Software implementation of Post-Quantum Cryptography

Peter Schwabe

Radboud University Nijmegen, The Netherlands

October 20, 2013

ASCrypto 2013, Florianópolis, Brazil

Part I Optimizing cryptographic software with vector instructions

Computers and computer programs A highly simplified view

- A program is a sequence of instructions
- Load/Store instructions move data between memory and registers (processed by the L/S unit)
- Branch instructions (conditionally) jump to a position in the program
- Arithmetic instructions perform simple operations on values in registers (processed by the ALU)
- Registers are fast (fixed-size) storage units, addressed "by name"

- 1. Set register R1 to zero
- 2. Set register R2 to zero
- 3. Load 32-bits from address START+R2 into register R3
- 4. Add 32-bit integers in R1 and R3, write the result in R1
- 5. Increase value in register R2 by 4
- 6. Compare value in register R2 to 4000
- 7. Goto line 3 if R2 was smaller than 4000

A first program Adding up 1000 integers in readable syntax

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<</pre>
```

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction
- Other approach: Chop instructions into smaller tasks, e.g. for addition:
 - 1. Fetch instruction
 - 2. Decode instruction
 - 3. Fetch register arguments
 - 4. Execute (actual addition)
 - 5. Write back to register

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction
- Other approach: Chop instructions into smaller tasks, e.g. for addition:
 - 1. Fetch instruction
 - 2. Decode instruction
 - 3. Fetch register arguments
 - 4. Execute (actual addition)
 - 5. Write back to register
- Overlap instructions (e.g., while one instruction is in step 2, the next one can do step 1 etc.)
- This is called pipelined execution (many more stages possible)
- Advantage: cycles can be much shorter (higher *clock speed*)

- Easy approach: Per "time-slot" (cycle) execute one instruction, then go for the next
- Cycles needs to be long enough to finish the most complex supported instruction
- Other approach: Chop instructions into smaller tasks, e.g. for addition:
 - 1. Fetch instruction
 - 2. Decode instruction
 - 3. Fetch register arguments
 - 4. Execute (actual addition)
 - 5. Write back to register
- Overlap instructions (e.g., while one instruction is in step 2, the next one can do step 1 etc.)
- This is called pipelined execution (many more stages possible)
- Advantage: cycles can be much shorter (higher *clock speed*)
- Requirement for overlapping execution: instructions have to be independent

Throughput and latency

While the ALU is executing an instruction the L/S and branch units are idle

Throughput and latency

- While the ALU is executing an instruction the L/S and branch units are idle
- Idea: Duplicate fetch and decode, handle two or three instructions per cycle
- While we're at it: Why not deploy two ALUs
- ► This concept is called *superscalar* execution

Throughput and latency

- While the ALU is executing an instruction the L/S and branch units are idle
- Idea: Duplicate fetch and decode, handle two or three instructions per cycle
- While we're at it: Why not deploy two ALUs
- ► This concept is called *superscalar* execution
- Number of independent instructions of one type per cycle: throughput
- Number of cycles that need to pass before the result can be used: latency

An example computer Still highly simplified

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

► Need at least 1000 load instructions: ≥ 1000 cycles

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

- ► Need at least 1000 load instructions: ≥ 1000 cycles
- ► Need at least 999 addition instructions: ≥ 500 cycles

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

- ► Need at least 1000 load instructions: ≥ 1000 cycles
- ► Need at least 999 addition instructions: ≥ 500 cycles
- At least 1999 instructions: ≥ 500 cycles

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- Load latency: 3 cycles
- Branches have to be last instruction in a cycle

- ► Need at least 1000 load instructions: ≥ 1000 cycles
- ► Need at least 999 addition instructions: ≥ 500 cycles
- At least 1999 instructions: ≥ 500 cycles
- ► Lower bound: 1000 cycles

- At most 4 instructions per cycle
- At most 1 Load/Store instruction per cycle
- At most 2 arithmetic instructions per cycle
- Arithmetic latency: 2 cycles
- ► Load latency: 3 cycles
- Branches have to be last instruction in a cycle

How about our program?

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<</pre>
```

How about our program?

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
# wait 2 cycles for tmp
result += tmp
ctr += 4
# wait 1 cycle for ctr
unsigned <? ctr - 4000
# wait 1 cycle for unsigned <</pre>
goto looptop if unsigned <
```

- Addition has to wait for load
- Comparison has to wait for addition
- Each iteration of the loop takes 8 cycles
- Total: > 8000 cycles

How about our program?

```
int32 result
int32 tmp
int32 ctr
result = 0
ctr = 0
looptop:
tmp = mem32[START+ctr]
# wait 2 cycles for tmp
result += tmp
ctr += 4
# wait 1 cycle for ctr
unsigned <? ctr - 4000
# wait 1 cycle for unsigned <</pre>
goto looptop if unsigned <
```

- Addition has to wait for load
- Comparison has to wait for addition
- Each iteration of the loop takes 8 cycles
- Total: > 8000 cycles
- This program sucks!

```
Making the program fast Step 1 – Unrolling
```

```
result = 0
tmp = mem32[START+0]
result += tmp
tmp = mem32[START+4]
result += tmp
tmp = mem32[START+8]
result += tmp
...
tmp = mem32[START+3996]
```

result += tmp

 Remove all the loop control: unrolling

```
Making the program fast Step 1 – Unrolling
```

```
result = 0
tmp = mem32[START+0]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+4]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+8]
# wait 2 cycles for tmp
result += tmp
. . .
tmp = mem32[START+3996]
# wait 2 cycles for tmp
result += tmp
```

- Remove all the loop control: unrolling
- Each load-and-add now takes 3 cycles
- Total: ≈ 3000 cycles

```
Making the program fast Step 1 – Unrolling
```

```
result = 0
tmp = mem32[START+0]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+4]
# wait 2 cycles for tmp
result += tmp
tmp = mem32[START+8]
# wait 2 cycles for tmp
result += tmp
. . .
tmp = mem32[START+3996]
# wait 2 cycles for tmp
result += tmp
```

- Remove all the loop control: unrolling
- Each load-and-add now takes 3 cycles
- Total: ≈ 3000 cycles
- Better, but still too slow

Making the program fast Step 2 – Instruction Scheduling

```
result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START + 12]
result += tmp0
tmp0 = mem32[START+16]
result += tmp1
tmp1 = mem32[START+20]
result += tmp2
tmp2 = mem32[START+24]
```

```
result += tmp2
tmp2 = mem32[START+3996]
result += tmp0
result += tmp1
result += tmp2
```

- Load values earlier
- Load latencies are hidden
- Use more registers for loaded values (tmp0, tmp1, tmp2)
- Get rid of one addition to zero

```
Making the program fast
Step 2 – Instruction Scheduling
     result = mem32[START + 0]
     tmp0 = mem32[START + 4]
     tmp1 = mem32[START + 8]
     tmp2 = mem32[START + 12]
     result += tmp0
     tmp0 = mem32[START+16]
     # wait 1 cycle for result
     result += tmp1
     tmp1 = mem32[START+20]
     # wait 1 cycle for result
     result += tmp2
     tmp2 = mem32[START+24]
     . . .
     result += tmp2
     tmp2 = mem32[START+3996]
     # wait 1 cycle for result
     result += tmp0
     # wait 1 cycle for result
     result += tmp1
     # wait 1 cycle for result
     result += tmp2
```

- Load values earlier
- Load latencies are hidden
- Use more registers for loaded values (tmp0, tmp1, tmp2)
- Get rid of one addition to zero
- Now arithmetic latencies kick in
- ▶ Total: ≈ 2000 cycles

Making the program fast Step 3 – More Instruction Scheduling (two accumulators)

result0	=	mem32[START	+	0]
tmp0	=	mem32[START	+	8]
result1	=	mem32[START	+	4]
tmp1	=	mem32[START	+1	[2]
tmp2	=	mem32[START	+1	[6]

```
result0 += tmp0
tmp0 = mem32[START+20]
result1 += tmp1
tmp1 = mem32[START+24]
result0 += tmp2
tmp2 = mem32[START+28]
```

. . .

