New software speed records for cryptographic pairings

Michael Naehrig, Ruben Niederhagen, Peter Schwabe

> Eindhoven University of Technology

July 8, 2010

HGI-Colloquium, Ruhr-Universität Bochum

TU/e
Technische Universiteit
University of Technology
A protocol designer's point of view

- Let G_{1}, G_{2}, and G_{3} be finite abelian groups.
- A pairing is a bilinear, nondegenerate map

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

TU/e
Technische Universiteit
University of Technology
A protocol designer's point of view

- Let G_{1}, G_{2}, and G_{3} be finite abelian groups.
- A pairing is a bilinear, nondegenerate map

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

- DLP should be hard in G_{1}, G_{2}, and G_{3}
- Let G_{1}, G_{2}, and G_{3} be finite abelian groups.
- A pairing is a bilinear, nondegenerate map

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

- DLP should be hard in G_{1}, G_{2}, and G_{3}
- Sometimes required: $G_{1}=G_{2}$ (type-1 pairing)
- Sometimes requires: Efficient isomorphism $G_{2} \rightarrow G_{1}$ (type-2)
- Sometimes required: No efficient isomorphism $G_{2} \rightarrow G_{1}$ (type-3)
- Let E be an elliptic curve over \mathbb{F}_{q}
- Let $r \in \mathbb{N}$ be prime with $r\left|\left|E\left(\mathbb{F}_{q}\right)\right|\right.$ and $\left.r^{2} \nmid\right| E\left(\mathbb{F}_{q}\right) \mid$
- Let $\operatorname{gcd}(r, q)=1$ and $r \nmid(q-1)$
- Let k be the smallest positive integer such that $r \mid q^{k}-1$
- k is called embedding degree of E with respect to r

The Tate pairing is a map

$$
T_{r}: E[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}
$$

The Tate Pairing

A mathematical/algorithmic point of view

Representing elements of $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$

- Let's assume there is no element of order r^{2} in $E\left(\mathbb{F}_{q^{k}}\right)$
- Then it holds that $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \cong E[r]$

Representing elements of $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$

- Let's assume there is no element of order r^{2} in $E\left(\mathbb{F}_{q^{k}}\right)$
- Then it holds that $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \cong E[r]$

Consider the Tate pairing as a map

$$
T_{r}: E[r] \times E[r] \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}
$$

The reduced Tate Pairing

Finding unique representatives in $\mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}$.

- Results of the Tate pairing are equivalence classes
- In order to compare: Need unique representative
- $\mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}$ and $\mu_{r}:=\left\{x \in \mathbb{F}_{q^{k}} \mid x^{r}=1\right\}$ are isomorphic
- Group isomorphism is given by exponentiation with $\frac{q^{k}-1}{r}$
- Apply group isomorphism in the end, obtain unique representative

The reduced Tate Pairing

Finding unique representatives in $\mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}$.

- Results of the Tate pairing are equivalence classes
- In order to compare: Need unique representative
- $\mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}$ and $\mu_{r}:=\left\{x \in \mathbb{F}_{q^{k}} \mid x^{r}=1\right\}$ are isomorphic
- Group isomorphism is given by exponentiation with $\frac{q^{k}-1}{r}$
- Apply group isomorphism in the end, obtain unique representative

Reduced Tate pairing:

$$
\begin{aligned}
& e_{r}: E[r] \times E[r] \rightarrow \mu_{r} \\
& (P, Q) \mapsto T_{r}(P, Q)^{\frac{q^{k}-1}{r}}
\end{aligned}
$$

The reduced Tate Pairing

... on prime-order subgroups of $E[r]$

- The Frobenius endomorphism

$$
\pi_{q}: E[r] \rightarrow E[r],(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

has eigenvalues 1 and q

- Eigenspace corresponding to eigenvalue 1 is $\operatorname{ker}\left(\pi_{q}-[1]\right)=E\left(\mathbb{F}_{q}\right)[r]$

The reduced Tate Pairing

... on prime-order subgroups of $E[r]$

- The Frobenius endomorphism

$$
\pi_{q}: E[r] \rightarrow E[r],(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

has eigenvalues 1 and q

- Eigenspace corresponding to eigenvalue 1 is $\operatorname{ker}\left(\pi_{q}-[1]\right)=E\left(\mathbb{F}_{q}\right)[r]$
- Considering pairing on $E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q}\right)[r]$ always yields 1
- But: $\operatorname{ker}\left(\pi_{q}-[q]\right)$ also has order r

