EdDSA signatures and Ed25519

Peter Schwabe

Joint work with Daniel J. Bernstein, Niels Duif, Tanja Lange, and Bo-Yin Yang

February 20, 2012
Coding Theory and Cryptography Seminar, University of Basel

A few words about Taiwan and Academia Sinica

－Taiwan（台灣）is an island south of China
－About $36,200 \mathrm{~km}^{2}$ large
－Territory of the Republic of China（not to be confused with the People＇s Republic of China）
－Capital is Taipei（台北）
－Marine tropical climate

A few words about Taiwan and Academia Sinica

－Taiwan（台灣）is an island south of China
－About $36,200 \mathrm{~km}^{2}$ large
－Territory of the Republic of China（not to be confused with the People＇s Republic of China）
－Capital is Taipei（台北）
－Marine tropical climate
－ 99 summits over 3000 meters（highest peak： 3952 m）
－Wildlife includes black bears，salmon，monkeys．．．

A few words about Taiwan and Academia Sinica

－Taiwan（台灣）is an island south of China
－About $36,200 \mathrm{~km}^{2}$ large
－Territory of the Republic of China（not to be confused with the People＇s Republic of China）
－Capital is Taipei（台北）
－Marine tropical climate
－ 99 summits over 3000 meters（highest peak： 3952 m）
－Wildlife includes black bears，salmon，monkeys．．．
－Academia Sinica is a research facility funded by ROC
－About 30 institutes
－About 800 principal investigators，more than 750 postdocs

Introduction - the NaCl library

How it started

- My research during Ph.D. was within the European project CACE (Computer Aided Cryptography Engineering)
- One of the deliverables: Networking and Cryptography Library (NaCl , pronounced "salt")

How it started

- My research during Ph.D. was within the European project CACE (Computer Aided Cryptography Engineering)
- One of the deliverables: Networking and Cryptography Library (NaCl , pronounced "salt")
- Aim of this library: High-speed, high-security, easy-to-use cryptographic protection for network communication

How it started

- My research during Ph.D. was within the European project CACE (Computer Aided Cryptography Engineering)
- One of the deliverables: Networking and Cryptography Library (NaCl , pronounced "salt")
- Aim of this library: High-speed, high-security, easy-to-use cryptographic protection for network communication
- We are willing to sacrifice compatability to other crypto libraries

How it started

- My research during Ph.D. was within the European project CACE (Computer Aided Cryptography Engineering)
- One of the deliverables: Networking and Cryptography Library (NaCl , pronounced "salt")
- Aim of this library: High-speed, high-security, easy-to-use cryptographic protection for network communication
- We are willing to sacrifice compatability to other crypto libraries
- At the end of 2010 the library contained
- the stream cipher Salsa20,
- the Poly1305 secret-key authenticator, and
- Curve25519 elliptic-curve Diffie-Hellman key-exchange software.

How it started

- My research during Ph.D. was within the European project CACE (Computer Aided Cryptography Engineering)
- One of the deliverables: Networking and Cryptography Library (NaCl , pronounced "salt")
- Aim of this library: High-speed, high-security, easy-to-use cryptographic protection for network communication
- We are willing to sacrifice compatability to other crypto libraries
- At the end of 2010 the library contained
- the stream cipher Salsa20,
- the Poly1305 secret-key authenticator, and
- Curve25519 elliptic-curve Diffie-Hellman key-exchange software.
- This is wrapped in a crypto_box API that performs high-security public-key authenticated encryption
- This serves the typical one-to-one communication of most internet connections

How it started

- My research during Ph.D. was within the European project CACE (Computer Aided Cryptography Engineering)
- One of the deliverables: Networking and Cryptography Library (NaCl , pronounced "salt")
- Aim of this library: High-speed, high-security, easy-to-use cryptographic protection for network communication
- We are willing to sacrifice compatability to other crypto libraries
- At the end of 2010 the library contained
- the stream cipher Salsa20,
- the Poly1305 secret-key authenticator, and
- Curve25519 elliptic-curve Diffie-Hellman key-exchange software.
- This is wrapped in a crypto_box API that performs high-security public-key authenticated encryption
- This serves the typical one-to-one communication of most internet connections
- Still required at the end of 2010: One-to-many authentication, i.e. cryptographic signatures

Designing a public-key signature scheme

- Core requirements: 128 -bit security, fast signing, fast verification, secure software implementation
- Obvious candidates: RSA, EIGamal, DSA, ECDSA, Schnorr. . .

