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Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms
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. . . Shor, 1996
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Will there be quantum computers?

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)
• Code-based crypto (mainly PKE)
• Multivariate-based crypto (mainly Sigs)
• Hash-based signatures (only Sigs)
• Isogeny-based crypto (so far, mainly PKE)
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The NIST competition, initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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The NIST competition (ctd.)

“Key exchange”
• What is meant is key encapsulation mechanisms (KEMs)

• (vk, sk)←KeyGen()
• (c, k)←Encaps(vk)
• k←Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”
• Several broken, 5 withdrawn
• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs
• 9 signature schemes
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Round-2 overview

Signature schemes
• 3 lattice-based
• 2 symmetric-crypto based
• 4 MQ-based

KEMs/PKE
•
• 7 code-based
• 1 isogeny-based
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Lattice-based KEMs
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“We’re indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and
Peter Schwabe, the researchers who developed “New Hope”, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
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“Key Agreement using the ‘NewHope’ lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange),
an ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/
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“The deployed algorithm is a variant of “New Hope”, a
quantum-resistant cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html
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Learning with errors (LWE)

• Given uniform A ∈ Zk×ℓ
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s
• Decision version: distinguish from uniform random
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Learning with rounding (LWR)

• Given uniform A ∈ Zk×ℓ
q

• Given samples ⌈As⌋p, with p < q

• Search version: find s
• Decision version: distinguish from uniform random
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Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Only NIST candidate exclusively using standard LWE: FrodoKEM

• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq
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How to build a KEM?

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′

u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small
• v and v′ are approximately the same
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How to build a KEM, part 2

Alice Bob

seed $← {0, 1}256

a←Parse(XOF(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b

,seed

)−−−−→

a←Parse(XOF(seed))

u←as′ + e′

v←bs′

k $← {0, 1}n

k←Encode(k)

v′←us (u

,c

)←−−−

c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(XOF(seed))
s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b,seed)−−−−→ a←Parse(XOF(seed))
u←as′ + e′

v←bs′

k $← {0, 1}n

k←Encode(k)

v′←us (u

,c

)←−−−

c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(XOF(seed))
s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b,seed)−−−−→ a←Parse(XOF(seed))
u←as′ + e′

v←bs′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(XOF(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(XOF(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k
k′←c− v′

µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(XOF(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(XOF(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

14



From passive to CCA security

• The base scheme does not have active security
• Attacker can choose arbitrary noise, learns s from failures

• Fujisaki-Okamoto transform (sketched):

Alice (Server) Bob (Client)
Gen(): Enc(seed, b):
pk, sk←KeyGen() x←{0, . . . , 255}32

seed, b←pk seed,b→ x←SHA3-256(x)
k, coins←SHA3-512(x)

u,v← u, v←Encrypt((seed, b), x, coins)
Dec(s, (u, v)):
x′← Decrypt(s, (u, v))
k′, coins′←SHA3-512(x′)
u′, v′←Encrypt((seed, b), x′, coins′)
verify if (u′, v′) = (u, v)
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Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3

• Keygen:
• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption
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Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic
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Design space 2: module vs. ring?

• “Traditionally”, work directly with elements of Rq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE
• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels
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Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures
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Design space 4: allow failures?

• Can avoid decryption failures entirely (NTRU, NTRU Prime)
• Advantage:

• Easier CCA security transform and analysis
• Disadvantage:

• Need to limit noise (or have larger q)

• For passive-security-only can go the other way:
• Allow failure probability of, e.g., 2−30

• Reduce size of public key and ciphertext

• Active (CCA) security needs negligible failure prob.
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Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

21



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once

• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

21



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

• Even without backdoor:
• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

21



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

21



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

21



Design space 6: error-correcting codes?

• Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

• “Encrypt” messages of > 256 bits
• Need to encrypt only 256-bit key
• Question: How do we put those additional bits to use?
• Answer: Use error-correcting code (ECC) to reduce failure

probability

• NewHope: very simple threshold decoding
• LAC, Round5: more advanced ECC

• Correct more error, obtain smaller public key and ciphertext
• More complex to implement, in particular without leaking through

timing
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Design space 7: CCA security?

• Ephemeral key exchange does not need CCA security
• Can offer passively secure version
• Protocols will combine this with signatures for authentication

• Advantages:
• Higher failure probability → more compact
• Simpler to implement, no CCA transform

• Disadvantages:
• Less robust (will somebody reuse keys?)
• More options (CCA vs. CPA): easier to make mistakes
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Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)

• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)
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Implementing
Lattice-based KEMs
(on embedded microcontrollers)

25



pqm4

• Joint work with
Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

• Started as part of PQCRYPTO H2020 project
• Continued within EPOQUE ERC StG
• Library and testing/benchmarking framework

• PQ-crypto on ARM Cortex-M4
• Uses STM32F4 Discovery board
• 192 KB of RAM, benchmarks at 24 MHz

• Easy to add schemes using NIST API
• Optimized SHA3 and AES shared across primitives

26



pqm4 usage

• Run functional tests of all primitives and implementations:
python3 test.py

• Generate testvectors, compare for consistency (also with host):
python3 testvectors.py

• Run speed and stack benchmarks:
python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:
python3 test.py newhope1024cca sphincs-shake256-128s
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Core operation: multiplication in Rq = Zq[X]/f

Power-of-two q
• Several schemes use q = 2m, for small m
• Examples: Round5, NTRU, Saber
• More round-1 examples: Kindi, RLizard

Prime “NTT-friendly” q
• Kyber and NewHope use prime q supporting fast NTT
• For A,B ∈ Rq, A · B = NTT−1(NTT(A) ◦ NTT(B))
• NTT is Fourier Transform over finite field
• Use f = Xn + 1 for power-of-two n
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Multiplication in Z2m[X]

