through side channels

Optimizing Crypto vs. optimizing "something"

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?
- No. Cryptographic software deals with secret data (keys)
- Information about secret data must not leak through side channels
- Most critical for software implementations on "large" CPUs: software must take constant time (independent of secret data)

Timing leakage part I

- Consider the following piece of code:

```
if s}\mathrm{ then
    r\leftarrowA
else
    r\leftarrowB
end if
```


Timing leakage part I

- Consider the following piece of code:
if s then
$r \leftarrow A$
else
$r \leftarrow B$
end if
- General structure of any conditional branch
- A and B can be large computations, r can be a large state

Timing leakage part I

- Consider the following piece of code:
if s then
$r \leftarrow A$
else
$r \leftarrow B$
end if
- General structure of any conditional branch
- A and B can be large computations, r can be a large state
- This code takes different amount of time, depending on s
- Obvious timing leak if s is secret

Timing leakage part I

- Consider the following piece of code:
if s then
$r \leftarrow A$
else
$r \leftarrow B$
end if
- General structure of any conditional branch
- A and B can be large computations, r can be a large state
- This code takes different amount of time, depending on s
- Obvious timing leak if s is secret
- Even if A and B take the same amount of cycles this is not constant time!
- Reason: Conditional branch takes different amount of cycles whether taken or not
- Never use secret-data-dependent branch conditions

Eliminating branches

- So, what do we do with this piece of code?

```
if s}\mathrm{ then
    r\leftarrowA
else
    r\leftarrowB
end if
```


Eliminating branches

- So, what do we do with this piece of code?
if s then
$r \leftarrow A$
else
$r \leftarrow B$
end if
- Replace by

$$
r \leftarrow s A+(1-s) B
$$

Eliminating branches

- So, what do we do with this piece of code?

if s then

$r \leftarrow A$
else
$r \leftarrow B$
end if

- Replace by

$$
r \leftarrow s A+(1-s) B
$$

- Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of multiplication

Eliminating branches

- So, what do we do with this piece of code?

if s then

```
        r\leftarrowA
```

else
$r \leftarrow B$
end if

- Replace by

$$
r \leftarrow s A+(1-s) B
$$

- Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of multiplication
- For very fast A and B this can even be faster

Cached memory access

- Memory access goes through a cache
- Small but fast transparent memory for frequently used data

Cached memory access

- Memory access goes through a cache
- Small but fast transparent memory for frequently used data
- A load from memory places data also in the cache
- Data remains in cache until it's replaced by other data

Cached memory access

- Memory access goes through a cache
- Small but fast transparent memory for frequently used data
- A load from memory places data also in the cache
- Data remains in cache until it's replaced by other data
- Loading data is fast if data is in the cache (cache hit)
- Loading data is slow if data is not in the cache (cache miss)

Timing leakage part II

$T[0] \ldots T[15]$
$T[16] \ldots T[31]$
$T[32] \ldots T[47]$
$T[48] \ldots T[63]$
$T[64] \ldots T[79]$
$T[80] \ldots T[95]$
$T[96] \ldots T[111]$
$T[112] \ldots T[127]$
$T[128] \ldots T[143]$
$T[144] \ldots T[159]$
$T[160] \ldots T[175]$
$T[176] \ldots T[191]$
$T[192] \ldots T[207]$
$T[208] \ldots T[223]$
$T[224] \ldots T[239]$
$T[240] \ldots T[255]$

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache

Timing leakage part II

$T[0] \ldots T[15]$
$T[16] \ldots T[31]$
attacker's data
attacker's data
$T[64] \ldots T[79]$
$T[80] \ldots T[95]$
attacker's data
attacker's data
attacker's data
attacker's data
$T[160] \ldots T[175]$
$T[176] \ldots T[191]$
$T[192] \ldots T[207]$
$T[208] \ldots T[223]$
attacker's data
attacker's data

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines

Timing leakage part II

$T[0] \ldots T[15]$
$T[16] \ldots T[31]$
$? ? ?$
$? ? ?$
$T[64] \ldots T[79]$
$T[80] \ldots T[95]$
$? ? ?$
$? ? ?$
$? ? ?$
$? ? ?$
$T[160] \ldots T[175]$
$T[176] \ldots T[191]$
$T[192] \ldots T[207]$
$T[208] \ldots T 223]$
$? ? ?$
$? ? ?$

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again

Timing leakage part II

$T[0] \ldots T[15]$
$T[16] \ldots T[31]$
$? ? ?$
$? ? ?$
$T[64] \ldots T[79]$
$T[80] \ldots T[95]$
$? ? ?$
$? ? ?$
$? ? ?$
$? ? ?$
$T[160] \ldots T[175]$
$T[176] \ldots T[191]$
$T[192] \ldots T[207]$
$T[208] \ldots T 223]$
$? ? ?$
$? ? ?$

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:

Timing leakage part II

$T[0] \ldots T[15]$
$T[16] \ldots T[31]$
$? ? ?$
$? ? ?$
$T[64] \ldots T[79]$
$T[80] \ldots T[95]$
$? ? ?$
attacker's data
$? ? ?$
$? ? ?$
$T[160] \ldots T[175]$
$T[176] \ldots T[191]$
$T[192] \ldots T[207]$
$T[208] \ldots T 223]$
$? ? ?$
$? ? ?$

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:
- Fast: cache hit (crypto did not just load from this line)

Timing leakage part II

$T[0] \ldots T[15]$
$T[16] \ldots T[31]$
$? ? ?$
$? ? ?$
$T[64] \ldots T[79]$
$T[80] \ldots T[95]$
$? ? ?$
$T[112] \ldots T[127]$
$? ? ?$
$? ? ?$
$T[160] \ldots T[175]$
$T[176] \ldots T[191]$
$T[192] \ldots T[207]$
$T[208] \ldots T 223]$
$? ? ?$
$? ? ?$

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:
- Fast: cache hit (crypto did not just load from this line)
- Slow: cache miss (crypto just loaded from this line)

Some comments on cache-timing

- This is only the most basic cache-timing attack

Some comments on cache-timing

- This is only the most basic cache-timing attack
- Non-secret cache lines are not enough for security
- Load/Store addresses influence timing in many different ways
- Do not access memory at secret-data-dependent addresses

Some comments on cache-timing

- This is only the most basic cache-timing attack
- Non-secret cache lines are not enough for security
- Load/Store addresses influence timing in many different ways
- Do not access memory at secret-data-dependent addresses
- Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk encryption

Some comments on cache-timing

- This is only the most basic cache-timing attack
- Non-secret cache lines are not enough for security
- Load/Store addresses influence timing in many different ways
- Do not access memory at secret-data-dependent addresses
- Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk encryption

- Remote timing attacks are practical: Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL implementation

Eliminating lookups

- Want to load item at (secret) position p from table of size n

Eliminating lookups

- Want to load item at (secret) position p from table of size n
- Load all items, use arithmetic to pick the right one:
for i from 0 to $n-1$ do
$d \leftarrow T[i]$
if $p=i$ then
$r \leftarrow d$
end if
end for

Eliminating lookups

- Want to load item at (secret) position p from table of size n
- Load all items, use arithmetic to pick the right one:
for i from 0 to $n-1$ do
$d \leftarrow T[i]$
if $p=i$ then
$r \leftarrow d$
end if
end for
- Problem 1: if-statements are not constant time (see before)

Eliminating lookups

- Want to load item at (secret) position p from table of size n
- Load all items, use arithmetic to pick the right one:
for i from 0 to $n-1$ do
$d \leftarrow T[i]$
if $p=i$ then
$r \leftarrow d$
end if
end for
- Problem 1: if-statements are not constant time (see before)
- Problem 2: Comparisons are not constant time, replace by:

```
static unsigned long long eq(uint32_t a, uint32_t b)
{
    unsigned long long t = a ^ b;
    t = (-t) >> 63;
    return 1-t;
}
```


Timing leakage part III

- Are secret branch conditions and secret load/store addresses the only problem?