Designing a public-key signature scheme

- Core requirements: 128 -bit security, fast signing, fast verification, secure software implementation
- Obvious candidates: RSA, EIGamal, DSA, ECDSA, Schnorr. . .
- Conventional wisdom: ECC is faster than anything based on factoring or the DLP in \mathbb{Z}_{n}^{*}
- (Twisted) Edwards curves support very fast arithmetic
- Edwards addition is complete (important for secure implementations)
- Curve25519 has an Edwards representation and offers very high security

Designing a public-key signature scheme

- Core requirements: 128 -bit security, fast signing, fast verification, secure software implementation
- Obvious candidates: RSA, EIGamal, DSA, ECDSA, Schnorr. . .
- Conventional wisdom: ECC is faster than anything based on factoring or the DLP in \mathbb{Z}_{n}^{*}
- (Twisted) Edwards curves support very fast arithmetic
- Edwards addition is complete (important for secure implementations)
- Curve25519 has an Edwards representation and offers very high security
- Looks like "some" signature scheme using Edwards arithmetic on Curve25519 is a good choice

One step back: Is ECC really faster than, e.g., RSA?

- RSA with public exponent $e=3$ can verify signatures with just one modular multiplication and one squaring
- Very hard to beat with any elliptic-curve-based signature scheme

One step back: Is ECC really faster than, e.g., RSA?

- RSA with public exponent $e=3$ can verify signatures with just one modular multiplication and one squaring
- Very hard to beat with any elliptic-curve-based signature scheme
- Verification speed primarily matters in applications that need to verify many signatures
- Idea: To get close to RSA verification speed, support batch verification

One step back: Is ECC really faster than, e.g., RSA?

- RSA with public exponent $e=3$ can verify signatures with just one modular multiplication and one squaring
- Very hard to beat with any elliptic-curve-based signature scheme
- Verification speed primarily matters in applications that need to verify many signatures
- Idea: To get close to RSA verification speed, support batch verification
- Easier: Verify batches of signatures under the same public key
- Harder (but much more useful!): Verify batches of signatures under different public keys
- We don't know where the NaCl library is used, so support the latter

One step back: Is ECC really faster than, e.g., RSA?

- RSA with public exponent $e=3$ can verify signatures with just one modular multiplication and one squaring
- Very hard to beat with any elliptic-curve-based signature scheme
- Verification speed primarily matters in applications that need to verify many signatures
- Idea: To get close to RSA verification speed, support batch verification
- Easier: Verify batches of signatures under the same public key
- Harder (but much more useful!): Verify batches of signatures under different public keys
- We don't know where the NaCl library is used, so support the latter
- None of the above-mentioned schemes supports fast batch verification
- Schnorr signatures only require small changes (and have many nice features anyways)

One step back: Is ECC really faster than, e.g., RSA?

- RSA with public exponent $e=3$ can verify signatures with just one modular multiplication and one squaring
- Very hard to beat with any elliptic-curve-based signature scheme
- Verification speed primarily matters in applications that need to verify many signatures
- Idea: To get close to RSA verification speed, support batch verification
- Easier: Verify batches of signatures under the same public key
- Harder (but much more useful!): Verify batches of signatures under different public keys
- We don't know where the NaCl library is used, so support the latter
- None of the above-mentioned schemes supports fast batch verification
- Schnorr signatures only require small changes (and have many nice features anyways)
\Rightarrow Start with Schnorr signatures, modify as required

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group
- Private key: $a \in\{1, \ldots, \ell\}$, public key: $A=-a B$