The reduced Tate Pairing

... on prime-order subgroups of $E[r]$

- The Frobenius endomorphism

$$
\pi_{q}: E[r] \rightarrow E[r],(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

has eigenvalues 1 and q

- Eigenspace corresponding to eigenvalue 1 is $\operatorname{ker}\left(\pi_{q}-[1]\right)=E\left(\mathbb{F}_{q}\right)[r]$
- Considering pairing on $E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q}\right)[r]$ always yields 1
- But: $\operatorname{ker}\left(\pi_{q}-[q]\right)$ also has order r
- Denote $\operatorname{ker}\left(\pi_{q}-[1]\right)=E\left(\mathbb{F}_{q}\right)[r]$ by G_{1}
- Denote $\operatorname{ker}\left(\pi_{q}-[q]\right) \subset E\left(\mathbb{F}_{q^{k}}\right)$ by G_{2}

Reduced Tate pairing for cryptography:

$$
G_{1} \times G_{2} \rightarrow \mu_{r}
$$

Towards computation of pairings

- I still have not said how the Tate pairing T_{r} is defined
- General definition requires a lot of background
- Much easier for the special case we will consider
- For the whole story read, e.g., Michael Naehrig's Ph.D. thesis

Towards computation of pairings

- I still have not said how the Tate pairing T_{r} is defined
- General definition requires a lot of background
- Much easier for the special case we will consider
- For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
- No big surprise: Computation involves arithmetic in $\mathbb{F}_{q^{k}}^{*}$ and in $E\left(\mathbb{F}_{q}\right)$
- Only feasible for "small enough" k
- DLP in $\mathbb{F}_{q^{k}}^{*}$ only hard for "large enough" q^{k}

Towards computation of pairings

- I still have not said how the Tate pairing T_{r} is defined
- General definition requires a lot of background
- Much easier for the special case we will consider
- For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
- No big surprise: Computation involves arithmetic in $\mathbb{F}_{q^{k}}^{*}$ and in $E\left(\mathbb{F}_{q}\right)$
- Only feasible for "small enough" k
- DLP in $\mathbb{F}_{q^{k}}^{*}$ only hard for "large enough" q^{k}
- Balance hardness of DLP in $E\left(\mathbb{F}_{q}\right)$ and $\mathbb{F}_{q^{k}}^{*}$
- But: Random curves have huge k

Barreto-Naehrig curves

- Let us consider pairings on the 128 -bit security level
- r should have 256 bits, ideally $n=\left|E\left(\mathbb{F}_{q}\right)\right|$ is prime and has 256 bits, then take $r=n$
- $\mathbb{F}_{q^{k}}$ should have about 3072 bits (NIST), or about 3248 bits (ECRYPT II)
- Embedding degree should be 12 or $13(12 \times 256=3072)$

Barreto-Naehrig curves

- Let us consider pairings on the 128 -bit security level
- r should have 256 bits, ideally $n=\left|E\left(\mathbb{F}_{q}\right)\right|$ is prime and has 256 bits, then take $r=n$
- $\mathbb{F}_{q^{k}}$ should have about 3072 bits (NIST), or about 3248 bits (ECRYPT II)
- Embedding degree should be 12 or $13(12 \times 256=3072)$
- Barreto-Naehrig curves (BN curves) are curves over \mathbb{F}_{p} with prime $n=\left|E\left(\mathbb{F}_{p}\right)\right|$ and $k=12$.
- Polynomial parametrization, $u \in \mathbb{Z}$:

$$
\begin{aligned}
& p=p(u)=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1 \\
& n=n(u)=36 u^{4}+36 u^{3}+18 u^{2}+6 u+1
\end{aligned}
$$

Computing pairings over BN curves

The reduced Tate pairing
Input: $P \in G_{1}, Q \in G_{2}, n=\left(1, n_{m-1}, \ldots, n_{0}\right)_{2}$
Output: $e_{r}(P, Q)$
$R \leftarrow P$
$f \leftarrow 1$
for $(i \leftarrow m-1 ; i \geq 0 ; i--)$ do
Compute tangent line l at R
$R \leftarrow[2] R$
$f \leftarrow f^{2} l(Q)$
if $\left(n_{i}=1\right)$ then
Compute line l through P and R $R \leftarrow R+P$ $f \leftarrow f l(Q)$
end if
end for
return $f^{\frac{p^{k}-1}{r}}$