Timing leakage part III

- Are secret branch conditions and secret load/store addresses the only problem?
- Answer by Langley: "That's assuming that the fundamental processor instructions are constant time, but that's true for all sane CPUs."

Timing leakage part III

- Are secret branch conditions and secret load/store addresses the only problem?
- Answer by Langley: "That's assuming that the fundamental processor instructions are constant time, but that's true for all sane CPUs."
- Some architectures have non-constant-time arithmetic
- Examples:
- UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
- DIV instruction on Intel processors, see also https: //www.imperialviolet.org/2013/02/04/luckythirteen.html

Timing leakage part III

- Are secret branch conditions and secret load/store addresses the only problem?
- Answer by Langley: "That's assuming that the fundamental processor instructions are constant time, but that's true for all sane CPUs."
- Some architectures have non-constant-time arithmetic
- Examples:
- UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
- DIV instruction on Intel processors, see also https: //www.imperialviolet.org/2013/02/04/luckythirteen.html

Summary

- Writing efficient constant-time code is hard
- Typically requires reconsiderations through all optimization levels

SIMD computations

"Thus we arbitrarily select a reference organization : the IBM 704-70927090. This organization is then regarded as the prototype of the class of machines which we label:

1) Single Instruction Stream-Single Data Stream (SISD).

Three additional organizational classes are evident.
2) Single Instruction Stream-Multiple Data Stream (SIMD)
3) Multiple Instruction Stream-Single Data Stream (MISD)
4) Multiple Instruction Stream-Multiple Data Stream (MIMD)"

- Michael J. Flynn. Very high-speed computing systems. 1966.

```
int64 a
int64 b
a = mem32[addr1 + 0]
b = mem32[addr2 + 0]
(uint32) a += b
mem32[addr3 + 0] = a
```


SIMD with vector instructions

Example: 4 32-bit integer additions

```
reg128 a
reg128 b
a = mem128[addr1 + 0]
b = mem128[addr2 + 0]
4x a += b
mem128[addr3 + 0] = a
```


Back to adding 1000 integers

- Imagine that
- vector addition is as fast as scalar addition
- vector loads are as fast as scalar loads

Back to adding 1000 integers

- Imagine that
- vector addition is as fast as scalar addition
- vector loads are as fast as scalar loads
- Need only 250 vector additions, 250 vector loads
- Lower bound of 250 cycles

Back to adding 1000 integers

- Imagine that
- vector addition is as fast as scalar addition
- vector loads are as fast as scalar loads
- Need only 250 vector additions, 250 vector loads
- Lower bound of 250 cycles
- Very straight-forward modification of the program
- Fully unrolled loop needs only $1 / 4$ of the space

Is it really that efficient?

- Consider the Intel Nehalem processor

Is it really that efficient?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle

Is it really that efficient?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- 4×32-bit add throughput: 2 per cycle
- 128-bit store throughput: 1 per cycle

Is it really that efficient?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- 4×32-bit add throughput: 2 per cycle
- 128-bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do $4 \times$ the work

Is it really that efficient?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- 4×32-bit add throughput: 2 per cycle
- 128-bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do $4 \times$ the work
- Situation on other architectures/microarchitectures is similar
- Reason: cheap way to increase arithmetic throughput (less decoding, address computation, etc.)

More reasons for using vector arithmetic

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups

More reasons for using vector arithmetic

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups
- Secret-data-dependent branches and secret branch conditions are the major sources of timing-attack vulnerabilities

More reasons for using vector arithmetic

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups
- Secret-data-dependent branches and secret branch conditions are the major sources of timing-attack vulnerabilities
- Strong synergies between speeding up code with vector instructions and protecting code!

Vectorization problems I

Carry handling

- When adding two 32 -bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"

Vectorization problems I

Carry handling

- When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"
- How about carries of vector additions?
- Answer 1: Special "carry generate" instruction (e.g., CBE-SPU)

Vectorization problems I

Carry handling

- When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"
- How about carries of vector additions?
- Answer 1: Special "carry generate" instruction (e.g., CBE-SPU)
- Answer 2: They're lost, recomputation is very expensive

Vectorization problems I

Carry handling

- When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"
- How about carries of vector additions?
- Answer 1: Special "carry generate" instruction (e.g., CBE-SPU)
- Answer 2: They're lost, recomputation is very expensive
- Need to avoid carries instead of handling them
- No problem for today's talk, but requires care for big-integer arithmetic

Vectorization problems II

Removing instruction-level parallelism

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)

Vectorization problems II

Removing instruction-level parallelism

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)
- Pipelined and multiscalar execution need ILP
- Vectorization removes ILP
- Problematic for algorithms with, e.g., 4-way DLP

Vectorization problems II

Removing instruction-level parallelism

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)
- Pipelined and multiscalar execution need ILP
- Vectorization removes ILP
- Problematic for algorithms with, e.g., 4-way DLP
- Good example to see this: ChaCha/Salsa/Blake

Vectorization problems II

Removing instruction-level parallelism

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)
- Pipelined and multiscalar execution need ILP
- Vectorization removes ILP
- Problematic for algorithms with, e.g., 4-way DLP
- Good example to see this: ChaCha/Salsa/Blake
- Vectorization of ChaCha and Salsa can resort to higher-level parallelism (multiple blocks)
- Harder for Blake: each block depends on the previous one

Vectorization problems III

Data shuffeling

- Consider multiplication of 4-coefficient polynomials $f=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}$ and $g=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}:$

$$
\begin{aligned}
r_{0} & =f_{0} g_{0} \\
r_{1} & =f_{0} g_{1}+f_{1} g_{0} \\
r_{2} & =f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
r_{3} & =f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
r_{4} & =f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
r_{5} & =f_{2} g_{3}+f_{3} g_{2} \\
r_{6} & =f_{3} g_{3}
\end{aligned}
$$

Vectorization problems III

Data shuffeling

- Consider multiplication of 4-coefficient polynomials $f=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}$ and $g=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}:$

$$
\begin{aligned}
r_{0} & =f_{0} g_{0} \\
r_{1} & =f_{0} g_{1}+f_{1} g_{0} \\
r_{2} & =f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
r_{3} & =f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
r_{4} & =f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
r_{5} & =f_{2} g_{3}+f_{3} g_{2} \\
r_{6} & =f_{3} g_{3}
\end{aligned}
$$

- Ignore carries, overflows etc. for a moment
- 16 multiplications, 9 additions
- How to vectorize multiplications?

