New software speed records for cryptographic pairings

Michael Naehrig, Ruben Niederhagen, Peter Schwabe

Eindhoven University of Technology

July 8, 2010

HGI-Colloquium, Ruhr-Universität Bochum

Pairings A protocol designer's point of view

- Let G_1, G_2 , and G_3 be finite abelian groups.
- A pairing is a bilinear, nondegenerate map

 $e:G_1\times G_2\to G_3$

Pairings A protocol designer's point of view

- Let G_1, G_2 , and G_3 be finite abelian groups.
- A pairing is a bilinear, nondegenerate map

 $e:G_1\times G_2\to G_3$

• DLP should be hard in G_1, G_2 , and G_3

Pairings A protocol designer's point of view

- ▶ Let G₁, G₂, and G₃ be finite abelian groups.
- A pairing is a bilinear, nondegenerate map

 $e:G_1\times G_2\to G_3$

- DLP should be hard in G_1, G_2 , and G_3
- Sometimes required: $G_1 = G_2$ (type-1 pairing)
- Sometimes requires: Efficient isomorphism $G_2 \rightarrow G_1$ (type-2)
- Sometimes required: No efficient isomorphism $G_2 \rightarrow G_1$ (type-3)

The Tate Pairing A mathematical/algorithmic point of view

- Let $r \in \mathbb{N}$ be prime with $r \mid |E(\mathbb{F}_q)|$ and $r^2 \nmid |E(\mathbb{F}_q)|$
- Let gcd(r,q) = 1 and $r \nmid (q-1)$
- Let k be the smallest positive integer such that $r \mid q^k 1$
- \blacktriangleright k is called embedding degree of E with respect to r

The Tate pairing is a map

$$T_r: E[r] \times E(\mathbb{F}_{q^k}) / rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^* / (\mathbb{F}_{q^k}^*)^r.$$

TU

Technische Universiteit Eindhoven University of Technology

The Tate Pairing A mathematical/algorithmic point of view

Representing elements of $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k})$

- Let's assume there is no element of order r^2 in $E(\mathbb{F}_{q^k})$
- \blacktriangleright Then it holds that $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k})\cong E[r]$

The Tate Pairing A mathematical/algorithmic point of view

Representing elements of $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k})$

- Let's assume there is no element of order r^2 in $E(\mathbb{F}_{q^k})$
- \blacktriangleright Then it holds that $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k})\cong E[r]$

Consider the Tate pairing as a map

$$T_r: E[r] \times E[r] \to \mathbb{F}_{q^k}^* / (\mathbb{F}_{q^k}^*)^r.$$

The reduced Tate Pairing A mathematical/algorithmic point of view

Finding unique representatives in $\mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r$.

- Results of the Tate pairing are equivalence classes
- ► In order to compare: Need unique representative
- $\blacktriangleright \ \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r$ and $\mu_r:=\{x\in\mathbb{F}_{q^k}\mid x^r=1\}$ are isomorphic
- Group isomorphism is given by exponentiation with $\frac{q^k-1}{r}$
- > Apply group isomorphism in the end, obtain unique representative

The reduced Tate Pairing A mathematical/algorithmic point of view

Finding unique representatives in $\mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r$.

- Results of the Tate pairing are equivalence classes
- ► In order to compare: Need unique representative
- $\blacktriangleright \ \mathbb{F}_{q^k}^*/(\mathbb{F}_{q^k}^*)^r \ \text{and} \ \mu_r := \{x \in \mathbb{F}_{q^k} \ | \ x^r = 1\} \ \text{are isomorphic}$
- Group isomorphism is given by exponentiation with $\frac{q^k-1}{r}$
- > Apply group isomorphism in the end, obtain unique representative

Reduced Tate pairing:

$$e_r: E[r] \times E[r] \to \mu_r$$

 $(P,Q) \mapsto T_r(P,Q)^{\frac{q^k-1}{r}}$

The reduced Tate Pairing \dots on prime-order subgroups of E[r]

The Frobenius endomorphism

$$\pi_q: E[r] \to E[r], (x,y) \mapsto (x^q, y^q)$$

has eigenvalues $1 \ \mathrm{and} \ q$

• Eigenspace corresponding to eigenvalue 1 is $ker(\pi_q - [1]) = E(\mathbb{F}_q)[r]$