Computing pairings over BN curves

The reduced Tate pairing
Input: $P \in G_{1}, Q \in G_{2}, n=\left(1, n_{m-1}, \ldots, n_{0}\right)_{2}$
Output: $e_{r}(P, Q)$
$R \leftarrow P$
$f \leftarrow 1$
for $(i \leftarrow m-1 ; i \geq 0 ; i--)$ do
Compute tangent line l at R, compute $l(Q), R \leftarrow[2] R$
$f \leftarrow f^{2} l(Q)$
if $\left(n_{i}=1\right)$ then
Compute line l through P and R, compute $l(Q), R \leftarrow R+P$ $f \leftarrow f l(Q)$
end if
end for
return $f^{\frac{p^{k}-1}{r}}$

Loop shortening

TU/e
Technische Universiteit Eindhoven
University of Technology

- "Miller loop" goes over bits of n
- n has about 256 bits, can we use shorter loop?

Loop shortening

- "Miller loop" goes over bits of n
- n has about 256 bits, can we use shorter loop?
- Many ideas, leading to eta, ate, r-ate, optimal ate pairing
- Shortest loop: optimal ate and r-ate pairing
- Looplength for BN-curves: $6 u+2$, about 66 bits
- In the following: consider optimal ate $a_{\text {opt }}$

Loop shortening

- "Miller loop" goes over bits of n
- n has about 256 bits, can we use shorter loop?
- Many ideas, leading to eta, ate, r-ate, optimal ate pairing
- Shortest loop: optimal ate and r-ate pairing
- Looplength for BN-curves: $6 u+2$, about 66 bits
- In the following: consider optimal ate $a_{\text {opt }}$
- Downside: Requires swapping arguments, curve arithmetic in $E\left(\mathbb{F}_{q^{k}}\right)$
- Reason: Shortening based on Frobenius endomorphism, no effect in $E\left(\mathbb{F}_{p}\right)$
- Two additional line-function computations after the loop

Using twists

- Arithmetic in $E\left(\mathbb{F}_{q^{k}}\right)$ is very much effort (recall: $k=12$!)
- BN curve E has twist E^{\prime} defined over $\mathbb{F}_{p^{2}}$
- $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ has a subgroup of order n, call it G_{2}^{\prime}
- There is an efficient isomorphism from G_{2}^{\prime} to G_{2}
- Idea: Perform curve arithmetic on G_{2}^{\prime}
- Compute line-function coefficients from points on G_{2}^{\prime}
- Requires arithmetic only on $\mathbb{F}_{p^{2}}$

Resulting algorithm

Input: $Q^{\prime} \in G_{2}^{\prime}, P \in G_{1}, l=6 u+2=\left(1, l_{m-1}, \ldots, l_{0}\right)_{2}$
Output: $a_{\text {opt }}(Q, P)$
$R^{\prime} \leftarrow Q^{\prime}$
$f \leftarrow 1$
for $(i \leftarrow m-1 ; i \geq 0 ; i--)$ do Compute tangent line l at R, compute $l(P), R^{\prime} \leftarrow[2] R^{\prime}$ $f \leftarrow f^{2} l(P)$
if $\left(l_{i}=1\right)$ then
Compute line l through Q and R, compute $l(P), R^{\prime} \leftarrow R^{\prime}+Q^{\prime}$ $f \leftarrow f l(P)$
end if
end for
Two final linefunction additions modifying f
return $f^{\frac{p^{k}-1}{r}}$

Computing the final exponentiation

- Decompose exponent $\frac{p^{12}-1}{n}$ in $\left(p^{6}-1\right)\left(p^{2}+1\right)\left(\left(p^{4}-p^{2}+1\right) / n\right)$
- Exponentiation with $p^{6}-1$ is p^{6} Frobenius and one inversion
- Exponentiation with $p^{2}+1$ is p^{2} Frobenius and one multiplication
- $\left(p^{6}-1\right)\left(p^{2}+1\right)$ is called the "easy part"
- After the easy part: Inversion is conjugation, squaring also faster

Computing the final exponentiation

The hard part

- Remaining part: $\left(p^{4}-p^{2}+1\right) / n$
- Algorithm by Scott, Benger, Charlemagne, Perez and Kachisa
- Idea: Exploit polynomial parametrization of p
- Requires 3 exponentiations with u
- Some more work: 13 multiplications, 4 squarings in $\mathbb{F}_{p^{k}}$