Vectorization problems III

Data shuffeling

$$
\begin{aligned}
r_{0} & =f_{0} g_{0} \\
r_{1} & =f_{0} g_{1}+f_{1} g_{0} \\
r_{2} & =f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
r_{3} & =f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
r_{4} & =f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
r_{5} & =f_{2} g_{3}+f_{3} g_{2} \\
r_{6} & =f_{3} g_{3}
\end{aligned}
$$

- Can easily load ($f_{0}, f_{1}, f_{2}, f_{3}$) and ($g_{0}, g_{1}, g_{2}, g_{3}$)
- Multiply, obtain $\left(f_{0} g_{0}, f_{1} g_{1}, f_{2} g_{2}, f_{3} g_{3}\right)$

Vectorization problems III

Data shuffeling

$$
\begin{aligned}
r_{0} & =f_{0} g_{0} \\
r_{1} & =f_{0} g_{1}+f_{1} g_{0} \\
r_{2} & =f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
r_{3} & =f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
r_{4} & =f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
r_{5} & =f_{2} g_{3}+f_{3} g_{2} \\
r_{6} & =f_{3} g_{3}
\end{aligned}
$$

- Can easily load ($f_{0}, f_{1}, f_{2}, f_{3}$) and ($g_{0}, g_{1}, g_{2}, g_{3}$)
- Multiply, obtain $\left(f_{0} g_{0}, f_{1} g_{1}, f_{2} g_{2}, f_{3} g_{3}\right)$
- And now what?

Vectorization problems III

Data shuffeling

$$
\begin{aligned}
r_{0} & =f_{0} g_{0} \\
r_{1} & =f_{0} g_{1}+f_{1} g_{0} \\
r_{2} & =f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
r_{3} & =f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
r_{4} & =f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
r_{5} & =f_{2} g_{3}+f_{3} g_{2} \\
r_{6} & =f_{3} g_{3}
\end{aligned}
$$

- Can easily load ($f_{0}, f_{1}, f_{2}, f_{3}$) and $\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$
- Multiply, obtain $\left(f_{0} g_{0}, f_{1} g_{1}, f_{2} g_{2}, f_{3} g_{3}\right)$
- And now what?
- Answer: Need to shuffle data in input and output registers
- Significant overhead, not clear that vectorization speeds up computation!

Efficient vectorization

- Most important question: Where does the parallelism come from?
- Easiest answer: Consider multiple batched encryptions, decryptions, signature computations, verifications, etc.

Efficient vectorization

- Most important question: Where does the parallelism come from?
- Easiest answer: Consider multiple batched encryptions, decryptions, signature computations, verifications, etc.
- Often: Can exploit lower-level parallelism

Efficient vectorization

- Most important question: Where does the parallelism come from?
- Easiest answer: Consider multiple batched encryptions, decryptions, signature computations, verifications, etc.
- Often: Can exploit lower-level parallelism
- Rule of thumb: parallelize on an as high as possible level
- Vectorization is hard to do as "add-on" optimization
- Reconsider algorithms, synergie with constant-time algorithms

Going binary

- So far: considered vectors of integers
- How about arithmetic in binary fields?

Going binary

- So far: considered vectors of integers
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.

Going binary

- So far: considered vectors of integers
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- This is called bitslicing, introduced by Biham in 1997 for DES

Going binary

- So far: considered vectors of integers
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- This is called bitslicing, introduced by Biham in 1997 for DES
- Other views on bitslicing:
- Simulation of hardware implementations in software

Going binary

- So far: considered vectors of integers
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- This is called bitslicing, introduced by Biham in 1997 for DES
- Other views on bitslicing:
- Simulation of hardware implementations in software
- Computations on a transposition of data

Bitslicing issues

- XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per cycle on Intel Core 2)
- Can be very fast for operations that are not natively supported (like arithmetic in binary fields)

Bitslicing issues

- XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per cycle on Intel Core 2)
- Can be very fast for operations that are not natively supported (like arithmetic in binary fields)
- Active data set increases massively (e.g., $128 \times$)
- For "normal" vector operations, register space is increased accordingly (e.g, 16256 -bit vector registers vs. 1664 -bit integer registers)
- For bitslicing: Need to fit more data into the same registers
- Typical consequence: more loads and stores (that easily become the performance bottleneck)

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,... , YMM15
- Overlap with 128 -bit XMM registers

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,..., YMM15
- Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,... , YMM15
- Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,... . YMM15
- Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,... , YMM15
- Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)
- Also supported: XOR, AND, OR on YMM registers (1 per cycle)

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,..., YMM15
- Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)
- Also supported: XOR, AND, OR on YMM registers (1 per cycle)
- Alternative: XOR, AND, OR on XMM registers (3 per cycle)

Introducing AVX

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- 256-bit vector registers YMMO,... , YMM15
- Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)
- Also supported: XOR, AND, OR on YMM registers (1 per cycle)
- Alternative: XOR, AND, OR on XMM registers (3 per cycle)
- However, don't mix XMM and YMM instruction (context-switch penalty)

Part II

Fast Lattice-Based Signatures

joint work with Tim Güneysu, Tobias Oder, and Thomas Pöppelmann

Introduction

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)

Introduction

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
- original estimate: 100 bits (against traditional computers)

Introduction

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
- original estimate: 100 bits (against traditional computers)
- Lyubashevsky in 2013: 80 bits

Introduction

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
- original estimate: 100 bits (against traditional computers)
- Lyubashevsky in 2013: 80 bits
- 2014: ...?

Introduction

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
- original estimate: 100 bits (against traditional computers)
- Lyubashevsky in 2013: 80 bits
- 2014: ...?
- This is not a mature, well understood cryptosystem
- Don't use it in applications, but study it!

Introduction

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
- original estimate: 100 bits (against traditional computers)
- Lyubashevsky in 2013: 80 bits
- 2014: ...?
- This is not a mature, well understood cryptosystem
- Don't use it in applications, but study it!
- Implementation techniques are applicable more generally

Notation

- n is a power of 2
- p is a prime congruent to 1 modulo $2 n$ (necessary for efficiency)
- \mathcal{R} is the ring $\mathbb{F}_{p}[x] /\left\langle x^{n}+1\right\rangle$
- \mathcal{R}_{k} subset of \mathcal{R} with coefficients in $[-k, k]$.

Lattice hardness assumptions

Standard lattice hardness assumption

Decisional Ring-LWE:

Given $\left(a_{1}, t_{1}\right), \ldots,\left(a_{m}, t_{m}\right) \in \mathcal{R} \times \mathcal{R}$. Decide whether

- $t_{i}=a_{i} s+e_{i}$ where $s, e_{1}, \ldots, e_{m} \leftarrow D_{\sigma}$ and $a_{i} \stackrel{\$}{\leftarrow} \mathcal{R}$
(D_{σ} denotes a Gaussian distribution), or
- $\left(a_{i}, t_{i}\right)$ uniformly random from $\mathcal{R} \times \mathcal{R}$.

Lattice hardness assumptions

Standard lattice hardness assumption

Decisional Ring-LWE:

Given $\left(a_{1}, t_{1}\right), \ldots,\left(a_{m}, t_{m}\right) \in \mathcal{R} \times \mathcal{R}$. Decide whether

- $t_{i}=a_{i} s+e_{i}$ where $s, e_{1}, \ldots, e_{m} \leftarrow D_{\sigma}$ and $a_{i} \stackrel{\$}{\leftarrow} \mathcal{R}$
(D_{σ} denotes a Gaussian distribution), or
- $\left(a_{i}, t_{i}\right)$ uniformly random from $\mathcal{R} \times \mathcal{R}$.