The reduced Tate Pairing \dots on prime-order subgroups of E[r]

The Frobenius endomorphism

$$\pi_q: E[r] \to E[r], (x,y) \mapsto (x^q, y^q)$$

has eigenvalues $1 \ {\rm and} \ q$

- Eigenspace corresponding to eigenvalue 1 is $ker(\pi_q [1]) = E(\mathbb{F}_q)[r]$
- Considering pairing on $E(\mathbb{F}_q)[r] \times E(\mathbb{F}_q)[r]$ always yields 1
- But: $\ker(\pi_q [q])$ also has order r

The reduced Tate Pairing \dots on prime-order subgroups of E[r]

The Frobenius endomorphism

$$\pi_q: E[r] \to E[r], (x,y) \mapsto (x^q, y^q)$$

has eigenvalues $1 \ {\rm and} \ q$

- Eigenspace corresponding to eigenvalue 1 is $\ker(\pi_q [1]) = E(\mathbb{F}_q)[r]$
- Considering pairing on $E(\mathbb{F}_q)[r] \times E(\mathbb{F}_q)[r]$ always yields 1
- But: $\ker(\pi_q [q])$ also has order r
- Denote $\ker(\pi_q [1]) = E(\mathbb{F}_q)[r]$ by G_1
- Denote $\ker(\pi_q [q]) \subset E(\mathbb{F}_{q^k})$ by G_2

Reduced Tate pairing for cryptography:

$$G_1 \times G_2 \to \mu_r$$

Towards computation of pairings

- I still have not said how the Tate pairing T_r is defined
- General definition requires a lot of background
- Much easier for the special case we will consider
- For the whole story read, e.g., Michael Naehrig's Ph.D. thesis

Towards computation of pairings

- I still have not said how the Tate pairing T_r is defined
- General definition requires a lot of background
- Much easier for the special case we will consider
- ► For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
- \blacktriangleright No big surprise: Computation involves arithmetic in $\mathbb{F}_{q^k}^*$ and in $E(\mathbb{F}_q)$
- \blacktriangleright Only feasible for "small enough" k
- DLP in $\mathbb{F}_{q^k}^*$ only hard for "large enough" q^k

Towards computation of pairings

- I still have not said how the Tate pairing T_r is defined
- General definition requires a lot of background
- Much easier for the special case we will consider
- ► For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
- \blacktriangleright No big surprise: Computation involves arithmetic in $\mathbb{F}_{q^k}^*$ and in $E(\mathbb{F}_q)$
- Only feasible for "small enough" k
- DLP in $\mathbb{F}_{q^k}^*$ only hard for "large enough" q^k
- ▶ Balance hardness of DLP in $E(\mathbb{F}_q)$ and $\mathbb{F}_{q^k}^*$
- But: Random curves have huge k

Barreto-Naehrig curves

- ▶ Let us consider pairings on the 128-bit security level
- ▶ r should have 256 bits, ideally $n = |E(\mathbb{F}_q)|$ is prime and has 256 bits, then take r = n
- ▶ \mathbb{F}_{q^k} should have about 3072 bits (NIST), or about 3248 bits (ECRYPT II)
- Embedding degree should be 12 or 13 $(12 \times 256 = 3072)$

Barreto-Naehrig curves

- Let us consider pairings on the 128-bit security level
- ▶ r should have 256 bits, ideally n = |E(𝔽q)| is prime and has 256 bits, then take r = n
- ▶ \mathbb{F}_{q^k} should have about 3072 bits (NIST), or about 3248 bits (ECRYPT II)
- Embedding degree should be 12 or 13 ($12 \times 256 = 3072$)
- ▶ Barreto-Naehrig curves (BN curves) are curves over \mathbb{F}_p with prime $n = |E(\mathbb{F}_p)|$ and k = 12.
- Polynomial parametrization, $u \in \mathbb{Z}$:

$$p = p(u) = 36u^{4} + 36u^{3} + 24u^{2} + 6u + 1$$
$$n = n(u) = 36u^{4} + 36u^{3} + 18u^{2} + 6u + 1$$