The Hamming-weight of u

- In the Miller loop, number of additions depends on Hamming-weight of $6 u+2$
- We can use NAF representation for the exponent

The Hamming-weight of u

- In the Miller loop, number of additions depends on Hamming-weight of $6 u+2$
- We can use NAF representation for the exponent
- Hard part of final exponentiation: 3 exponentiations with u
- Can use addition-subtraction chain

The Hamming-weight of u

- In the Miller loop, number of additions depends on Hamming-weight of $6 u+2$
- We can use NAF representation for the exponent
- Hard part of final exponentiation: 3 exponentiations with u
- Can use addition-subtraction chain
\Longrightarrow Choice of u has huge impact on performance

An implementor's view

- All elliptic-curve arithmetic is on $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$
- Evaluating line functions at P yields elements of $\mathbb{F}_{p^{12}}$
- Evaluation means multiplication $\mathbb{F}_{p^{2}} \times \mathbb{F}_{p}$
- $\mathbb{F}_{p^{12}}$ is extension of $\mathbb{F}_{p^{2}}$

An implementor's view

- All elliptic-curve arithmetic is on $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$
- Evaluating line functions at P yields elements of $\mathbb{F}_{p^{12}}$
- Evaluation means multiplication $\mathbb{F}_{p^{2}} \times \mathbb{F}_{p}$
- $\mathbb{F}_{p^{12}}$ is extension of $\mathbb{F}_{p^{2}}$
\Longrightarrow We can see the whole computation as sequence of operations in $\mathbb{F}_{p^{2}}$
Let's make $\mathbb{F}_{p^{2}}$ arithmetic as fast as possible

Modular arithmetic in \mathbb{F}_{p}

- Recall that p has a special shape

$$
p=p(u)=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1
$$

- Can we exploit this special shape for efficient modular arithmetic?
- Fan, Vercauteren, Verbauwhede (2009) demonstrate that the answer is "yes" for hardware implementations
- More efficient because it uses specially sized multipliers
- How about software implementations?

Polynomial representation

Consider the ring $R=\mathbb{Z}[x] \cap \overline{\mathbb{Z}}[\sqrt{6} u x]$ and the element

$$
\begin{aligned}
P & =36 u^{4} x^{4}+36 u^{3} x^{3}+24 u^{2} x^{2}+6 u x+1 \\
& =(\sqrt{6} u x)^{4}+\sqrt{6}(\sqrt{6} u x)^{3}+4(\sqrt{6} u x)^{2}+\sqrt{6}(\sqrt{6} u x)+1 .
\end{aligned}
$$

Then $P(1)=p$.

Polynomial representation

Consider the ring $R=\mathbb{Z}[x] \cap \overline{\mathbb{Z}}[\sqrt{6} u x]$ and the element

$$
\begin{aligned}
P & =36 u^{4} x^{4}+36 u^{3} x^{3}+24 u^{2} x^{2}+6 u x+1 \\
& =(\sqrt{6} u x)^{4}+\sqrt{6}(\sqrt{6} u x)^{3}+4(\sqrt{6} u x)^{2}+\sqrt{6}(\sqrt{6} u x)+1 .
\end{aligned}
$$

Then $P(1)=p$. Represent $f \in \mathbb{F}_{p}$ by a polynomial $F \in R$ as

$$
\begin{aligned}
F & =f_{0}+f_{1} \cdot \sqrt{6}(\sqrt{6} u x)+f_{2} \cdot(\sqrt{6} u x)^{2}+f_{3} \cdot \sqrt{6}(\sqrt{6} u x)^{3} \\
& =f_{0}+f_{1} \cdot(6 u) x+f_{2} \cdot\left(6 u^{2}\right) x^{2}+f_{3} \cdot\left(36 u^{3}\right) x^{3}
\end{aligned}
$$

such that $F(1)=f$, or

$$
f=f_{0}+6 u f_{1}+6 u^{2} f_{2}+36 u^{3} f_{3}, f_{i} \in \mathbb{Z}
$$

Multiplication and degree reduction

Polynomial multiplication of f and g yields 7 coefficients t_{0}, \ldots, t_{6} Reduction $\bmod p$ to r_{0}, \ldots, r_{3} :

$$
\begin{aligned}
& r_{0} \leftarrow t_{0}-t_{4}+6 t_{5}-2 t_{6} \\
& r_{1} \leftarrow t_{1}-t_{4}+5 t_{5}-t_{6} \\
& r_{2} \leftarrow t_{2}-4 t_{4}+18 t_{5}-3 t_{6} \\
& r_{3} \leftarrow t_{2}-t_{4}+2 t_{5}+3 t_{6}
\end{aligned}
$$