More "aggressive" hardness assumption Decisional Compact Knapsack Problem (DCKP): Given $(a, t) \in \mathcal{R} \times \mathcal{R}$.

- Decide whether $t=a s_{1}+s_{2}$ where $s_{1}, s_{2} \stackrel{\$}{\leftarrow} \mathcal{R}_{1}$ and $a \stackrel{\$}{\leftarrow} \mathcal{R}$, or
- (a, t) uniformly random from $\mathcal{R} \times \mathcal{R}$.

System parameters

Parameters

- $n=2^{\ell_{1}}$
- Prime p with $2 n \mid(p-1)$
- $k=2^{\ell_{2}}$ with $\sqrt{p}<k \ll p$
- "Random" $a \in \mathcal{R}$
- Hash function H to elements of \mathcal{R}_{1} with at most 32 non-zero coefficients

Example

- $n=512$
- $p=8383489$ (23 bits)
- $k=2^{14}$
- Fixed random a
- ... more later

Key generation

Secret key

- s_{1}, s_{2} sampled uniformly at random from \boldsymbol{R}_{1}

Public key

- $t=a s_{1}+s_{2}$

Signing (simplified)

Compute a signature σ on a message M as follows:

1. Generate y_{1}, y_{2} uniformly at random from \mathcal{R}_{k}
2. Compute $c=H\left(a y_{1}+y_{2}, M\right)$
3. Compute $z_{1}=s_{1} c+y_{1}$ and $z_{2}=s_{2} c+y_{2}$
4. If z_{1} or $z_{2} \notin \mathcal{R}_{k-32}$, goto step 1
5. Return $\sigma=\left(z_{1}, z_{2}, c\right)$

Verification (simplified)

Check signature $\sigma=\left(z_{1}, z_{2}, c\right)$ on M as follows:

1. If z_{1} or $z_{2} \notin \mathcal{R}_{k-32}$, reject
2. Else if $c \neq H\left(a z_{1}+z_{2}-t c, M\right)$, reject
3. Else accept

Verification (simplified)

Check signature $\sigma=\left(z_{1}, z_{2}, c\right)$ on M as follows:

1. If z_{1} or $z_{2} \notin \mathcal{R}_{k-32}$, reject
2. Else if $c \neq H\left(a z_{1}+z_{2}-t c, M\right)$, reject
3. Else accept

Correctness

$$
\begin{aligned}
& a z_{1}+z_{2}-t c \\
= & a\left(s_{1} c+y_{1}\right)+\left(s_{2} c+y_{2}\right)-\left(a s_{1}+s_{2}\right) c \\
= & a s_{1} c+a y_{1}+s_{2} c+y_{2}-a s_{1} c-s_{2} c \\
= & a y_{1}+y_{2}
\end{aligned}
$$

Software implementation, first considerations

Key generation

- Main operation: sampling random coefficients in $\{-1,0,1\}$
- One multiplication of fixed a by s_{1}

Software implementation, first considerations

Key generation

- Main operation: sampling random coefficients in $\{-1,0,1\}$
- One multiplication of fixed a by s_{1}

Signing

- Expected number of signing attempts: 7
- Each attempt:
- Sample y_{1}, y_{2} uniformly at random from \mathcal{R}_{k}
- Two sparse multiplications $s_{1} c$ and $s_{2} c$
- One multiplication $a y_{1}$ by constant a

Software implementation, first considerations

Key generation

- Main operation: sampling random coefficients in $\{-1,0,1\}$
- One multiplication of fixed a by s_{1}

Signing

- Expected number of signing attempts: 7
- Each attempt:
- Sample y_{1}, y_{2} uniformly at random from \mathcal{R}_{k}
- Two sparse multiplications $s_{1} c$ and $s_{2} c$
- One multiplication $a y_{1}$ by constant a

Verification

- One sparse multiplication $c t$
- One multiplication $a z_{1}$ by constant a

The function H

Need to hash an arbitrary string S to an element $c=\left(c_{0}+c_{1} x+\cdots+c_{511} x^{511}\right)$ of \mathcal{R}_{1} with at most 32 non-zero entries

The function H

Need to hash an arbitrary string S to an element $c=\left(c_{0}+c_{1} x+\cdots+c_{511} x^{511}\right)$ of \mathcal{R}_{1} with at most 32 non-zero entries

- First apply SHA-256, truncate to 160 -bit hash h
- Map h injectively to c as follows:
- Split $\left(h_{0}, \ldots, h_{31}\right)$, each h_{i} with 5 bits
- Split each h_{i} into $\left(h_{i 0}, h_{i t}\right)$, where $h_{i 0}$ is one bit and $h_{i t}$ is a 4 -bit integer
- $h_{i t}$ indicates which of the 16 coefficients $c_{16 i}, \ldots, c_{16 i+15}$ is nonzero
- If $h_{i 0}=0$ set this coefficient to -1 else to 1

Random sampling, 1st approach

- How do we get an integer, uniformly at random from $[0, m-1]$?
- Let's say that $m-1$ has ℓ bits
- Let's say that we can get random bits (e.g., from / dev/urandom)

Random sampling, 1st approach

- How do we get an integer, uniformly at random from $[0, m-1]$?
- Let's say that $m-1$ has ℓ bits
- Let's say that we can get random bits (e.g., from / dev/urandom)
- Two answers:

1. Obtain a random ℓ-bit integer, reject until it is in $[0, m-1]$

Random sampling, 1st approach

- How do we get an integer, uniformly at random from $[0, m-1]$?
- Let's say that $m-1$ has ℓ bits
- Let's say that we can get random bits (e.g., from /dev/urandom)
- Two answers:

1. Obtain a random ℓ-bit integer, reject until it is in $[0, m-1]$
2. Obtain a much larger integer, reduce $\bmod m$ (close to uniform)

Random sampling, 1st approach

- How do we get an integer, uniformly at random from $[0, m-1]$?
- Let's say that $m-1$ has ℓ bits
- Let's say that we can get random bits (e.g., from /dev/urandom)
- Two answers:

1. Obtain a random ℓ-bit integer, reject until it is in $[0, m-1]$
2. Obtain a much larger integer, reduce $\bmod m$ (close to uniform)

- Probability of rejection in 1 . depends on m, it's between 0 and $1 / 2$

Random sampling, 1st approach

- How do we get an integer, uniformly at random from $[0, m-1]$?
- Let's say that $m-1$ has ℓ bits
- Let's say that we can get random bits (e.g., from / dev/urandom)
- Two answers:

1. Obtain a random ℓ-bit integer, reject until it is in $[0, m-1]$
2. Obtain a much larger integer, reduce $\bmod m$ (close to uniform)

- Probability of rejection in 1 . depends on m, it's between 0 and $1 / 2$
- Problem with both 1. and 2.: /dev/urandom is slow

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- Salsa20 fast only for long streams, 3 bytes cost as much as 64

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- Salsa20 fast only for long streams, 3 bytes cost as much as 64
- We want truly uniform distribution from $[-k, k]$, recall that $k=2^{14}$
- We want only one call to Salsa20