```
result0 += tmp1
tmp1 = mem32[START+3996]
result1 += tmp2
result0 += tmp0
result1 += tmp1
result0 += result1
```

- Use one more accumulator register (result1)
- All latencies hidden
- Total: 1004 cycles
- Asymptotically n cycles for n additions

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
 - Unroll the loop

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
 - Unroll the loop
 - Interleave independent instructions (instruction scheduling)

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
 - Unroll the loop
 - Interleave independent instructions (instruction scheduling)
 - Resulting program is larger and requires more registers!

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
 - Unroll the loop
 - Interleave independent instructions (instruction scheduling)
 - Resulting program is larger and requires more registers!
- ▶ Note: Good instruction scheduling typically requires more registers

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
 - Unroll the loop
 - Interleave independent instructions (instruction scheduling)
 - Resulting program is larger and requires more registers!
- ▶ Note: Good instruction scheduling typically requires more registers
- Opposing requirements to register allocation (assigning registers to live variables, minimizing memory access)

- Analyze the algorithm in terms of machine instructions
- Look at what the respective machine is able to do
- Compute a lower bound of the cycles
- Optimize until we (almost) reached the lower bound:
 - Unroll the loop
 - Interleave independent instructions (instruction scheduling)
 - Resulting program is larger and requires more registers!
- ▶ Note: Good instruction scheduling typically requires more registers
- Opposing requirements to register allocation (assigning registers to live variables, minimizing memory access)
- ▶ Both instruction scheduling and register allocation are NP hard
- So is the joint problem
- Many instances are efficiently solvable

Architectures and microarchitectures

What instructions and how many registers do we have?

- Instructions are defined by the instruction set
- Supported register names are defined by the set of architectural registers
- Instruction set and set of architectural registers together define the architecture
- Examples for architectures: x86, AMD64, ARMv6, ARMv7, UltraSPARC
- Sometimes base architectures are extended, e.g., MMX, SSE, NEON

Architectures and microarchitectures

What instructions and how many registers do we have?

- Instructions are defined by the instruction set
- Supported register names are defined by the set of architectural registers
- Instruction set and set of architectural registers together define the architecture
- Examples for architectures: x86, AMD64, ARMv6, ARMv7, UltraSPARC
- ► Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?

- Different microarchitectures implement an architecture
- Latencies and throughputs are specific to a microarchitecture
- Example: Intel Core 2 Quad Q9550 implements the AMD64 architecture
- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution
- Typically requires more physical than architectural registers and register renaming

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution
- Typically requires more physical than architectural registers and register renaming
- Harder for the (assembly) programmer to understand what exactly will happen with the code
- Harder to come up with optimal scheduling

- Optimal instruction scheduling depends on the microarchitecture
- Code optimized for one microarchitecture may run at very bad performance on another microarchitecture
- Many software is shipped in binary form (cannot recompile)
- Idea: Let the processor reschedule instructions on the fly
- Look ahead a few instructions, pick one that can be executed
- This is called out-of-order execution
- Typically requires more physical than architectural registers and register renaming
- Harder for the (assembly) programmer to understand what exactly will happen with the code
- Harder to come up with optimal scheduling
- Harder to screw up completely

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?
- No.

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?
- ▶ No. Cryptographic software deals with secret data (keys)
- Information about secret data must not leak through side channels

- So far there was nothing crypto-specific in this talk
- Is optimizing crypto the same as optimizing any other software?
- ▶ No. Cryptographic software deals with secret data (keys)
- Information about secret data must not leak through side channels
- Most critical for software implementations on "large" CPUs: software must take constant time (independent of secret data)

• Consider the following piece of code: if s then $r \leftarrow A$ else $r \leftarrow B$ end if

• Consider the following piece of code: if s then $r \leftarrow A$ else $r \leftarrow B$ end if

- General structure of any conditional branch
- \blacktriangleright A and B can be large computations, r can be a large state

- Consider the following piece of code: if s then $r \leftarrow A$ else $r \leftarrow B$ end if
- General structure of any conditional branch
- A and B can be large computations, r can be a large state
- \blacktriangleright This code takes different amount of time, depending on s
- Obvious timing leak if s is secret

Consider the following piece of code:
 if s then

```
\begin{array}{c} r \leftarrow A \\ \textbf{else} \end{array}
```

```
r \leftarrow B end if
```

- General structure of any conditional branch
- A and B can be large computations, r can be a large state
- \blacktriangleright This code takes different amount of time, depending on s
- Obvious timing leak if s is secret
- Even if A and B take the same amount of cycles this is *not* constant time!
- Reason: Conditional branch takes different amount of cycles whether taken or not
- Never use secret-data-dependent branch conditions

So, what do we do with this piece of code?
 if s then
 r ← A
 else
 r ← B
 end if

So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

Replace by

 $r \leftarrow sA + (1-s)B$

So, what do we do with this piece of code? if s then $r \leftarrow A$ else $r \leftarrow B$ end if

$$r \leftarrow sA + (1-s)B$$

Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of multiplication

So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

Replace by

$$r \leftarrow sA + (1-s)B$$

A + (1) D

- Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of multiplication
- For very fast A and B this can even be faster

Cached memory access

- Memory access goes through a cache
- Small but fast transparent memory for frequently used data

Cached memory access

- Memory access goes through a cache
- Small but fast transparent memory for frequently used data
- A load from memory places data also in the cache
- Data remains in cache until it's replaced by other data

Cached memory access

- Memory access goes through a cache
- Small but fast transparent memory for frequently used data
- A load from memory places data also in the cache
- Data remains in cache until it's replaced by other data
- Loading data is fast if data is in the cache (cache hit)
- Loading data is slow if data is not in the cache (cache miss)

$T[0] \dots T[15]$
$T[16] \dots T[31]$
$T[32] \dots T[47]$
$T[48] \dots T[63]$
$T[64] \dots T[79]$
$T[80] \dots T[95]$
$T[96] \dots T[111]$
$T[112] \dots T[127]$
$T[128] \dots T[143]$
$T[144] \dots T[159]$
$T[160] \dots T[175]$
$T[176] \dots T[191]$
$T[192] \dots T[207]$
$T[208] \dots T[223]$
$T[224] \dots T[239]$
$T[240] \dots T[255]$

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache

$T[0] \dots T[15]$
$T[16] \dots T[31]$
attacker's data
attacker's data
$T[64] \dots T[79]$
$T[80] \dots T[95]$
attacker's data
attacker's data
attacker's data
attacker's data
$T[160] \dots T[175]$
$T[176] \dots T[191]$
$T[192] \dots T[207]$
$T[208] \dots T[223]$
attacker's data
attacker's data

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines

$T[0] \dots T[15]$
$T[16] \dots T[31]$
???
???
$T[64] \dots T[79]$
$T[80] \dots T[95]$
???
???
???
???
$T[160] \dots T[175]$
$T[176] \dots T[191]$
$T[192] \dots T[207]$
$T[208] \dots T223]$
???
???

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again

$T[0] \dots T[15]$	
$T[16] \dots T[31]$	
???	
???	
$T[64] \dots T[79]$	
$T[80] \dots T[95]$	
???	
???	-
???	
???	
$T[160] \dots T[175]$	
$T[176] \dots T[191]$	
$T[192] \dots T[207]$	
$T[208] \dots T223]$	
???	
???	1

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:
 - Fast: cache hit (crypto did not just load from this line)

- Consider lookup table of 32-bit integers
- Cache lines have 64 bytes
- Crypto and the attacker's program run on the same CPU
- Tables are in cache
- The attacker's program replaces some cache lines
- Crypto continues, loads from table again
- Attacker loads his data:
 - Fast: cache hit (crypto did not just load from this line)
 - Slow: cache miss (crypto just loaded from this line)

▶ This is only the *most basic* cache-timing attack

- This is only the most basic cache-timing attack
- Non-secret cache lines are not enough for security
- Load/Store addresses influence timing in many different ways
- Do not access memory at secret-data-dependent addresses

- This is only the most basic cache-timing attack
- Non-secret cache lines are not enough for security
- Load/Store addresses influence timing in many different ways
- Do not access memory at secret-data-dependent addresses
- Timing attacks are practical: Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk encryption

- This is only the most basic cache-timing attack
- Non-secret cache lines are not enough for security
- Load/Store addresses influence timing in many different ways
- Do not access memory at secret-data-dependent addresses
- Timing attacks are practical: Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk encryption
- Remote timing attacks are practical: Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL implementation

 \blacktriangleright Want to load item at (secret) position p from table of size n

- Want to load item at (secret) position p from table of size n
- ▶ Load all items, use arithmetic to pick the right one:

```
for i from 0 to n-1 do

d \leftarrow T[i]

if p = i then

r \leftarrow d

end if

end for
```

- Want to load item at (secret) position p from table of size n
- ▶ Load all items, use arithmetic to pick the right one:

```
for i from 0 to n-1 do

d \leftarrow T[i]

if p = i then

r \leftarrow d

end if

end for
```

Problem 1: if-statements are not constant time (see before)

- Want to load item at (secret) position p from table of size n
- ▶ Load all items, use arithmetic to pick the right one:

```
for i from 0 to n-1 do

d \leftarrow T[i]

if p = i then

r \leftarrow d

end if

end for
```

Problem 1: if-statements are not constant time (see before)

Problem 2: Comparisons are not constant time, replace by:

```
static unsigned long long eq(uint32_t a, uint32_t b)
{
    unsigned long long t = a ^ b;
    t = (-t) >> 63;
    return 1-t;
}
```

Are secret branch conditions and secret load/store addresses the only problem?

- Are secret branch conditions and secret load/store addresses the only problem?
- Answer by Langley: "That's assuming that the fundamental processor instructions are constant time, but that's true for all sane CPUs."
Timing leakage part III

- Are secret branch conditions and secret load/store addresses the only problem?
- Answer by Langley: "That's assuming that the fundamental processor instructions are constant time, but that's true for all sane CPUs."
- Some architectures have *non-constant-time* arithmetic
- Examples:
 - UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
 - DIV instruction on Intel processors, see also https:

//www.imperialviolet.org/2013/02/04/luckythirteen.html

Timing leakage part III

- Are secret branch conditions and secret load/store addresses the only problem?
- Answer by Langley: "That's assuming that the fundamental processor instructions are constant time, but that's true for all sane CPUs."
- Some architectures have non-constant-time arithmetic
- Examples:
 - ▶ UMULL/SMULL and UMLAL/SMLAL on ARM Cortex-M3
 - DIV instruction on Intel processors, see also https:

//www.imperialviolet.org/2013/02/04/luckythirteen.html

Summary

- Writing efficient constant-time code is hard
- ► Typically requires reconsiderations through all optimization levels

"Thus we arbitrarily select a reference organization : the IBM 704-70927090. This organization is then regarded as the prototype of the class of machines which we label:

1) Single Instruction Stream–Single Data Stream (SISD).

Three additional organizational classes are evident.

- 2) Single Instruction Stream–Multiple Data Stream (SIMD)
- 3) Multiple Instruction Stream–Single Data Stream (MISD)
- 4) Multiple Instruction Stream–Multiple Data Stream (MIMD)"
- Michael J. Flynn. Very high-speed computing systems. 1966.

SISD Example: 32-bit integer addition