• Joint work with Matthias Kannwischer and Joost Rijneveld
• Represent coefficients as 16-bit integers
• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n− 1)2 adds
• Can do better using Karatsuba:

(aℓ + Xkah) · (bℓ + Xkbh)

= aℓbℓ + Xk(aℓbh + ahbℓ) + Xnahbh

= aℓbℓ + Xk((aℓ + ah)(bℓ + bh)− aℓbℓ − ahbh) + Xnahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook
• Toom-3: split into 5 multiplications of 1/3 size
• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate
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• Approach: Evaluate, multiply, interpolate

29



Multiplication in Z2m[X]

• Joint work with Matthias Kannwischer and Joost Rijneveld
• Represent coefficients as 16-bit integers
• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n− 1)2 adds
• Can do better using Karatsuba:
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Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision
• Toom-4 needs division by 8, loses 3 bits of precision
• This limits recursive application when using 16-bit integers
• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

30



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision
• Toom-4 needs division by 8, loses 3 bits of precision
• This limits recursive application when using 16-bit integers
• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

30



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision
• Toom-4 needs division by 8, loses 3 bits of precision
• This limits recursive application when using 16-bit integers
• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

30



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision
• Toom-4 needs division by 8, loses 3 bits of precision
• This limits recursive application when using 16-bit integers
• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

30



31



Our approach

• Generate optimized assembly for Karatsuba/Toom
• Use Python scripts, receive as input n and q
• Hand-optimize “small” schoolbook multiplications

• Make heavy use of “vector instructions”
• Perform two 16× 16-bit multiply-accumulate in one cycle
• Carefully schedule instructions to minimize loads/stores

• Benchmark different options, pick fastest
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Multiplication results
approach “small” cycles stack

Saber
(n = 256,
q = 213)

Karatsuba only 16 41 121 2 020
Toom-3 11 41 225 3 480
Toom-4 16 39 124 3 800
Toom-4 + Toom-3 - - -

Kindi-256-3-4-2
(n = 256,
q = 214)

Karatsuba only 16 41 121 2 020
Toom-3 11 41 225 3 480
Toom-4 - - -
Toom-4 + Toom-3 - - -

NTRU-HRSS
(n = 701,
q = 213)

Karatsuba only 11 230 132 5 676
Toom-3 15 217 436 9 384
Toom-4 11 182 129 10 596
Toom-4 + Toom-3 - - -

NTRU-KEM-743
(n = 743,
q = 211)

Karatsuba only 12 247 489 6 012
Toom-3 16 219 061 9 920
Toom-4 12 196 940 11 208
Toom-4 + Toom-3 16 197 227 12 152

RLizard-1024
(n = 1024,
q = 211)

Karatsuba only 16 400 810 8 188
Toom-3 11 360 589 13 756
Toom-4 16 313 744 15 344
Toom-4 + Toom-3 11 315 788 16 816
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NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer
• Primary goal: optimize Kyber
• Secondary effect: optimize NewHope (with room for improvement)

• NTT is an FFT in a finite field
• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1Xn−1 at all n-th roots

of unity
• Divide-and-conquer approach

• Write polynomial f as f0(X2) + Xf1(X2)

• Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and
f(−β) = f0(β

2)− βf1(β
2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1
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NTT-based multiplication

• First thing to do: replace recursion by iteration
• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k:
• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t
• Compute fi+2k←ai − t
• Compute fi←ai + t

• Main optimizations on Cortex-M4:
• “Merge” levels: fewer loads/stores
• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)
• Lazy reductions
• Carefully optimize using DSP instructions
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Selected optimized lattice KEM cycles

Scheme Key Generation Encapsulation Decapsulation
ntruhps2048509 77 698 713 645 329 542 439
ntruhps2048677 144 383 491 955 902 836 959
ntruhps4096821 211 758 452 1 205 662 1 066 879
ntruhrss701 154 676 705 402 784 890 231
lightsaber 459 965 651 273 678 810
saber 896 035 1 161 849 1 204 633
firesaber 1 448 776 1 786 930 1 853 339
kyber512 514 291 652 769 621 245
kyber768 976 757 1 146 556 1 094 849
kyber1024 1 575 052 1 779 848 1 709 348
newhope1024cpa 975 736 975 452 162 660
newhope1024cca 1 161 112 1 777 918 1 760 470

Comparison: Curve25519 scalarmult: 625 358 cycles
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Selected optimized lattice KEM stack bytes

Scheme Key Generation Encapsulation Decapsulation
ntruhps2048509 21 412 15 452 14 828
ntruhps2048677 28 524 20 604 19 756
ntruhps4096821 34 532 24 924 23 980
ntruhrss701 27 580 19 372 20 580
lightsaber 9 656 11 392 12 136
saber 13 256 15 544 16 640
firesaber 20 144 23 008 24 592
kyber512 2 952 2 552 2 560
kyber768 3 848 3 128 3 072
kyber1024 4 360 3 584 3 592
newhope1024cpa 11 096 17 288 8 308
newhope1024cca 11 080 17 360 19 576
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Resources online

• Overview NIST round-2 candidates:
https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/round-2-submissions

• pqm4 library and benchmarking suite:
https://github.com/mupq/pqm4

• Code of Z2m[x] multiplication paper, including scripts:
https://github.com/mupq/polymul-z2mx-m4

• Z2m[x] multiplication paper:
https://cryptojedi.org/papers/#latticem4

• Kyber optimization paper:
https://cryptojedi.org/papers/#nttm4
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