
New software speed reords for ryptographipairingsMihael Naehrig, Ruben Niederhagen, Peter ShwabeEindhoven University of TehnologyJuly 8, 2010HGI-Colloquium, Ruhr-Universität Bohum

PairingsA protool designer's point of view
◮ Let G1, G2, and G3 be �nite abelian groups.
◮ A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

New software speed reords for ryptographi pairings 2

PairingsA protool designer's point of view
◮ Let G1, G2, and G3 be �nite abelian groups.
◮ A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

◮ DLP should be hard in G1, G2, and G3

New software speed reords for ryptographi pairings 2

PairingsA protool designer's point of view
◮ Let G1, G2, and G3 be �nite abelian groups.
◮ A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

◮ DLP should be hard in G1, G2, and G3

◮ Sometimes required: G1 = G2 (type-1 pairing)
◮ Sometimes requires: E�ient isomorphism G2 → G1 (type-2)
◮ Sometimes required: No e�ient isomorphism G2 → G1 (type-3)

New software speed reords for ryptographi pairings 2

The Tate PairingA mathematial/algorithmi point of view
◮ Let E be an ellipti urve over Fq

◮ Let r ∈ N be prime with r | |E(Fq)| and r2 ∤ |E(Fq)|
◮ Let gcd(r, q) = 1 and r ∤ (q − 1)

◮ Let k be the smallest positive integer suh that r | qk − 1

◮ k is alled embedding degree of E with respet to rThe Tate pairing is a map
Tr : E[r]× E(Fqk)/rE(Fqk)→ F∗qk/(F

∗
qk)

r.

New software speed reords for ryptographi pairings 3

The Tate PairingA mathematial/algorithmi point of viewRepresenting elements of E(Fqk)/rE(Fqk)

◮ Let's assume there is no element of order r2 in E(Fqk)

◮ Then it holds that E(Fqk)/rE(Fqk) ∼= E[r]

New software speed reords for ryptographi pairings 4

The Tate PairingA mathematial/algorithmi point of viewRepresenting elements of E(Fqk)/rE(Fqk)

◮ Let's assume there is no element of order r2 in E(Fqk)

◮ Then it holds that E(Fqk)/rE(Fqk) ∼= E[r]Consider the Tate pairing as a map
Tr : E[r]× E[r]→ F∗qk/(F

∗
qk)

r.

New software speed reords for ryptographi pairings 4

The redued Tate PairingA mathematial/algorithmi point of viewFinding unique representatives in F∗

qk
/(F∗

qk
)r.

◮ Results of the Tate pairing are equivalene lasses
◮ In order to ompare: Need unique representative
◮ F∗

qk
/(F∗

qk
)r and µr := {x ∈ Fqk | xr = 1} are isomorphi

◮ Group isomorphism is given by exponentiation with qk−1

r

◮ Apply group isomorphism in the end, obtain unique representative
New software speed reords for ryptographi pairings 5

The redued Tate PairingA mathematial/algorithmi point of viewFinding unique representatives in F∗

qk
/(F∗

qk
)r.

◮ Results of the Tate pairing are equivalene lasses
◮ In order to ompare: Need unique representative
◮ F∗

qk
/(F∗

qk
)r and µr := {x ∈ Fqk | xr = 1} are isomorphi

◮ Group isomorphism is given by exponentiation with qk−1

r

◮ Apply group isomorphism in the end, obtain unique representativeRedued Tate pairing:
er : E[r]× E[r]→ µr

(P,Q) 7→ Tr(P,Q)
qk−1

rNew software speed reords for ryptographi pairings 5

The redued Tate Pairing
. . . on prime-order subgroups of E[r]

◮ The Frobenius endomorphism
πq : E[r]→ E[r], (x, y) 7→ (xq , yq)has eigenvalues 1 and q

◮ Eigenspae orresponding to eigenvalue 1 is ker(πq − [1]) = E(Fq)[r]

New software speed reords for ryptographi pairings 6

The redued Tate Pairing
. . . on prime-order subgroups of E[r]

◮ The Frobenius endomorphism
πq : E[r]→ E[r], (x, y) 7→ (xq , yq)has eigenvalues 1 and q