```
int64 a
int64 b
a = mem32[addr1 + 0]
b = mem32[addr2 + 0]
(uint32) a += b
mem32[addr3 + 0] = a
```

SIMD with vector instructions Example: 4 32-bit integer additions

```
reg128 a
reg128 b
a = mem128[addr1 + 0]
b = mem128[addr2 + 0]
4x a += b
mem128[addr3 + 0] = a
```

Back to adding $1000 \ {\rm integers}$

Imagine that

- vector addition is as fast as scalar addition
- vector loads are as fast as scalar loads

Back to adding $1000 \ {\rm integers}$

Imagine that

- vector addition is as fast as scalar addition
- vector loads are as fast as scalar loads
- \blacktriangleright Need only 250 vector additions, 250 vector loads
- \blacktriangleright Lower bound of $250~{\rm cycles}$

Back to adding 1000 integers

- Imagine that
 - vector addition is as fast as scalar addition
 - vector loads are as fast as scalar loads
- \blacktriangleright Need only 250 vector additions, 250 vector loads
- \blacktriangleright Lower bound of $250~{\rm cycles}$
- Very straight-forward modification of the program
- \blacktriangleright Fully unrolled loop needs only 1/4 of the space

- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- ▶ 32-bit store throughput: 1 per cycle

- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- ▶ 128-bit load throughput: 1 per cycle
- ▶ 4× 32-bit add throughput: 2 per cycle
- ▶ 128-bit store throughput: 1 per cycle

Consider the Intel Nehalem processor

- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- ▶ 4× 32-bit add throughput: 2 per cycle
- ▶ 128-bit store throughput: 1 per cycle

 Vector instructions are almost as fast as scalar instructions but do 4× the work

- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- ▶ 4× 32-bit add throughput: 2 per cycle
- ▶ 128-bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do 4× the work
- Situation on other architectures/microarchitectures is similar
- Reason: cheap way to increase arithmetic throughput (less decoding, address computation, etc.)

More reasons for using vector arithmetic

- Data-dependent branches are expensive in SIMD
- ► Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups

More reasons for using vector arithmetic

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups
- Secret-data-dependent branches and secret branch conditions are the major sources of timing-attack vulnerabilities

More reasons for using vector arithmetic

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups
- Secret-data-dependent branches and secret branch conditions are the major sources of timing-attack vulnerabilities
- Strong synergies between speeding up code with vector instructions and protecting code!

- ▶ When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"

- ▶ When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"
- How about carries of vector additions?
 - ► Answer 1: Special "carry generate" instruction (e.g., CBE-SPU)

- ▶ When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"
- How about carries of vector additions?
 - Answer 1: Special "carry generate" instruction (e.g., CBE-SPU)
 - Answer 2: They're lost, recomputation is very expensive

- ▶ When adding two 32-bit integers, the result may have 33 bits (32-bit result + carry)
- Scalar additions keep the carry in a special flag register
- Subsequent instructions can use this flag, e.g., "add with carry"
- How about carries of vector additions?
 - Answer 1: Special "carry generate" instruction (e.g., CBE-SPU)
 - Answer 2: They're lost, recomputation is very expensive
- Need to avoid carries instead of handling them
- No problem for today's talk, but requires care for big-integer arithmetic

- > If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)
- Pipelined and multiscalar execution need ILP
- Vectorization removes ILP
- ▶ Problematic for algorithms with, e.g., 4-way DLP

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)
- Pipelined and multiscalar execution need ILP
- Vectorization removes ILP
- ▶ Problematic for algorithms with, e.g., 4-way DLP
- Good example to see this: ChaCha/Salsa/Blake

- If we don't vectorize we perform multiple independent instructions
- We turn data-level parallelism (DLP) into instruction-level parallelism (ILP)
- Pipelined and multiscalar execution need ILP
- Vectorization removes ILP
- ▶ Problematic for algorithms with, e.g., 4-way DLP
- Good example to see this: ChaCha/Salsa/Blake
- Vectorization of ChaCha and Salsa can resort to higher-level parallelism (multiple blocks)
- ▶ Harder for Blake: each block depends on the previous one

Data shuffeling

• Consider multiplication of 4-coefficient polynomials $f = f_0 + f_1 x + f_2 x^2 + f_3 x^3$ and $g = g_0 + g_1 x + g_2 x^2 + g_3 x^3$:

$$\begin{aligned} r_0 &= f_0 g_0 \\ r_1 &= f_0 g_1 + f_1 g_0 \\ r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\ r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\ r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\ r_5 &= f_2 g_3 + f_3 g_2 \\ r_6 &= f_3 g_3 \end{aligned}$$

Data shuffeling

► Consider multiplication of 4-coefficient polynomials $f = f_0 + f_1x + f_2x^2 + f_3x^3$ and $g = g_0 + g_1x + g_2x^2 + g_3x^3$:

$$\begin{split} r_0 &= f_0 g_0 \\ r_1 &= f_0 g_1 + f_1 g_0 \\ r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\ r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\ r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\ r_5 &= f_2 g_3 + f_3 g_2 \\ r_6 &= f_3 g_3 \end{split}$$

- Ignore carries, overflows etc. for a moment
- ▶ 16 multiplications, 9 additions
- How to vectorize multiplications?

Data shuffeling

$$\begin{aligned} r_0 &= f_0 g_0 \\ r_1 &= f_0 g_1 + f_1 g_0 \\ r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\ r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\ r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\ r_5 &= f_2 g_3 + f_3 g_2 \\ r_6 &= f_3 g_3 \end{aligned}$$

- ▶ Can easily load (f_0, f_1, f_2, f_3) and (g_0, g_1, g_2, g_3)
- Multiply, obtain $(f_0g_0, f_1g_1, f_2g_2, f_3g_3)$

Data shuffeling

$$\begin{aligned} r_0 &= f_0 g_0 \\ r_1 &= f_0 g_1 + f_1 g_0 \\ r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\ r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\ r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\ r_5 &= f_2 g_3 + f_3 g_2 \\ r_6 &= f_3 g_3 \end{aligned}$$

- ▶ Can easily load (f_0, f_1, f_2, f_3) and (g_0, g_1, g_2, g_3)
- Multiply, obtain $(f_0g_0, f_1g_1, f_2g_2, f_3g_3)$
- And now what?

Data shuffeling

$$\begin{aligned} r_0 &= f_0 g_0 \\ r_1 &= f_0 g_1 + f_1 g_0 \\ r_2 &= f_0 g_2 + f_1 g_1 + f_2 g_0 \\ r_3 &= f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0 \\ r_4 &= f_1 g_3 + f_2 g_2 + f_3 g_1 \\ r_5 &= f_2 g_3 + f_3 g_2 \\ r_6 &= f_3 g_3 \end{aligned}$$

- ▶ Can easily load (f_0, f_1, f_2, f_3) and (g_0, g_1, g_2, g_3)
- Multiply, obtain $(f_0g_0, f_1g_1, f_2g_2, f_3g_3)$
- And now what?
- Answer: Need to shuffle data in input and output registers
- Significant overhead, not clear that vectorization speeds up computation!

Efficient vectorization

- Most important question: Where does the parallelism come from?
- Easiest answer: Consider multiple batched encryptions, decryptions, signature computations, verifications, etc.

Efficient vectorization

- Most important question: Where does the parallelism come from?
- Easiest answer: Consider multiple batched encryptions, decryptions, signature computations, verifications, etc.
- Often: Can exploit lower-level parallelism

Efficient vectorization

- Most important question: Where does the parallelism come from?
- Easiest answer: Consider multiple batched encryptions, decryptions, signature computations, verifications, etc.
- Often: Can exploit lower-level parallelism
- Rule of thumb: parallelize on an as high as possible level
- Vectorization is hard to do as "add-on" optimization
- Reconsider algorithms, synergie with constant-time algorithms

- ► So far: considered vectors of integers
- How about arithmetic in binary fields?

- ► So far: considered vectors of integers
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with n 1-bit entries
- Operations are now bitwise XOR, AND, OR, etc.

- ► So far: considered vectors of integers
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with n 1-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- ► This is called *bitslicing*, introduced by Biham in 1997 for DES

- ► So far: considered vectors of integers
- How about arithmetic in binary fields?
- \blacktriangleright Think of an *n*-bit register as a vector register with n 1-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- ► This is called *bitslicing*, introduced by Biham in 1997 for DES
- Other views on bitslicing:
 - Simulation of hardware implementations in software
Going binary

- ► So far: considered vectors of integers
- How about arithmetic in binary fields?
- \blacktriangleright Think of an *n*-bit register as a vector register with n 1-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- ▶ This is called *bitslicing*, introduced by Biham in 1997 for DES
- Other views on bitslicing:
 - Simulation of hardware implementations in software
 - Computations on a transposition of data

Bitslicing issues

- ► XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per cycle on Intel Core 2)