Recall Schnorr signatures

- Variant of EIGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group
- Private key: $a \in\{1, \ldots, \ell\}$, public key: $A=-a B$
- Sign: Generate secret random $r \in\{1, \ldots, \ell\}$, compute signature $(H(R, M), S)$ on M with

$$
\begin{aligned}
R & =r B \\
S & =(r+H(R, M) a) \bmod \ell
\end{aligned}
$$

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group
- Private key: $a \in\{1, \ldots, \ell\}$, public key: $A=-a B$
- Sign: Generate secret random $r \in\{1, \ldots, \ell\}$, compute signature $(H(R, M), S)$ on M with

$$
\begin{aligned}
R & =r B \\
S & =(r+H(R, M) a) \bmod \ell
\end{aligned}
$$

- Verifier computes $\bar{R}=S B+H(R, M) A$ and checks that

$$
H(\bar{R}, M)=H(R, M)
$$

The EdDSA signature scheme

EdDSA and Ed25519 parameters

EdDSA
- Integer $b \geq 10$

Ed25519-SHA-512

- $b=256$

EdDSA and Ed25519 parameters

EdDSA

- Integer $b \geq 10$
- Prime power $q \equiv 1(\bmod 4)$
- $(b-1)$-bit encoding of elements of \mathbb{F}_{q}

Ed25519-SHA-512

- $b=256$
- $q=2^{255}-19$ (prime)
- little-endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$

EdDSA and Ed25519 parameters

EdDSA

- Integer $b \geq 10$
- Prime power $q \equiv 1(\bmod 4)$
- $(b-1)$-bit encoding of elements of \mathbb{F}_{q}
- Hash function H with $2 b$-bit output

Ed25519-SHA-512

- $b=256$
- $q=2^{255}-19$ (prime)
- little-endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$
- $H=$ SHA-512

EdDSA and Ed25519 parameters

EdDSA

- Integer $b \geq 10$
- Prime power $q \equiv 1(\bmod 4)$
- $(b-1)$-bit encoding of elements of \mathbb{F}_{q}
- Hash function H with $2 b$-bit output
- Non-square $d \in \mathbb{F}_{q}$
- $B \in\{(x, y) \in$
$\left.\mathbb{F}_{q} \times \mathbb{F}_{q},-x^{2}+y^{2}=1+d x^{2} y^{2}\right\}$ (twisted Edwards curve E)
- prime $\ell \in\left(2^{b-4}, 2^{b-3}\right)$ with $\ell B=(0,1)$

Ed25519-SHA-512

- $b=256$
- $q=2^{255}-19$ (prime)
- little-endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$
- $H=$ SHA-512
- $d=-121665 / 121666$
- $B=(x, 4 / 5)$, with x "even"
- ℓ a 253 -bit prime

EdDSA and Ed25519 parameters

EdDSA

- Integer $b \geq 10$
- Prime power $q \equiv 1(\bmod 4)$
- $(b-1)$-bit encoding of elements of \mathbb{F}_{q}
- Hash function H with $2 b$-bit output
- Non-square $d \in \mathbb{F}_{q}$
- $B \in\{(x, y) \in$ $\left.\mathbb{F}_{q} \times \mathbb{F}_{q},-x^{2}+y^{2}=1+d x^{2} y^{2}\right\}$ (twisted Edwards curve E)
- prime $\ell \in\left(2^{b-4}, 2^{b-3}\right)$ with $\ell B=(0,1)$

Ed25519-SHA-512

- $b=256$
- $q=2^{255}-19$ (prime)
- little-endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$
- $H=$ SHA-512
- $d=-121665 / 121666$
- $B=(x, 4 / 5)$, with x "even"
- ℓ a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

EdDSA keys

- Secret key: b-bit string k
- Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$

EdDSA keys

- Secret key: b-bit string k
- Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$
- Derive integer $a=2^{b-2}+\sum_{3 \leq i \leq b-3} 2^{i} h_{i}$
- Note that a is a multiple of 8

EdDSA keys

- Secret key: b-bit string k
- Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$
- Derive integer $a=2^{b-2}+\sum_{3 \leq i \leq b-3} 2^{i} h_{i}$
- Note that a is a multiple of 8
- Compute $A=a B$
- Public key: Encoding \underline{A} of $A=\left(x_{A}, y_{A}\right)$ as y_{A} and one (parity) bit of x_{A} (needs b bits)