◮ Eigenspae orresponding to eigenvalue 1 is ker(πq − [1]) = E(Fq)[r]

◮ Considering pairing on E(Fq)[r] × E(Fq)[r] always yields 1
◮ But: ker(πq − [q]) also has order r

New software speed reords for ryptographi pairings 6

The redued Tate Pairing
. . . on prime-order subgroups of E[r]

◮ The Frobenius endomorphism
πq : E[r]→ E[r], (x, y) 7→ (xq , yq)has eigenvalues 1 and q

◮ Eigenspae orresponding to eigenvalue 1 is ker(πq − [1]) = E(Fq)[r]

◮ Considering pairing on E(Fq)[r] × E(Fq)[r] always yields 1
◮ But: ker(πq − [q]) also has order r
◮ Denote ker(πq − [1]) = E(Fq)[r] by G1

◮ Denote ker(πq − [q]) ⊂ E(Fqk) by G2Redued Tate pairing for ryptography:
G1 ×G2 → µrNew software speed reords for ryptographi pairings 6

Towards omputation of pairings
◮ I still have not said how the Tate pairing Tr is de�ned
◮ General de�nition requires a lot of bakground
◮ Muh easier for the speial ase we will onsider
◮ For the whole story read, e.g., Mihael Naehrig's Ph.D. thesis

New software speed reords for ryptographi pairings 7

Towards omputation of pairings
◮ I still have not said how the Tate pairing Tr is de�ned
◮ General de�nition requires a lot of bakground
◮ Muh easier for the speial ase we will onsider
◮ For the whole story read, e.g., Mihael Naehrig's Ph.D. thesis
◮ No big surprise: Computation involves arithmeti in F∗

qk
and in

E(Fq)

◮ Only feasible for �small enough� k
◮ DLP in F∗

qk
only hard for �large enough� qk

New software speed reords for ryptographi pairings 7

Towards omputation of pairings
◮ I still have not said how the Tate pairing Tr is de�ned
◮ General de�nition requires a lot of bakground
◮ Muh easier for the speial ase we will onsider
◮ For the whole story read, e.g., Mihael Naehrig's Ph.D. thesis
◮ No big surprise: Computation involves arithmeti in F∗

qk
and in

E(Fq)

◮ Only feasible for �small enough� k
◮ DLP in F∗

qk
only hard for �large enough� qk

◮ Balane hardness of DLP in E(Fq) and F∗

qk

◮ But: Random urves have huge k New software speed reords for ryptographi pairings 7

Barreto-Naehrig urves
◮ Let us onsider pairings on the 128-bit seurity level
◮ r should have 256 bits, ideally n = |E(Fq)| is prime and has 256bits, then take r = n

◮ Fqk should have about 3072 bits (NIST), or about 3248 bits(ECRYPT II)
◮ Embedding degree should be 12 or 13 (12× 256 = 3072)

New software speed reords for ryptographi pairings 8

Barreto-Naehrig urves
◮ Let us onsider pairings on the 128-bit seurity level
◮ r should have 256 bits, ideally n = |E(Fq)| is prime and has 256bits, then take r = n

◮ Fqk should have about 3072 bits (NIST), or about 3248 bits(ECRYPT II)
◮ Embedding degree should be 12 or 13 (12× 256 = 3072)
◮ Barreto-Naehrig urves (BN urves) are urves over Fp with prime

n = |E(Fp)| and k = 12.
◮ Polynomial parametrization, u ∈ Z:

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1New software speed reords for ryptographi pairings 8

Computing pairings over BN urvesThe redued Tate pairingInput: P ∈ G1, Q ∈ G2, n = (1, nm−1, . . . , n0)2Output: er(P,Q)
R← P
f ← 1for (i← m− 1; i ≥ 0; i−−) doCompute tangent line l at R

R← [2]R
f ← f2l(Q)if (ni = 1) thenCompute line l through P and R

R← R+ P
f ← fl(Q)end ifend forreturn f

pk−1

r New software speed reords for ryptographi pairings 9

Computing pairings over BN urvesThe redued Tate pairingInput: P ∈ G1, Q ∈ G2, n = (1, nm−1, . . . , n0)2Output: er(P,Q)
R← P
f ← 1for (i← m− 1; i ≥ 0; i−−) doCompute tangent line l at R, ompute l(Q), R← [2]R

f ← f2l(Q)if (ni = 1) thenCompute line l through P and R, ompute l(Q), R← R+ P
f ← fl(Q)end ifend forreturn f

pk−1

r New software speed reords for ryptographi pairings 9

Loop shortening
◮ �Miller loop� goes over bits of n
◮ n has about 256 bits, an we use shorter loop?