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- Salsa20 fast only for long streams, 3 bytes cost as much as 64
- We want truly uniform distribution from $[-k, k]$, recall that $k=2^{14}$
- We want only one call to Salsa20
- Combine approaches 1 and 2 as follows:

1. Obtain $4 \cdot(528)$ random bytes from Salsa20
2. Interpret these bytes as 528 32-bit integers
3. Discard integers $\geq(2 k+1) \cdot\left\lfloor 2^{32} /(2 k+1)\right\rfloor$.
4. Probability to discard an integer: 2^{-30}
5. We have 16 additional integers, replace discarded integers by those
6. If more than 16 integers are discarded, restart with step 1
7. For each integer r compute $r \bmod (2 k+1)-k$

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- Salsa20 fast only for long streams, 3 bytes cost as much as 64
- We want truly uniform distribution from $[-k, k]$, recall that $k=2^{14}$
- We want only one call to Salsa20
- Combine approaches 1 and 2 as follows:

1. Obtain 4 - (528) random bytes from Salsa20
2. Interpret these bytes as 528 32-bit integers
3. Discard integers $\geq(2 k+1) \cdot\left\lfloor 2^{32} /(2 k+1)\right\rfloor$.
4. Probability to discard an integer: 2^{-30}
5. We have 16 additional integers, replace discarded integers by those
6. If more than 16 integers are discarded, restart with step 1
7. For each integer r compute $r \bmod (2 k+1)-k$

- Similar approach to sample coefficients in $\{-1,0,1\}$
- Only difference: Use bytes instead of 32 -bit integers

Representation of elements of \mathcal{R}

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$: typedef double __attribute__ ((aligned (32))) r_elem[512];

Representation of elements of \mathcal{R}

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients

Representation of elements of \mathcal{R}

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}

Representation of elements of \mathcal{R}

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
- Compute $c \leftarrow a \cdot \overline{p^{-1}}$
- Round c (high-throughput vroundpd instruction)
- Compute $c \leftarrow c \cdot p$
- Subtract c from a

Representation of elements of \mathcal{R}

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
- Compute $c \leftarrow a \cdot \overline{p^{-1}}$
- Round c (high-throughput vroundpd instruction)
- Compute $c \leftarrow c \cdot p$
- Subtract c from a
- Rounding mode determines whether this maps to

$$
\left[-\frac{p-1}{2}, \frac{p-1}{2}\right] \text { or to }[0, p-1]
$$

Representation of elements of \mathcal{R}

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
- Compute $c \leftarrow a \cdot \overline{p^{-1}}$
- Round c (high-throughput vroundpd instruction)
- Compute $c \leftarrow c \cdot p$
- Subtract c from a
- Rounding mode determines whether this maps to

$$
\left[-\frac{p-1}{2}, \frac{p-1}{2}\right] \text { or to }[0, p-1]
$$

- Use lazy reduction: product of two 22-bit numbers has 44 bits, quite some space in the 53 -bit mantissa

Multiplication in \mathcal{R}

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

Multiplication in \mathcal{R}

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

- Consider multiplication $d=a \cdot b$ in \mathcal{R}
- Compute

$$
\begin{aligned}
& \bar{a}=\left(a_{0}, \psi a_{1}, \ldots, \psi^{511} a_{511}\right) \text { and } \\
& \bar{b}=\left(b_{0}, \psi b_{1}, \ldots, \psi^{511} b_{511}\right)
\end{aligned}
$$

Multiplication in \mathcal{R}

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

- Consider multiplication $d=a \cdot b$ in \mathcal{R}
- Compute

$$
\begin{aligned}
& \bar{a}=\left(a_{0}, \psi a_{1}, \ldots, \psi^{511} a_{511}\right) \text { and } \\
& \bar{b}=\left(b_{0}, \psi b_{1}, \ldots, \psi^{511} b_{511}\right)
\end{aligned}
$$

- Obtain $\bar{d}=\left(d_{0}, \psi d_{1}, \ldots, \psi^{511} d_{511}\right)$ as

$$
\bar{d}=\operatorname{NTT}_{\omega}^{-1}\left(\operatorname{NTT}_{\omega}(\bar{a}) \circ \operatorname{NTT}_{\omega}(\bar{b})\right),
$$

where \circ denotes component-wise multiplication

Multiplication in \mathcal{R}

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

- Consider multiplication $d=a \cdot b$ in \mathcal{R}
- Compute

$$
\begin{aligned}
& \bar{a}=\left(a_{0}, \psi a_{1}, \ldots, \psi^{511} a_{511}\right) \text { and } \\
& \bar{b}=\left(b_{0}, \psi b_{1}, \ldots, \psi^{511} b_{511}\right)
\end{aligned}
$$

- Obtain $\bar{d}=\left(d_{0}, \psi d_{1}, \ldots, \psi^{511} d_{511}\right)$ as

$$
\bar{d}=\operatorname{NTT}_{\omega}^{-1}\left(\operatorname{NTT}_{\omega}(\bar{a}) \circ \mathrm{NTT}_{\omega}(\bar{b})\right),
$$

where \circ denotes component-wise multiplication

- Component-wise multiplication is trivially vectorizable
- FFT in a finite field
- Evaluate polynomial $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- FFT in a finite field
- Evaluate polynomial $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- FFT in a finite field
- Evaluate polynomial $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- FFT in a finite field
- Evaluate polynomial $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- Same for f_{1}

The (NTT)

- FFT in a finite field
- Evaluate polynomial $f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- Same for f_{1}
- For $n=512$ we have 9 levels of recursion

NTT in AVX (Part I)

- First thing to do: replace recursion by iteration
- Loop over 9 levels with 256 "butterfly transformations" each
- Butterfly on level k :
- Pick up a_{i} and $a_{i+2^{k}}$
- Multiply $a_{i+2^{k}}$ by a power of ω to obtain t
- Compute $a_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $a_{i} \leftarrow a_{i}+t$
- Easy vectorization on levels $k=2, \ldots, 8$:
- Pick up $v_{0}=a_{i}, a_{i+1}, a_{i+2}, a_{i+3}$ and

$$
v_{1}=a_{i+2^{k}}, a_{i+2^{k}+1}, a_{i+2^{k}+2}, a_{i+2^{k}+3}
$$

- Perform all operations on v_{0} and v_{1}
- Levels 0 and 1: More tricky: Use permutation instructions and "horizontal additions"

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4-tuples interact
- Through three levels, 8 -tuples interact, etc.