Computing pairings over BN curves

```
The reduced Tate pairing
Input: P \in G_1, Q \in G_2, n = (1, n_{m-1}, \dots, n_0)_2
Output: e_r(P,Q)
  R \leftarrow P
  f \leftarrow 1
  for (i \leftarrow m - 1; i \ge 0; i - -) do
       Compute tangent line l at R
       R \leftarrow [2]R
       f \leftarrow f^2 l(Q)
       if (n_i = 1) then
           Compute line l through P and R
           R \leftarrow R + P
           f \leftarrow fl(Q)
       end if
  end for
  return f^{\frac{p^k-1}{r}}
```

TU

Technische Universiteit Eindhoven University of Technology

Computing pairings over BN curves

The reduced Tate pairing

```
Input: P \in G_1, Q \in G_2, n = (1, n_{m-1}, \dots, n_0)_2
Output: e_r(P,Q)
  R \leftarrow P
  f \leftarrow 1
  for (i \leftarrow m-1; i \ge 0; i--) do
       Compute tangent line l at R, compute l(Q), R \leftarrow [2]R
       f \leftarrow f^2 l(Q)
      if (n_i = 1) then
           Compute line l through P and R, compute l(Q), R \leftarrow R + P
           f \leftarrow fl(Q)
       end if
  end for
  return f^{\frac{p^k-1}{r}}
```

TU

Technische Universiteit Eindhoven University of Technology

Loop shortening

- "Miller loop" goes over bits of n
- \blacktriangleright *n* has about 256 bits, can we use shorter loop?

Loop shortening

- \blacktriangleright "Miller loop" goes over bits of n
- n has about 256 bits, can we use shorter loop?
- Many ideas, leading to eta, ate, r-ate, optimal ate pairing
- Shortest loop: optimal ate and r-ate pairing
- Looplength for BN-curves: 6u + 2, about 66 bits
- In the following: consider optimal ate a_{opt}

Loop shortening

- \blacktriangleright "Miller loop" goes over bits of n
- n has about 256 bits, can we use shorter loop?
- Many ideas, leading to eta, ate, r-ate, optimal ate pairing
- Shortest loop: optimal ate and r-ate pairing
- Looplength for BN-curves: 6u + 2, about 66 bits
- In the following: consider optimal ate a_{opt}
- ▶ Downside: Requires swapping arguments, curve arithmetic in $E(\mathbb{F}_{q^k})$
- \blacktriangleright Reason: Shortening based on Frobenius endomorphism, no effect in $E(\mathbb{F}_p)$
- Two additional line-function computations after the loop

Using twists

- Arithmetic in $E(\mathbb{F}_{q^k})$ is very much effort (recall: k = 12!)
- BN curve E has twist E' defined over \mathbb{F}_{p^2}
- $E'(\mathbb{F}_{p^2})$ has a subgroup of order n, call it G'_2
- There is an efficient isomorphism from G_2' to G_2
- Idea: Perform curve arithmetic on G'_2
- Compute line-function coefficients from points on G_2^\prime
- Requires arithmetic only on \mathbb{F}_{p^2}

Resulting algorithm

Input:
$$Q' \in G'_2, P \in G_1, l = 6u + 2 = (1, l_{m-1}, \dots, l_0)_2$$

Output: $a_{opt}(Q, P)$
 $R' \leftarrow Q'$
 $f \leftarrow 1$
for $(i \leftarrow m-1; i \ge 0; i - -)$ do
Compute tangent line l at R , compute $l(P), R' \leftarrow [2]R'$
 $f \leftarrow f^2l(P)$
if $(l_i = 1)$ then
Compute line l through Q and R , compute $l(P), R' \leftarrow R' + Q'$
 $f \leftarrow fl(P)$
end if
end for
Two final linefunction additions modifying f
return $f \frac{p^{k-1}}{r}$

Computing the final exponentiation

- ▶ Decompose exponent $\frac{p^{12}-1}{n}$ in $(p^6-1)(p^2+1)((p^4-p^2+1)/n)$
- Exponentiation with p^6-1 is p^6 Frobenius and one inversion
- Exponentiation with $p^2 + 1$ is p^2 Frobenius and one multiplication
- $(p^6-1)(p^2+1)$ is called the "easy part"
- After the easy part: Inversion is conjugation, squaring also faster