New software speed reords for ryptographi pairings 10

Loop shortening
◮ �Miller loop� goes over bits of n
◮ n has about 256 bits, an we use shorter loop?
◮ Many ideas, leading to eta, ate, r-ate, optimal ate pairing
◮ Shortest loop: optimal ate and r-ate pairing
◮ Looplength for BN-urves: 6u+ 2, about 66 bits
◮ In the following: onsider optimal ate aopt

New software speed reords for ryptographi pairings 10

Loop shortening
◮ �Miller loop� goes over bits of n
◮ n has about 256 bits, an we use shorter loop?
◮ Many ideas, leading to eta, ate, r-ate, optimal ate pairing
◮ Shortest loop: optimal ate and r-ate pairing
◮ Looplength for BN-urves: 6u+ 2, about 66 bits
◮ In the following: onsider optimal ate aopt
◮ Downside: Requires swapping arguments, urve arithmeti in E(Fqk)

◮ Reason: Shortening based on Frobenius endomorphism, no e�et in
E(Fp)

◮ Two additional line-funtion omputations after the loop
New software speed reords for ryptographi pairings 10

Using twists
◮ Arithmeti in E(Fqk) is very muh e�ort (reall: k = 12!)
◮ BN urve E has twist E′ de�ned over Fp2

◮ E′(Fp2) has a subgroup of order n, all it G′

2

◮ There is an e�ient isomorphism from G′

2
to G2

◮ Idea: Perform urve arithmeti on G′

2

◮ Compute line-funtion oe�ients from points on G′

2

◮ Requires arithmeti only on Fp2

New software speed reords for ryptographi pairings 11

Resulting algorithmInput: Q′ ∈ G′

2, P ∈ G1, l = 6u+ 2 = (1, lm−1, . . . , l0)2Output: aopt(Q,P)
R′ ← Q′

f ← 1for (i← m− 1; i ≥ 0; i−−) doCompute tangent line l at R, ompute l(P), R′ ← [2]R′

f ← f2l(P)if (li = 1) thenCompute line l through Q and R, ompute l(P), R′ ← R′ +Q′

f ← fl(P)end ifend forTwo �nal linefuntion additions modifying freturn f
pk−1

r New software speed reords for ryptographi pairings 12

Computing the �nal exponentiationThe easy part
◮ Deompose exponent p12

−1

n
in (p6 − 1)(p2 + 1)((p4 − p2 + 1)/n)

◮ Exponentiation with p6 − 1 is p6 Frobenius and one inversion
◮ Exponentiation with p2 + 1 is p2 Frobenius and one multipliation
◮ (p6 − 1)(p2 + 1) is alled the �easy part�
◮ After the easy part: Inversion is onjugation, squaring also faster

New software speed reords for ryptographi pairings 13

Computing the �nal exponentiationThe hard part
◮ Remaining part: (p4 − p2 + 1)/n

◮ Algorithm by Sott, Benger, Charlemagne, Perez and Kahisa
◮ Idea: Exploit polynomial parametrization of p
◮ Requires 3 exponentiations with u

◮ Some more work: 13 multipliations, 4 squarings in Fpk

New software speed reords for ryptographi pairings 14

The Hamming-weight of u
◮ In the Miller loop, number of additions depends on Hamming-weightof 6u+ 2

◮ We an use NAF representation for the exponent
New software speed reords for ryptographi pairings 15

The Hamming-weight of u
◮ In the Miller loop, number of additions depends on Hamming-weightof 6u+ 2

◮ We an use NAF representation for the exponent
◮ Hard part of �nal exponentiation: 3 exponentiations with u

◮ Can use addition-subtration hain
New software speed reords for ryptographi pairings 15

The Hamming-weight of u
◮ In the Miller loop, number of additions depends on Hamming-weightof 6u+ 2