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4 -tuples interact
- Through three levels, 8 -tuples interact, etc.
- Merge 3 levels: Load $8 \cdot 4=32$ values, perform arithmetic, store the results

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4 -tuples interact
- Through three levels, 8 -tuples interact, etc.
- Merge 3 levels: Load $8 \cdot 4=32$ values, perform arithmetic, store the results
- Final performance for NTT: 4484 cycles on Ivy Bridge
- Performance for multiplication in \mathcal{R} : 16096 cycles
- Multiplication by constant a : 11044 cycles

Results

- Keypair generation: 31140 cycles on Intel Ivy Bridge
- Signing: 634988 cycles on average
- Verification: 45036 cycles

Results

- Keypair generation: 31140 cycles on Intel Ivy Bridge
- Signing: 634988 cycles on average
- Verification: 45036 cycles
- Public key: 1536 bytes
- Secret key: 256 bytes
- Signature: 1184 bytes

Comparison

Software	Cycles		Sizes	
Our work	sign: verify:	$\begin{array}{r} 634988 \\ 45036 \end{array}$	pk: sk: sig:	$\begin{array}{r} 1536 \\ 256 \\ 1184 \\ \hline \end{array}$
mqqsig160	sign: verify:	$\begin{array}{r} 1996 \\ 33220 \end{array}$	pk: sk: sig:	206112 401 20
rainbow5640	sign: verify:	$\begin{aligned} & 53872 \\ & 34808 \end{aligned}$	pk: sk: sig:	$\begin{array}{r} 44160 \\ 86240 \\ 37 \\ \hline \end{array}$
pflash1	sign: verify:	$\begin{array}{r} 1473364 \\ 286168 \end{array}$	pk: sk: sig:	$\begin{array}{r} 72124 \\ 5550 \\ 37 \end{array}$
tts6440	sign: verify:	$\begin{aligned} & 33728 \\ & 49248 \end{aligned}$	pk: sk: sig:	$\begin{array}{r} \hline 57600 \\ 16608 \\ 43 \\ \hline \end{array}$
$\begin{aligned} & \text { XMSS } \\ & (H=20, w=4, \text { AES-128 }) \end{aligned}$	sign: verify:	$\begin{gathered} 7261100^{*} \\ 556600^{*} \end{gathered}$	pk: sk: sig:	$\begin{array}{r} 912 \\ 19 \\ 2451 \\ \hline \end{array}$

References

- Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software speed records for lattice-based signatures., PQCrypto 2013. http://cryptojedi.org/papers/\#lattisigns
- Software is online (public domain) at http://cryptojedi.org/crypto/\#lattisigns

Part III

McBits: Fast code-based cryptography

joint work with Daniel J. Bernstein and Tung Chou

Public-key encryption

- Alice generates a key pair $(s k, p k)$, publishes $p k$, keeps $s k$ secret

Public-key encryption

- Alice generates a key pair $(s k, p k)$, publishes $p k$, keeps $s k$ secret
- Bob takes some message M and $p k$ and computes ciphertext C, sends C to Alice

Public-key encryption

- Alice generates a key pair $(s k, p k)$, publishes $p k$, keeps $s k$ secret
- Bob takes some message M and $p k$ and computes ciphertext C, sends C to Alice
- Alice uses $s k$ decrypt C

System parameters

Parameters

- Integers m, q, n, t, k, such that
- $n \leq q=2^{m}$
- $k=n-m t$
- $t \geq 2$

Example

- $m=12$,

$$
n=q=4096
$$

$$
k=3604
$$

$$
t=41
$$

System parameters

Parameters

- Integers m, q, n, t, k, such that
- $n \leq q=2^{m}$
- $k=n-m t$
- $t \geq 2$
- An s-bit-key stream cipher S

Example

- $m=12$,

$$
n=q=4096
$$

$$
k=3604
$$

$$
t=41
$$

- $S=$ Salsa20 $(s=256)$

System parameters

Parameters

- Integers m, q, n, t, k, such that
- $n \leq q=2^{m}$
- $k=n-m t$
- $t \geq 2$
- An s-bit-key stream cipher S
- An a-bit-key authenticator (MAC) A

Example

- $m=12$,

$$
n=q=4096
$$

$$
k=3604
$$

$$
t=41
$$

- $S=$ Salsa20 $(s=256)$
- $A=$ Poly1305 ($a=256$)

System parameters

Parameters

- Integers m, q, n, t, k, such that
- $n \leq q=2^{m}$
- $k=n-m t$
- $t \geq 2$
- An s-bit-key stream cipher S
- An a-bit-key authenticator (MAC) A
- An $(s+a)$-bit-output hash function H

Example

- $m=12$,

$$
n=q=4096
$$

$$
k=3604
$$

$$
t=41
$$

- $S=$ Salsa20 $(s=256)$
- $A=$ Poly1305 ($a=256$)
- $H=$ SHA-512

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in \mathbb{F}_{q}
- A irreducible degree-t polynomial $g \in \mathbb{F}_{q}[x]$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in \mathbb{F}_{q}
- A irreducible degree-t polynomial $g \in \mathbb{F}_{q}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{q}^{t \times n}
$$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in \mathbb{F}_{q}
- A irreducible degree-t polynomial $g \in \mathbb{F}_{q}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{q}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of \mathbb{F}_{q} over \mathbb{F}_{2}
- Obtain a matrix $H \in \mathbb{F}_{2}^{m t \times n}$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in \mathbb{F}_{q}
- A irreducible degree-t polynomial $g \in \mathbb{F}_{q}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{q}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of \mathbb{F}_{q} over \mathbb{F}_{2}
- Obtain a matrix $H \in \mathbb{F}_{2}^{m t \times n}$
- H is a secret parity-check matrix of the Goppa code $\Gamma=\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in \mathbb{F}_{q}
- A irreducible degree-t polynomial $g \in \mathbb{F}_{q}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{q}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of \mathbb{F}_{q} over \mathbb{F}_{2}
- Obtain a matrix $H \in \mathbb{F}_{2}^{m t \times n}$
- H is a secret parity-check matrix of the Goppa code $\Gamma=\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$
- The secret key is $\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$

Key generation

Public key

- Perform Gaussian elimination on H to obtain a matrix K whose left $t m \times t m$ submatrix is the identity matrix
- K is a public parity-check matrix for Γ
- The public key is K

Encryption

- Generate a random weight- t vector $e \in \mathbb{F}_{2}^{n}$
- Compute $w=K e$
- Compute $H(e)$ to obtain an $(s+a)$-bit string $\left(k_{\text {enc }}, k_{\text {auth }}\right)$
- Encrypt the message M with the stream cipher S under key $k_{\text {enc }}$ to obtain ciphertext C
- Compute authentication tag a on C using A with key $k_{\text {auth }}$
- Send (a, w, C)

Decryption

- Receive (a, w, C)
- Decode w to obtain weight- t string e
- Hash e with H to obtain $\left(k_{\text {enc }}, k_{\text {auth }}\right)$
- Verify that a is a valid authentication tag on C using A with $k_{\text {auth }}$
- Use S with $k_{\text {enc }}$ to decrypt and obtain M

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Computation of $K e$ is simply XORing t columns of $m t$ bits each
- In our example $m t=492$, almost 512 ; great for fast vector XORs
- But: have to be careful to not leak information about e
- This talk: ignore implementation of H, S, and A

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Computation of $K e$ is simply XORing t columns of $m t$ bits each
- In our example $m t=492$, almost 512; great for fast vector XORs
- But: have to be careful to not leak information about e
- This talk: ignore implementation of H, S, and A

Decryption

- Decryption is mainly decoding, lots of operations \mathbb{F}_{q}
- Decryption has to run in constant time!
- Obviously, decoding of w is the interesting part

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $K v=w$

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $K v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $K v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_{j}=\alpha_{i}$, set error bit at position i in e

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $K v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_{j}=\alpha_{i}$, set error bit at position i in e
- All these computation work on medium-size polynomials over \mathbb{F}_{q}

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $K v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_{j}=\alpha_{i}$, set error bit at position i in e
- All these computation work on medium-size polynomials over \mathbb{F}_{q}
- Let's now fix the example parameters from above $\left(q=2^{m}=4096, t=41, n=q\right)$

Representing elements of \mathbb{F}_{p}

Option I

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)

Representing elements of \mathbb{F}_{p}

Option I

- Use 16 -bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
- Use table lookups (not constant time!)