EdDSA keys

- Secret key: b-bit string k
- Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$
- Derive integer $a=2^{b-2}+\sum_{3 \leq i \leq b-3} 2^{i} h_{i}$
- Note that a is a multiple of 8
- Compute $A=a B$
- Public key: Encoding \underline{A} of $A=\left(x_{A}, y_{A}\right)$ as y_{A} and one (parity) bit of x_{A} (needs b bits)
- Compute A from $\underline{A}: x_{A}= \pm \sqrt{\left(y_{A}^{2}-1\right) /\left(d y_{A}^{2}+1\right)}$

EdDSA signatures

Signing

- Message M determines $r=H\left(h_{b}, \ldots, h_{2 b-1}, M\right) \in\left\{0, \ldots, 2^{2 b}-1\right\}$
- Define $R=r B$
- Define $S=(r+H(\underline{R}, \underline{A}, M) a) \bmod \ell$
- Signature: $(\underline{R}, \underline{S})$, with \underline{S} the b-bit little-endian encoding of S
- $(\underline{R}, \underline{S})$ has $2 b$ bits (3 known to be zero)

EdDSA signatures

Signing

- Message M determines $r=H\left(h_{b}, \ldots, h_{2 b-1}, M\right) \in\left\{0, \ldots, 2^{2 b}-1\right\}$
- Define $R=r B$
- Define $S=(r+H(\underline{R}, \underline{A}, M) a) \bmod \ell$
- Signature: $(\underline{R}, \underline{S})$, with \underline{S} the b-bit little-endian encoding of S
- $(\underline{R}, \underline{S})$ has $2 b$ bits (3 known to be zero)

Verification

- Verifier parses A from \underline{A} and R from \underline{R}
- Computes $H(\underline{R}, \underline{A}, M)$
- Checks group equation

$$
8 S B=8 R+8 H(\underline{R}, \underline{A}, M) A
$$

- Rejects if parsing fails or equation does not hold

EdDSA and Ed25519 security

Collision resilience

- ECDSA uses $H(M)$
- Collisions in H allow existential forgery

Collision resilience

- ECDSA uses $H(M)$
- Collisions in H allow existential forgery
- Schnorr signatures and EdDSA include \underline{R} in the hash
- Schnorr: $H(\underline{R}, M)$
- EdDSA: $H(\underline{R}, \underline{A}, M)$
- Signatures are hash-function-collision resilient

Collision resilience

- ECDSA uses $H(M)$
- Collisions in H allow existential forgery
- Schnorr signatures and EdDSA include \underline{R} in the hash
- Schnorr: $H(\underline{R}, M)$
- EdDSA: $H(\underline{R}, \underline{A}, M)$
- Signatures are hash-function-collision resilient
- Including \underline{A} alleviates concerns about attacks against multiple keys

Foolproof session keys

- Each message needs a different, hard-to-predict r ("session key")
- Just knowing a few bits of r for many signatures allows to recover a
- Usual approach (e.g., Schnorr signatures): Choose random r for each message

Foolproof session keys

- Each message needs a different, hard-to-predict r ("session key")
- Just knowing a few bits of r for many signatures allows to recover a
- Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs

Foolproof session keys

- Each message needs a different, hard-to-predict r ("session key")
- Just knowing a few bits of r for many signatures allows to recover a
- Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- Even worse: No random-number generator: Sony's PS3 security disaster

Foolproof session keys

- Each message needs a different, hard-to-predict r ("session key")
- Just knowing a few bits of r for many signatures allows to recover a
- Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- Even worse: No random-number generator: Sony's PS3 security disaster
- EdDSA uses deterministic, pseudo-random session keys $H\left(h_{b}, \ldots, h_{2 b-1}, M\right)$

Foolproof session keys

- Each message needs a different, hard-to-predict r ("session key")
- Just knowing a few bits of r for many signatures allows to recover a
- Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- Even worse: No random-number generator: Sony's PS3 security disaster
- EdDSA uses deterministic, pseudo-random session keys $H\left(h_{b}, \ldots, h_{2 b-1}, M\right)$
- Same security as random r under standard PRF assumptions
- Does not consume per-message randomness
- Better for testing (deterministic output)

Constant-time implementation

Avoiding secret branch conditions

- Many scalar-multiplication algorithms contain parts like

```
if(s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar
```


Constant-time implementation

Avoiding secret branch conditions

- Many scalar-multiplication algorithms contain parts like
if (s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar
- Program takes different amount of time depending on the value of s