- Can be very fast for operations that are not natively supported (like arithmetic in binary fields)

Bitslicing issues

- ► XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per cycle on Intel Core 2)
- Can be very fast for operations that are not natively supported (like arithmetic in binary fields)
- ▶ Active data set increases massively (e.g., 128×)
- ▶ For "normal" vector operations, register space is increased accordingly (e.g, 16 256-bit vector registers vs. 16 64-bit integer registers)
- ▶ For bitslicing: Need to fit more data into the same registers
- Typical consequence: more loads and stores (that easily become the performance bottleneck)

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- ▶ Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)
- ► Also supported: XOR, AND, OR on YMM registers (1 per cycle)

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- ▶ Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)
- ▶ Also supported: XOR, AND, OR on YMM registers (1 per cycle)
- ► Alternative: XOR, AND, OR on XMM registers (3 per cycle)

- Vector instruction set introduced by Intel with Sandy Bridge and Ivy Bridge
- ▶ 256-bit vector registers YMM0,...,YMM15
- ▶ Overlap with 128-bit XMM registers
- Instruction set only supports floating-point vector instructions on YMM registers
- Integer-vector instructions follow with AVX2 (Haswell)
- ▶ Very powerful arithmetic: 1 double-precision vector multiplication and 1 double-precision vector addition per cycle (8 FLOPs per cycle per core)
- ▶ Also supported: XOR, AND, OR on YMM registers (1 per cycle)
- ▶ Alternative: XOR, AND, OR on XMM registers (3 per cycle)
- However, don't mix XMM and YMM instruction (context-switch penalty)

Part II Fast Lattice-Based Signatures

joint work with Tim Güneysu, Tobias Oder, and Thomas Pöppelmann

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
 - original estimate: 100 bits (against traditional computers)

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
 - original estimate: 100 bits (against traditional computers)
 - Lyubashevsky in 2013: 80 bits

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
 - original estimate: 100 bits (against traditional computers)
 - Lyubashevsky in 2013: 80 bits
 - ▶ 2014: ...?

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
 - original estimate: 100 bits (against traditional computers)
 - Lyubashevsky in 2013: 80 bits
 - 2014: ...?
- > This is not a mature, well understood cryptosystem
- Don't use it in applications, but study it!

- Consider lattice-based signature scheme proposed by Güneysu, Lyubashevsky, and Pöppelmann at CHES 2012
- "Aggressively optimized" version of scheme by Lyubashevsky (Eurocrypt 2012)
- Security level with the implemented parameters:
 - original estimate: 100 bits (against traditional computers)
 - Lyubashevsky in 2013: 80 bits
 - 2014: ...?
- This is not a mature, well understood cryptosystem
- Don't use it in applications, but study it!
- Implementation techniques are applicable more generally

Notation

- \blacktriangleright *n* is a power of 2
- \blacktriangleright p is a prime congruent to 1 modulo 2n (necessary for efficiency)
- \mathcal{R} is the ring $\mathbb{F}_p[x]/\langle x^n+1\rangle$
- \mathcal{R}_k subset of \mathcal{R} with coefficients in [-k, k].

Lattice hardness assumptions

Standard lattice hardness assumption

Decisional Ring-LWE:

Given $(a_1, t_1), ..., (a_m, t_m) \in \mathcal{R} \times \mathcal{R}$. Decide whether

- ► $t_i = a_i s + e_i$ where $s, e_1, ..., e_m \leftarrow D_\sigma$ and $a_i \stackrel{\$}{\leftarrow} \mathcal{R}$ (D_σ denotes a Gaussian distribution), or
- (a_i, t_i) uniformly random from $\mathcal{R} \times \mathcal{R}$.

Lattice hardness assumptions

Standard lattice hardness assumption

Decisional Ring-LWE:

Given $(a_1, t_1), ..., (a_m, t_m) \in \mathcal{R} \times \mathcal{R}$. Decide whether

- ► $t_i = a_i s + e_i$ where $s, e_1, ..., e_m \leftarrow D_\sigma$ and $a_i \stackrel{\$}{\leftarrow} \mathcal{R}$ (D_σ denotes a Gaussian distribution), or
- (a_i, t_i) uniformly random from $\mathcal{R} \times \mathcal{R}$.

More "aggressive" hardness assumption

Decisional Compact Knapsack Problem (DCKP): Given $(a, t) \in \mathcal{R} \times \mathcal{R}$.

- Decide whether $t = as_1 + s_2$ where $s_1, s_2 \stackrel{\$}{\leftarrow} \mathcal{R}_1$ and $a \stackrel{\$}{\leftarrow} \mathcal{R}$, or
- (a, t) uniformly random from $\mathcal{R} \times \mathcal{R}$.

System parameters

Parameters

- $\blacktriangleright \ n = 2^{\ell_1}$
- Prime p with 2n|(p-1)
- $\blacktriangleright \ k = 2^{\ell_2}$ with $\sqrt{p} < k \ll p$
- "Random" $a \in \mathcal{R}$
- ► Hash function *H* to elements of *R*₁ with at most 32 non-zero coefficients

Example

- ▶ n = 512
- ▶ p = 8383489 (23 bits)

▶
$$k = 2^{14}$$

- Fixed random a
- ... more later

Secret key

• s_1, s_2 sampled uniformly at random from \mathcal{R}_1

Public key

▶
$$t = as_1 + s_2$$

Compute a signature σ on a message M as follows:

1. Generate y_1, y_2 uniformly at random from \mathcal{R}_k

2. Compute
$$c = H(ay_1 + y_2, M)$$

3. Compute $z_1 = s_1c + y_1$ and $z_2 = s_2c + y_2$

4. If
$$z_1$$
 or $z_2
ot\in \mathcal{R}_{k-32}$, goto step 1

5. Return
$$\sigma = (z_1, z_2, c)$$

Verification (simplified)

Check signature $\sigma = (z_1, z_2, c)$ on M as follows:

1. If
$$z_1$$
 or $z_2 \notin \mathcal{R}_{k-32}$, reject
2. Else if $c \neq H(az_1 + z_2 - tc, M)$, reject
3. Else accept

Verification (simplified)

Check signature $\sigma = (z_1, z_2, c)$ on M as follows:

1. If
$$z_1$$
 or $z_2 \notin \mathcal{R}_{k-32}$, reject
2. Else if $c \neq H(az_1 + z_2 - tc, M)$, reject
3. Else accept

Correctness

$$az_1 + z_2 - tc$$

= $a(s_1c + y_1) + (s_2c + y_2) - (as_1 + s_2)c$
= $as_1c + ay_1 + s_2c + y_2 - as_1c - s_2c$
= $ay_1 + y_2$

Software implementation, first considerations

Key generation

- \blacktriangleright Main operation: sampling random coefficients in $\{-1,0,1\}$
- One multiplication of fixed a by s_1

Software implementation, first considerations

Key generation

- Main operation: sampling random coefficients in $\{-1, 0, 1\}$
- One multiplication of fixed a by s_1

Signing

- Expected number of signing attempts: 7
- Each attempt:
 - Sample y_1, y_2 uniformly at random from \mathcal{R}_k
 - Two sparse multiplications s_1c and s_2c
 - One multiplication ay₁ by constant a

Software implementation, first considerations

Key generation

- Main operation: sampling random coefficients in $\{-1, 0, 1\}$
- One multiplication of fixed a by s_1

Signing

- Expected number of signing attempts: 7
- Each attempt:
 - Sample y_1, y_2 uniformly at random from \mathcal{R}_k
 - Two sparse multiplications s_1c and s_2c
 - One multiplication ay_1 by constant a

Verification

- One sparse multiplication ct
- One multiplication az_1 by constant a

The function ${\cal H}$

Need to hash an arbitrary string S to an element $c = (c_0 + c_1x + \dots + c_{511}x^{511})$ of \mathcal{R}_1 with at most 32 non-zero entries

The function H

Need to hash an arbitrary string S to an element

 $c = (c_0 + c_1 x + \dots + c_{511} x^{511})$ of \mathcal{R}_1 with at most 32 non-zero entries

- First apply SHA-256, truncate to 160-bit hash h
- Map h injectively to c as follows:
 - Split (h_0, \ldots, h_{31}) , each h_i with 5 bits
 - Split each h_i into (h_{i0}, h_{it}) , where h_{i0} is one bit and h_{it} is a 4-bit integer
 - h_{it} indicates which of the 16 coefficients $c_{16i}, \ldots, c_{16i+15}$ is nonzero
 - If $h_{i0} = 0$ set this coefficient to -1 else to 1

- How do we get an integer, uniformly at random from [0, m-1]?
- Let's say that m-1 has ℓ bits
- ▶ Let's say that we can get random bits (e.g., from /dev/urandom)

- How do we get an integer, uniformly at random from [0, m-1]?
- Let's say that m-1 has ℓ bits
- ▶ Let's say that we can get random bits (e.g., from /dev/urandom)
- Two answers:
 - 1. Obtain a random ℓ -bit integer, reject until it is in [0, m-1]

- How do we get an integer, uniformly at random from [0, m-1]?
- Let's say that m-1 has ℓ bits
- Let's say that we can get random bits (e.g., from /dev/urandom)
- Two answers:
 - 1. Obtain a random ℓ -bit integer, reject until it is in [0, m-1]
 - 2. Obtain a much larger integer, reduce mod m (close to uniform)

- How do we get an integer, uniformly at random from [0, m-1]?
- Let's say that m-1 has ℓ bits
- Let's say that we can get random bits (e.g., from /dev/urandom)
- Two answers:
 - 1. Obtain a random ℓ -bit integer, reject until it is in [0, m-1]
 - 2. Obtain a much larger integer, reduce mod m (close to uniform)
- Probability of rejection in 1. depends on m, it's between 0 and 1/2

- How do we get an integer, uniformly at random from [0, m-1]?
- Let's say that m-1 has ℓ bits
- Let's say that we can get random bits (e.g., from /dev/urandom)
- Two answers:
 - 1. Obtain a random ℓ -bit integer, reject until it is in [0, m-1]
 - 2. Obtain a much larger integer, reduce mod m (close to uniform)
- Probability of rejection in 1. depends on m, it's between 0 and 1/2
- Problem with both 1. and 2.: /dev/urandom is slow

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- \blacktriangleright Salsa20 fast only for long streams, 3 bytes cost as much as 64
Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- \blacktriangleright Salsa20 fast only for long streams, 3 bytes cost as much as 64
- We want truly uniform distribution from [-k, k], recall that $k = 2^{14}$
- We want only one call to Salsa20

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- \blacktriangleright Salsa20 fast only for long streams, 3 bytes cost as much as 64
- We want truly uniform distribution from [-k, k], recall that $k = 2^{14}$
- We want only one call to Salsa20
- Combine approaches 1 and 2 as follows:
 - 1. Obtain $4 \cdot (528)$ random bytes from Salsa20
 - 2. Interpret these bytes as 528 32-bit integers
 - 3. Discard integers $\geq (2k+1) \cdot \lfloor 2^{32}/(2k+1) \rfloor$.
 - 4. Probability to discard an integer: 2^{-30}
 - 5. We have 16 additional integers, replace discarded integers by those
 - 6. If more than 16 integers are discarded, restart with step 1
 - 7. For each integer $r \mod (2k+1) k$

Faster random sampling

- Only read seed from /dev/urandom, use fast Salsa20 stream cipher
- \blacktriangleright Salsa20 fast only for long streams, 3 bytes cost as much as 64
- We want truly uniform distribution from [-k, k], recall that $k = 2^{14}$
- We want only one call to Salsa20
- Combine approaches 1 and 2 as follows:
 - 1. Obtain $4 \cdot (528)$ random bytes from Salsa20
 - 2. Interpret these bytes as 528 32-bit integers
 - 3. Discard integers $\geq (2k+1) \cdot \lfloor 2^{32}/(2k+1) \rfloor$.
 - 4. Probability to discard an integer: 2^{-30}
 - 5. We have 16 additional integers, replace discarded integers by those
 - 6. If more than 16 integers are discarded, restart with step 1
 - 7. For each integer r compute $r \mod (2k+1) k$
- Similar approach to sample coefficients in $\{-1, 0, 1\}$
- ▶ Only difference: Use bytes instead of 32-bit integers

Representation of elements of ${\cal R}$

• represent
$$a = \sum_{i=0}^{511} a_i X^i$$
 as (a_0, \dots, a_{511}) :

Representation of elements of ${\mathcal R}$

• represent
$$a = \sum_{i=0}^{511} a_i X^i$$
 as (a_0, \dots, a_{511}) :

typedef double __attribute__ ((aligned (32))) r_elem[512];

 Use AVX double-precision instructions for addition and multiplication of coefficients

Representation of elements of ${\mathcal R}$

• represent
$$a = \sum_{i=0}^{511} a_i X^i$$
 as (a_0, \dots, a_{511}) :

- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a:
 - Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}

Representation of elements of $\mathcal R$

• represent
$$a = \sum_{i=0}^{511} a_i X^i$$
 as (a_0, \dots, a_{511}) :

- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a:
 - Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
 - Compute $c \leftarrow a \cdot \overline{p^{-1}}$
 - Round c (high-throughput vroundpd instruction)
 - Compute $c \leftarrow c \cdot p$
 - Subtract c from a

Representation of elements of $\mathcal R$

• represent
$$a = \sum_{i=0}^{511} a_i X^i$$
 as (a_0, \dots, a_{511}) :

- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a:
 - Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
 - Compute $c \leftarrow a \cdot \overline{p^{-1}}$
 - Round c (high-throughput vroundpd instruction)
 - Compute $c \leftarrow c \cdot p$
 - Subtract c from a
 - \blacktriangleright Rounding mode determines whether this maps to $[-\frac{p-1}{2},\frac{p-1}{2}]$ or to [0,p-1]

Representation of elements of ${\mathcal R}$

• represent
$$a = \sum_{i=0}^{511} a_i X^i$$
 as (a_0, \dots, a_{511}) :

- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a:
 - Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
 - Compute $c \leftarrow a \cdot \overline{p^{-1}}$
 - Round c (high-throughput vroundpd instruction)
 - Compute $c \leftarrow c \cdot p$
 - Subtract c from a
 - \blacktriangleright Rounding mode determines whether this maps to $[-\frac{p-1}{2},\frac{p-1}{2}]$ or to [0,p-1]
- ► Use lazy reduction: product of two 22-bit numbers has 44 bits, quite some space in the 53-bit mantissa

- \blacktriangleright Let ω be a $512 {\rm th}$ root of unity in \mathbb{F}_p and $\psi^2 = \omega$
- ▶ The number-theoretic transform NTT $_{\omega}$ of $a = (a_0, \ldots, a_{511})$ is defined as

$$\mathsf{NTT}_{\omega}(a) = (A_0, \dots, A_{511}) \text{ with } A_i = \sum_{j=0}^{511} a_j \omega^{ij}$$

- Let ω be a 512th root of unity in \mathbb{F}_p and $\psi^2 = \omega$
- ▶ The number-theoretic transform NTT $_{\omega}$ of $a = (a_0, \ldots, a_{511})$ is defined as

$$\mathsf{NTT}_{\omega}(a) = (A_0, \dots, A_{511})$$
 with $A_i = \sum_{j=0}^{511} a_j \omega^{ij}$

• Consider multiplication $d = a \cdot b$ in \mathcal{R}

Compute

$$ar{a} = (a_0, \psi a_1, \dots, \psi^{511} a_{511})$$
 and
 $ar{b} = (b_0, \psi b_1, \dots, \psi^{511} b_{511})$

- Let ω be a 512th root of unity in \mathbb{F}_p and $\psi^2 = \omega$
- ▶ The number-theoretic transform NTT_{ω} of $a = (a_0, \ldots, a_{511})$ is defined as

$$\mathsf{NTT}_{\omega}(a) = (A_0, \dots, A_{511})$$
 with $A_i = \sum_{j=0}^{511} a_j \omega^{ij}$

• Consider multiplication $d = a \cdot b$ in \mathcal{R}

Compute

$$\bar{a} = (a_0, \psi a_1, \dots, \psi^{511} a_{511})$$
 and
 $\bar{b} = (b_0, \psi b_1, \dots, \psi^{511} b_{511})$

► Obtain
$$\overline{d} = (d_0, \psi d_1, \dots, \psi^{511} d_{511})$$
 as
 $\overline{d} = \mathsf{NTT}_{\omega}^{-1}(\mathsf{NTT}_{\omega}(\overline{a}) \circ \mathsf{NTT}_{\omega}(\overline{b})),$

where \circ denotes component-wise multiplication

- \blacktriangleright Let ω be a $512 {\rm th}$ root of unity in \mathbb{F}_p and $\psi^2 = \omega$
- ▶ The number-theoretic transform NTT $_{\omega}$ of $a = (a_0, \ldots, a_{511})$ is defined as

$$\mathsf{NTT}_{\omega}(a) = (A_0, \dots, A_{511}) \text{ with } A_i = \sum_{j=0}^{511} a_j \omega^{ij}$$

• Consider multiplication $d = a \cdot b$ in \mathcal{R}

Compute

$$\bar{a} = (a_0, \psi a_1, \dots, \psi^{511} a_{511})$$
 and
 $\bar{b} = (b_0, \psi b_1, \dots, \psi^{511} b_{511})$

► Obtain
$$\overline{d} = (d_0, \psi d_1, \dots, \psi^{511} d_{511})$$
 as
 $\overline{d} = \mathsf{NTT}_{\omega}^{-1}(\mathsf{NTT}_{\omega}(\overline{a}) \circ \mathsf{NTT}_{\omega}(\overline{b})),$

where \circ denotes component-wise multiplication

Component-wise multiplication is trivially vectorizable

- ► FFT in a finite field
- ► Evaluate polynomial $f = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$

- ► FFT in a finite field
- ► Evaluate polynomial $f = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \text{ and}$$

$$f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)$$

- FFT in a finite field
- ► Evaluate polynomial f = a₀ + a₁x + ··· + a_{n-1}xⁿ⁻¹ at all n-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \text{ and}$$
$$f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)$$

- f_0 has n/2 coefficients
- Evaluate f_0 at all (n/2)-th roots of unity by recursive application

- FFT in a finite field
- ► Evaluate polynomial f = a₀ + a₁x + ··· + a_{n-1}xⁿ⁻¹ at all n-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \text{ and}$$
$$f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)$$

- f_0 has n/2 coefficients
- Evaluate f_0 at all (n/2)-th roots of unity by recursive application
- ▶ Same for *f*₁

- FFT in a finite field
- ► Evaluate polynomial f = a₀ + a₁x + ··· + a_{n-1}xⁿ⁻¹ at all n-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(eta) = f_0(eta^2) + eta f_1(eta^2)$$
 and
 $f(-eta) = f_0(eta^2) - eta f_1(eta^2)$

- f_0 has n/2 coefficients
- Evaluate f_0 at all (n/2)-th roots of unity by recursive application
- ► Same for f₁
- For n = 512 we have 9 levels of recursion

- First thing to do: replace recursion by iteration
- \blacktriangleright Loop over 9 levels with 256 "butterfly transformations" each
- Butterfly on level k:
 - Pick up a_i and a_{i+2^k}
 - Multiply a_{i+2^k} by a power of ω to obtain t
 - Compute $a_{i+2^k} \leftarrow a_i t$
 - Compute $a_i \leftarrow a_i + t$
- Easy vectorization on levels $k = 2, \ldots, 8$:
 - Pick up $v_0 = a_i, a_{i+1}, a_{i+2}, a_{i+3}$ and
 - $v_1 = a_{i+2^k}, a_{i+2^k+1}, a_{i+2^k+2}, a_{i+2^k+3}$
 - Perform all operations on v₀ and v₁
- Levels 0 and 1: More tricky: Use permutation instructions and "horizontal additions"

▶ Main bottleneck of NTT: memory access

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4-tuples interact
- ► Through three levels, 8-tuples interact, etc.

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4-tuples interact
- ► Through three levels, 8-tuples interact, etc.
- \blacktriangleright Merge 3 levels: Load $8\cdot 4=32$ values, perform arithmetic, store the results

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4-tuples interact
- Through three levels, 8-tuples interact, etc.
- \blacktriangleright Merge 3 levels: Load $8\cdot 4=32$ values, perform arithmetic, store the results
- ▶ Final performance for NTT: 4484 cycles on Ivy Bridge
- ▶ Performance for multiplication in \mathcal{R} : 16096 cycles
- Multiplication by constant a: 11044 cycles

Results

- \blacktriangleright Keypair generation: 31140 cycles on Intel Ivy Bridge
- ▶ Signing: 634988 cycles on average
- ▶ Verification: 45036 cycles

Results

- \blacktriangleright Keypair generation: 31140 cycles on Intel Ivy Bridge
- ▶ Signing: 634988 cycles on average