Representing elements of \mathbb{F}_{p}

Option I

- Use 16 -bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
- Use table lookups (not constant time!)
- Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64×64-bit multiplication)

Representing elements of \mathbb{F}_{p}

Option I

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
- Use table lookups (not constant time!)
- Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64×64-bit multiplication)
- Squaring uses the same algorithm as multiplication

Representing elements of \mathbb{F}_{p}

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions

Representing elements of \mathbb{F}_{p}

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
- Addition is 12 vectors XORs for 256 parallel additions (much faster!)

Representing elements of \mathbb{F}_{p}

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
- Addition is 12 vectors XORs for 256 parallel additions (much faster!)
- Multiplication is easily constant time, but is it fast?
- How about squaring, can it be faster?

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12 -coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12 -coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+x^{n} a_{1}\right)\left(b_{0}+x^{n} b_{1}\right) \\
= & a_{0} b_{0}+x^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+x^{2 n} a_{1} b_{1}
\end{aligned}
$$

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12 -coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: refined Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+x^{n} a_{1}\right)\left(b_{0}+x^{n} b_{1}\right) \\
= & a_{0} b_{0}+x^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+x^{2 n} a_{1} b_{1}
\end{aligned}
$$

- Refined Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+x^{n} a_{1}\right)\left(b_{0}+x^{n} b_{1}\right) \\
= & \left(1-x^{n}\right)\left(a_{0} b_{0}-x^{n} a_{1} b_{1}\right)+x^{n}\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{aligned}
$$

- Refined Karatsuba uses $M_{2 n}=3 M_{n}+7 n-3$ instead of $M_{2 n}=3 M_{n}+8 n-4$ bit operations
- For details see Bernstein "Batch binary Edwards", Crypto 2009

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
- Future work: Explore tower-field arithmetic, reduce bit operations

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
- Future work: Explore tower-field arithmetic, reduce bit operations

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced multiplication is competitive
- Bitsliced squaring is much faster (not very relevant)

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
- Future work: Explore tower-field arithmetic, reduce bit operations

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced multiplication is competitive
- Bitsliced squaring is much faster (not very relevant)
- In the following: High-level algorithms that drastically reduce the number of multiplications

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$
- Try all elements of F_{q}, Horner scheme takes 41 mul, 41 add per element

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$
- Try all elements of F_{q}, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$ etc.
- Same operation count but different structure

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$
- Try all elements of F_{q}, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$ etc.
- Same operation count but different structure
- Berlekamp trace algorithm: not constant time

Remember the FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$

Remember the FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

Remember the FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$

Remember the FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)

Remember the FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
- von zur Gathen 1996: some improvements (still slow)

Remember the FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
- von zur Gathen 1996: some improvements (still slow)
- Gao, Mateer 2010: Much faster additive FFT

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Think of S as all subset sums of $\left\{\beta_{1}, \ldots, \beta_{m}\right\}, \beta_{i} \in \mathbb{F}_{q}$
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Think of S as all subset sums of $\left\{\beta_{1}, \ldots, \beta_{m}\right\}, \beta_{i} \in \mathbb{F}_{q}$
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Think of S as all subset sums of $\left\{\beta_{1}, \ldots, \beta_{m}\right\}, \beta_{i} \in \mathbb{F}_{q}$
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

- Evaluate f_{0} and f_{1} at $\alpha^{2}+\alpha$, obtain $f(\alpha)$ and $f(\alpha+1)$ with only 1 multiplication and 2 additions

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Think of S as all subset sums of $\left\{\beta_{1}, \ldots, \beta_{m}\right\}, \beta_{i} \in \mathbb{F}_{q}$
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

- Evaluate f_{0} and f_{1} at $\alpha^{2}+\alpha$, obtain $f(\alpha)$ and $f(\alpha+1)$ with only 1 multiplication and 2 additions
- Again: apply the idea recursively

Gao-Mateer for syndrome computation

- Application in decoding: much smaller degree of f
- Our paper: generalize the idea to small-degree f

Gao-Mateer for syndrome computation

- Application in decoding: much smaller degree of f
- Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier

Gao-Mateer for syndrome computation

- Application in decoding: much smaller degree of f
- Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
- For constant f_{1}, simply return 2^{m} copies of $f_{1}(0)=c$

Gao-Mateer for syndrome computation

- Application in decoding: much smaller degree of f
- Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
- For constant f_{1}, simply return 2^{m} copies of $f_{1}(0)=c$
- For 2-coefficient or 3-coefficient f, we have constant f_{1}
- Need $2^{m-1}-1$ multiplications αc

Gao-Mateer for syndrome computation

- Application in decoding: much smaller degree of f
- Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
- For constant f_{1}, simply return 2^{m} copies of $f_{1}(0)=c$
- For 2-coefficient or 3 -coefficient f, we have constant f_{1}
- Need $2^{m-1}-1$ multiplications αc
- Instead perform $m-1$ multiplications to obtain $c \beta_{1}, \ldots, c \beta_{m-1}$ (assume that $\beta_{m}=1$)
- Obtain results as subset sums of $c \beta_{1}, \ldots, c \beta_{m-1}$
- Replace $2^{m-1}-m$ multiplications by additions

Gao-Mateer for syndrome computation

- Application in decoding: much smaller degree of f
- Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
- For constant f_{1}, simply return 2^{m} copies of $f_{1}(0)=c$
- For 2-coefficient or 3 -coefficient f, we have constant f_{1}
- Need $2^{m-1}-1$ multiplications αc
- Instead perform $m-1$ multiplications to obtain $c \beta_{1}, \ldots, c \beta_{m-1}$ (assume that $\beta_{m}=1$)
- Obtain results as subset sums of $c \beta_{1}, \ldots, c \beta_{m-1}$
- Replace $2^{m-1}-m$ multiplications by additions
- Overall count: fewer additions and much fewer multiplications than Horner scheme or Chien search

Syndrome computation, the classical way

- Receive n-bit input word, scale bits by Goppa constants
- Apply linear map

$$
M=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)
$$

Syndrome computation, the classical way

- Receive n-bit input word, scale bits by Goppa constants
- Apply linear map

$$
M=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)
$$

- Can precompute matrix mapping bits to syndrome
- Similar to encryption, but input does not have weight t
- Needs to run in constant time!