◮ We an use NAF representation for the exponent
◮ Hard part of �nal exponentiation: 3 exponentiations with u

◮ Can use addition-subtration hain
=⇒ Choie of u has huge impat on performane

New software speed reords for ryptographi pairings 15

An implementor's view
◮ All ellipti-urve arithmeti is on E′(Fp2)

◮ Evaluating line funtions at P yields elements of Fp12

◮ Evaluation means multipliation Fp2 × Fp

◮ Fp12 is extension of Fp2

New software speed reords for ryptographi pairings 16

An implementor's view
◮ All ellipti-urve arithmeti is on E′(Fp2)

◮ Evaluating line funtions at P yields elements of Fp12

◮ Evaluation means multipliation Fp2 × Fp

◮ Fp12 is extension of Fp2

=⇒ We an see the whole omputation as sequene of operations in Fp2Let's make Fp2 arithmeti as fast as possible
New software speed reords for ryptographi pairings 16

Modular arithmeti in Fp

◮ Reall that p has a speial shape
p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

◮ Can we exploit this speial shape for e�ient modular arithmeti?
◮ Fan, Verauteren, Verbauwhede (2009) demonstrate that the answeris �yes� for hardware implementations
◮ More e�ient beause it uses speially sized multipliers
◮ How about software implementations?

New software speed reords for ryptographi pairings 17

Polynomial representation(Inspired by Bernstein's urve25519 paper)Consider the ring R = Z[x] ∩ Z[
√
6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√
6ux)4 +

√
6(
√
6ux)3 + 4(

√
6ux)2 +

√
6(
√
6ux) + 1.Then P (1) = p.

New software speed reords for ryptographi pairings 18

Polynomial representation(Inspired by Bernstein's urve25519 paper)Consider the ring R = Z[x] ∩ Z[
√
6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√
6ux)4 +

√
6(
√
6ux)3 + 4(

√
6ux)2 +

√
6(
√
6ux) + 1.Then P (1) = p. Represent f ∈ Fp by a polynomial F ∈ R as

F = f0 + f1 ·
√
6(
√
6ux) + f2 · (

√
6ux)2 + f3 ·

√
6(
√
6ux)3

= f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3suh that F (1) = f , or
f = f0 + 6uf1 + 6u2f2 + 36u3f3, fi ∈ Z

New software speed reords for ryptographi pairings 18

Multipliation and degree redution
Polynomial multipliation of f and g yields 7 oe�ients t0, . . . , t6Redution mod p to r0, . . . , r3:
r0 ← t0 − t4 + 6t5 − 2t6
r1 ← t1 − t4 + 5t5 − t6
r2 ← t2 − 4t4 + 18t5 − 3t6
r3 ← t2 − t4 + 2t5 + 3t6

New software speed reords for ryptographi pairings 19

Four oe�ients are not enough
◮ 256-bit numbers in 4 oe�ients: Eah oe�ient 64 bits
◮ Coe�ients do not have exatly the same size
◮ Small multiples in the redution are larger than 128 bits
◮ Easy to realize in hardware, not in software
◮ For software we need more oe�ients

New software speed reords for ryptographi pairings 20

Four oe�ients are not enough
◮ 256-bit numbers in 4 oe�ients: Eah oe�ient 64 bits
◮ Coe�ients do not have exatly the same size
◮ Small multiples in the redution are larger than 128 bits
◮ Easy to realize in hardware, not in software
◮ For software we need more oe�ients
◮ Idea: Consider u = v3, use 12 oe�ients f0, . . . , f11

f =f0 + 6vf1 + 6v2f2 + 6v3f3 + 6v4f4 + 6v5f5 + 6v6f6+

36v7f7 + 36v8f8 + 36v9f9 + 36v10f10 + 36v11f11

◮ v has about 21 bits, produts have about 42 bits
◮ Double-preision �oats have 53-bit mantissa
◮ Use double-preision �oats, still some spae to add up oe�ientsand ompute small multiples New software speed reords for ryptographi pairings 20