TU

Technische Universiteit Eindhoven University of Technology

Computing the final exponentiation

- Remaining part: $(p^4 p^2 + 1)/n$
- Algorithm by Scott, Benger, Charlemagne, Perez and Kachisa
- \blacktriangleright Idea: Exploit polynomial parametrization of p
- Requires 3 exponentiations with u
- Some more work: 13 multiplications, 4 squarings in \mathbb{F}_{p^k}

TU

Technische Universiteit Eindhoven University of Technology

The Hamming-weight of u

- \blacktriangleright In the Miller loop, number of additions depends on Hamming-weight of 6u+2
- We can use NAF representation for the exponent

The Hamming-weight of u

- \blacktriangleright In the Miller loop, number of additions depends on Hamming-weight of 6u+2
- We can use NAF representation for the exponent
- \blacktriangleright Hard part of final exponentiation: 3 exponentiations with u
- Can use addition-subtraction chain

The Hamming-weight of u

- \blacktriangleright In the Miller loop, number of additions depends on Hamming-weight of 6u+2
- We can use NAF representation for the exponent
- \blacktriangleright Hard part of final exponentiation: 3 exponentiations with u
- Can use addition-subtraction chain
- \implies Choice of u has huge impact on performance

An implementor's view

- ▶ All elliptic-curve arithmetic is on $E'(\mathbb{F}_{p^2})$
- Evaluating line functions at P yields elements of $\mathbb{F}_{p^{12}}$
- Evaluation means multiplication $\mathbb{F}_{p^2} imes \mathbb{F}_p$
- \blacktriangleright $\mathbb{F}_{p^{12}}$ is extension of \mathbb{F}_{p^2}

An implementor's view

- All elliptic-curve arithmetic is on $E'(\mathbb{F}_{p^2})$
- Evaluating line functions at P yields elements of $\mathbb{F}_{p^{12}}$
- Evaluation means multiplication $\mathbb{F}_{p^2} imes \mathbb{F}_p$
- $\mathbb{F}_{p^{12}}$ is extension of \mathbb{F}_{p^2}

 $\implies \text{We can see the whole computation as sequence of operations in } \mathbb{F}_{p^2}$ Let's make \mathbb{F}_{p^2} arithmetic as fast as possible

Modular arithmetic in \mathbb{F}_p

Recall that p has a special shape

$$p = p(u) = 36u^4 + 36u^3 + 24u^2 + 6u + 1$$

- Can we exploit this special shape for efficient modular arithmetic?
- Fan, Vercauteren, Verbauwhede (2009) demonstrate that the answer is "yes" for hardware implementations
- More efficient because it uses specially sized multipliers
- How about software implementations?

Polynomial representation (Inspired by Bernstein's curve25519 paper)

Consider the ring $R = \mathbb{Z}[x] \cap \overline{\mathbb{Z}}[\sqrt{6}ux]$ and the element

$$P = 36u^4x^4 + 36u^3x^3 + 24u^2x^2 + 6ux + 1$$

= $(\sqrt{6}ux)^4 + \sqrt{6}(\sqrt{6}ux)^3 + 4(\sqrt{6}ux)^2 + \sqrt{6}(\sqrt{6}ux) + 1.$

Then P(1) = p.

Polynomial representation (Inspired by Bernstein's curve25519 paper)

Consider the ring $R = \mathbb{Z}[x] \cap \overline{\mathbb{Z}}[\sqrt{6}ux]$ and the element

$$P = 36u^4x^4 + 36u^3x^3 + 24u^2x^2 + 6ux + 1$$

= $(\sqrt{6}ux)^4 + \sqrt{6}(\sqrt{6}ux)^3 + 4(\sqrt{6}ux)^2 + \sqrt{6}(\sqrt{6}ux) + 1.$

Then P(1) = p. Represent $f \in \mathbb{F}_p$ by a polynomial $F \in R$ as

$$F = f_0 + f_1 \cdot \sqrt{6}(\sqrt{6}ux) + f_2 \cdot (\sqrt{6}ux)^2 + f_3 \cdot \sqrt{6}(\sqrt{6}ux)^3$$