Another look at syndrome computation

Look at the syndrome-computation map again:

$$
M=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)
$$

Consider the linear map M^{\top} :

$$
\left(\begin{array}{cccc}
1 & \alpha_{1} & \cdots & \alpha_{1}^{2 t-1} \\
1 & \alpha_{2} & \cdots & \alpha_{2}^{2 t-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{n} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{t}
\end{array}\right)=\left(\begin{array}{c}
v_{1}+v_{2} \alpha_{1}+\cdots+v_{t} \alpha_{1}^{2 t-1} \\
v_{1}+v_{2} \alpha_{2}+\cdots+v_{t} \alpha_{2}^{2 t-1} \\
\vdots \\
v_{1}+v_{2} \alpha_{n}+\cdots+v_{t} \alpha_{n}^{2 t-1}
\end{array}\right)=\left(\begin{array}{c}
f\left(\alpha_{1}\right) \\
f\left(\alpha_{2}\right) \\
\vdots \\
f\left(\alpha_{n}\right)
\end{array}\right)
$$

- This transposed linear map is actually doing multipoint evaluation
- Syndrome computation is a transposed multipoint evaluation

Transposing linear algorithms

- A linear algorithm computes a linear map
- Allowed operations: add or multiply by a constant

Transposing linear algorithms

- A linear algorithm computes a linear map
- Allowed operations: add or multiply by a constant

Example: An addition chain for 79

Transposing linear algorithms

- A linear algorithm computes a linear map
- Allowed operations: add or multiply by a constant

Example: An addition chain for 79

By reversing the edges, we get another addition chain for 79:

Software implementation of Post-Quantum Cryptography

A larger example

- A linear map: $a_{0}, a_{1} \rightarrow a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{1} b_{1}$

A larger example

- A linear map: $a_{0}, a_{1} \rightarrow a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{1} b_{1}$

- Reversing the edges: $c_{0}, c_{1}, c_{2} \rightarrow b_{0} c_{0}+b_{1} c_{1}, b_{0} c_{1}+b_{1} c_{2}$

What did we just do?

- The original linear map:

$$
\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1}+a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{0} & 0 \\
b_{1} & b_{0} \\
0 & b_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

- The transposed map:

$$
\binom{b_{0} c_{0}+b_{1} c_{1}}{b_{0} c_{1}+b_{1} c_{2}}=\left(\begin{array}{ccc}
b_{0} & b_{1} & 0 \\
0 & b_{0} & b_{1}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

What did we just do?

- The original linear map:

$$
\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1}+a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{0} & 0 \\
b_{1} & b_{0} \\
0 & b_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

- The transposed map:

$$
\binom{b_{0} c_{0}+b_{1} c_{1}}{b_{0} c_{1}+b_{1} c_{2}}=\left(\begin{array}{ccc}
b_{0} & b_{1} & 0 \\
0 & b_{0} & b_{1}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

- Reversing the edges automatically gives an algorithm for the transposed map
- This is called the transposition principle

What did we just do?

- The original linear map:

$$
\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1}+a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{0} & 0 \\
b_{1} & b_{0} \\
0 & b_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

- The transposed map:

$$
\binom{b_{0} c_{0}+b_{1} c_{1}}{b_{0} c_{1}+b_{1} c_{2}}=\left(\begin{array}{ccc}
b_{0} & b_{1} & 0 \\
0 & b_{0} & b_{1}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

- Reversing the edges automatically gives an algorithm for the transposed map
- This is called the transposition principle
- Preserves number of multiplications
- References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
- Huge program (all loops and function calls removed)

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
- Huge program (all loops and function calls removed)
- At $m=13$ or $m=14 \mathrm{gcc}$ runs out of memory

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
- Huge program (all loops and function calls removed)
- At $m=13$ or $m=14 \mathrm{gcc}$ runs out of memory
- Can use better register allocators, but the program is still huge

Transposing the additive FFT

A better approach

- Analyze structure of additive FFT $A: B, A_{1}, A_{2}, C$
- A_{1}, A_{2} are recursive calls

Transposing the additive FFT

A better approach

- Analyze structure of additive FFT $A: B, A_{1}, A_{2}, C$
- A_{1}, A_{2} are recursive calls
- Transposition has structure $C^{T}, A_{2}^{T}, A_{1}^{T}, B^{T}$
- Use recursive calls to reduce code size

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π : load from position i, store at position $\pi(i)$

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π : load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π : load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time
- Solution: sorting networks

Sorting networks

A sorting network sorts an array S of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps $S[i]$ and $S[j]$ if $S[i]>S[j]$.

Sorting networks

A sorting network sorts an array S of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps $S[i]$ and $S[j]$ if $S[i]>S[j]$.
- Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements http://en.wikipedia.org/wiki/Batcher\'s_sort

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of $b[i]$ and $b[j]$ with condition bit c as

$$
y \leftarrow b[i] \oplus b[j] ; \quad y \leftarrow c y ; \quad b[i] \leftarrow b[i] \oplus y ; \quad b[j] \leftarrow b[j] \oplus y
$$

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of $b[i]$ and $b[j]$ with condition bit c as

$$
y \leftarrow b[i] \oplus b[j] ; \quad y \leftarrow c y ; \quad b[i] \leftarrow b[i] \oplus y ; \quad b[j] \leftarrow b[j] \oplus y
$$

- Possibly better than Batcher sort: Beneš permutation network (work in progress)

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493
- These are amortized cycle counts across 256 parallel computations

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493
- These are amortized cycle counts across 256 parallel computations
- All computations with full timing-attack protection!

Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- mceliece: 1219344 cycles
- ronald1024: 1340040 cycles
- ronald3072: 16052564 cycles

Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- mceliece: 1219344 cycles
- ronald1024: 1340040 cycles
- ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS

- gls254: 77468 cycles
- kumfp127g 116944 cycles
- curve25519: 182632 cycles

More results

CFS code-based signatures

- Signature scheme introduced by Courtois, Finiasz, and Sendrier in 2001
- Verification is very fast
- Previous speed for signing: $\approx 4.2 \cdot 10^{9}$ cycles on Intel Westmere (at 80 bits of security, no timing-attack protection)
- Our new results:
- Start with the same parameters
- Apply bitslicing of field arithmetic
- Convert all algorithms to constant time

More results

CFS code-based signatures

- Signature scheme introduced by Courtois, Finiasz, and Sendrier in 2001
- Verification is very fast
- Previous speed for signing: $\approx 4.2 \cdot 10^{9}$ cycles on Intel Westmere (at 80 bits of security, no timing-attack protection)
- Our new results:
- Start with the same parameters
- Apply bitslicing of field arithmetic
- Convert all algorithms to constant time
- Our speed: $0.425 \cdot 10^{9}$ cycles in Intel Ivy Bridge
- This is latency, no batching required

Should you use McBits?

- McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use

Should you use McBits?

- McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
- Large public-key size ($\approx 250 \mathrm{~KB}$)

Should you use McBits?

- McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
- Large public-key size ($\approx 250 \mathrm{~KB}$)
- Record-setting performance only for large batches
- Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.

Should you use McBits?

- McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
- Large public-key size ($\approx 250 \mathrm{~KB}$)
- Record-setting performance only for large batches
- Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.
- Software not yet available

Should you use McBits?

- McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
- Large public-key size ($\approx 250 \mathrm{~KB}$)
- Record-setting performance only for large batches
- Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.
- Software not yet available
- I would not consider CFS really practical
- Main concerns (aside from performance): Only 80 bits of security, 20 MB public key

Should you use McBits?

- McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
- Large public-key size ($\approx 250 \mathrm{~KB}$)
- Record-setting performance only for large batches
- Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.
- Software not yet available
- I would not consider CFS really practical
- Main concerns (aside from performance): Only 80 bits of security, 20 MB public key
- Estimates for 120 bits of security: ≈ 100 times slower signing, $\approx 500 \mathrm{MB}$ public key

References

- Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: fast constant-time code-based cryptography., CHES 2013. http://cryptojedi.org/papers/\#mcbits
- Software will be online (public domain), for example, at http://cryptojedi.org/crypto/\#mcbits

