
Software implementation of Post-Quantum
Cryptography

Peter Schwabe

Radboud University Nijmegen, The Netherlands

October 20, 2013

ASCrypto 2013, Florianópolis, Brazil



Part I
Optimizing cryptographic software

with vector instructions

Software implementation of Post-Quantum Cryptography 2



Computers and computer programs
A highly simplified view

M
em

ory

Branch Unit

ALU

Registers

L/S Unit

implicit

explicit

CPU

I A program is a sequence of
instructions

I Load/Store instructions move
data between memory and
registers (processed by the L/S
unit)

I Branch instructions
(conditionally) jump to a
position in the program

I Arithmetic instructions perform
simple operations on values in
registers (processed by the
ALU)

I Registers are fast (fixed-size)
storage units, addressed “by
name”

Software implementation of Post-Quantum Cryptography 3



A first program
Adding up 1000 integers

1. Set register R1 to zero
2. Set register R2 to zero
3. Load 32-bits from address START+R2 into register R3
4. Add 32-bit integers in R1 and R3, write the result in R1
5. Increase value in register R2 by 4
6. Compare value in register R2 to 4000
7. Goto line 3 if R2 was smaller than 4000

Software implementation of Post-Quantum Cryptography 4



A first program
Adding up 1000 integers in readable syntax

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned <? ctr - 4000
goto looptop if unsigned <

Software implementation of Post-Quantum Cryptography 5



Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)
I Requirement for overlapping execution: instructions have to be

independent

Software implementation of Post-Quantum Cryptography 6



Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)
I Requirement for overlapping execution: instructions have to be

independent

Software implementation of Post-Quantum Cryptography 6



Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)

I Requirement for overlapping execution: instructions have to be
independent

Software implementation of Post-Quantum Cryptography 6



Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)
I Requirement for overlapping execution: instructions have to be

independent

Software implementation of Post-Quantum Cryptography 6



Throughput and latency

I While the ALU is executing an instruction the L/S and branch units
are idle

I Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

I While we’re at it: Why not deploy two ALUs
I This concept is called superscalar execution
I Number of independent instructions of one type per cycle:

throughput
I Number of cycles that need to pass before the result can be used:

latency

Software implementation of Post-Quantum Cryptography 7



Throughput and latency

I While the ALU is executing an instruction the L/S and branch units
are idle

I Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

I While we’re at it: Why not deploy two ALUs
I This concept is called superscalar execution

I Number of independent instructions of one type per cycle:
throughput

I Number of cycles that need to pass before the result can be used:
latency

Software implementation of Post-Quantum Cryptography 7



Throughput and latency

I While the ALU is executing an instruction the L/S and branch units
are idle

I Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

I While we’re at it: Why not deploy two ALUs
I This concept is called superscalar execution
I Number of independent instructions of one type per cycle:

throughput
I Number of cycles that need to pass before the result can be used:

latency

Software implementation of Post-Quantum Cryptography 7



An example computer
Still highly simplified

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

implicit

explicit

CPU

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

Software implementation of Post-Quantum Cryptography 8



Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

Software implementation of Post-Quantum Cryptography 9



Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

Software implementation of Post-Quantum Cryptography 9



Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

Software implementation of Post-Quantum Cryptography 9



Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

Software implementation of Post-Quantum Cryptography 9



How about our program?

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned <? ctr - 4000
goto looptop if unsigned <

I Addition has to wait for load
I Comparison has to wait for

addition
I Each iteration of the loop takes

8 cycles
I Total: > 8000 cycles
I This program sucks!

Software implementation of Post-Quantum Cryptography 10



How about our program?

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
# wait 2 cycles for tmp
result += tmp
ctr += 4
# wait 1 cycle for ctr
unsigned <? ctr - 4000
# wait 1 cycle for unsigned <
goto looptop if unsigned <

I Addition has to wait for load
I Comparison has to wait for

addition
I Each iteration of the loop takes

8 cycles
I Total: > 8000 cycles

I This program sucks!

Software implementation of Post-Quantum Cryptography 10



How about our program?

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
# wait 2 cycles for tmp
result += tmp
ctr += 4
# wait 1 cycle for ctr
unsigned <? ctr - 4000
# wait 1 cycle for unsigned <
goto looptop if unsigned <

I Addition has to wait for load
I Comparison has to wait for

addition
I Each iteration of the loop takes

8 cycles
I Total: > 8000 cycles
I This program sucks!

Software implementation of Post-Quantum Cryptography 10



Making the program fast
Step 1 – Unrolling

result = 0
tmp = mem32[START +0]
result += tmp
tmp = mem32[START +4]
result += tmp
tmp = mem32[START +8]
result += tmp

...

tmp = mem32[START +3996]
result += tmp

I Remove all the loop control:
unrolling

I Each load-and-add now takes 3
cycles

I Total: ≈ 3000 cycles
I Better, but still too slow

Software implementation of Post-Quantum Cryptography 11



Making the program fast
Step 1 – Unrolling

result = 0
tmp = mem32[START +0]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START +4]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START +8]
# wait 2 cycles for tmp
result += tmp

...

tmp = mem32[START +3996]
# wait 2 cycles for tmp
result += tmp

I Remove all the loop control:
unrolling

I Each load-and-add now takes 3
cycles

I Total: ≈ 3000 cycles

I Better, but still too slow

Software implementation of Post-Quantum Cryptography 11



Making the program fast
Step 1 – Unrolling

result = 0
tmp = mem32[START +0]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START +4]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START +8]
# wait 2 cycles for tmp
result += tmp

...

tmp = mem32[START +3996]
# wait 2 cycles for tmp
result += tmp

I Remove all the loop control:
unrolling

I Each load-and-add now takes 3
cycles

I Total: ≈ 3000 cycles
I Better, but still too slow

Software implementation of Post-Quantum Cryptography 11



Making the program fast
Step 2 – Instruction Scheduling

result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START +12]

result += tmp0
tmp0 = mem32[START +16]
result += tmp1
tmp1 = mem32[START +20]
result += tmp2
tmp2 = mem32[START +24]

...

result += tmp2
tmp2 = mem32[START +3996]
result += tmp0
result += tmp1
result += tmp2

I Load values earlier
I Load latencies are hidden
I Use more registers for loaded

values (tmp0, tmp1, tmp2)
I Get rid of one addition to zero

I Now arithmetic latencies kick in
I Total: ≈ 2000 cycles

Software implementation of Post-Quantum Cryptography 12



Making the program fast
Step 2 – Instruction Scheduling

result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START +12]
result += tmp0
tmp0 = mem32[START +16]
# wait 1 cycle for result
result += tmp1
tmp1 = mem32[START +20]
# wait 1 cycle for result
result += tmp2
tmp2 = mem32[START +24]

...

result += tmp2
tmp2 = mem32[START +3996]
# wait 1 cycle for result
result += tmp0
# wait 1 cycle for result
result += tmp1
# wait 1 cycle for result
result += tmp2

I Load values earlier
I Load latencies are hidden
I Use more registers for loaded

values (tmp0, tmp1, tmp2)
I Get rid of one addition to zero
I Now arithmetic latencies kick in
I Total: ≈ 2000 cycles

Software implementation of Post-Quantum Cryptography 12



Making the program fast
Step 3 – More Instruction Scheduling (two accumulators)

result0 = mem32[START + 0]
tmp0 = mem32[START + 8]
result1 = mem32[START + 4]
tmp1 = mem32[START +12]
tmp2 = mem32[START +16]

result0 += tmp0
tmp0 = mem32[START +20]
result1 += tmp1
tmp1 = mem32[START +24]
result0 += tmp2
tmp2 = mem32[START +28]

...

result0 += tmp1
tmp1 = mem32[START +3996]
result1 += tmp2
result0 += tmp0
result1 += tmp1
result0 += result1

I Use one more accumulator
register (result1)

I All latencies hidden
I Total: 1004 cycles
I Asymptotically n cycles for n

additions

Software implementation of Post-Quantum Cryptography 13



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles

I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop

I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)

I Resulting program is larger and requires more registers!
I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers

I Opposing requirements to register allocation (assigning registers to
live variables, minimizing memory access)

I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)

I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

Software implementation of Post-Quantum Cryptography 14



Architectures and microarchitectures

What instructions and how many registers do we have?
I Instructions are defined by the instruction set
I Supported register names are defined by the set of architectural

registers
I Instruction set and set of architectural registers together define the

architecture
I Examples for architectures: x86, AMD64, ARMv6, ARMv7,

UltraSPARC
I Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?
I Different microarchitectures implement an architecture
I Latencies and throughputs are specific to a microarchitecture
I Example: Intel Core 2 Quad Q9550 implements the AMD64

architecture

Software implementation of Post-Quantum Cryptography 15



Architectures and microarchitectures

What instructions and how many registers do we have?
I Instructions are defined by the instruction set
I Supported register names are defined by the set of architectural

registers
I Instruction set and set of architectural registers together define the

architecture
I Examples for architectures: x86, AMD64, ARMv6, ARMv7,

UltraSPARC
I Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?
I Different microarchitectures implement an architecture
I Latencies and throughputs are specific to a microarchitecture
I Example: Intel Core 2 Quad Q9550 implements the AMD64

architecture

Software implementation of Post-Quantum Cryptography 15



Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)

I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming
I Harder for the (assembly) programmer to understand what exactly

will happen with the code
I Harder to come up with optimal scheduling
I Harder to screw up completely

Software implementation of Post-Quantum Cryptography 16



Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution

I Typically requires more physical than architectural registers and
register renaming

I Harder for the (assembly) programmer to understand what exactly
will happen with the code

I Harder to come up with optimal scheduling
I Harder to screw up completely

Software implementation of Post-Quantum Cryptography 16



Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming

I Harder for the (assembly) programmer to understand what exactly
will happen with the code

I Harder to come up with optimal scheduling
I Harder to screw up completely

Software implementation of Post-Quantum Cryptography 16



Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming
I Harder for the (assembly) programmer to understand what exactly

will happen with the code
I Harder to come up with optimal scheduling

I Harder to screw up completely

Software implementation of Post-Quantum Cryptography 16



Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming
I Harder for the (assembly) programmer to understand what exactly

will happen with the code
I Harder to come up with optimal scheduling
I Harder to screw up completely

Software implementation of Post-Quantum Cryptography 16



Optimizing Crypto vs. optimizing “something”

I So far there was nothing crypto-specific in this talk
I Is optimizing crypto the same as optimizing any other software?

I No.

Cryptographic software deals with secret data (keys)

I Information about secret data must not leak through side channels
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)

Software implementation of Post-Quantum Cryptography 17



Optimizing Crypto vs. optimizing “something”

I So far there was nothing crypto-specific in this talk
I Is optimizing crypto the same as optimizing any other software?
I No.

Cryptographic software deals with secret data (keys)
I Information about secret data must not leak through side channels
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)

Software implementation of Post-Quantum Cryptography 17



Optimizing Crypto vs. optimizing “something”

I So far there was nothing crypto-specific in this talk
I Is optimizing crypto the same as optimizing any other software?
I No. Cryptographic software deals with secret data (keys)
I Information about secret data must not leak through side channels

I Most critical for software implementations on “large” CPUs: software
must take constant time (independent of secret data)

Software implementation of Post-Quantum Cryptography 17



Optimizing Crypto vs. optimizing “something”

I So far there was nothing crypto-specific in this talk
I Is optimizing crypto the same as optimizing any other software?
I No. Cryptographic software deals with secret data (keys)
I Information about secret data must not leak through side channels
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)

Software implementation of Post-Quantum Cryptography 17



Timing leakage part I

I Consider the following piece of code:
if s then

r ← A
else

r ← B
end if

I General structure of any conditional branch
I A and B can be large computations, r can be a large state
I This code takes different amount of time, depending on s
I Obvious timing leak if s is secret
I Even if A and B take the same amount of cycles this is not constant

time!
I Reason: Conditional branch takes different amount of cycles whether

taken or not
I Never use secret-data-dependent branch conditions

Software implementation of Post-Quantum Cryptography 18



Timing leakage part I

I Consider the following piece of code:
if s then

r ← A
else

r ← B
end if

I General structure of any conditional branch
I A and B can be large computations, r can be a large state

I This code takes different amount of time, depending on s
I Obvious timing leak if s is secret
I Even if A and B take the same amount of cycles this is not constant

time!
I Reason: Conditional branch takes different amount of cycles whether

taken or not
I Never use secret-data-dependent branch conditions

Software implementation of Post-Quantum Cryptography 18



Timing leakage part I

I Consider the following piece of code:
if s then

r ← A
else

r ← B
end if

I General structure of any conditional branch
I A and B can be large computations, r can be a large state
I This code takes different amount of time, depending on s
I Obvious timing leak if s is secret

I Even if A and B take the same amount of cycles this is not constant
time!