Four coefficients are not enough

- 256-bit numbers in 4 coefficients: Each coefficient 64 bits
- Coefficients do not have exactly the same size
- Small multiples in the reduction are larger than 128 bits
- Easy to realize in hardware, not in software
- For software we need more coefficients

Four coefficients are not enough

- 256-bit numbers in 4 coefficients: Each coefficient 64 bits
- Coefficients do not have exactly the same size
- Small multiples in the reduction are larger than 128 bits
- Easy to realize in hardware, not in software
- For software we need more coefficients
- Idea: Consider $u=v^{3}$, use 12 coefficients f_{0}, \ldots, f_{11}

$$
\begin{aligned}
f= & f_{0}+6 v f_{1}+6 v^{2} f_{2}+6 v^{3} f_{3}+6 v^{4} f_{4}+6 v^{5} f_{5}+6 v^{6} f_{6}+ \\
& 36 v^{7} f_{7}+36 v^{8} f_{8}+36 v^{9} f_{9}+36 v_{10} f_{10}+36 v^{11} f_{11}
\end{aligned}
$$

- v has about 21 bits, products have about 42 bits
- Double-precision floats have 53-bit mantissa
- Use double-precision floats, still some space to add up coefficients and compute small multiples

Reducing coefficients

- At some point the coefficients will overflow (become larger than 53 bits)
- Need to do coefficient reduction (carry)
- Carry from f_{0} to f_{1}
$c \leftarrow \operatorname{round}\left(f_{0} / 6 v\right)$
$f_{0} \leftarrow f_{0}-c \cdot 6 v$
$f_{1} \leftarrow f_{1}+c$
- Carry from f_{1} to f_{2}
$c \leftarrow \operatorname{round}\left(f_{1} / v\right)$
$f_{1} \leftarrow f_{1}-c \cdot v$
$f_{2} \leftarrow f_{2}+c$
- $f_{0} \in[-3 v, 3 v], f_{1} \in[-v / 2, v / 2]$
- Carry from f_{11} goes to f_{0}, f_{3}, f_{6}, and f_{9}

Implementation on a Core 2 processor

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle

Implementation on a Core 2 processor

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle
- Problem: \mathbb{F}_{p} arithmetic requires a lot of shuffeling, combining etc.

Implementation on a Core 2 processor

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle
- Problem: \mathbb{F}_{p} arithmetic requires a lot of shuffeling, combining etc.
- Solution: Implement arithmetic in $\mathbb{F}_{p^{2}}$
- Use schoolbook multiplication in $\mathbb{F}_{p^{2}}$ yielding 4 multiplications in \mathbb{F}_{p}
- Perform 2 multiplications in parallel using SIMD instructions

Implementation on a Core 2 processor

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle
- Problem: \mathbb{F}_{p} arithmetic requires a lot of shuffeling, combining etc.
- Solution: Implement arithmetic in $\mathbb{F}_{p^{2}}$
- Use schoolbook multiplication in $\mathbb{F}_{p^{2}}$ yielding 4 multiplications in \mathbb{F}_{p}
- Perform 2 multiplications in parallel using SIMD instructions
- \mathbb{F}_{p} polynomial reduction after $\mathbb{F}_{p^{2}}$ polynomial reduction
- Only two \mathbb{F}_{p} polynomial reduction and two coefficient reduction per multiplication in $\mathbb{F}_{p^{2}}$
- Those reductions also done in SIMD way

Detecting and avoiding overflows

- After each multiplication we need to reduce coefficients
- Sometimes also before a multiplication after several additions
- Problem: How to detect where?
- Need to detect overflow in the worst case

Detecting and avoiding overflows

- After each multiplication we need to reduce coefficients
- Sometimes also before a multiplication after several additions
- Problem: How to detect where?
- Need to detect overflow in the worst case
- Implement software in C
- Replace double with C++ class CheckDouble
- Perform arithmetic on values and in parallel on worst-case values
- Abort at overflow (allows backtrace in debugger)