Reduing oe�ients
◮ At some point the oe�ients will over�ow (beome larger than 53bits)
◮ Need to do oe�ient redution (arry)
◮ Carry from f0 to f1

c← round(f0/6v)
f0 ← f0 − c · 6v
f1 ← f1 + c

◮ Carry from f1 to f2

c← round(f1/v)
f1 ← f1 − c · v
f2 ← f2 + c

◮ f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2]
◮ Carry from f11 goes to f0, f3, f6, and f9New software speed reords for ryptographi pairings 21

Implementation on a Core 2 proessor
◮ Use fast SIMD instrutions mulpd and addpd
◮ 2 multipliations/ 2 additions in one instrution
◮ 1 mulpd and 1 addpd (and one mov) per yle

New software speed reords for ryptographi pairings 22

Implementation on a Core 2 proessor
◮ Use fast SIMD instrutions mulpd and addpd
◮ 2 multipliations/ 2 additions in one instrution
◮ 1 mulpd and 1 addpd (and one mov) per yle
◮ Problem: Fp arithmeti requires a lot of shu�eling, ombining et.

New software speed reords for ryptographi pairings 22

Implementation on a Core 2 proessor
◮ Use fast SIMD instrutions mulpd and addpd
◮ 2 multipliations/ 2 additions in one instrution
◮ 1 mulpd and 1 addpd (and one mov) per yle
◮ Problem: Fp arithmeti requires a lot of shu�eling, ombining et.
◮ Solution: Implement arithmeti in Fp2

◮ Use shoolbook multipliation in Fp2 yielding 4 multipliations in Fp

◮ Perform 2 multipliations in parallel using SIMD instrutions
New software speed reords for ryptographi pairings 22

Implementation on a Core 2 proessor
◮ Use fast SIMD instrutions mulpd and addpd
◮ 2 multipliations/ 2 additions in one instrution
◮ 1 mulpd and 1 addpd (and one mov) per yle
◮ Problem: Fp arithmeti requires a lot of shu�eling, ombining et.
◮ Solution: Implement arithmeti in Fp2

◮ Use shoolbook multipliation in Fp2 yielding 4 multipliations in Fp

◮ Perform 2 multipliations in parallel using SIMD instrutions
◮ Fp polynomial redution after Fp2 polynomial redution
◮ Only two Fp polynomial redution and two oe�ient redution permultipliation in Fp2

◮ Those redutions also done in SIMD wayNew software speed reords for ryptographi pairings 22

Deteting and avoiding over�ows
◮ After eah multipliation we need to redue oe�ients
◮ Sometimes also before a multipliation after several additions
◮ Problem: How to detet where?
◮ Need to detet over�ow in the worst ase

New software speed reords for ryptographi pairings 23

Deteting and avoiding over�ows
◮ After eah multipliation we need to redue oe�ients
◮ Sometimes also before a multipliation after several additions
◮ Problem: How to detet where?
◮ Need to detet over�ow in the worst ase
◮ Implement software in C
◮ Replae double with C++ lass ChekDouble
◮ Perform arithmeti on values and in parallel on worst-ase values
◮ Abort at over�ow (allows baktrae in debugger)

New software speed reords for ryptographi pairings 23

Deteting and avoiding over�ows
◮ After eah multipliation we need to redue oe�ients
◮ Sometimes also before a multipliation after several additions
◮ Problem: How to detet where?
◮ Need to detet over�ow in the worst ase
◮ Implement software in C
◮ Replae double with C++ lass ChekDouble
◮ Perform arithmeti on values and in parallel on worst-ase values
◮ Abort at over�ow (allows baktrae in debugger)
◮ Re-implement algorithms in assembly (qhasm)
◮ Would be good to have over�ow heks in assemblyNew software speed reords for ryptographi pairings 23

Parameters of our implementation
◮ We use v = 1868033, u = v3 = 6518589491078791937

◮ 18 addition/subtration steps in the Miller loop
◮ 12 multipliations for exponentiation with u

◮ p is ongruent 3 mod 4, onstrut Fp2 as Fp[X]/(X2 + 1)

New software speed reords for ryptographi pairings 24

ResultsPerformane of dlxvi software
◮ Cyles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 yles
◮ Cyles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 yles