I Reason: Conditional branch takes different amount of cycles whether
taken or not

I Never use secret-data-dependent branch conditions

Software implementation of Post-Quantum Cryptography 18



Timing leakage part I

I Consider the following piece of code:
if s then

r ← A
else

r ← B
end if

I General structure of any conditional branch
I A and B can be large computations, r can be a large state
I This code takes different amount of time, depending on s
I Obvious timing leak if s is secret
I Even if A and B take the same amount of cycles this is not constant

time!
I Reason: Conditional branch takes different amount of cycles whether

taken or not
I Never use secret-data-dependent branch conditions

Software implementation of Post-Quantum Cryptography 18



Eliminating branches

I So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

I Replace by
r ← sA+ (1− s)B

I Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

I For very fast A and B this can even be faster

Software implementation of Post-Quantum Cryptography 19



Eliminating branches

I So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

I Replace by
r ← sA+ (1− s)B

I Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

I For very fast A and B this can even be faster

Software implementation of Post-Quantum Cryptography 19



Eliminating branches

I So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

I Replace by
r ← sA+ (1− s)B

I Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

I For very fast A and B this can even be faster

Software implementation of Post-Quantum Cryptography 19



Eliminating branches

I So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

I Replace by
r ← sA+ (1− s)B

I Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

I For very fast A and B this can even be faster

Software implementation of Post-Quantum Cryptography 19



Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

I Memory access goes through a
cache

I Small but fast transparent
memory for frequently used
data

I A load from memory places
data also in the cache

I Data remains in cache until it’s
replaced by other data

I Loading data is fast if data is in
the cache (cache hit)

I Loading data is slow if data is
not in the cache (cache miss)

Software implementation of Post-Quantum Cryptography 20



Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

I Memory access goes through a
cache

I Small but fast transparent
memory for frequently used
data

I A load from memory places
data also in the cache

I Data remains in cache until it’s
replaced by other data

I Loading data is fast if data is in
the cache (cache hit)

I Loading data is slow if data is
not in the cache (cache miss)

Software implementation of Post-Quantum Cryptography 20



Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

I Memory access goes through a
cache

I Small but fast transparent
memory for frequently used
data

I A load from memory places
data also in the cache

I Data remains in cache until it’s
replaced by other data

I Loading data is fast if data is in
the cache (cache hit)

I Loading data is slow if data is
not in the cache (cache miss)

Software implementation of Post-Quantum Cryptography 20



Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

T [32] . . . T [47]

T [48] . . . T [63]

T [64] . . . T [79]

T [80] . . . T [95]

T [96] . . . T [111]

T [112] . . . T [127]

T [128] . . . T [143]

T [144] . . . T [159]

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

T [224] . . . T [239]

T [240] . . . T [255]

I Consider lookup table of 32-bit integers
I Cache lines have 64 bytes
I Crypto and the attacker’s program run

on the same CPU
I Tables are in cache

I The attacker’s program replaces some
cache lines

I Crypto continues, loads from table
again

I Attacker loads his data:

I Fast: cache hit (crypto did not just
load from this line)

I Slow: cache miss (crypto just loaded
from this line)

Software implementation of Post-Quantum Cryptography 21



Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

attacker’s data

attacker’s data

T [64] . . . T [79]

T [80] . . . T [95]

attacker’s data

attacker’s data

attacker’s data

attacker’s data

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

attacker’s data

attacker’s data

I Consider lookup table of 32-bit integers
I Cache lines have 64 bytes
I Crypto and the attacker’s program run

on the same CPU
I Tables are in cache
I The attacker’s program replaces some

cache lines

I Crypto continues, loads from table
again

I Attacker loads his data:

I Fast: cache hit (crypto did not just
load from this line)

I Slow: cache miss (crypto just loaded
from this line)

Software implementation of Post-Quantum Cryptography 21



Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

???

???

T [64] . . . T [79]

T [80] . . . T [95]

???

???

???

???

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T223]

???

???

I Consider lookup table of 32-bit integers
I Cache lines have 64 bytes
I Crypto and the attacker’s program run

on the same CPU
I Tables are in cache
I The attacker’s program replaces some

cache lines
I Crypto continues, loads from table

again

I Attacker loads his data:

I Fast: cache hit (crypto did not just
load from this line)

I Slow: cache miss (crypto just loaded
from this line)

Software implementation of Post-Quantum Cryptography 21



Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

???

???

T [64] . . . T [79]

T [80] . . . T [95]

???

???

???

???

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T223]

???

???

I Consider lookup table of 32-bit integers
I Cache lines have 64 bytes
I Crypto and the attacker’s program run

on the same CPU
I Tables are in cache
I The attacker’s program replaces some

cache lines
I Crypto continues, loads from table

again
I Attacker loads his data:

I Fast: cache hit (crypto did not just
load from this line)

I Slow: cache miss (crypto just loaded
from this line)

Software implementation of Post-Quantum Cryptography 21



Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

???

???

T [64] . . . T [79]

T [80] . . . T [95]

???

attacker’s data

???

???

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T223]

???

???

I Consider lookup table of 32-bit integers
I Cache lines have 64 bytes
I Crypto and the attacker’s program run

on the same CPU
I Tables are in cache
I The attacker’s program replaces some

cache lines
I Crypto continues, loads from table

again
I Attacker loads his data:

I Fast: cache hit (crypto did not just
load from this line)

I Slow: cache miss (crypto just loaded
from this line)

Software implementation of Post-Quantum Cryptography 21



Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

???

???

T [64] . . . T [79]

T [80] . . . T [95]

???

T [112] . . . T [127]

???

???

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T223]

???

???

I Consider lookup table of 32-bit integers
I Cache lines have 64 bytes
I Crypto and the attacker’s program run

on the same CPU
I Tables are in cache
I The attacker’s program replaces some

cache lines
I Crypto continues, loads from table

again
I Attacker loads his data:

I Fast: cache hit (crypto did not just
load from this line)

I Slow: cache miss (crypto just loaded
from this line)

Software implementation of Post-Quantum Cryptography 21



Some comments on cache-timing

I This is only the most basic cache-timing attack

I Non-secret cache lines are not enough for security
I Load/Store addresses influence timing in many different ways
I Do not access memory at secret-data-dependent addresses
I Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

I Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

Software implementation of Post-Quantum Cryptography 22



Some comments on cache-timing

I This is only the most basic cache-timing attack
I Non-secret cache lines are not enough for security
I Load/Store addresses influence timing in many different ways
I Do not access memory at secret-data-dependent addresses

I Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

I Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

Software implementation of Post-Quantum Cryptography 22



Some comments on cache-timing

I This is only the most basic cache-timing attack
I Non-secret cache lines are not enough for security
I Load/Store addresses influence timing in many different ways
I Do not access memory at secret-data-dependent addresses
I Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

I Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

Software implementation of Post-Quantum Cryptography 22



Some comments on cache-timing

I This is only the most basic cache-timing attack
I Non-secret cache lines are not enough for security
I Load/Store addresses influence timing in many different ways
I Do not access memory at secret-data-dependent addresses
I Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

I Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

Software implementation of Post-Quantum Cryptography 22



Eliminating lookups

I Want to load item at (secret) position p from table of size n

I Load all items, use arithmetic to pick the right one:
for i from 0 to n− 1 do

d← T [i]
if p = i then

r ← d
end if

end for
I Problem 1: if-statements are not constant time (see before)
I Problem 2: Comparisons are not constant time, replace by:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

Software implementation of Post-Quantum Cryptography 23



Eliminating lookups

I Want to load item at (secret) position p from table of size n
I Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d← T [i]
if p = i then

r ← d
end if

end for

I Problem 1: if-statements are not constant time (see before)
I Problem 2: Comparisons are not constant time, replace by:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

Software implementation of Post-Quantum Cryptography 23



Eliminating lookups

I Want to load item at (secret) position p from table of size n
I Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d← T [i]
if p = i then

r ← d
end if

end for
I Problem 1: if-statements are not constant time (see before)

I Problem 2: Comparisons are not constant time, replace by:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

Software implementation of Post-Quantum Cryptography 23



Eliminating lookups

I Want to load item at (secret) position p from table of size n
I Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d← T [i]
if p = i then

r ← d
end if

end for
I Problem 1: if-statements are not constant time (see before)
I Problem 2: Comparisons are not constant time, replace by:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}
Software implementation of Post-Quantum Cryptography 23



Timing leakage part III

I Are secret branch conditions and secret load/store addresses the
only problem?

I Answer by Langley: “That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane
CPUs.”

I Some architectures have non-constant-time arithmetic
I Examples:

I UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
I DIV instruction on Intel processors, see also

https:
//www.imperialviolet.org/2013/02/04/luckythirteen.html

Summary
I Writing efficient constant-time code is hard
I Typically requires reconsiderations through all optimization levels

Software implementation of Post-Quantum Cryptography 24

https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html


Timing leakage part III

I Are secret branch conditions and secret load/store addresses the
only problem?

I Answer by Langley: “That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane
CPUs.”

I Some architectures have non-constant-time arithmetic
I Examples:

I UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
I DIV instruction on Intel processors, see also

https:
//www.imperialviolet.org/2013/02/04/luckythirteen.html

Summary
I Writing efficient constant-time code is hard
I Typically requires reconsiderations through all optimization levels

Software implementation of Post-Quantum Cryptography 24

https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html


Timing leakage part III

I Are secret branch conditions and secret load/store addresses the
only problem?

I Answer by Langley: “That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane
CPUs.”

I Some architectures have non-constant-time arithmetic
I Examples:

I UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
I DIV instruction on Intel processors, see also

https:
//www.imperialviolet.org/2013/02/04/luckythirteen.html

Summary
I Writing efficient constant-time code is hard
I Typically requires reconsiderations through all optimization levels

Software implementation of Post-Quantum Cryptography 24

https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html


Timing leakage part III

I Are secret branch conditions and secret load/store addresses the
only problem?

I Answer by Langley: “That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane
CPUs.”

I Some architectures have non-constant-time arithmetic
I Examples:

I UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
I DIV instruction on Intel processors, see also

https:
//www.imperialviolet.org/2013/02/04/luckythirteen.html

Summary
I Writing efficient constant-time code is hard
I Typically requires reconsiderations through all optimization levels

Software implementation of Post-Quantum Cryptography 24

https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html


SIMD computations

“Thus we arbitrarily select a reference organization : the IBM
704-70927090. This organization is then regarded as the prototype of the
class of machines which we label:
1) Single Instruction Stream–Single Data Stream (SISD).

Three additional organizational classes are evident.
2) Single Instruction Stream–Multiple Data Stream (SIMD)
3) Multiple Instruction Stream–Single Data Stream (MISD)
4) Multiple Instruction Stream–Multiple Data Stream (MIMD)”

– Michael J. Flynn. Very high-speed computing systems. 1966.

Software implementation of Post-Quantum Cryptography 25



SISD
Example: 32-bit integer addition

int64 a
int64 b
a = mem32[addr1 + 0]
b = mem32[addr2 + 0]
(uint32) a += b
mem32[addr3 + 0] = a

Software implementation of Post-Quantum Cryptography 26



SIMD with vector instructions
Example: 4 32-bit integer additions

reg128 a
reg128 b
a = mem128[addr1 + 0]
b = mem128[addr2 + 0]
4x a += b
mem128[addr3 + 0] = a

Software implementation of Post-Quantum Cryptography 27



Back to adding 1000 integers

I Imagine that
I vector addition is as fast as scalar addition
I vector loads are as fast as scalar loads

I Need only 250 vector additions, 250 vector loads
I Lower bound of 250 cycles
I Very straight-forward modification of the program
I Fully unrolled loop needs only 1/4 of the space

Software implementation of Post-Quantum Cryptography 28



Back to adding 1000 integers

I Imagine that
I vector addition is as fast as scalar addition
I vector loads are as fast as scalar loads

I Need only 250 vector additions, 250 vector loads
I Lower bound of 250 cycles

I Very straight-forward modification of the program
I Fully unrolled loop needs only 1/4 of the space

Software implementation of Post-Quantum Cryptography 28



Back to adding 1000 integers

I Imagine that
I vector addition is as fast as scalar addition
I vector loads are as fast as scalar loads

I Need only 250 vector additions, 250 vector loads
I Lower bound of 250 cycles
I Very straight-forward modification of the program
I Fully unrolled loop needs only 1/4 of the space

Software implementation of Post-Quantum Cryptography 28



Is it really that efficient?

I Consider the Intel Nehalem processor

I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar
I Reason: cheap way to increase arithmetic throughput (less decoding,

address computation, etc.)

Software implementation of Post-Quantum Cryptography 29



Is it really that efficient?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle

I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar
I Reason: cheap way to increase arithmetic throughput (less decoding,

address computation, etc.)

Software implementation of Post-Quantum Cryptography 29



Is it really that efficient?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar
I Reason: cheap way to increase arithmetic throughput (less decoding,

address computation, etc.)

Software implementation of Post-Quantum Cryptography 29



Is it really that efficient?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar
I Reason: cheap way to increase arithmetic throughput (less decoding,

address computation, etc.)

Software implementation of Post-Quantum Cryptography 29



Is it really that efficient?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar
I Reason: cheap way to increase arithmetic throughput (less decoding,

address computation, etc.)

Software implementation of Post-Quantum Cryptography 29



More reasons for using vector arithmetic

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups

I Secret-data-dependent branches and secret branch conditions are the
major sources of timing-attack vulnerabilities

I Strong synergies between speeding up code with vector instructions
and protecting code!

Software implementation of Post-Quantum Cryptography 30



More reasons for using vector arithmetic

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups
I Secret-data-dependent branches and secret branch conditions are the

major sources of timing-attack vulnerabilities

I Strong synergies between speeding up code with vector instructions
and protecting code!

Software implementation of Post-Quantum Cryptography 30



More reasons for using vector arithmetic

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups
I Secret-data-dependent branches and secret branch conditions are the

major sources of timing-attack vulnerabilities
I Strong synergies between speeding up code with vector instructions

and protecting code!

Software implementation of Post-Quantum Cryptography 30



Vectorization problems I

Carry handling
I When adding two 32-bit integers, the result may have 33 bits (32-bit

result + carry)
I Scalar additions keep the carry in a special flag register
I Subsequent instructions can use this flag, e.g., “add with carry”

I How about carries of vector additions?

I Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)
I Answer 2: They’re lost, recomputation is very expensive

I Need to avoid carries instead of handling them
I No problem for today’s talk, but requires care for big-integer

arithmetic

Software implementation of Post-Quantum Cryptography 31



Vectorization problems I

Carry handling
I When adding two 32-bit integers, the result may have 33 bits (32-bit

result + carry)
I Scalar additions keep the carry in a special flag register
I Subsequent instructions can use this flag, e.g., “add with carry”
I How about carries of vector additions?

I Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)

I Answer 2: They’re lost, recomputation is very expensive
I Need to avoid carries instead of handling them
I No problem for today’s talk, but requires care for big-integer

arithmetic

Software implementation of Post-Quantum Cryptography 31



Vectorization problems I

Carry handling
I When adding two 32-bit integers, the result may have 33 bits (32-bit

result + carry)
I Scalar additions keep the carry in a special flag register
I Subsequent instructions can use this flag, e.g., “add with carry”
I How about carries of vector additions?

I Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)
I Answer 2: They’re lost, recomputation is very expensive

I Need to avoid carries instead of handling them
I No problem for today’s talk, but requires care for big-integer

arithmetic

Software implementation of Post-Quantum Cryptography 31



Vectorization problems I

Carry handling
I When adding two 32-bit integers, the result may have 33 bits (32-bit

result + carry)
I Scalar additions keep the carry in a special flag register
I Subsequent instructions can use this flag, e.g., “add with carry”
I How about carries of vector additions?

I Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)
I Answer 2: They’re lost, recomputation is very expensive

I Need to avoid carries instead of handling them
I No problem for today’s talk, but requires care for big-integer

arithmetic

Software implementation of Post-Quantum Cryptography 31



Vectorization problems II

Removing instruction-level parallelism
I If we don’t vectorize we perform multiple independent instructions
I We turn data-level parallelism (DLP) into instruction-level

parallelism (ILP)

I Pipelined and multiscalar execution need ILP
I Vectorization removes ILP
I Problematic for algorithms with, e.g., 4-way DLP
I Good example to see this: ChaCha/Salsa/Blake
I Vectorization of ChaCha and Salsa can resort to higher-level

parallelism (multiple blocks)
I Harder for Blake: each block depends on the previous one

Software implementation of Post-Quantum Cryptography 32



Vectorization problems II

Removing instruction-level parallelism
I If we don’t vectorize we perform multiple independent instructions
I We turn data-level parallelism (DLP) into instruction-level

parallelism (ILP)
I Pipelined and multiscalar execution need ILP
I Vectorization removes ILP
I Problematic for algorithms with, e.g., 4-way DLP

I Good example to see this: ChaCha/Salsa/Blake
I Vectorization of ChaCha and Salsa can resort to higher-level

parallelism (multiple blocks)
I Harder for Blake: each block depends on the previous one

Software implementation of Post-Quantum Cryptography 32



Vectorization problems II

Removing instruction-level parallelism
I If we don’t vectorize we perform multiple independent instructions
I We turn data-level parallelism (DLP) into instruction-level

parallelism (ILP)
I Pipelined and multiscalar execution need ILP
I Vectorization removes ILP
I Problematic for algorithms with, e.g., 4-way DLP
I Good example to see this: ChaCha/Salsa/Blake

I Vectorization of ChaCha and Salsa can resort to higher-level
parallelism (multiple blocks)

I Harder for Blake: each block depends on the previous one

Software implementation of Post-Quantum Cryptography 32



Vectorization problems II

Removing instruction-level parallelism
I If we don’t vectorize we perform multiple independent instructions
I We turn data-level parallelism (DLP) into instruction-level

parallelism (ILP)
I Pipelined and multiscalar execution need ILP
I Vectorization removes ILP
I Problematic for algorithms with, e.g., 4-way DLP
I Good example to see this: ChaCha/Salsa/Blake
I Vectorization of ChaCha and Salsa can resort to higher-level

parallelism (multiple blocks)
I Harder for Blake: each block depends on the previous one

Software implementation of Post-Quantum Cryptography 32



Vectorization problems III

Data shuffeling
I Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

I Ignore carries, overflows etc. for a moment
I 16 multiplications, 9 additions
I How to vectorize multiplications?

Software implementation of Post-Quantum Cryptography 33



Vectorization problems III

Data shuffeling
I Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

I Ignore carries, overflows etc. for a moment
I 16 multiplications, 9 additions
I How to vectorize multiplications?

Software implementation of Post-Quantum Cryptography 33



Vectorization problems III
Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

I Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

I Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

I And now what?
I Answer: Need to shuffle data in input and output registers
I Significant overhead, not clear that vectorization speeds up

computation!

Software implementation of Post-Quantum Cryptography 33



Vectorization problems III
Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

I Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

I Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

I And now what?

I Answer: Need to shuffle data in input and output registers
I Significant overhead, not clear that vectorization speeds up

computation!

Software implementation of Post-Quantum Cryptography 33



Vectorization problems III
Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

I Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

I Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

I And now what?
I Answer: Need to shuffle data in input and output registers
I Significant overhead, not clear that vectorization speeds up

computation!
Software implementation of Post-Quantum Cryptography 33



Efficient vectorization

I Most important question: Where does the parallelism come from?
I Easiest answer: Consider multiple batched encryptions, decryptions,

signature computations, verifications, etc.

I Often: Can exploit lower-level parallelism
I Rule of thumb: parallelize on an as high as possible level
I Vectorization is hard to do as “add-on” optimization
I Reconsider algorithms, synergie with constant-time algorithms

Software implementation of Post-Quantum Cryptography 34



Efficient vectorization

I Most important question: Where does the parallelism come from?
I Easiest answer: Consider multiple batched encryptions, decryptions,

signature computations, verifications, etc.
I Often: Can exploit lower-level parallelism

I Rule of thumb: parallelize on an as high as possible level
I Vectorization is hard to do as “add-on” optimization
I Reconsider algorithms, synergie with constant-time algorithms

Software implementation of Post-Quantum Cryptography 34



Efficient vectorization

I Most important question: Where does the parallelism come from?
I Easiest answer: Consider multiple batched encryptions, decryptions,

signature computations, verifications, etc.
I Often: Can exploit lower-level parallelism
I Rule of thumb: parallelize on an as high as possible level
I Vectorization is hard to do as “add-on” optimization
I Reconsider algorithms, synergie with constant-time algorithms

Software implementation of Post-Quantum Cryptography 34



Going binary

I So far: considered vectors of integers
I How about arithmetic in binary fields?

I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Software implementation of Post-Quantum Cryptography 35



Going binary

I So far: considered vectors of integers
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.

I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Software implementation of Post-Quantum Cryptography 35



Going binary

I So far: considered vectors of integers
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES

I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Software implementation of Post-Quantum Cryptography 35



Going binary

I So far: considered vectors of integers
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software

I Computations on a transposition of data

Software implementation of Post-Quantum Cryptography 35



Going binary

I So far: considered vectors of integers
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Software implementation of Post-Quantum Cryptography 35



Bitslicing issues

I XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per
cycle on Intel Core 2)

I Can be very fast for operations that are not natively supported (like
arithmetic in binary fields)

I Active data set increases massively (e.g., 128×)
I For “normal” vector operations, register space is increased

accordingly (e.g, 16 256-bit vector registers vs. 16 64-bit integer
registers)

I For bitslicing: Need to fit more data into the same registers
I Typical consequence: more loads and stores (that easily become the

performance bottleneck)

Software implementation of Post-Quantum Cryptography 36



Bitslicing issues

I XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per
cycle on Intel Core 2)

I Can be very fast for operations that are not natively supported (like
arithmetic in binary fields)

I Active data set increases massively (e.g., 128×)
I For “normal” vector operations, register space is increased

accordingly (e.g, 16 256-bit vector registers vs. 16 64-bit integer
registers)

I For bitslicing: Need to fit more data into the same registers
I Typical consequence: more loads and stores (that easily become the

performance bottleneck)

Software implementation of Post-Quantum Cryptography 36



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers

I Instruction set only supports floating-point vector instructions on
YMM registers

I Integer-vector instructions follow with AVX2 (Haswell)
I Very powerful arithmetic: 1 double-precision vector multiplication

and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)
I Alternative: XOR, AND, OR on XMM registers (3 per cycle)
I However, don’t mix XMM and YMM instruction (context-switch

penalty)

Software implementation of Post-Quantum Cryptography 37



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers
I Instruction set only supports floating-point vector instructions on

YMM registers

I Integer-vector instructions follow with AVX2 (Haswell)
I Very powerful arithmetic: 1 double-precision vector multiplication

and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)
I Alternative: XOR, AND, OR on XMM registers (3 per cycle)
I However, don’t mix XMM and YMM instruction (context-switch

penalty)

Software implementation of Post-Quantum Cryptography 37



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers
I Instruction set only supports floating-point vector instructions on

YMM registers
I Integer-vector instructions follow with AVX2 (Haswell)

I Very powerful arithmetic: 1 double-precision vector multiplication
and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)
I Alternative: XOR, AND, OR on XMM registers (3 per cycle)
I However, don’t mix XMM and YMM instruction (context-switch

penalty)

Software implementation of Post-Quantum Cryptography 37



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers
I Instruction set only supports floating-point vector instructions on

YMM registers
I Integer-vector instructions follow with AVX2 (Haswell)
I Very powerful arithmetic: 1 double-precision vector multiplication

and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)
I Alternative: XOR, AND, OR on XMM registers (3 per cycle)
I However, don’t mix XMM and YMM instruction (context-switch

penalty)

Software implementation of Post-Quantum Cryptography 37



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers
I Instruction set only supports floating-point vector instructions on

YMM registers
I Integer-vector instructions follow with AVX2 (Haswell)
I Very powerful arithmetic: 1 double-precision vector multiplication

and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)

I Alternative: XOR, AND, OR on XMM registers (3 per cycle)
I However, don’t mix XMM and YMM instruction (context-switch

penalty)

Software implementation of Post-Quantum Cryptography 37



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers
I Instruction set only supports floating-point vector instructions on

YMM registers
I Integer-vector instructions follow with AVX2 (Haswell)
I Very powerful arithmetic: 1 double-precision vector multiplication

and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)
I Alternative: XOR, AND, OR on XMM registers (3 per cycle)

I However, don’t mix XMM and YMM instruction (context-switch
penalty)

Software implementation of Post-Quantum Cryptography 37



Introducing AVX

I Vector instruction set introduced by Intel with Sandy Bridge and Ivy
Bridge

I 256-bit vector registers YMM0,. . . ,YMM15
I Overlap with 128-bit XMM registers
I Instruction set only supports floating-point vector instructions on

YMM registers
I Integer-vector instructions follow with AVX2 (Haswell)
I Very powerful arithmetic: 1 double-precision vector multiplication

and 1 double-precision vector addition per cycle (8 FLOPs per cycle
per core)

I Also supported: XOR, AND, OR on YMM registers (1 per cycle)
I Alternative: XOR, AND, OR on XMM registers (3 per cycle)
I However, don’t mix XMM and YMM instruction (context-switch

penalty)

Software implementation of Post-Quantum Cryptography 37



Part II
Fast Lattice-Based Signatures

joint work with Tim Güneysu, Tobias Oder, and
Thomas Pöppelmann

Software implementation of Post-Quantum Cryptography 38



Introduction

I Consider lattice-based signature scheme proposed by Güneysu,
Lyubashevsky, and Pöppelmann at CHES 2012

I “Aggressively optimized” version of scheme by Lyubashevsky
(Eurocrypt 2012)

I Security level with the implemented parameters:

I original estimate: 100 bits (against traditional computers)
I Lyubashevsky in 2013: 80 bits
I 2014: . . . ?

I This is not a mature, well understood cryptosystem
I Don’t use it in applications, but study it!
I Implementation techniques are applicable more generally

Software implementation of Post-Quantum Cryptography 39



Introduction

I Consider lattice-based signature scheme proposed by Güneysu,
Lyubashevsky, and Pöppelmann at CHES 2012

I “Aggressively optimized” version of scheme by Lyubashevsky
(Eurocrypt 2012)

I Security level with the implemented parameters:
I original estimate: 100 bits (against traditional computers)

I Lyubashevsky in 2013: 80 bits
I 2014: . . . ?

I This is not a mature, well understood cryptosystem
I Don’t use it in applications, but study it!
I Implementation techniques are applicable more generally

Software implementation of Post-Quantum Cryptography 39



Introduction

I Consider lattice-based signature scheme proposed by Güneysu,
Lyubashevsky, and Pöppelmann at CHES 2012

I “Aggressively optimized” version of scheme by Lyubashevsky
(Eurocrypt 2012)

I Security level with the implemented parameters:
I original estimate: 100 bits (against traditional computers)
I Lyubashevsky in 2013: 80 bits

I 2014: . . . ?
I This is not a mature, well understood cryptosystem
I Don’t use it in applications, but study it!
I Implementation techniques are applicable more generally

Software implementation of Post-Quantum Cryptography 39



Introduction

I Consider lattice-based signature scheme proposed by Güneysu,
Lyubashevsky, and Pöppelmann at CHES 2012

I “Aggressively optimized” version of scheme by Lyubashevsky
(Eurocrypt 2012)

I Security level with the implemented parameters:
I original estimate: 100 bits (against traditional computers)
I Lyubashevsky in 2013: 80 bits
I 2014: . . . ?

I This is not a mature, well understood cryptosystem
I Don’t use it in applications, but study it!
I Implementation techniques are applicable more generally

Software implementation of Post-Quantum Cryptography 39



Introduction

I Consider lattice-based signature scheme proposed by Güneysu,
Lyubashevsky, and Pöppelmann at CHES 2012

I “Aggressively optimized” version of scheme by Lyubashevsky
(Eurocrypt 2012)

I Security level with the implemented parameters:
I original estimate: 100 bits (against traditional computers)
I Lyubashevsky in 2013: 80 bits
I 2014: . . . ?