Constant-time implementation

Avoiding secret branch conditions

- Many scalar-multiplication algorithms contain parts like
if(s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar
- Program takes different amount of time depending on the value of s
- This is true, even if A and B take the same amount of time!
- Reason: Branch predictors contained in all modern CPUs

Constant-time implementation

Avoiding secret branch conditions

- Many scalar-multiplication algorithms contain parts like

> if (s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar

- Program takes different amount of time depending on the value of s
- This is true, even if A and B take the same amount of time!
- Reason: Branch predictors contained in all modern CPUs
- Attacker can gain information about the secret scalar by timing the execution of the program

Constant-time implementation

Avoiding secret branch conditions

- Many scalar-multiplication algorithms contain parts like

```
if(s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar
```

- Program takes different amount of time depending on the value of s
- This is true, even if A and B take the same amount of time!
- Reason: Branch predictors contained in all modern CPUs
- Attacker can gain information about the secret scalar by timing the execution of the program
- In 2011, Brumley and Tuveri recoverd the OpenSSL ECDSA secret signing key through such a timing attack

Constant-time implementation

Avoiding secret branch conditions

- Many scalar-multiplication algorithms contain parts like

> if (s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar

- Program takes different amount of time depending on the value of s
- This is true, even if A and B take the same amount of time!
- Reason: Branch predictors contained in all modern CPUs
- Attacker can gain information about the secret scalar by timing the execution of the program
- In 2011, Brumley and Tuveri recoverd the OpenSSL ECDSA secret signing key through such a timing attack
- Ed25519 software does not contain any secret branch conditions

Constant-time implementation

Avoiding secret lookup indices

- In particular fixed-basepoint scalar-multiplication algorithms contain parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

Constant-time implementation

Avoiding secret lookup indices

- In particular fixed-basepoint scalar-multiplication algorithms contain parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

- Loading from memory can take a different amount of time depending on the (secret) address s
- Reason: Access to memory is cached, if data is found in cache the load is fast (cache hit), otherwise it's slow

Constant-time implementation

Avoiding secret lookup indices

- In particular fixed-basepoint scalar-multiplication algorithms contain parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

- Loading from memory can take a different amount of time depending on the (secret) address s
- Reason: Access to memory is cached, if data is found in cache the load is fast (cache hit), otherwise it's slow
- Again: Attacker can gain information about the secret scalar by timing the exeuction of the program

Constant-time implementation

Avoiding secret lookup indices

- In particular fixed-basepoint scalar-multiplication algorithms contain parts like
P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar
- Loading from memory can take a different amount of time depending on the (secret) address s
- Reason: Access to memory is cached, if data is found in cache the load is fast (cache hit), otherwise it's slow
- Again: Attacker can gain information about the secret scalar by timing the exeuction of the program
- In 2005, Osvik, Shamir, and Tromer discovered the AES key used for hard-disk encryption in Linux in just 65 ms using such a cache-timing attack

Constant-time implementation

Avoiding secret lookup indices

- In particular fixed-basepoint scalar-multiplication algorithms contain parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

- Loading from memory can take a different amount of time depending on the (secret) address s
- Reason: Access to memory is cached, if data is found in cache the load is fast (cache hit), otherwise it's slow
- Again: Attacker can gain information about the secret scalar by timing the exeuction of the program
- In 2005, Osvik, Shamir, and Tromer discovered the AES key used for hard-disk encryption in Linux in just 65 ms using such a cache-timing attack
- Ed25519 software does not perform any loads from secret addresses

Speed of Ed25519

Fast arithmetic in $\mathbb{F}_{2^{255-19}}$

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Fast arithmetic in $\mathbb{F}_{2^{255}-19}$

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2^{51}

- Instead break into 564 -bit integers, use radix 2^{51}
- Schoolbook multiplication now 25 64-bit integer multiplications
- Partial results have <128 bits, adding upper part is add, not adc
- Easy to merge multiplication with reduction (multiplies by 19)
- Better performance on Westmere/Nehalem, worse on 65 nm Core 2 and AMD processors

Fast signing

- Main computational task: Compute $R=r B$

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16{ }^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16{ }^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16{ }^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16{ }^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions
- Wait, table lookups?