- ▶ Verification: 45036 cycles
- ▶ Public key: 1536 bytes
- Secret key: 256 bytes
- ▶ Signature: 1184 bytes

Comparison

Software	Cycles		Sizes	
Our work	sign:	634988	pk:	1536
	verify:	45036	sk:	256
			sig:	1184
mqqsig160	sign:	1996	pk:	206112
	verify:	33220	sk:	401
			sig:	20
rainbow5640	sign:	53872	pk:	44160
	verify:	34808	sk:	86240
			sig:	37
pflash1	sign:	1473364	pk:	72124
	verify:	286168	sk:	5550
			sig:	37
tts6440	sign:	33728	pk:	57600
	verify:	49248	sk:	16608
			sig:	43
XMSS	sign:	7261100*	pk:	912
(H = 20, w = 4, AES-128)	verify:	556600^{*}	sk:	19
			sig:	2451

References

 Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software speed records for lattice-based signatures., PQCrypto 2013.

http://cryptojedi.org/papers/#lattisigns

Software is online (public domain) at http://cryptojedi.org/crypto/#lattisigns

Part III McBits: Fast code-based cryptography

joint work with Daniel J. Bernstein and Tung Chou

Public-key encryption

• Alice generates a key pair (sk, pk), publishes pk, keeps sk secret

Public-key encryption

- ▶ Alice generates a key pair (sk, pk), publishes pk, keeps sk secret
- ▶ Bob takes some message M and pk and computes ciphertext C, sends C to Alice

Public-key encryption

- ▶ Alice generates a key pair (sk, pk), publishes pk, keeps sk secret
- ▶ Bob takes some message M and pk and computes ciphertext C, sends C to Alice
- Alice uses sk decrypt C

Parameters

• Integers m, q, n, t, k, such that

►
$$n \le q = 2^m$$

$$\blacktriangleright \ k = n - mt$$

►
$$t \ge 2$$

▶
$$m = 12$$
,
 $n = q = 4096$
 $k = 3604$
 $t = 41$

Parameters

• Integers m, q, n, t, k, such that

•
$$n \le q = 2^m$$

$$\blacktriangleright \ k = n - mt$$

•
$$t \ge 2$$

 \blacktriangleright An *s*-bit-key stream cipher *S*

Parameters

- Integers m, q, n, t, k, such that
 - ▶ $n \le q = 2^m$
 - $\blacktriangleright \ k = n mt$
 - $\blacktriangleright t \ge 2$
- ▶ An *s*-bit-key stream cipher *S*
- An *a*-bit-key authenticator (MAC) A

- m = 12, n = q = 4096 k = 3604t = 41
- $S = Salsa20 \ (s = 256)$
- A = Poly1305 (a = 256)

Parameters

- Integers m, q, n, t, k, such that
 - ▶ $n \le q = 2^m$
 - $\blacktriangleright \ k = n mt$
 - $\blacktriangleright t \ge 2$
- ▶ An *s*-bit-key stream cipher *S*
- An *a*-bit-key authenticator (MAC) A
- ► An (s + a)-bit-output hash function H

- ▶ m = 12, n = q = 4096 k = 3604t = 41
- $S = Salsa20 \ (s = 256)$
- A = Poly1305 (a = 256)
- ▶ *H* = SHA-512

Key generation

Secret key

- A random sequence $(\alpha_1, \ldots, \alpha_n)$ of distinct elements in \mathbb{F}_q
- A irreducible degree-t polynomial $g \in \mathbb{F}_q[x]$
- A random sequence $(\alpha_1, \ldots, \alpha_n)$ of distinct elements in \mathbb{F}_q
- A irreducible degree-t polynomial $g \in \mathbb{F}_q[x]$
- Compute the secret matrix

$$\begin{pmatrix} 1/g(\alpha_1) & 1/g(\alpha_2) & \cdots & 1/g(\alpha_n) \\ \alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n) \end{pmatrix} \in \mathbb{F}_q^{t \times n}$$

- A random sequence $(\alpha_1, \ldots, \alpha_n)$ of distinct elements in \mathbb{F}_q
- A irreducible degree-t polynomial $g \in \mathbb{F}_q[x]$
- Compute the secret matrix

$$\begin{pmatrix} 1/g(\alpha_1) & 1/g(\alpha_2) & \cdots & 1/g(\alpha_n) \\ \alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n) \end{pmatrix} \in \mathbb{F}_q^{t \times n}$$

- \blacktriangleright Replace all entries by a column of m bits in a standard basis of \mathbb{F}_q over \mathbb{F}_2
- Obtain a matrix $H \in \mathbb{F}_2^{mt \times n}$

- A random sequence $(\alpha_1, \ldots, \alpha_n)$ of distinct elements in \mathbb{F}_q
- A irreducible degree-t polynomial $g \in \mathbb{F}_q[x]$
- Compute the secret matrix

$$\begin{pmatrix} 1/g(\alpha_1) & 1/g(\alpha_2) & \cdots & 1/g(\alpha_n) \\ \alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n) \end{pmatrix} \in \mathbb{F}_q^{t \times n}$$

- \blacktriangleright Replace all entries by a column of m bits in a standard basis of \mathbb{F}_q over \mathbb{F}_2
- \blacktriangleright Obtain a matrix $H \in \mathbb{F}_2^{mt \times n}$
- *H* is a *secret* parity-check matrix of the Goppa code $\Gamma = \Gamma_2(\alpha_1, \dots, \alpha_n, g)$

- A random sequence $(\alpha_1, \ldots, \alpha_n)$ of distinct elements in \mathbb{F}_q
- A irreducible degree-t polynomial $g \in \mathbb{F}_q[x]$
- Compute the secret matrix

$$\begin{pmatrix} 1/g(\alpha_1) & 1/g(\alpha_2) & \cdots & 1/g(\alpha_n) \\ \alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n) \end{pmatrix} \in \mathbb{F}_q^{t \times n}$$

- \blacktriangleright Replace all entries by a column of m bits in a standard basis of \mathbb{F}_q over \mathbb{F}_2
- \blacktriangleright Obtain a matrix $H \in \mathbb{F}_2^{mt \times n}$
- *H* is a *secret* parity-check matrix of the Goppa code $\Gamma = \Gamma_2(\alpha_1, \dots, \alpha_n, g)$
- The secret key is $(\alpha_1, \ldots, \alpha_n, g)$

Public key

- Perform Gaussian elimination on H to obtain a matrix K whose left $tm \times tm$ submatrix is the identity matrix
- K is a *public* parity-check matrix for Γ
- The public key is K

Encryption

- Generate a random weight-t vector $e \in \mathbb{F}_2^n$
- ▶ Compute w = Ke
- Compute H(e) to obtain an (s + a)-bit string (k_{enc}, k_{auth})
- \blacktriangleright Encrypt the message M with the stream cipher S under key k_{enc} to obtain ciphertext C
- Compute authentication tag a on C using A with key k_{auth}
- ▶ Send (a, w, C)

Decryption

- Receive (a, w, C)
- Decode w to obtain weight-t string e
- Hash e with H to obtain (k_{enc}, k_{auth})
- Verify that a is a valid authentication tag on C using A with k_{auth}
- Use S with k_{enc} to decrypt and obtain M

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- \blacktriangleright Computation of Ke is simply XORing t columns of mt bits each
- ▶ In our example mt = 492, almost 512; great for fast vector XORs
- \blacktriangleright But: have to be careful to not leak information about e
- This talk: ignore implementation of H, S, and A

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Computation of Ke is simply XORing t columns of mt bits each
- ▶ In our example mt = 492, almost 512; great for fast vector XORs
- \blacktriangleright But: have to be careful to not leak information about e
- ▶ This talk: ignore implementation of *H*, *S*, and *A*

Decryption

- Decryption is mainly decoding, lots of operations \mathbb{F}_q
- Decryption has to run in constant time!
- \blacktriangleright Obviously, decoding of w is the interesting part

• Start with some $v \in \mathbb{F}_2^n$, such that Kv = w

- Start with some $v \in \mathbb{F}_2^n$, such that Kv = w
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t

- Start with some $v \in \mathbb{F}_2^n$, such that Kv = w
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_j = \alpha_i$, set error bit at position *i* in *e*

- Start with some $v \in \mathbb{F}_2^n$, such that Kv = w
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_j = \alpha_i$, set error bit at position *i* in *e*
- ▶ All these computation work on medium-size polynomials over \mathbb{F}_q

- Start with some $v \in \mathbb{F}_2^n$, such that Kv = w
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp-Massey algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_j = \alpha_i$, set error bit at position *i* in *e*
- ▶ All these computation work on medium-size polynomials over \mathbb{F}_q
- Let's now fix the example parameters from above $(q = 2^m = 4096, t = 41, n = q)$

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
 - Use table lookups (not constant time!)

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
 - Use table lookups (not constant time!)
 - ▶ Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64 × 64-bit multiplication)

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
 - Use table lookups (not constant time!)
 - ▶ Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64 × 64-bit multiplication)
 - Squaring uses the same algorithm as multiplication

- ▶ Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- ▶ We only really care about speed when we have *many* decryptions

- ▶ Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- ▶ We only really care about speed when we have *many* decryptions
- ▶ Addition is 12 vectors XORs for 256 parallel additions (much faster!)

- ▶ Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- ▶ We only really care about speed when we have many decryptions
- Addition is 12 vectors XORs for 256 parallel additions (much faster!)
- Multiplication is easily constant time, but is it fast?
- How about squaring, can it be faster?

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: Karatsuba
 - Karatsuba:

$$(a_0 + x^n a_1)(b_0 + x^n b_1) = a_0 b_0 + x^n ((a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1) + x^{2n} a_1 b_1$$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: refined Karatsuba
 - Karatsuba:

$$(a_0 + x^n a_1)(b_0 + x^n b_1) = a_0 b_0 + x^n ((a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1) + x^{2n} a_1 b_1$$

Refined Karatsuba:

$$(a_0 + x^n a_1)(b_0 + x^n b_1) = (1 - x^n)(a_0 b_0 - x^n a_1 b_1) + x^n (a_0 + a_1)(b_0 + b_1)$$

- ▶ Refined Karatsuba uses $M_{2n} = 3M_n + 7n 3$ instead of $M_{2n} = 3M_n + 8n 4$ bit operations