I This is not a mature, well understood cryptosystem
I Don’t use it in applications, but study it!

I Implementation techniques are applicable more generally

Software implementation of Post-Quantum Cryptography 39



Introduction

I Consider lattice-based signature scheme proposed by Güneysu,
Lyubashevsky, and Pöppelmann at CHES 2012

I “Aggressively optimized” version of scheme by Lyubashevsky
(Eurocrypt 2012)

I Security level with the implemented parameters:
I original estimate: 100 bits (against traditional computers)
I Lyubashevsky in 2013: 80 bits
I 2014: . . . ?

I This is not a mature, well understood cryptosystem
I Don’t use it in applications, but study it!
I Implementation techniques are applicable more generally

Software implementation of Post-Quantum Cryptography 39



Notation

I n is a power of 2

I p is a prime congruent to 1 modulo 2n (necessary for efficiency)
I R is the ring Fp[x]/〈xn + 1〉
I Rk subset of R with coefficients in [−k, k].

Software implementation of Post-Quantum Cryptography 40



Lattice hardness assumptions

Standard lattice hardness assumption
Decisional Ring-LWE:
Given (a1, t1), ..., (am, tm) ∈ R×R. Decide whether

I ti = ais+ ei where s, e1, ..., em ← Dσ and ai
$← R

(Dσ denotes a Gaussian distribution), or
I (ai, ti) uniformly random from R×R.

More “aggressive” hardness assumption
Decisional Compact Knapsack Problem (DCKP):
Given (a, t) ∈ R×R.

I Decide whether t = as1 + s2 where s1, s2
$← R1 and a $← R, or

I (a, t) uniformly random from R×R.

Software implementation of Post-Quantum Cryptography 41



Lattice hardness assumptions

Standard lattice hardness assumption
Decisional Ring-LWE:
Given (a1, t1), ..., (am, tm) ∈ R×R. Decide whether

I ti = ais+ ei where s, e1, ..., em ← Dσ and ai
$← R

(Dσ denotes a Gaussian distribution), or
I (ai, ti) uniformly random from R×R.

More “aggressive” hardness assumption
Decisional Compact Knapsack Problem (DCKP):
Given (a, t) ∈ R×R.

I Decide whether t = as1 + s2 where s1, s2
$← R1 and a $← R, or

I (a, t) uniformly random from R×R.

Software implementation of Post-Quantum Cryptography 41



System parameters

Parameters
I n = 2`1

I Prime p with 2n|(p− 1)

I k = 2`2 with
√
p < k � p

I “Random” a ∈ R
I Hash function H to elements of
R1 with at most 32 non-zero
coefficients

Example
I n = 512

I p = 8383489 (23 bits)
I k = 214

I Fixed random a

I . . . more later

Software implementation of Post-Quantum Cryptography 42



Key generation

Secret key
I s1, s2 sampled uniformly at random from R1

Public key
I t = as1 + s2

Software implementation of Post-Quantum Cryptography 43



Signing (simplified)

Compute a signature σ on a message M as follows:

1. Generate y1, y2 uniformly at random from Rk
2. Compute c = H(ay1 + y2,M)

3. Compute z1 = s1c+ y1 and z2 = s2c+ y2

4. If z1 or z2 6∈ Rk−32, goto step 1
5. Return σ = (z1, z2, c)

Software implementation of Post-Quantum Cryptography 44



Verification (simplified)

Check signature σ = (z1, z2, c) on M as follows:

1. If z1 or z2 6∈ Rk−32, reject
2. Else if c 6= H(az1 + z2 − tc,M), reject
3. Else accept

Correctness

az1 + z2 − tc
= a(s1c+ y1) + (s2c+ y2)− (as1 + s2)c

= as1c+ ay1 + s2c+ y2 − as1c− s2c
= ay1 + y2

Software implementation of Post-Quantum Cryptography 45



Verification (simplified)

Check signature σ = (z1, z2, c) on M as follows:

1. If z1 or z2 6∈ Rk−32, reject
2. Else if c 6= H(az1 + z2 − tc,M), reject
3. Else accept

Correctness

az1 + z2 − tc
= a(s1c+ y1) + (s2c+ y2)− (as1 + s2)c

= as1c+ ay1 + s2c+ y2 − as1c− s2c
= ay1 + y2

Software implementation of Post-Quantum Cryptography 45



Software implementation, first considerations

Key generation
I Main operation: sampling random coefficients in {−1, 0, 1}
I One multiplication of fixed a by s1

Signing
I Expected number of signing attempts: 7

I Each attempt:
I Sample y1, y2 uniformly at random from Rk

I Two sparse multiplications s1c and s2c
I One multiplication ay1 by constant a

Verification
I One sparse multiplication ct
I One multiplication az1 by constant a

Software implementation of Post-Quantum Cryptography 46



Software implementation, first considerations

Key generation
I Main operation: sampling random coefficients in {−1, 0, 1}
I One multiplication of fixed a by s1

Signing
I Expected number of signing attempts: 7

I Each attempt:
I Sample y1, y2 uniformly at random from Rk

I Two sparse multiplications s1c and s2c
I One multiplication ay1 by constant a

Verification
I One sparse multiplication ct
I One multiplication az1 by constant a

Software implementation of Post-Quantum Cryptography 46



Software implementation, first considerations

Key generation
I Main operation: sampling random coefficients in {−1, 0, 1}
I One multiplication of fixed a by s1

Signing
I Expected number of signing attempts: 7

I Each attempt:
I Sample y1, y2 uniformly at random from Rk

I Two sparse multiplications s1c and s2c
I One multiplication ay1 by constant a

Verification
I One sparse multiplication ct
I One multiplication az1 by constant a

Software implementation of Post-Quantum Cryptography 46



The function H

Need to hash an arbitrary string S to an element
c = (c0 + c1x+ · · ·+ c511x

511) of R1 with at most 32 non-zero entries

I First apply SHA-256, truncate to 160-bit hash h
I Map h injectively to c as follows:

I Split (h0, . . . , h31), each hi with 5 bits
I Split each hi into (hi0, hit), where hi0 is one bit and hit is a 4-bit

integer
I hit indicates which of the 16 coefficients c16i, . . . , c16i+15 is nonzero
I If hi0 = 0 set this coefficient to −1 else to 1

Software implementation of Post-Quantum Cryptography 47



The function H

Need to hash an arbitrary string S to an element
c = (c0 + c1x+ · · ·+ c511x

511) of R1 with at most 32 non-zero entries

I First apply SHA-256, truncate to 160-bit hash h
I Map h injectively to c as follows:

I Split (h0, . . . , h31), each hi with 5 bits
I Split each hi into (hi0, hit), where hi0 is one bit and hit is a 4-bit

integer
I hit indicates which of the 16 coefficients c16i, . . . , c16i+15 is nonzero
I If hi0 = 0 set this coefficient to −1 else to 1

Software implementation of Post-Quantum Cryptography 47



Random sampling, 1st approach

I How do we get an integer, uniformly at random from [0,m− 1]?
I Let’s say that m− 1 has ` bits
I Let’s say that we can get random bits (e.g., from /dev/urandom)

I Two answers:
1. Obtain a random `-bit integer, reject until it is in [0,m− 1]

2. Obtain a much larger integer, reduce mod m (close to uniform)

I Probability of rejection in 1. depends on m, it’s between 0 and 1/2

I Problem with both 1. and 2.: /dev/urandom is slow

Software implementation of Post-Quantum Cryptography 48



Random sampling, 1st approach

I How do we get an integer, uniformly at random from [0,m− 1]?
I Let’s say that m− 1 has ` bits
I Let’s say that we can get random bits (e.g., from /dev/urandom)
I Two answers:

1. Obtain a random `-bit integer, reject until it is in [0,m− 1]

2. Obtain a much larger integer, reduce mod m (close to uniform)
I Probability of rejection in 1. depends on m, it’s between 0 and 1/2

I Problem with both 1. and 2.: /dev/urandom is slow

Software implementation of Post-Quantum Cryptography 48



Random sampling, 1st approach

I How do we get an integer, uniformly at random from [0,m− 1]?
I Let’s say that m− 1 has ` bits
I Let’s say that we can get random bits (e.g., from /dev/urandom)
I Two answers:

1. Obtain a random `-bit integer, reject until it is in [0,m− 1]
2. Obtain a much larger integer, reduce mod m (close to uniform)

I Probability of rejection in 1. depends on m, it’s between 0 and 1/2

I Problem with both 1. and 2.: /dev/urandom is slow

Software implementation of Post-Quantum Cryptography 48



Random sampling, 1st approach

I How do we get an integer, uniformly at random from [0,m− 1]?
I Let’s say that m− 1 has ` bits
I Let’s say that we can get random bits (e.g., from /dev/urandom)
I Two answers:

1. Obtain a random `-bit integer, reject until it is in [0,m− 1]
2. Obtain a much larger integer, reduce mod m (close to uniform)

I Probability of rejection in 1. depends on m, it’s between 0 and 1/2

I Problem with both 1. and 2.: /dev/urandom is slow

Software implementation of Post-Quantum Cryptography 48



Random sampling, 1st approach

I How do we get an integer, uniformly at random from [0,m− 1]?
I Let’s say that m− 1 has ` bits
I Let’s say that we can get random bits (e.g., from /dev/urandom)
I Two answers:

1. Obtain a random `-bit integer, reject until it is in [0,m− 1]
2. Obtain a much larger integer, reduce mod m (close to uniform)

I Probability of rejection in 1. depends on m, it’s between 0 and 1/2

I Problem with both 1. and 2.: /dev/urandom is slow

Software implementation of Post-Quantum Cryptography 48



Faster random sampling

I Only read seed from /dev/urandom, use fast Salsa20 stream cipher
I Salsa20 fast only for long streams, 3 bytes cost as much as 64

I We want truly uniform distribution from [−k, k], recall that k = 214

I We want only one call to Salsa20
I Combine approaches 1 and 2 as follows:

1. Obtain 4 · (528) random bytes from Salsa20
2. Interpret these bytes as 528 32-bit integers
3. Discard integers ≥ (2k + 1) · b232/(2k + 1)c.
4. Probability to discard an integer: 2−30

5. We have 16 additional integers, replace discarded integers by those
6. If more than 16 integers are discarded, restart with step 1
7. For each integer r compute r mod (2k + 1)− k

I Similar approach to sample coefficients in {−1, 0, 1}
I Only difference: Use bytes instead of 32-bit integers

Software implementation of Post-Quantum Cryptography 49



Faster random sampling

I Only read seed from /dev/urandom, use fast Salsa20 stream cipher
I Salsa20 fast only for long streams, 3 bytes cost as much as 64

I We want truly uniform distribution from [−k, k], recall that k = 214

I We want only one call to Salsa20

I Combine approaches 1 and 2 as follows:
1. Obtain 4 · (528) random bytes from Salsa20
2. Interpret these bytes as 528 32-bit integers
3. Discard integers ≥ (2k + 1) · b232/(2k + 1)c.
4. Probability to discard an integer: 2−30

5. We have 16 additional integers, replace discarded integers by those
6. If more than 16 integers are discarded, restart with step 1
7. For each integer r compute r mod (2k + 1)− k

I Similar approach to sample coefficients in {−1, 0, 1}
I Only difference: Use bytes instead of 32-bit integers

Software implementation of Post-Quantum Cryptography 49



Faster random sampling

I Only read seed from /dev/urandom, use fast Salsa20 stream cipher
I Salsa20 fast only for long streams, 3 bytes cost as much as 64

I We want truly uniform distribution from [−k, k], recall that k = 214

I We want only one call to Salsa20
I Combine approaches 1 and 2 as follows:

1. Obtain 4 · (528) random bytes from Salsa20
2. Interpret these bytes as 528 32-bit integers
3. Discard integers ≥ (2k + 1) · b232/(2k + 1)c.
4. Probability to discard an integer: 2−30

5. We have 16 additional integers, replace discarded integers by those
6. If more than 16 integers are discarded, restart with step 1
7. For each integer r compute r mod (2k + 1)− k

I Similar approach to sample coefficients in {−1, 0, 1}
I Only difference: Use bytes instead of 32-bit integers

Software implementation of Post-Quantum Cryptography 49



Faster random sampling

I Only read seed from /dev/urandom, use fast Salsa20 stream cipher
I Salsa20 fast only for long streams, 3 bytes cost as much as 64

I We want truly uniform distribution from [−k, k], recall that k = 214

I We want only one call to Salsa20
I Combine approaches 1 and 2 as follows:

1. Obtain 4 · (528) random bytes from Salsa20
2. Interpret these bytes as 528 32-bit integers
3. Discard integers ≥ (2k + 1) · b232/(2k + 1)c.
4. Probability to discard an integer: 2−30

5. We have 16 additional integers, replace discarded integers by those
6. If more than 16 integers are discarded, restart with step 1
7. For each integer r compute r mod (2k + 1)− k

I Similar approach to sample coefficients in {−1, 0, 1}
I Only difference: Use bytes instead of 32-bit integers

Software implementation of Post-Quantum Cryptography 49



Representation of elements of R

I represent a =
∑511
i=0 aiX

i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a
I Rounding mode determines whether this maps to

[− p−1
2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa

Software implementation of Post-Quantum Cryptography 50



Representation of elements of R

I represent a =
∑511
i=0 aiX

i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a
I Rounding mode determines whether this maps to

[− p−1
2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa

Software implementation of Post-Quantum Cryptography 50



Representation of elements of R

I represent a =
∑511
i=0 aiX

i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a
I Rounding mode determines whether this maps to