= $f_0 + f_1 \cdot (6u)x + f_2 \cdot (6u^2)x^2 + f_3 \cdot (36u^3)x^3$

such that F(1) = f, or

$$f = f_0 + 6uf_1 + 6u^2f_2 + 36u^3f_3, f_i \in \mathbb{Z}$$

$$\begin{array}{l} r_0 \leftarrow t_0 - t_4 + 6t_5 - 2t_6 \\ r_1 \leftarrow t_1 - t_4 + 5t_5 - t_6 \\ r_2 \leftarrow t_2 - 4t_4 + 18t_5 - 3t_6 \\ r_3 \leftarrow t_2 - t_4 + 2t_5 + 3t_6 \end{array}$$

TU

e Technische Universiteit Eindhoven University of Technology

Four coefficients are not enough

- > 256-bit numbers in 4 coefficients: Each coefficient 64 bits
- Coefficients do not have exactly the same size
- Small multiples in the reduction are larger than 128 bits
- Easy to realize in hardware, not in software
- For software we need more coefficients

Four coefficients are not enough

- Coefficients do not have exactly the same size
- Small multiples in the reduction are larger than 128 bits
- Easy to realize in hardware, not in software
- For software we need more coefficients
- ▶ Idea: Consider $u = v^3$, use 12 coefficients f_0, \ldots, f_{11}

$$f = f_0 + 6vf_1 + 6v^2f_2 + 6v^3f_3 + 6v^4f_4 + 6v^5f_5 + 6v^6f_6 + 36v^7f_7 + 36v^8f_8 + 36v^9f_9 + 36v_{10}f_{10} + 36v^{11}f_{11}$$

- \blacktriangleright v has about 21 bits, products have about 42 bits
- Double-precision floats have 53-bit mantissa
- Use double-precision floats, still some space to add up coefficients and compute small multiples

TU

Technische Universiteit Eindhoven University of Technology

Reducing coefficients

- At some point the coefficients will overflow (become larger than 53 bits)
- Need to do coefficient reduction (carry)
- ► Carry from f_0 to f_1 $c \leftarrow \mathsf{round}(f_0/6v)$ $f_0 \leftarrow f_0 - c \cdot 6v$ $f_1 \leftarrow f_1 + c$
- ► Carry from f_1 to f_2 $c \leftarrow \mathsf{round}(f_1/v)$ $f_1 \leftarrow f_1 - c \cdot v$ $f_2 \leftarrow f_2 + c$
- $f_0 \in [-3v, 3v], f_1 \in [-v/2, v/2]$
- Carry from f_{11} goes to f_0, f_3, f_6 , and f_9

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle
- Problem: \mathbb{F}_p arithmetic requires a lot of shuffeling, combining etc.

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle
- Problem: \mathbb{F}_p arithmetic requires a lot of shuffeling, combining etc.
- Solution: Implement arithmetic in \mathbb{F}_{p^2}
- Use schoolbook multiplication in \mathbb{F}_{p^2} yielding 4 multiplications in \mathbb{F}_p
- Perform 2 multiplications in parallel using SIMD instructions

TU/e Technische Universiteit Eindhoven University of Technology

- Use fast SIMD instructions mulpd and addpd
- 2 multiplications/ 2 additions in one instruction
- 1 mulpd and 1 addpd (and one mov) per cycle
- Problem: \mathbb{F}_p arithmetic requires a lot of shuffeling, combining etc.
- Solution: Implement arithmetic in \mathbb{F}_{p^2}
- Use schoolbook multiplication in \mathbb{F}_{p^2} yielding 4 multiplications in \mathbb{F}_p
- Perform 2 multiplications in parallel using SIMD instructions
- \mathbb{F}_p polynomial reduction after \mathbb{F}_{p^2} polynomial reduction
- ▶ Only two \mathbb{F}_p polynomial reduction and two coefficient reduction per multiplication in \mathbb{F}_{p^2}
- Those reductions also done in SIMD way

Detecting and avoiding overflows

- After each multiplication we need to reduce coefficients
- Sometimes also before a multiplication after several additions
- Problem: How to detect where?
- Need to detect overflow in the worst case