- ▶ For details see Bernstein "Batch binary Edwards", Crypto 2009

▶ One level of refined Karatsuba: 114 XORs, 108 ANDs

- ▶ One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling

- ▶ One level of refined Karatsuba: 114 XORs, 108 ANDs
- ► 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- \blacktriangleright Reduction takes 24 XORs, a total of 246 bit operations
- ▶ On Ivy Bridge: 247 cycles for 256 multiplications

- ▶ One level of refined Karatsuba: 114 XORs, 108 ANDs
- ► 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- \blacktriangleright Reduction takes 24 XORs, a total of 246 bit operations
- ▶ On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

- ▶ One level of refined Karatsuba: 114 XORs, 108 ANDs
- ► 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- \blacktriangleright Reduction takes 24 XORs, a total of 246 bit operations
- ▶ On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
- ▶ Future work: Explore tower-field arithmetic, reduce bit operations

- ▶ One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- \blacktriangleright Reduction takes 24 XORs, a total of 246 bit operations
- ▶ On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
- ▶ Future work: Explore tower-field arithmetic, reduce bit operations

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced *multiplication* is competitive
- Bitsliced squaring is much faster (not very relevant)

- ▶ One level of refined Karatsuba: 114 XORs, 108 ANDs
- ► 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- \blacktriangleright Reduction takes 24 XORs, a total of 246 bit operations
- ▶ On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
- Future work: Explore tower-field arithmetic, reduce bit operations

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced multiplication is competitive
- Bitsliced squaring is much faster (not very relevant)
- In the following: High-level algorithms that drastically reduce the number of multiplications

Root finding, the classical way

- ▶ Task: Find all *t* roots of a degree-*t* error-locator polynomial *f*
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \dots + c_0$

Root finding, the classical way

- **\triangleright** Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \dots + c_0$
- \blacktriangleright Try all elements of F_q , Horner scheme takes $41~{\rm mul},~41~{\rm add}$ per element

Root finding, the classical way

- ▶ Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \dots + c_0$
- \blacktriangleright Try all elements of F_q , Horner scheme takes $41~{\rm mul},~41~{\rm add}$ per element
- Chien search: Compute $c_i g^i, c_i g^{2i}, c_i g^{3i}$ etc.
- Same operation count but different structure
Root finding, the classical way

- ▶ Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \dots + c_0$
- ► Try all elements of Fq, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_i g^i, c_i g^{2i}, c_i g^{3i}$ etc.
- Same operation count but different structure
- Berlekamp trace algorithm: not constant time

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \text{ and }$$

$$f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$$

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \text{ and}$$
$$f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$$

▶ Problem: We have a binary field, and $\alpha = -\alpha$

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \text{ and}$$
$$f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$$

- Problem: We have a binary field, and $\alpha = -\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \text{ and}$$
$$f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$$

- \blacktriangleright Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
- von zur Gathen 1996: some improvements (still slow)

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
 - Huge overlap between evaluating

$$f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \text{ and}$$
$$f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)$$

- \blacktriangleright Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
- von zur Gathen 1996: some improvements (still slow)
- ▶ Gao, Mateer 2010: Much faster additive FFT

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$ on a size-*n* \mathbb{F}_2 -linear space *S*
- Think of S as all subset sums of $\{\beta_1, \ldots, \beta_m\}, \beta_i \in \mathbb{F}_q$
- ► Idea: Write polynomial f as $f_0(x^2 + x) + xf_1(x^2 + x)$

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$ on a size-*n* \mathbb{F}_2 -linear space *S*
- Think of S as all subset sums of $\{\beta_1, \ldots, \beta_m\}, \beta_i \in \mathbb{F}_q$
- ▶ Idea: Write polynomial f as $f_0(x^2 + x) + xf_1(x^2 + x)$
- Big overlap between evaluating

$$f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) \text{ and }$$

$$f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$$

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$ on a size-*n* \mathbb{F}_2 -linear space *S*
- Think of S as all subset sums of $\{\beta_1, \ldots, \beta_m\}, \beta_i \in \mathbb{F}_q$
- ▶ Idea: Write polynomial f as $f_0(x^2 + x) + xf_1(x^2 + x)$
- Big overlap between evaluating

$$f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) \text{ and}$$

$$f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$$

Evaluate f_0 and f_1 at $\alpha^2 + \alpha$, obtain $f(\alpha)$ and $f(\alpha + 1)$ with only 1 multiplication and 2 additions

- ▶ Evaluate a polynomial $f = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$ on a size-*n* \mathbb{F}_2 -linear space *S*
- Think of S as all subset sums of $\{\beta_1, \ldots, \beta_m\}, \beta_i \in \mathbb{F}_q$
- ▶ Idea: Write polynomial f as $f_0(x^2 + x) + xf_1(x^2 + x)$
- Big overlap between evaluating

$$f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) \text{ and}$$

$$f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)$$

- ► Evaluate f₀ and f₁ at α² + α, obtain f(α) and f(α + 1) with only 1 multiplication and 2 additions
- Again: apply the idea recursively

- \blacktriangleright Application in decoding: much smaller degree of f
- \blacktriangleright Our paper: generalize the idea to small-degree f

- \blacktriangleright Application in decoding: much smaller degree of f
- \blacktriangleright Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier

- \blacktriangleright Application in decoding: much smaller degree of f
- \blacktriangleright Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
 - For constant f_1 , simply return 2^m copies of $f_1(0) = c$

- \blacktriangleright Application in decoding: much smaller degree of f
- \blacktriangleright Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
 - For constant f_1 , simply return 2^m copies of $f_1(0) = c$
 - For 2-coefficient or 3-coefficient f, we have constant f_1
 - Need $2^{m-1} 1$ multiplications αc

- \blacktriangleright Application in decoding: much smaller degree of f
- \blacktriangleright Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
 - For constant f_1 , simply return 2^m copies of $f_1(0) = c$
 - For 2-coefficient or 3-coefficient f, we have constant f_1
 - Need $2^{m-1} 1$ multiplications αc
 - Instead perform m-1 multiplications to obtain $c\beta_1, \ldots, c\beta_{m-1}$ (assume that $\beta_m = 1$)
 - Obtain results as subset sums of $c\beta_1, \ldots, c\beta_{m-1}$
 - Replace $2^{m-1} m$ multiplications by additions

- \blacktriangleright Application in decoding: much smaller degree of f
- \blacktriangleright Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- More improvements at the end of the recursion:
 - For constant f_1 , simply return 2^m copies of $f_1(0) = c$
 - For 2-coefficient or 3-coefficient f, we have constant f_1
 - Need $2^{m-1} 1$ multiplications αc
 - Instead perform m-1 multiplications to obtain $c\beta_1, \ldots, c\beta_{m-1}$ (assume that $\beta_m = 1$)
 - Obtain results as subset sums of $c\beta_1, \ldots, c\beta_{m-1}$
 - Replace $2^{m-1} m$ multiplications by additions
- Overall count: fewer additions and *much* fewer multiplications than Horner scheme or Chien search

Syndrome computation, the classical way

Receive *n*-bit input word, scale bits by Goppa constants

Apply linear map

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1} \end{pmatrix}$$

Syndrome computation, the classical way

Receive *n*-bit input word, scale bits by Goppa constants

Apply linear map

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1} \end{pmatrix}$$

- Can precompute matrix mapping bits to syndrome
- \blacktriangleright Similar to encryption, but input does not have weight t
- Needs to run in constant time!

Another look at syndrome computation

Look at the syndrome-computation map again:

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1} \end{pmatrix}$$

Consider the linear map M^{\intercal} :

$$\begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{2t-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{2t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{2t-1} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_t \end{pmatrix} = \begin{pmatrix} v_1 + v_2\alpha_1 + \cdots + v_t\alpha_1^{2t-1} \\ v_1 + v_2\alpha_2 + \cdots + v_t\alpha_2^{2t-1} \\ \vdots \\ v_1 + v_2\alpha_n + \cdots + v_t\alpha_n^{2t-1} \end{pmatrix} = \begin{pmatrix} f(\alpha_1) \\ f(\alpha_2) \\ \vdots \\ f(\alpha_n) \end{pmatrix}$$