New software speed reords for ryptographi pairings 25

ResultsPerformane of dlxvi software
◮ Cyles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 yles
◮ Cyles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 yles
◮ Cyles on an Intel Xeon E5504: 4,448,504 yles
◮ Cyles on an AMD Phenom II X4 955: 4,774,059 yles

New software speed reords for ryptographi pairings 25

ResultsPerformane of dlxvi software
◮ Cyles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 yles
◮ Cyles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 yles
◮ Cyles on an Intel Xeon E5504: 4,448,504 yles
◮ Cyles on an AMD Phenom II X4 955: 4,774,059 yles
◮ Comparison: Fastest published pairing benhmark before:10,000,000 yles on a Core 2 by Hankerson, Menezes, Sott, 2008
◮ Unpublished: 7,850,000 yles on a Core 2 T5500 (Sott 2010)

New software speed reords for ryptographi pairings 25

Even faster pairingsNew paper by Jean-Lu Beuhat, Jorge Enrique González Díaz, ShigeoMitsunari, Eiji Okamoto, Franiso Rodríguez-Henríquez, and TadanoriTeruya:�High-Speed Software Implementation of the Optimal Ate Pairing overBarreto-Naehrig Curves�Claims: 2,630,000 yles on a Core i7, 3,320,000 yles on a Core 2
New software speed reords for ryptographi pairings 26

Even faster pairingsNew paper by Jean-Lu Beuhat, Jorge Enrique González Díaz, ShigeoMitsunari, Eiji Okamoto, Franiso Rodríguez-Henríquez, and TadanoriTeruya:�High-Speed Software Implementation of the Optimal Ate Pairing overBarreto-Naehrig Curves�Claims: 2,630,000 yles on a Core i7, 3,320,000 yles on a Core 2Cyle ounts on a Core 2 Q6600 dlxvi [BGM+10℄multipliation in Fp2 ∼ 656 ∼ 590squaring in Fp2 ∼ 386 ∼ 481optimal ate pairing ∼ 4, 390, 000 ∼ 3512000

New software speed reords for ryptographi pairings 26

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti in Fp and fast 64× 64-bitinteger multiplier.

New software speed reords for ryptographi pairings 27

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti in Fp and fast 64× 64-bitinteger multiplier.Three reasons why we are slower1. Restrited hoie of u: More addition steps in Miller loop andexponentiation with u more expensive

New software speed reords for ryptographi pairings 27

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti in Fp and fast 64× 64-bitinteger multiplier.Three reasons why we are slower1. Restrited hoie of u: More addition steps in Miller loop andexponentiation with u more expensive2. Coe�ient redutions take quite a bit of time (∼ 450, 000 yles)

New software speed reords for ryptographi pairings 27

Why is our software slower?
[BGM+10℄ uses Montgomery arithmeti in Fp and fast 64× 64-bitinteger multiplier.Three reasons why we are slower1. Restrited hoie of u: More addition steps in Miller loop andexponentiation with u more expensive2. Coe�ient redutions take quite a bit of time (∼ 450, 000 yles)3. Multipliation in F22 is slower (squaring is faster)

New software speed reords for ryptographi pairings 27

Whih approah is better?Highly depends on the arhiteture
◮ On the Core i7: Very learly Montgomery arithmeti [BGM+10℄
◮ On the AMD K11: again [BGM+10℄
◮ On the Core 2: urrently [BGM+10℄, but . . . let's see

New software speed reords for ryptographi pairings 28

Whih approah is better?Highly depends on the arhiteture
◮ On the Core i7: Very learly Montgomery arithmeti [BGM+10℄
◮ On the AMD K11: again [BGM+10℄
◮ On the Core 2: urrently [BGM+10℄, but . . . let's see
◮ Other miroarhitetures or arhitetures?Mainly depends on performane of double-preision �oating-pointmultipliation/addition vs. integer multipliation/addition
◮ Our approah is the fastest approah using double-preision�oating-point arithmeti

New software speed reords for ryptographi pairings 28

Referenes
Paper: http://ryptojedi.org/users/peter/#dlxvi(has an error, will be updated soon)Software: http://ryptojedi.org/rypto/#dlxvi(publi domain)

New software speed reords for ryptographi pairings 29

http://cryptojedi.org/users/peter/#dclxvi
http://cryptojedi.org/crypto/#dclxvi