[− p−1
2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa

Software implementation of Post-Quantum Cryptography 50



Representation of elements of R

I represent a =
∑511
i=0 aiX

i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a

I Rounding mode determines whether this maps to
[− p−1

2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa

Software implementation of Post-Quantum Cryptography 50



Representation of elements of R

I represent a =
∑511
i=0 aiX

i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a
I Rounding mode determines whether this maps to

[− p−1
2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa

Software implementation of Post-Quantum Cryptography 50



Representation of elements of R

I represent a =
∑511
i=0 aiX

i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a
I Rounding mode determines whether this maps to

[− p−1
2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa

Software implementation of Post-Quantum Cryptography 50



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R
I Compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable

Software implementation of Post-Quantum Cryptography 51



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R
I Compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable

Software implementation of Post-Quantum Cryptography 51



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R
I Compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication

I Component-wise multiplication is trivially vectorizable

Software implementation of Post-Quantum Cryptography 51



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R
I Compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable

Software implementation of Post-Quantum Cryptography 51



The (NTT)

I FFT in a finite field
I Evaluate polynomial f = a0 + a1x+ · · ·+ an−1x

n−1 at all n-th
roots of unity

I Divide-and-conquer approach
I Write polynomial f as f0(x2) + xf1(x

2)

I Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β2)

I f0 has n/2 coefficients
I Evaluate f0 at all (n/2)-th roots of unity by recursive application
I Same for f1

I For n = 512 we have 9 levels of recursion

Software implementation of Post-Quantum Cryptography 52



The (NTT)

I FFT in a finite field
I Evaluate polynomial f = a0 + a1x+ · · ·+ an−1x

n−1 at all n-th
roots of unity

I Divide-and-conquer approach
I Write polynomial f as f0(x2) + xf1(x

2)
I Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β2)

I f0 has n/2 coefficients
I Evaluate f0 at all (n/2)-th roots of unity by recursive application
I Same for f1

I For n = 512 we have 9 levels of recursion

Software implementation of Post-Quantum Cryptography 52



The (NTT)

I FFT in a finite field
I Evaluate polynomial f = a0 + a1x+ · · ·+ an−1x

n−1 at all n-th
roots of unity

I Divide-and-conquer approach
I Write polynomial f as f0(x2) + xf1(x

2)
I Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β2)

I f0 has n/2 coefficients
I Evaluate f0 at all (n/2)-th roots of unity by recursive application

I Same for f1
I For n = 512 we have 9 levels of recursion

Software implementation of Post-Quantum Cryptography 52



The (NTT)

I FFT in a finite field
I Evaluate polynomial f = a0 + a1x+ · · ·+ an−1x

n−1 at all n-th
roots of unity

I Divide-and-conquer approach
I Write polynomial f as f0(x2) + xf1(x

2)
I Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β2)

I f0 has n/2 coefficients
I Evaluate f0 at all (n/2)-th roots of unity by recursive application
I Same for f1

I For n = 512 we have 9 levels of recursion

Software implementation of Post-Quantum Cryptography 52



The (NTT)

I FFT in a finite field
I Evaluate polynomial f = a0 + a1x+ · · ·+ an−1x

n−1 at all n-th
roots of unity

I Divide-and-conquer approach
I Write polynomial f as f0(x2) + xf1(x

2)
I Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β2)

I f0 has n/2 coefficients
I Evaluate f0 at all (n/2)-th roots of unity by recursive application
I Same for f1

I For n = 512 we have 9 levels of recursion

Software implementation of Post-Quantum Cryptography 52



NTT in AVX (Part I)

I First thing to do: replace recursion by iteration
I Loop over 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and
v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3

I Perform all operations on v0 and v1
I Levels 0 and 1: More tricky: Use permutation instructions and

“horizontal additions”

Software implementation of Post-Quantum Cryptography 53



NTT in AVX (Part II)

I Main bottleneck of NTT: memory access

I On one level of butterfly, pairs of values interact
I Through two levels, 4-tuples interact
I Through three levels, 8-tuples interact, etc.
I Merge 3 levels: Load 8 · 4 = 32 values, perform arithmetic, store the

results
I Final performance for NTT: 4484 cycles on Ivy Bridge
I Performance for multiplication in R: 16096 cycles
I Multiplication by constant a: 11044 cycles

Software implementation of Post-Quantum Cryptography 54



NTT in AVX (Part II)

I Main bottleneck of NTT: memory access
I On one level of butterfly, pairs of values interact
I Through two levels, 4-tuples interact
I Through three levels, 8-tuples interact, etc.

I Merge 3 levels: Load 8 · 4 = 32 values, perform arithmetic, store the
results

I Final performance for NTT: 4484 cycles on Ivy Bridge
I Performance for multiplication in R: 16096 cycles
I Multiplication by constant a: 11044 cycles

Software implementation of Post-Quantum Cryptography 54



NTT in AVX (Part II)

I Main bottleneck of NTT: memory access
I On one level of butterfly, pairs of values interact
I Through two levels, 4-tuples interact
I Through three levels, 8-tuples interact, etc.
I Merge 3 levels: Load 8 · 4 = 32 values, perform arithmetic, store the

results

I Final performance for NTT: 4484 cycles on Ivy Bridge
I Performance for multiplication in R: 16096 cycles
I Multiplication by constant a: 11044 cycles

Software implementation of Post-Quantum Cryptography 54



NTT in AVX (Part II)

I Main bottleneck of NTT: memory access
I On one level of butterfly, pairs of values interact
I Through two levels, 4-tuples interact
I Through three levels, 8-tuples interact, etc.
I Merge 3 levels: Load 8 · 4 = 32 values, perform arithmetic, store the

results
I Final performance for NTT: 4484 cycles on Ivy Bridge
I Performance for multiplication in R: 16096 cycles
I Multiplication by constant a: 11044 cycles

Software implementation of Post-Quantum Cryptography 54



Results

I Keypair generation: 31140 cycles on Intel Ivy Bridge
I Signing: 634988 cycles on average
I Verification: 45036 cycles

I Public key: 1536 bytes
I Secret key: 256 bytes
I Signature: 1184 bytes

Software implementation of Post-Quantum Cryptography 55



Results

I Keypair generation: 31140 cycles on Intel Ivy Bridge
I Signing: 634988 cycles on average
I Verification: 45036 cycles
I Public key: 1536 bytes
I Secret key: 256 bytes
I Signature: 1184 bytes

Software implementation of Post-Quantum Cryptography 55



Comparison

Software Cycles Sizes
Our work sign: 634988 pk: 1536

verify: 45036 sk: 256
sig: 1184

mqqsig160 sign: 1996 pk: 206112
verify: 33220 sk: 401

sig: 20
rainbow5640 sign: 53872 pk: 44160

verify: 34808 sk: 86240
sig: 37

pflash1 sign: 1473364 pk: 72124
verify: 286168 sk: 5550

sig: 37
tts6440 sign: 33728 pk: 57600

verify: 49248 sk: 16608
sig: 43

XMSS sign: 7261100∗ pk: 912
(H = 20, w = 4,AES-128) verify: 556600∗ sk: 19

sig: 2451

Software implementation of Post-Quantum Cryptography 56



References

I Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter
Schwabe. Software speed records for lattice-based signatures.,
PQCrypto 2013.
http://cryptojedi.org/papers/#lattisigns

I Software is online (public domain) at
http://cryptojedi.org/crypto/#lattisigns

Software implementation of Post-Quantum Cryptography 57

http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/crypto/#lattisigns


Part III
McBits: Fast code-based

cryptography

joint work with Daniel J. Bernstein and Tung Chou

Software implementation of Post-Quantum Cryptography 58



Public-key encryption

I Alice generates a key pair (sk, pk), publishes pk, keeps sk secret

I Bob takes some message M and pk and computes ciphertext C,
sends C to Alice

I Alice uses sk decrypt C

Software implementation of Post-Quantum Cryptography 59



Public-key encryption

I Alice generates a key pair (sk, pk), publishes pk, keeps sk secret
I Bob takes some message M and pk and computes ciphertext C,

sends C to Alice

I Alice uses sk decrypt C

Software implementation of Post-Quantum Cryptography 59



Public-key encryption

I Alice generates a key pair (sk, pk), publishes pk, keeps sk secret
I Bob takes some message M and pk and computes ciphertext C,

sends C to Alice
I Alice uses sk decrypt C

Software implementation of Post-Quantum Cryptography 59



System parameters

Parameters
I Integers m, q, n, t, k, such that

I n ≤ q = 2m

I k = n−mt
I t ≥ 2

I An s-bit-key stream cipher S
I An a-bit-key authenticator

(MAC) A
I An (s+ a)-bit-output hash

function H

Example
I m = 12,
n = q = 4096
k = 3604
t = 41

I S = Salsa20 (s = 256)
I A = Poly1305 (a = 256)
I H = SHA-512

Software implementation of Post-Quantum Cryptography 60



System parameters

Parameters
I Integers m, q, n, t, k, such that

I n ≤ q = 2m

I k = n−mt
I t ≥ 2

I An s-bit-key stream cipher S

I An a-bit-key authenticator
(MAC) A

I An (s+ a)-bit-output hash
function H

Example
I m = 12,
n = q = 4096
k = 3604
t = 41

I S = Salsa20 (s = 256)

I A = Poly1305 (a = 256)
I H = SHA-512

Software implementation of Post-Quantum Cryptography 60



System parameters

Parameters
I Integers m, q, n, t, k, such that

I n ≤ q = 2m

I k = n−mt
I t ≥ 2

I An s-bit-key stream cipher S
I An a-bit-key authenticator

(MAC) A

I An (s+ a)-bit-output hash
function H

Example
I m = 12,
n = q = 4096
k = 3604
t = 41

I S = Salsa20 (s = 256)
I A = Poly1305 (a = 256)

I H = SHA-512

Software implementation of Post-Quantum Cryptography 60



System parameters

Parameters
I Integers m, q, n, t, k, such that

I n ≤ q = 2m

I k = n−mt
I t ≥ 2

I An s-bit-key stream cipher S
I An a-bit-key authenticator

(MAC) A
I An (s+ a)-bit-output hash

function H

Example
I m = 12,
n = q = 4096
k = 3604
t = 41

I S = Salsa20 (s = 256)
I A = Poly1305 (a = 256)
I H = SHA-512

Software implementation of Post-Quantum Cryptography 60



Key generation

Secret key
I A random sequence (α1, . . . , αn) of distinct elements in Fq
I A irreducible degree-t polynomial g ∈ Fq[x]

I Compute the secret matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

 ∈ Ft×nq

I Replace all entries by a column of m bits in a standard basis of Fq
over F2

I Obtain a matrix H ∈ Fmt×n2

I H is a secret parity-check matrix of the Goppa code
Γ = Γ2(α1, . . . , αn, g)

I The secret key is (α1, . . . , αn, g)

Software implementation of Post-Quantum Cryptography 61



Key generation

Secret key
I A random sequence (α1, . . . , αn) of distinct elements in Fq
I A irreducible degree-t polynomial g ∈ Fq[x]

I Compute the secret matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

 ∈ Ft×nq

I Replace all entries by a column of m bits in a standard basis of Fq
over F2

I Obtain a matrix H ∈ Fmt×n2

I H is a secret parity-check matrix of the Goppa code
Γ = Γ2(α1, . . . , αn, g)

I The secret key is (α1, . . . , αn, g)

Software implementation of Post-Quantum Cryptography 61



Key generation

Secret key
I A random sequence (α1, . . . , αn) of distinct elements in Fq
I A irreducible degree-t polynomial g ∈ Fq[x]

I Compute the secret matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

 ∈ Ft×nq

I Replace all entries by a column of m bits in a standard basis of Fq
over F2

I Obtain a matrix H ∈ Fmt×n2

I H is a secret parity-check matrix of the Goppa code
Γ = Γ2(α1, . . . , αn, g)

I The secret key is (α1, . . . , αn, g)

Software implementation of Post-Quantum Cryptography 61



Key generation

Secret key
I A random sequence (α1, . . . , αn) of distinct elements in Fq
I A irreducible degree-t polynomial g ∈ Fq[x]

I Compute the secret matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

 ∈ Ft×nq

I Replace all entries by a column of m bits in a standard basis of Fq
over F2

I Obtain a matrix H ∈ Fmt×n2

I H is a secret parity-check matrix of the Goppa code
Γ = Γ2(α1, . . . , αn, g)

I The secret key is (α1, . . . , αn, g)

Software implementation of Post-Quantum Cryptography 61



Key generation

Secret key
I A random sequence (α1, . . . , αn) of distinct elements in Fq
I A irreducible degree-t polynomial g ∈ Fq[x]

I Compute the secret matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

 ∈ Ft×nq

I Replace all entries by a column of m bits in a standard basis of Fq
over F2

I Obtain a matrix H ∈ Fmt×n2

I H is a secret parity-check matrix of the Goppa code
Γ = Γ2(α1, . . . , αn, g)

I The secret key is (α1, . . . , αn, g)

Software implementation of Post-Quantum Cryptography 61



Key generation

Public key
I Perform Gaussian elimination on H to obtain a matrix K whose left
tm× tm submatrix is the identity matrix

I K is a public parity-check matrix for Γ

I The public key is K

Software implementation of Post-Quantum Cryptography 62



Encryption

I Generate a random weight-t vector e ∈ Fn2
I Compute w = Ke

I Compute H(e) to obtain an (s+ a)-bit string (kenc, kauth)

I Encrypt the message M with the stream cipher S under key kenc to
obtain ciphertext C

I Compute authentication tag a on C using A with key kauth
I Send (a,w,C)

Software implementation of Post-Quantum Cryptography 63



Decryption

I Receive (a,w,C)

I Decode w to obtain weight-t string e
I Hash e with H to obtain (kenc, kauth)