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions
- Wait, table lookups?
- In each lookup load all 8 relevant entries from the table, use arithmetic to obtain the desired one

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions
- Wait, table lookups?
- In each lookup load all 8 relevant entries from the table, use arithmetic to obtain the desired one
- Signing takes 87548 cycles on an Intel Westmere CPU
- Key generation takes about 6000 cycles more (read from /dev/urandom)

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required
- As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$, with $\beta=\alpha^{(q+3) / 8}$
- Standard: Compute β, conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required
- As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$, with $\beta=\alpha^{(q+3) / 8}$
- Standard: Compute β, conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
- Decompression has $\alpha=u / v$, merge square root with inversion:

$$
\beta=(u / v)^{(q+3) / 8}
$$

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required
- As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$, with $\beta=\alpha^{(q+3) / 8}$
- Standard: Compute β, conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
- Decompression has $\alpha=u / v$, merge square root with inversion:

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required
- As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$, with $\beta=\alpha^{(q+3) / 8}$
- Standard: Compute β, conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
- Decompression has $\alpha=u / v$, merge square root with inversion:

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

- Second part: computation of $S B-H(\underline{R}, \underline{A}, M) A$
- Double-scalar multiplication using signed sliding windows
- Different window sizes for B (compile time) and A (run time)

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required
- As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$, with $\beta=\alpha^{(q+3) / 8}$
- Standard: Compute β, conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
- Decompression has $\alpha=u / v$, merge square root with inversion:

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

- Second part: computation of $S B-H(\underline{R}, \underline{A}, M) A$
- Double-scalar multiplication using signed sliding windows
- Different window sizes for B (compile time) and A (run time)
- Verification takes 273364 cycles

Faster batch verification

- Verify a batch of ($M_{i}, A_{i}, R_{i}, S_{i}$), where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}

Faster batch verification

- Verify a batch of ($M_{i}, A_{i}, R_{i}, S_{i}$), where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
- Choose independent uniform random 128-bit integers z_{i}
- Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$

Faster batch verification

- Verify a batch of ($M_{i}, A_{i}, R_{i}, S_{i}$), where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
- Choose independent uniform random 128-bit integers z_{i}
- Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
- Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

Faster batch verification

- Verify a batch of ($M_{i}, A_{i}, R_{i}, S_{i}$), where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
- Choose independent uniform random 128-bit integers z_{i}
- Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
- Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

- Use Bos-Coster algorithm for multi-scalar multiplication

Faster batch verification

- Verify a batch of ($M_{i}, A_{i}, R_{i}, S_{i}$), where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
- Choose independent uniform random 128-bit integers z_{i}
- Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
- Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

- Use Bos-Coster algorithm for multi-scalar multiplication
- Verifying a batch of 64 valid signatures takes 8.55 million cycles (i.e., <134000 cycles/signature)

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0 , left child node at position 1 , right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$, parent node is at position $\lfloor(i-1) / 2\rfloor$

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0 , left child node at position 1 , right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$, parent node is at position $\lfloor(i-1) / 2\rfloor$
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0 , left child node at position 1 , right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$, parent node is at position $\lfloor(i-1) / 2\rfloor$
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times
- Floyd's heap: swap down to the bottom, swap up for a variable amount of times, advantages:
- Each swap-down step needs only one comparison (instead of two)
- Swap-down loop is more friendly to branch predictors

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation
- Further optimization: Start with heap without the z_{i} until largest scalar has ≤ 128 bits
- Then: extend heap with the z_{i}

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation
- Further optimization: Start with heap without the z_{i} until largest scalar has ≤ 128 bits
- Then: extend heap with the z_{i}
- Optimize the heap on the assembly level

Results

- New fast and secure signature scheme
- (Slow) C and Python reference implementations
- Fast AMD64 assembly implementations
- Also new speed records for Curve25519 ECDH
- All software in the public domain and included in eBATS
- All reported benchmarks (except batch verification) are eBATS benchmarks
- All reported benchmarks had TurboBoost switched off
- Software to be included in the NaCl library

$$
\begin{gathered}
\text { http://ed25519.cr.yp.to/ } \\
\text { http://nacl.cr.yp.to/ }
\end{gathered}
$$