Detecting and avoiding overflows

- After each multiplication we need to reduce coefficients
- Sometimes also before a multiplication after several additions
- Problem: How to detect where?
- Need to detect overflow in the worst case
- Implement software in C
- Replace double with C++ class CheckDouble
- Perform arithmetic on values and in parallel on worst-case values
- Abort at overflow (allows backtrace in debugger)
- Re-implement algorithms in assembly (qhasm)
- Would be good to have overflow checks in assembly

Parameters of our implementation

- We use $v=1868033, u=v^{3}=6518589491078791937$
- 18 addition/subtraction steps in the Miller loop
- 12 multiplications for exponentiation with u
- p is congruent $3 \bmod 4$, construct $\mathbb{F}_{p^{2}}$ as $\mathbb{F}_{p}[X] /\left(X^{2}+1\right)$

Performance of dclxvi software

- Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
- Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles

Results

Performance of dclxvi software

- Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
- Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
- Cycles on an Intel Xeon E5504: 4,448,504 cycles
- Cycles on an AMD Phenom II X4 955: 4,774,059 cycles

Performance of dclxvi software

- Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
- Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
- Cycles on an Intel Xeon E5504: 4,448,504 cycles
- Cycles on an AMD Phenom II X4 955: 4,774,059 cycles
- Comparison: Fastest published pairing benchmark before: 10,000,000 cycles on a Core 2 by Hankerson, Menezes, Scott, 2008
- Unpublished: 7,850,000 cycles on a Core 2 T5500 (Scott 2010)

Even faster pairings

New paper by Jean-Luc Beuchat, Jorge Enrique González Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya:
"High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves" Claims: 2,630,000 cycles on a Core i7, 3,320,000 cycles on a Core 2

Even faster pairings

New paper by Jean-Luc Beuchat, Jorge Enrique González Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya:
"High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves"
Claims: 2,630,000 cycles on a Core i7, 3,320,000 cycles on a Core 2
Cycle counts on a Core 2 Q6600

	dclxvi	$[B G M+10]$
multiplication in $\mathbb{F}_{p^{2}}$	~ 656	~ 590
squaring in $\mathbb{F}_{p^{2}}$	~ 386	~ 481
optimal ate pairing	$\sim 4,390,000$	~ 3512000

Why is our software slower?

[BGM+10] uses Montgomery arithmetic in \mathbb{F}_{p} and fast 64×64-bit integer multiplier.

Why is our software slower?

$[B G M+10]$ uses Montgomery arithmetic in \mathbb{F}_{p} and fast 64×64-bit integer multiplier.
Three reasons why we are slower

1. Restricted choice of u : More addition steps in Miller loop and exponentiation with u more expensive

Why is our software slower?

[BGM+10] uses Montgomery arithmetic in \mathbb{F}_{p} and fast 64×64-bit integer multiplier.
Three reasons why we are slower

1. Restricted choice of u : More addition steps in Miller loop and exponentiation with u more expensive
2. Coefficient reductions take quite a bit of time ($\sim 450,000$ cycles)

Why is our software slower?

[BGM+10] uses Montgomery arithmetic in \mathbb{F}_{p} and fast 64×64-bit integer multiplier.
Three reasons why we are slower

1. Restricted choice of u : More addition steps in Miller loop and exponentiation with u more expensive
2. Coefficient reductions take quite a bit of time ($\sim 450,000$ cycles)
3. Multiplication in $\mathbb{F}_{2^{2}}$ is slower (squaring is faster)

Which approach is better?

Highly depends on the architecture

- On the Core i7: Very clearly Montgomery arithmetic [BGM+10]
- On the AMD K11: again [BGM+10]
- On the Core 2: currently [BGM+10], but ... let's see

Which approach is better?

Highly depends on the architecture

- On the Core i7: Very clearly Montgomery arithmetic [BGM+10]
- On the AMD K11: again [BGM+10]
- On the Core 2: currently [BGM+10], but ... let's see
- Other microarchitectures or architectures? Mainly depends on performance of double-precision floating-point multiplication/addition vs. integer multiplication/addition
- Our approach is the fastest approach using double-precision floating-point arithmetic

References

Paper: http://cryptojedi.org/users/peter/\#dclxvi (has an error, will be updated soon)

Software: http://cryptojedi.org/crypto/\#dclxvi (public domain)