- This transposed linear map is actually doing multipoint evaluation
- Syndrome computation is a transposed multipoint evaluation

Transposing linear algorithms

- ► A linear algorithm computes a linear map
- Allowed operations: add or multiply by a constant

Transposing linear algorithms

- A linear algorithm computes a linear map
- Allowed operations: add or multiply by a constant

Example: An addition chain for 79

Transposing linear algorithms

- A linear algorithm computes a linear map
- Allowed operations: add or multiply by a constant

Example: An addition chain for 79

By reversing the edges, we get another addition chain for 79:

A larger example

• A linear map: $a_0, a_1 \rightarrow a_0 b_0, a_0 b_1 + a_1 b_0, a_1 b_1$

A larger example

▶ A linear map: $a_0, a_1 \rightarrow a_0 b_0, a_0 b_1 + a_1 b_0, a_1 b_1$

▶ Reversing the edges: $c_0, c_1, c_2 \rightarrow b_0c_0 + b_1c_1, b_0c_1 + b_1c_2$

What did we just do?

► The original linear map:

$$\begin{pmatrix} a_0 b_0 \\ a_0 b_1 + a_1 b_0 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} b_0 & 0 \\ b_1 & b_0 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$

► The transposed map:

$$\begin{pmatrix} b_0 c_0 + b_1 c_1 \\ b_0 c_1 + b_1 c_2 \end{pmatrix} = \begin{pmatrix} b_0 & b_1 & 0 \\ 0 & b_0 & b_1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix}$$

What did we just do?

► The original linear map:

$$\begin{pmatrix} a_0 b_0 \\ a_0 b_1 + a_1 b_0 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} b_0 & 0 \\ b_1 & b_0 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$

The transposed map:

$$\begin{pmatrix} b_0 c_0 + b_1 c_1 \\ b_0 c_1 + b_1 c_2 \end{pmatrix} = \begin{pmatrix} b_0 & b_1 & 0 \\ 0 & b_0 & b_1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix}$$

- Reversing the edges automatically gives an algorithm for the transposed map
- This is called the transposition principle

What did we just do?

► The original linear map:

$$\begin{pmatrix} a_0 b_0 \\ a_0 b_1 + a_1 b_0 \\ a_1 b_1 \end{pmatrix} = \begin{pmatrix} b_0 & 0 \\ b_1 & b_0 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$

The transposed map:

$$\begin{pmatrix} b_0 c_0 + b_1 c_1 \\ b_0 c_1 + b_1 c_2 \end{pmatrix} = \begin{pmatrix} b_0 & b_1 & 0 \\ 0 & b_0 & b_1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix}$$

- Reversing the edges automatically gives an algorithm for the transposed map
- This is called the transposition principle
- Preserves number of multiplications
- ▶ References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
 - Huge program (all loops and function calls removed)

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
 - Huge program (all loops and function calls removed)
 - At m = 13 or m = 14 gcc runs out of memory

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
 - Huge program (all loops and function calls removed)
 - At m = 13 or m = 14 gcc runs out of memory
 - Can use better register allocators, but the program is still huge

A better approach

- Analyze structure of additive FFT $A: B, A_1, A_2, C$
- A_1, A_2 are recursive calls

A better approach

- Analyze structure of additive FFT $A: B, A_1, A_2, C$
- A_1, A_2 are recursive calls
- Transposition has structure C^T, A_2^T, A_1^T, B^T
- Use recursive calls to reduce code size

Secret permutations

- ▶ FFT evaluates *f* at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)

Secret permutations

- ▶ FFT evaluates *f* at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- ▶ Typical solution for permutation π : load from position i, store at position $\pi(i)$
Secret permutations

- ▶ FFT evaluates *f* at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π: load from position i, store at position π(i)
- This leaks through timing information
- We need to apply a secret permutation in constant time

Secret permutations

- ▶ FFT evaluates *f* at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- ► Typical solution for permutation π : load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time
- Solution: sorting networks

Sorting networks

A sorting network sorts an array ${\cal S}$ of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps S[i] and S[j] if S[i] > S[j].

Sorting networks

A sorting network sorts an array ${\cal S}$ of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps S[i] and S[j] if S[i] > S[j].
- ▶ Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements http://en.wikipedia.org/wiki/Batcher%27s_sort

Example

Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$

Example

Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$

- All the output bits of > comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation

Example

Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$

- All the output bits of > comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- ▶ Do conditional swap of b[i] and b[j] with condition bit c as

 $y \leftarrow b[i] \oplus b[j]; \quad y \leftarrow cy; \quad b[i] \leftarrow b[i] \oplus y; \quad b[j] \leftarrow b[j] \oplus y;$

Example

Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$

- All the output bits of > comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of b[i] and b[j] with condition bit c as

 $y \leftarrow b[i] \oplus b[j]; \quad y \leftarrow cy; \quad b[i] \leftarrow b[i] \oplus y; \quad b[j] \leftarrow b[j] \oplus y;$

 Possibly better than Batcher sort: Beneš permutation network (work in progress)

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493
- \blacktriangleright These are amortized cycle counts across 256 parallel computations

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493
- \blacktriangleright These are amortized cycle counts across 256 parallel computations
- All computations with full timing-attack protection!

Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- ▶ mceliece: 1219344 cycles
- ▶ ronald1024: 1340040 cycles
- ▶ ronald3072: 16052564 cycles

Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- ▶ mceliece: 1219344 cycles
- ▶ ronald1024: 1340040 cycles
- ▶ ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS

- ▶ gls254: 77468 cycles
- ▶ kumfp127g 116944 cycles
- ▶ curve25519: 182632 cycles

More results

CFS code-based signatures

- Signature scheme introduced by Courtois, Finiasz, and Sendrier in 2001
- Verification is very fast
- ▶ Previous speed for signing: $\approx 4.2 \cdot 10^9$ cycles on Intel Westmere (at 80 bits of security, no timing-attack protection)
- Our new results:
 - Start with the same parameters
 - Apply bitslicing of field arithmetic
 - Convert all algorithms to constant time

More results

CFS code-based signatures

- Signature scheme introduced by Courtois, Finiasz, and Sendrier in 2001
- Verification is very fast
- ▶ Previous speed for signing: $\approx 4.2 \cdot 10^9$ cycles on Intel Westmere (at 80 bits of security, no timing-attack protection)
- Our new results:
 - Start with the same parameters
 - Apply bitslicing of field arithmetic
 - Convert all algorithms to constant time
 - ▶ Our speed: $0.425 \cdot 10^9$ cycles in Intel Ivy Bridge
 - This is latency, no batching required

- \blacktriangleright McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use

- ▶ McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
 - Large public-key size ($\approx 250 \text{ KB}$)

- ▶ McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
 - Large public-key size ($\approx 250 \text{ KB}$)
 - Record-setting performance only for large batches
 - Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.

- ▶ McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
 - Large public-key size ($\approx 250 \text{ KB}$)
 - Record-setting performance only for large batches
 - Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.
 - Software not yet available

- ▶ McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
 - Large public-key size ($\approx 250 \text{ KB}$)
 - Record-setting performance only for large batches
 - Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.
 - Software not yet available
- I would not consider CFS really practical
- ► Main concerns (aside from performance): Only 80 bits of security, 20 MB public key

- ▶ McBits with the example parameters offers 128 bits of security
- Conservative design, we believe it's safe for use
- Problems (marketing department is going to kill me):
 - Large public-key size ($\approx 250 \text{ KB}$)
 - Record-setting performance only for large batches
 - Challenge: Apply optimization techniques (additive FFT, etc.) without massive batching, but still with constant running time.
 - Software not yet available
- I would not consider CFS really practical
- ► Main concerns (aside from performance): Only 80 bits of security, 20 MB public key
- \blacktriangleright Estimates for 120 bits of security: ≈ 100 times slower signing, $\approx 500\,{\rm MB}$ public key

References

- Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: fast constant-time code-based cryptography., CHES 2013. http://cryptojedi.org/papers/#mcbits
- Software will be online (public domain), for example, at http://cryptojedi.org/crypto/#mcbits