Detecting and avoiding overflows

- After each multiplication we need to reduce coefficients
- Sometimes also before a multiplication after several additions
- Problem: How to detect where?
- Need to detect overflow in the worst case
- Implement software in C
- Replace double with C++ class CheckDouble
- Perform arithmetic on values and in parallel on worst-case values
- Abort at overflow (allows backtrace in debugger)

Detecting and avoiding overflows

- After each multiplication we need to reduce coefficients
- Sometimes also before a multiplication after several additions
- Problem: How to detect where?
- Need to detect overflow in the worst case
- Implement software in C
- Replace double with C++ class CheckDouble
- Perform arithmetic on values and in parallel on worst-case values
- Abort at overflow (allows backtrace in debugger)
- Re-implement algorithms in assembly (qhasm)
- Would be good to have overflow checks in assembly

Parameters of our implementation

- We use v = 1868033, $u = v^3 = 6518589491078791937$
- ▶ 18 addition/subtraction steps in the Miller loop
- \blacktriangleright 12 multiplications for exponentiation with u
- ▶ p is congruent 3 mod 4, construct \mathbb{F}_{p^2} as $\mathbb{F}_p[X]/(X^2+1)$

Results

Performance of dclxvi software

- Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
- Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles

Results

Performance of dclxvi software

- Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
- Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
- Cycles on an Intel Xeon E5504: 4,448,504 cycles
- Cycles on an AMD Phenom II X4 955: 4,774,059 cycles

Results

Performance of dclxvi software

- Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
- Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
- Cycles on an Intel Xeon E5504: 4,448,504 cycles
- Cycles on an AMD Phenom II X4 955: 4,774,059 cycles
- Comparison: Fastest published pairing benchmark before: 10,000,000 cycles on a Core 2 by Hankerson, Menezes, Scott, 2008
- Unpublished: 7,850,000 cycles on a Core 2 T5500 (Scott 2010)

Even faster pairings

New paper by Jean-Luc Beuchat, Jorge Enrique González Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya:

"High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves"

Claims: 2,630,000 cycles on a Core i7, 3,320,000 cycles on a Core 2

Even faster pairings

New paper by Jean-Luc Beuchat, Jorge Enrique González Díaz, Shigeo Mitsunari, Eiji Okamoto, Francisco Rodríguez-Henríquez, and Tadanori Teruya:

"High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves"

Claims: 2,630,000 cycles on a Core i7, 3,320,000 cycles on a Core 2

Cycle counts on a Core 2 Q6600

	dclxvi	[BGM+10]
multiplication in \mathbb{F}_{p^2}	~ 656	~ 590
squaring in \mathbb{F}_{p^2}	~ 386	~ 481
optimal ate pairing	$\sim 4,390,000$	~ 3512000

Three reasons why we are slower

1. Restricted choice of u: More addition steps in Miller loop and exponentiation with u more expensive

Three reasons why we are slower

- 1. Restricted choice of u: More addition steps in Miller loop and exponentiation with u more expensive
- 2. Coefficient reductions take quite a bit of time ($\sim 450,000$ cycles)

Three reasons why we are slower

- 1. Restricted choice of u: More addition steps in Miller loop and exponentiation with u more expensive
- 2. Coefficient reductions take quite a bit of time ($\sim 450,000$ cycles)
- 3. Multiplication in \mathbb{F}_{2^2} is slower (squaring is faster)

Which approach is better?

Highly depends on the architecture

- ▶ On the Core i7: Very clearly Montgomery arithmetic [BGM+10]
- On the AMD K11: again [BGM+10]
- ▶ On the Core 2: currently [BGM+10], but ... let's see

Which approach is better?

Highly depends on the architecture

- ▶ On the Core i7: Very clearly Montgomery arithmetic [BGM+10]
- On the AMD K11: again [BGM+10]
- ▶ On the Core 2: currently [BGM+10], but ... let's see
- Other microarchitectures or architectures? Mainly depends on performance of double-precision floating-point multiplication/addition vs. integer multiplication/addition
- Our approach is the fastest approach using double-precision floating-point arithmetic

Paper: http://cryptojedi.org/users/peter/#dclxvi (has an error, will be updated soon)

Software: http://cryptojedi.org/crypto/#dclxvi
(public domain)