I Verify that a is a valid authentication tag on C using A with kauth
I Use S with kenc to decrypt and obtain M

Software implementation of Post-Quantum Cryptography 64



Software implementation, first considerations

Key generation
I Key generation is not performance critical
I Some hassle to make constant-time, but possible

Encryption

I Computation of Ke is simply XORing t columns of mt bits each
I In our example mt = 492, almost 512; great for fast vector XORs
I But: have to be careful to not leak information about e
I This talk: ignore implementation of H, S, and A

Decryption

I Decryption is mainly decoding, lots of operations Fq
I Decryption has to run in constant time!
I Obviously, decoding of w is the interesting part

Software implementation of Post-Quantum Cryptography 65



Software implementation, first considerations

Key generation
I Key generation is not performance critical
I Some hassle to make constant-time, but possible

Encryption
I Computation of Ke is simply XORing t columns of mt bits each
I In our example mt = 492, almost 512; great for fast vector XORs
I But: have to be careful to not leak information about e
I This talk: ignore implementation of H, S, and A

Decryption

I Decryption is mainly decoding, lots of operations Fq
I Decryption has to run in constant time!
I Obviously, decoding of w is the interesting part

Software implementation of Post-Quantum Cryptography 65



Software implementation, first considerations

Key generation
I Key generation is not performance critical
I Some hassle to make constant-time, but possible

Encryption
I Computation of Ke is simply XORing t columns of mt bits each
I In our example mt = 492, almost 512; great for fast vector XORs
I But: have to be careful to not leak information about e
I This talk: ignore implementation of H, S, and A

Decryption
I Decryption is mainly decoding, lots of operations Fq
I Decryption has to run in constant time!
I Obviously, decoding of w is the interesting part

Software implementation of Post-Quantum Cryptography 65



A closer look at decoding

I Start with some v ∈ Fn2 , such that Kv = w

I Compute a Goppa syndrome s0, . . . , s2t−1

I Use Berlekamp-Massey algorithm to obtain error-locator polynomial
f of degree t

I Compute t roots of this polynomial
I For each root rj = αi, set error bit at position i in e
I All these computation work on medium-size polynomials over Fq
I Let’s now fix the example parameters from above

(q = 2m = 4096, t = 41, n = q)

Software implementation of Post-Quantum Cryptography 66



A closer look at decoding

I Start with some v ∈ Fn2 , such that Kv = w

I Compute a Goppa syndrome s0, . . . , s2t−1

I Use Berlekamp-Massey algorithm to obtain error-locator polynomial
f of degree t

I Compute t roots of this polynomial
I For each root rj = αi, set error bit at position i in e
I All these computation work on medium-size polynomials over Fq
I Let’s now fix the example parameters from above

(q = 2m = 4096, t = 41, n = q)

Software implementation of Post-Quantum Cryptography 66



A closer look at decoding

I Start with some v ∈ Fn2 , such that Kv = w

I Compute a Goppa syndrome s0, . . . , s2t−1

I Use Berlekamp-Massey algorithm to obtain error-locator polynomial
f of degree t

I Compute t roots of this polynomial
I For each root rj = αi, set error bit at position i in e

I All these computation work on medium-size polynomials over Fq
I Let’s now fix the example parameters from above

(q = 2m = 4096, t = 41, n = q)

Software implementation of Post-Quantum Cryptography 66



A closer look at decoding

I Start with some v ∈ Fn2 , such that Kv = w

I Compute a Goppa syndrome s0, . . . , s2t−1

I Use Berlekamp-Massey algorithm to obtain error-locator polynomial
f of degree t

I Compute t roots of this polynomial
I For each root rj = αi, set error bit at position i in e
I All these computation work on medium-size polynomials over Fq

I Let’s now fix the example parameters from above
(q = 2m = 4096, t = 41, n = q)

Software implementation of Post-Quantum Cryptography 66



A closer look at decoding

I Start with some v ∈ Fn2 , such that Kv = w

I Compute a Goppa syndrome s0, . . . , s2t−1

I Use Berlekamp-Massey algorithm to obtain error-locator polynomial
f of degree t

I Compute t roots of this polynomial
I For each root rj = αi, set error bit at position i in e
I All these computation work on medium-size polynomials over Fq
I Let’s now fix the example parameters from above

(q = 2m = 4096, t = 41, n = q)

Software implementation of Post-Quantum Cryptography 66



Representing elements of Fp

Option I
I Use 16-bit integer values (unsigned short)
I Addition is simply XOR (we really XOR 64 bits, but ignore most of

those)

I Multiplication:
I Use table lookups (not constant time!)

I Use carryless multiplier, e.g., pclmulqdq (not available on most
architectures, again ignores most of the 64× 64-bit multiplication)

I Squaring uses the same algorithm as multiplication

Software implementation of Post-Quantum Cryptography 67



Representing elements of Fp

Option I
I Use 16-bit integer values (unsigned short)
I Addition is simply XOR (we really XOR 64 bits, but ignore most of

those)
I Multiplication:

I Use table lookups (not constant time!)

I Use carryless multiplier, e.g., pclmulqdq (not available on most
architectures, again ignores most of the 64× 64-bit multiplication)

I Squaring uses the same algorithm as multiplication

Software implementation of Post-Quantum Cryptography 67



Representing elements of Fp

Option I
I Use 16-bit integer values (unsigned short)
I Addition is simply XOR (we really XOR 64 bits, but ignore most of

those)
I Multiplication:

I Use table lookups (not constant time!)
I Use carryless multiplier, e.g., pclmulqdq (not available on most

architectures, again ignores most of the 64× 64-bit multiplication)

I Squaring uses the same algorithm as multiplication

Software implementation of Post-Quantum Cryptography 67



Representing elements of Fp

Option I
I Use 16-bit integer values (unsigned short)
I Addition is simply XOR (we really XOR 64 bits, but ignore most of

those)
I Multiplication:

I Use table lookups (not constant time!)
I Use carryless multiplier, e.g., pclmulqdq (not available on most

architectures, again ignores most of the 64× 64-bit multiplication)
I Squaring uses the same algorithm as multiplication

Software implementation of Post-Quantum Cryptography 67



Representing elements of Fp

Option II
I Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
I Needs many parallel computations, obtain parallelism from

independent decryption operations
I We only really care about speed when we have many decryptions

I Addition is 12 vectors XORs for 256 parallel additions (much faster!)
I Multiplication is easily constant time, but is it fast?
I How about squaring, can it be faster?

Software implementation of Post-Quantum Cryptography 67



Representing elements of Fp

Option II
I Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
I Needs many parallel computations, obtain parallelism from

independent decryption operations
I We only really care about speed when we have many decryptions
I Addition is 12 vectors XORs for 256 parallel additions (much faster!)

I Multiplication is easily constant time, but is it fast?
I How about squaring, can it be faster?

Software implementation of Post-Quantum Cryptography 67



Representing elements of Fp

Option II
I Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
I Needs many parallel computations, obtain parallelism from

independent decryption operations
I We only really care about speed when we have many decryptions
I Addition is 12 vectors XORs for 256 parallel additions (much faster!)
I Multiplication is easily constant time, but is it fast?
I How about squaring, can it be faster?

Software implementation of Post-Quantum Cryptography 67



Bitsliced multiplication in F212

I Split into 12-coefficient polynomial multiplication and subsequent
reduction

I Reduction trinomial x12 + x3 + 1

I Schoolbook multiplication needs 144 ANDs and 121 XORs
I Much better: Karatsuba

I Karatsuba:

(a0 + xna1)(b0 + xnb1)

= a0b0 + xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) + x2na1b1

I Refined Karatsuba:

(a0 + xna1)(b0 + xnb1)

= (1− xn)(a0b0 − xna1b1) + xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I For details see Bernstein “Batch binary Edwards”, Crypto 2009

Software implementation of Post-Quantum Cryptography 68



Bitsliced multiplication in F212

I Split into 12-coefficient polynomial multiplication and subsequent
reduction

I Reduction trinomial x12 + x3 + 1

I Schoolbook multiplication needs 144 ANDs and 121 XORs

I Much better: Karatsuba
I Karatsuba:

(a0 + xna1)(b0 + xnb1)

= a0b0 + xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) + x2na1b1

I Refined Karatsuba:

(a0 + xna1)(b0 + xnb1)

= (1− xn)(a0b0 − xna1b1) + xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I For details see Bernstein “Batch binary Edwards”, Crypto 2009

Software implementation of Post-Quantum Cryptography 68



Bitsliced multiplication in F212

I Split into 12-coefficient polynomial multiplication and subsequent
reduction

I Reduction trinomial x12 + x3 + 1

I Schoolbook multiplication needs 144 ANDs and 121 XORs
I Much better: Karatsuba

I Karatsuba:

(a0 + xna1)(b0 + xnb1)

= a0b0 + xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) + x2na1b1

I Refined Karatsuba:

(a0 + xna1)(b0 + xnb1)

= (1− xn)(a0b0 − xna1b1) + xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I For details see Bernstein “Batch binary Edwards”, Crypto 2009

Software implementation of Post-Quantum Cryptography 68



Bitsliced multiplication in F212

I Split into 12-coefficient polynomial multiplication and subsequent
reduction

I Reduction trinomial x12 + x3 + 1

I Schoolbook multiplication needs 144 ANDs and 121 XORs
I Much better: refined Karatsuba

I Karatsuba:

(a0 + xna1)(b0 + xnb1)

= a0b0 + xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) + x2na1b1

I Refined Karatsuba:

(a0 + xna1)(b0 + xnb1)

= (1− xn)(a0b0 − xna1b1) + xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I For details see Bernstein “Batch binary Edwards”, Crypto 2009
Software implementation of Post-Quantum Cryptography 68



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs

I 222 bit operations are worse than 208 by Bernstein 2009, but better
scheduling

I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs
I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications

Software implementation of Post-Quantum Cryptography 69



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs
I 222 bit operations are worse than 208 by Bernstein 2009, but better

scheduling

I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs
I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications

Software implementation of Post-Quantum Cryptography 69



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs
I 222 bit operations are worse than 208 by Bernstein 2009, but better

scheduling
I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications

I Bitsliced squaring is only reduction: 7 XORs
I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications

Software implementation of Post-Quantum Cryptography 69



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs
I 222 bit operations are worse than 208 by Bernstein 2009, but better

scheduling
I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs

I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications

Software implementation of Post-Quantum Cryptography 69



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs
I 222 bit operations are worse than 208 by Bernstein 2009, but better

scheduling
I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs
I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications

Software implementation of Post-Quantum Cryptography 69



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs
I 222 bit operations are worse than 208 by Bernstein 2009, but better

scheduling
I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs
I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications

Software implementation of Post-Quantum Cryptography 69



Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs
I 222 bit operations are worse than 208 by Bernstein 2009, but better

scheduling
I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs
I Future work: Explore tower-field arithmetic, reduce bit operations

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is competitive
I Bitsliced squaring is much faster (not very relevant)
I In the following: High-level algorithms that drastically reduce the

number of multiplications

Software implementation of Post-Quantum Cryptography 69



Root finding, the classical way

I Task: Find all t roots of a degree-t error-locator polynomial f
I Let f = c41x

41 + c40 + x40 + · · ·+ c0

I Try all elements of Fq, Horner scheme takes 41 mul, 41 add per
element

I Chien search: Compute cigi, cig2i, cig3i etc.
I Same operation count but different structure
I Berlekamp trace algorithm: not constant time

Software implementation of Post-Quantum Cryptography 70



Root finding, the classical way

I Task: Find all t roots of a degree-t error-locator polynomial f
I Let f = c41x

41 + c40 + x40 + · · ·+ c0
I Try all elements of Fq, Horner scheme takes 41 mul, 41 add per

element

I Chien search: Compute cigi, cig2i, cig3i etc.
I Same operation count but different structure
I Berlekamp trace algorithm: not constant time

Software implementation of Post-Quantum Cryptography 70



Root finding, the classical way

I Task: Find all t roots of a degree-t error-locator polynomial f
I Let f = c41x

41 + c40 + x40 + · · ·+ c0
I Try all elements of Fq, Horner scheme takes 41 mul, 41 add per

element
I Chien search: Compute cigi, cig2i, cig3i etc.
I Same operation count but different structure

I Berlekamp trace algorithm: not constant time

Software implementation of Post-Quantum Cryptography 70



Root finding, the classical way

I Task: Find all t roots of a degree-t error-locator polynomial f
I Let f = c41x

41 + c40 + x40 + · · ·+ c0
I Try all elements of Fq, Horner scheme takes 41 mul, 41 add per

element
I Chien search: Compute cigi, cig2i, cig3i etc.
I Same operation count but different structure
I Berlekamp trace algorithm: not constant time

Software implementation of Post-Quantum Cryptography 70



Remember the FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α2)

I Problem: We have a binary field, and α = −α
I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)
I von zur Gathen 1996: some improvements (still slow)
I Gao, Mateer 2010: Much faster additive FFT

Software implementation of Post-Quantum Cryptography 71



Remember the FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α2)

I Problem: We have a binary field, and α = −α
I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)
I von zur Gathen 1996: some improvements (still slow)
I Gao, Mateer 2010: Much faster additive FFT

Software implementation of Post-Quantum Cryptography 71



Remember the FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α2)

I Problem: We have a binary field, and α = −α

I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in
characteristic 2 (quite slow)

I von zur Gathen 1996: some improvements (still slow)
I Gao, Mateer 2010: Much faster additive FFT

Software implementation of Post-Quantum Cryptography 71



Remember the FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α2)

I Problem: We have a binary field, and α = −α
I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)

I von zur Gathen 1996: some improvements (still slow)
I Gao, Mateer 2010: Much faster additive FFT

Software implementation of Post-Quantum Cryptography 71



Remember the FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α2)

I Problem: We have a binary field, and α = −α
I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)
I von zur Gathen 1996: some improvements (still slow)

I Gao, Mateer 2010: Much faster additive FFT

Software implementation of Post-Quantum Cryptography 71



Remember the FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α2)

I Problem: We have a binary field, and α = −α
I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)
I von zur Gathen 1996: some improvements (still slow)
I Gao, Mateer 2010: Much faster additive FFT

Software implementation of Post-Quantum Cryptography 71



Gao-Mateer additive FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 on a size-n

F2-linear space S
I Think of S as all subset sums of {β1, . . . , βm}, βi ∈ Fq
I Idea: Write polynomial f as f0(x2 + x) + xf1(x2 + x)

I Big overlap between evaluating

f(α) = f0(α2 + α) + αf1(α2 + α) and

f(α+ 1) = f0(α2 + α) + (α+ 1)f1(α2 + α)

I Evaluate f0 and f1 at α2 + α, obtain f(α) and f(α+ 1) with only 1
multiplication and 2 additions

I Again: apply the idea recursively

Software implementation of Post-Quantum Cryptography 72



Gao-Mateer additive FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 on a size-n

F2-linear space S
I Think of S as all subset sums of {β1, . . . , βm}, βi ∈ Fq
I Idea: Write polynomial f as f0(x2 + x) + xf1(x2 + x)

I Big overlap between evaluating

f(α) = f0(α2 + α) + αf1(α2 + α) and

f(α+ 1) = f0(α2 + α) + (α+ 1)f1(α2 + α)

I Evaluate f0 and f1 at α2 + α, obtain f(α) and f(α+ 1) with only 1
multiplication and 2 additions

I Again: apply the idea recursively

Software implementation of Post-Quantum Cryptography 72



Gao-Mateer additive FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 on a size-n

F2-linear space S
I Think of S as all subset sums of {β1, . . . , βm}, βi ∈ Fq
I Idea: Write polynomial f as f0(x2 + x) + xf1(x2 + x)

I Big overlap between evaluating

f(α) = f0(α2 + α) + αf1(α2 + α) and

f(α+ 1) = f0(α2 + α) + (α+ 1)f1(α2 + α)

I Evaluate f0 and f1 at α2 + α, obtain f(α) and f(α+ 1) with only 1
multiplication and 2 additions

I Again: apply the idea recursively

Software implementation of Post-Quantum Cryptography 72



Gao-Mateer additive FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 on a size-n

F2-linear space S
I Think of S as all subset sums of {β1, . . . , βm}, βi ∈ Fq
I Idea: Write polynomial f as f0(x2 + x) + xf1(x2 + x)

I Big overlap between evaluating

f(α) = f0(α2 + α) + αf1(α2 + α) and

f(α+ 1) = f0(α2 + α) + (α+ 1)f1(α2 + α)

I Evaluate f0 and f1 at α2 + α, obtain f(α) and f(α+ 1) with only 1
multiplication and 2 additions

I Again: apply the idea recursively

Software implementation of Post-Quantum Cryptography 72



Gao-Mateer for syndrome computation

I Application in decoding: much smaller degree of f
I Our paper: generalize the idea to small-degree f

I Recursion can stop much earlier
I More improvements at the end of the recursion:

I For constant f1, simply return 2m copies of f1(0) = c

I For 2-coefficient or 3-coefficient f , we have constant f1
I Need 2m−1 − 1 multiplications αc
I Instead perform m− 1 multiplications to obtain cβ1, . . . , cβm−1

(assume that βm = 1)
I Obtain results as subset sums of cβ1, . . . , cβm−1

I Replace 2m−1 −m multiplications by additions

I Overall count: fewer additions and much fewer multiplications than
Horner scheme or Chien search

Software implementation of Post-Quantum Cryptography 73



Gao-Mateer for syndrome computation

I Application in decoding: much smaller degree of f
I Our paper: generalize the idea to small-degree f
I Recursion can stop much earlier

I More improvements at the end of the recursion:
I For constant f1, simply return 2m copies of f1(0) = c

I For 2-coefficient or 3-coefficient f , we have constant f1
I Need 2m−1 − 1 multiplications αc
I Instead perform m− 1 multiplications to obtain cβ1, . . . , cβm−1

(assume that βm = 1)
I Obtain results as subset sums of cβ1, . . . , cβm−1

I Replace 2m−1 −m multiplications by additions

I Overall count: fewer additions and much fewer multiplications than
Horner scheme or Chien search

Software implementation of Post-Quantum Cryptography 73



Gao-Mateer for syndrome computation

I Application in decoding: much smaller degree of f
I Our paper: generalize the idea to small-degree f
I Recursion can stop much earlier
I More improvements at the end of the recursion:

I For constant f1, simply return 2m copies of f1(0) = c

I For 2-coefficient or 3-coefficient f , we have constant f1
I Need 2m−1 − 1 multiplications αc
I Instead perform m− 1 multiplications to obtain cβ1, . . . , cβm−1

(assume that βm = 1)
I Obtain results as subset sums of cβ1, . . . , cβm−1

I Replace 2m−1 −m multiplications by additions
I Overall count: fewer additions and much fewer multiplications than

Horner scheme or Chien search

Software implementation of Post-Quantum Cryptography 73



Gao-Mateer for syndrome computation

I Application in decoding: much smaller degree of f
I Our paper: generalize the idea to small-degree f
I Recursion can stop much earlier
I More improvements at the end of the recursion:

I For constant f1, simply return 2m copies of f1(0) = c
I For 2-coefficient or 3-coefficient f , we have constant f1
I Need 2m−1 − 1 multiplications αc

I Instead perform m− 1 multiplications to obtain cβ1, . . . , cβm−1

(assume that βm = 1)
I Obtain results as subset sums of cβ1, . . . , cβm−1

I Replace 2m−1 −m multiplications by additions
I Overall count: fewer additions and much fewer multiplications than

Horner scheme or Chien search

Software implementation of Post-Quantum Cryptography 73



Gao-Mateer for syndrome computation

I Application in decoding: much smaller degree of f
I Our paper: generalize the idea to small-degree f
I Recursion can stop much earlier
I More improvements at the end of the recursion:

I For constant f1, simply return 2m copies of f1(0) = c
I For 2-coefficient or 3-coefficient f , we have constant f1
I Need 2m−1 − 1 multiplications αc
I Instead perform m− 1 multiplications to obtain cβ1, . . . , cβm−1

(assume that βm = 1)
I Obtain results as subset sums of cβ1, . . . , cβm−1

I Replace 2m−1 −m multiplications by additions

I Overall count: fewer additions and much fewer multiplications than
Horner scheme or Chien search

Software implementation of Post-Quantum Cryptography 73



Gao-Mateer for syndrome computation

I Application in decoding: much smaller degree of f
I Our paper: generalize the idea to small-degree f
I Recursion can stop much earlier
I More improvements at the end of the recursion:

I For constant f1, simply return 2m copies of f1(0) = c
I For 2-coefficient or 3-coefficient f , we have constant f1
I Need 2m−1 − 1 multiplications αc
I Instead perform m− 1 multiplications to obtain cβ1, . . . , cβm−1

(assume that βm = 1)
I Obtain results as subset sums of cβ1, . . . , cβm−1

I Replace 2m−1 −m multiplications by additions
I Overall count: fewer additions and much fewer multiplications than

Horner scheme or Chien search

Software implementation of Post-Quantum Cryptography 73



Syndrome computation, the classical way

I Receive n-bit input word, scale bits by Goppa constants
I Apply linear map

M =


1 1 · · · 1
α1 α2 · · · αn
α2
1 α2

2 · · · α2
n

...
...

. . .
...

α2t−1
1 α2t−1

2 · · · α2t−1
n



I Can precompute matrix mapping bits to syndrome
I Similar to encryption, but input does not have weight t
I Needs to run in constant time!

Software implementation of Post-Quantum Cryptography 74



Syndrome computation, the classical way

I Receive n-bit input word, scale bits by Goppa constants
I Apply linear map

M =


1 1 · · · 1
α1 α2 · · · αn
α2
1 α2

2 · · · α2
n

...
...

. . .
...

α2t−1
1 α2t−1

2 · · · α2t−1
n


I Can precompute matrix mapping bits to syndrome
I Similar to encryption, but input does not have weight t
I Needs to run in constant time!

Software implementation of Post-Quantum Cryptography 74



Another look at syndrome computation
Look at the syndrome-computation map again:

M =


1 1 · · · 1
α1 α2 · · · αn
α2
1 α2

2 · · · α2
n

...
...

. . .
...

α2t−1
1 α2t−1

2 · · · α2t−1
n


Consider the linear map Mᵀ:
1 α1 · · · α2t−1

1

1 α2 · · · α2t−1
2

...
...

. . .
...

1 αn · · · α2t−1
n



v1
v2
...
vt

 =


v1 + v2α1 + · · ·+ vtα

2t−1
1

v1 + v2α2 + · · ·+ vtα
2t−1
2

...
v1 + v2αn + · · ·+ vtα

2t−1
n

 =


f(α1)
f(α2)

...
f(αn)


I This transposed linear map is actually doing multipoint evaluation
I Syndrome computation is a transposed multipoint evaluation

Software implementation of Post-Quantum Cryptography 75



Transposing linear algorithms
I A linear algorithm computes a linear map
I Allowed operations: add or multiply by a constant

Example: An addition chain for 79

1 3 6 12 39 79

By reversing the edges, we get another addition chain for 79:

79 26 12 6 2 1

Software implementation of Post-Quantum Cryptography 76



Transposing linear algorithms
I A linear algorithm computes a linear map
I Allowed operations: add or multiply by a constant

Example: An addition chain for 79

1 3 6 12 39 79

By reversing the edges, we get another addition chain for 79:

79 26 12 6 2 1

Software implementation of Post-Quantum Cryptography 76



Transposing linear algorithms
I A linear algorithm computes a linear map
I Allowed operations: add or multiply by a constant

Example: An addition chain for 79

1 3 6 12 39 79

By reversing the edges, we get another addition chain for 79:

79 26 12 6 2 1

Software implementation of Post-Quantum Cryptography 76



A larger example
I A linear map: a0, a1 → a0b0, a0b1 + a1b0, a1b1

in1 = a0

a0 + a1

in2 = a1

a0b0

out2 = a0b1 + a1b0

a1b1

out1 = a0b0

out3 = a1b1

b0

b0 + b1

b1

I Reversing the edges: c0, c1, c2 → b0c0 + b1c1, b0c1 + b1c2

out1 = b0c0 + b1c1

(b0 + b1)c1

out2 = b0c1 + b1c2

c0 + c1

in2 = c1

c1 + c2

in1 = c0

in3 = c2

b0

b0 + b1

b1

Software implementation of Post-Quantum Cryptography 77



A larger example
I A linear map: a0, a1 → a0b0, a0b1 + a1b0, a1b1

in1 = a0

a0 + a1

in2 = a1

a0b0

out2 = a0b1 + a1b0

a1b1

out1 = a0b0

out3 = a1b1

b0

b0 + b1

b1

I Reversing the edges: c0, c1, c2 → b0c0 + b1c1, b0c1 + b1c2

out1 = b0c0 + b1c1

(b0 + b1)c1

out2 = b0c1 + b1c2

c0 + c1

in2 = c1

c1 + c2

in1 = c0

in3 = c2

b0

b0 + b1

b1

Software implementation of Post-Quantum Cryptography 77



What did we just do?

I The original linear map: a0b0
a0b1 + a1b0

a1b1

 =

b0 0
b1 b0
0 b1

(a0
a1

)

I The transposed map:

(
b0c0 + b1c1
b0c1 + b1c2

)
=

(
b0 b1 0
0 b0 b1

)c0c1
c2



I Reversing the edges automatically gives an algorithm for the
transposed map

I This is called the transposition principle
I Preserves number of multiplications
I References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

Software implementation of Post-Quantum Cryptography 78



What did we just do?

I The original linear map: a0b0
a0b1 + a1b0

a1b1

 =

b0 0
b1 b0
0 b1

(a0
a1

)

I The transposed map:

(
b0c0 + b1c1
b0c1 + b1c2

)
=

(
b0 b1 0
0 b0 b1

)c0c1
c2


I Reversing the edges automatically gives an algorithm for the

transposed map
I This is called the transposition principle

I Preserves number of multiplications
I References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

Software implementation of Post-Quantum Cryptography 78



What did we just do?

I The original linear map: a0b0
a0b1 + a1b0

a1b1

 =

b0 0
b1 b0
0 b1

(a0
a1

)

I The transposed map:

(
b0c0 + b1c1
b0c1 + b1c2

)
=

(
b0 b1 0
0 b0 b1

)c0c1
c2


I Reversing the edges automatically gives an algorithm for the

transposed map
I This is called the transposition principle
I Preserves number of multiplications
I References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

Software implementation of Post-Quantum Cryptography 78



Transposing the additive FFT

The naive approach
I Idea: Compute syndrome by transposing the additive FFT
I Start with additive FFT program (sequence of additions and

constant multiplications)
I Convert to directed acyclic graph (rename variables to remove

cycles)
I Reverse edges, convert to C program
I Compile with gcc

I Problems:

I Huge program (all loops and function calls removed)
I At m = 13 or m = 14 gcc runs out of memory
I Can use better register allocators, but the program is still huge

Software implementation of Post-Quantum Cryptography 79



Transposing the additive FFT

The naive approach
I Idea: Compute syndrome by transposing the additive FFT
I Start with additive FFT program (sequence of additions and

constant multiplications)
I Convert to directed acyclic graph (rename variables to remove

cycles)
I Reverse edges, convert to C program
I Compile with gcc
I Problems:

I Huge program (all loops and function calls removed)

I At m = 13 or m = 14 gcc runs out of memory
I Can use better register allocators, but the program is still huge

Software implementation of Post-Quantum Cryptography 79



Transposing the additive FFT

The naive approach
I Idea: Compute syndrome by transposing the additive FFT
I Start with additive FFT program (sequence of additions and

constant multiplications)
I Convert to directed acyclic graph (rename variables to remove

cycles)
I Reverse edges, convert to C program
I Compile with gcc
I Problems:

I Huge program (all loops and function calls removed)
I At m = 13 or m = 14 gcc runs out of memory

I Can use better register allocators, but the program is still huge

Software implementation of Post-Quantum Cryptography 79



Transposing the additive FFT

The naive approach
I Idea: Compute syndrome by transposing the additive FFT
I Start with additive FFT program (sequence of additions and

constant multiplications)
I Convert to directed acyclic graph (rename variables to remove

cycles)
I Reverse edges, convert to C program
I Compile with gcc
I Problems:

I Huge program (all loops and function calls removed)
I At m = 13 or m = 14 gcc runs out of memory
I Can use better register allocators, but the program is still huge

Software implementation of Post-Quantum Cryptography 79



Transposing the additive FFT

A better approach
I Analyze structure of additive FFT A: B,A1, A2, C

I A1, A2 are recursive calls

I Transposition has structure CT , AT2 , A
T
1 , B

T

I Use recursive calls to reduce code size

Software implementation of Post-Quantum Cryptography 79



Transposing the additive FFT

A better approach
I Analyze structure of additive FFT A: B,A1, A2, C

I A1, A2 are recursive calls
I Transposition has structure CT , AT2 , A

T
1 , B

T

I Use recursive calls to reduce code size

Software implementation of Post-Quantum Cryptography 79



Secret permutations

I FFT evaluates f at elements in standard order
I We need output in a secret order
I Same problem for input of transposed FFT
I Similar problem during key generation (secret random permutation)

I Typical solution for permutation π: load from position i, store at
position π(i)

I This leaks through timing information
I We need to apply a secret permutation in constant time
I Solution: sorting networks

Software implementation of Post-Quantum Cryptography 80



Secret permutations

I FFT evaluates f at elements in standard order
I We need output in a secret order
I Same problem for input of transposed FFT
I Similar problem during key generation (secret random permutation)
I Typical solution for permutation π: load from position i, store at

position π(i)

I This leaks through timing information
I We need to apply a secret permutation in constant time
I Solution: sorting networks

Software implementation of Post-Quantum Cryptography 80



Secret permutations

I FFT evaluates f at elements in standard order
I We need output in a secret order
I Same problem for input of transposed FFT
I Similar problem during key generation (secret random permutation)
I Typical solution for permutation π: load from position i, store at

position π(i)

I This leaks through timing information
I We need to apply a secret permutation in constant time

I Solution: sorting networks

Software implementation of Post-Quantum Cryptography 80



Secret permutations

I FFT evaluates f at elements in standard order
I We need output in a secret order
I Same problem for input of transposed FFT
I Similar problem during key generation (secret random permutation)
I Typical solution for permutation π: load from position i, store at

position π(i)

I This leaks through timing information
I We need to apply a secret permutation in constant time
I Solution: sorting networks

Software implementation of Post-Quantum Cryptography 80



Sorting networks

A sorting network sorts an array S of elements by using a sequence of
comparators.

I A comparator can be expressed by a pair of indices (i, j).
I A comparator swaps S[i] and S[j] if S[i] > S[j].

I Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements
http://en.wikipedia.org/wiki/Batcher%27s_sort

Software implementation of Post-Quantum Cryptography 81

http://en.wikipedia.org/wiki/Batcher%27s_sort


Sorting networks

A sorting network sorts an array S of elements by using a sequence of
comparators.

I A comparator can be expressed by a pair of indices (i, j).
I A comparator swaps S[i] and S[j] if S[i] > S[j].
I Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements
http://en.wikipedia.org/wiki/Batcher%27s_sort

Software implementation of Post-Quantum Cryptography 81

http://en.wikipedia.org/wiki/Batcher%27s_sort


Permuting by sorting

Example
Computing b3, b2, b1 from b1, b2, b3 can be done by sorting the key-value
pairs (3, b1), (2, b2), (1, b3) the output is (1, b3), (2, b2), (3, b1)

I All the output bits of > comparisons only depend on the secret
permutation

I Those bits can be precomputed during key generation
I Do conditional swap of b[i] and b[j] with condition bit c as

y ← b[i]⊕ b[j]; y ← cy; b[i]← b[i]⊕ y; b[j]← b[j]⊕ y;

I Possibly better than Batcher sort: Beneš permutation network (work
in progress)

Software implementation of Post-Quantum Cryptography 82



Permuting by sorting

Example
Computing b3, b2, b1 from b1, b2, b3 can be done by sorting the key-value
pairs (3, b1), (2, b2), (1, b3) the output is (1, b3), (2, b2), (3, b1)

I All the output bits of > comparisons only depend on the secret
permutation

I Those bits can be precomputed during key generation

I Do conditional swap of b[i] and b[j] with condition bit c as

y ← b[i]⊕ b[j]; y ← cy; b[i]← b[i]⊕ y; b[j]← b[j]⊕ y;

I Possibly better than Batcher sort: Beneš permutation network (work
in progress)

Software implementation of Post-Quantum Cryptography 82



Permuting by sorting

Example
Computing b3, b2, b1 from b1, b2, b3 can be done by sorting the key-value
pairs (3, b1), (2, b2), (1, b3) the output is (1, b3), (2, b2), (3, b1)

I All the output bits of > comparisons only depend on the secret
permutation

I Those bits can be precomputed during key generation
I Do conditional swap of b[i] and b[j] with condition bit c as

y ← b[i]⊕ b[j]; y ← cy; b[i]← b[i]⊕ y; b[j]← b[j]⊕ y;

I Possibly better than Batcher sort: Beneš permutation network (work
in progress)

Software implementation of Post-Quantum Cryptography 82



Permuting by sorting

Example
Computing b3, b2, b1 from b1, b2, b3 can be done by sorting the key-value
pairs (3, b1), (2, b2), (1, b3) the output is (1, b3), (2, b2), (3, b1)

I All the output bits of > comparisons only depend on the secret
permutation

I Those bits can be precomputed during key generation
I Do conditional swap of b[i] and b[j] with condition bit c as

y ← b[i]⊕ b[j]; y ← cy; b[i]← b[i]⊕ y; b[j]← b[j]⊕ y;

I Possibly better than Batcher sort: Beneš permutation network (work
in progress)

Software implementation of Post-Quantum Cryptography 82



Results

Throughput cycles on Ivy Bridge
I Input secret permutation: 8622
I Syndrome computation: 20846
I Berlekamp-Massey: 7714
I Root finding: 14794
I Output secret permutation: 8520
I Total: 60493

I These are amortized cycle counts across 256 parallel computations
I All computations with full timing-attack protection!

Software implementation of Post-Quantum Cryptography 83



Results

Throughput cycles on Ivy Bridge
I Input secret permutation: 8622
I Syndrome computation: 20846
I Berlekamp-Massey: 7714
I Root finding: 14794
I Output secret permutation: 8520
I Total: 60493
I These are amortized cycle counts across 256 parallel computations

I All computations with full timing-attack protection!

Software implementation of Post-Quantum Cryptography 83



Results

Throughput cycles on Ivy Bridge
I Input secret permutation: 8622
I Syndrome computation: 20846
I Berlekamp-Massey: 7714
I Root finding: 14794
I Output secret permutation: 8520
I Total: 60493
I These are amortized cycle counts across 256 parallel computations
I All computations with full timing-attack protection!

Software implementation of Post-Quantum Cryptography 83



Comparison

Public-key decryption speeds from eBATS
I ntruees787ep1: 700512 cycles
I mceliece: 1219344 cycles
I ronald1024: 1340040 cycles
I ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS
I gls254: 77468 cycles
I kumfp127g 116944 cycles
I curve25519: 182632 cycles

Software implementation of Post-Quantum Cryptography 84



Comparison

Public-key decryption speeds from eBATS
I ntruees787ep1: 700512 cycles
I mceliece: 1219344 cycles
I ronald1024: 1340040 cycles
I ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS
I gls254: 77468 cycles
I kumfp127g 116944 cycles
I curve25519: 182632 cycles

Software implementation of Post-Quantum Cryptography 84



More results

CFS code-based signatures
I Signature scheme introduced by Courtois, Finiasz, and Sendrier in

2001
I Verification is very fast
I Previous speed for signing: ≈ 4.2 · 109 cycles on Intel Westmere (at

80 bits of security, no timing-attack protection)
I Our new results:

I Start with the same parameters
I Apply bitslicing of field arithmetic
I Convert all algorithms to constant time

I Our speed: 0.425 · 109 cycles in Intel Ivy Bridge
I This is latency, no batching required

Software implementation of Post-Quantum Cryptography 85



More results

CFS code-based signatures
I Signature scheme introduced by Courtois, Finiasz, and Sendrier in

2001
I Verification is very fast
I Previous speed for signing: ≈ 4.2 · 109 cycles on Intel Westmere (at

80 bits of security, no timing-attack protection)
I Our new results:

I Start with the same parameters
I Apply bitslicing of field arithmetic
I Convert all algorithms to constant time
I Our speed: 0.425 · 109 cycles in Intel Ivy Bridge
I This is latency, no batching required

Software implementation of Post-Quantum Cryptography 85



Should you use McBits?

I McBits with the example parameters offers 128 bits of security
I Conservative design, we believe it’s safe for use

I Problems (marketing department is going to kill me):

I Large public-key size (≈ 250KB)
I Record-setting performance only for large batches
I Challenge: Apply optimization techniques (additive FFT, etc.)

without massive batching, but still with constant running time.
I Software not yet available

I I would not consider CFS really practical
I Main concerns (aside from performance): Only 80 bits of security,

20MB public key
I Estimates for 120 bits of security: ≈ 100 times slower signing,
≈ 500MB public key

Software implementation of Post-Quantum Cryptography 86



Should you use McBits?

I McBits with the example parameters offers 128 bits of security
I Conservative design, we believe it’s safe for use
I Problems (marketing department is going to kill me):

I Large public-key size (≈ 250KB)

I Record-setting performance only for large batches
I Challenge: Apply optimization techniques (additive FFT, etc.)

without massive batching, but still with constant running time.
I Software not yet available

I I would not consider CFS really practical
I Main concerns (aside from performance): Only 80 bits of security,

20MB public key
I Estimates for 120 bits of security: ≈ 100 times slower signing,
≈ 500MB public key

Software implementation of Post-Quantum Cryptography 86



Should you use McBits?

I McBits with the example parameters offers 128 bits of security
I Conservative design, we believe it’s safe for use
I Problems (marketing department is going to kill me):

I Large public-key size (≈ 250KB)
I Record-setting performance only for large batches
I Challenge: Apply optimization techniques (additive FFT, etc.)

without massive batching, but still with constant running time.

I Software not yet available
I I would not consider CFS really practical
I Main concerns (aside from performance): Only 80 bits of security,

20MB public key
I Estimates for 120 bits of security: ≈ 100 times slower signing,
≈ 500MB public key

Software implementation of Post-Quantum Cryptography 86



Should you use McBits?

I McBits with the example parameters offers 128 bits of security
I Conservative design, we believe it’s safe for use
I Problems (marketing department is going to kill me):

I Large public-key size (≈ 250KB)
I Record-setting performance only for large batches
I Challenge: Apply optimization techniques (additive FFT, etc.)

without massive batching, but still with constant running time.
I Software not yet available

I I would not consider CFS really practical
I Main concerns (aside from performance): Only 80 bits of security,

20MB public key
I Estimates for 120 bits of security: ≈ 100 times slower signing,
≈ 500MB public key

Software implementation of Post-Quantum Cryptography 86



Should you use McBits?

I McBits with the example parameters offers 128 bits of security
I Conservative design, we believe it’s safe for use
I Problems (marketing department is going to kill me):

I Large public-key size (≈ 250KB)
I Record-setting performance only for large batches
I Challenge: Apply optimization techniques (additive FFT, etc.)

without massive batching, but still with constant running time.
I Software not yet available

I I would not consider CFS really practical
I Main concerns (aside from performance): Only 80 bits of security,

20MB public key

I Estimates for 120 bits of security: ≈ 100 times slower signing,
≈ 500MB public key

Software implementation of Post-Quantum Cryptography 86



Should you use McBits?

I McBits with the example parameters offers 128 bits of security
I Conservative design, we believe it’s safe for use
I Problems (marketing department is going to kill me):

I Large public-key size (≈ 250KB)
I Record-setting performance only for large batches
I Challenge: Apply optimization techniques (additive FFT, etc.)

without massive batching, but still with constant running time.
I Software not yet available

I I would not consider CFS really practical
I Main concerns (aside from performance): Only 80 bits of security,

20MB public key
I Estimates for 120 bits of security: ≈ 100 times slower signing,
≈ 500MB public key

Software implementation of Post-Quantum Cryptography 86



References

I Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: fast
constant-time code-based cryptography., CHES 2013.
http://cryptojedi.org/papers/#mcbits

I Software will be online (public domain), for example, at
http://cryptojedi.org/crypto/#mcbits

Software implementation of Post-Quantum Cryptography 87

http://cryptojedi.org/papers/#mcbits
http://cryptojedi.org/crypto/#mcbits

