
Verifying crypto
Many questions and the beginning of an answer

Peter Schwabe

Radboud University Nijmegen, The Netherlands

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang and Shang-Yi Yang

May 20, 2014

Brouwer Seminar



About me

I 2001-2006: Studies of computer science at RWTH Aachen
(Germany)

I 2006-2007: Ph.D. student at RWTH Aachen
I 2008-2011: Ph.D. student at TU Eindhoven
I 2011-2012: Postdoc at Academia Sincia (Taiwan) and National

Taiwan University
I Since 2013: UD in the Digital Security Group
I Since 2014: Work on VENI project “High-speed high-security

cryptography”

Verifying crypto 2



Research topics

During Ph.D. time
I High-speed cryptography

I Optimizing the Advanced Encryption Standard (AES)
I Elliptic-curve cryptography (ECC)
I Cryptographic pairings
I NaCl (http://nacl.cr.yp.to)

I High-speed cryptanalysis
I Attacking ECC (parallel Pollard rho algorithm)
I Attacking code-based crypto (generalized birthday attack)

As a Postdoc
I Focus on constructive side (NaCl)
I Starting to look into automated optimization

Verifying crypto 3

http://nacl.cr.yp.to


Research topics

During Ph.D. time
I High-speed cryptography

I Optimizing the Advanced Encryption Standard (AES)
I Elliptic-curve cryptography (ECC)
I Cryptographic pairings
I NaCl (http://nacl.cr.yp.to)

I High-speed cryptanalysis
I Attacking ECC (parallel Pollard rho algorithm)
I Attacking code-based crypto (generalized birthday attack)

As a Postdoc
I Focus on constructive side (NaCl)
I Starting to look into automated optimization

Verifying crypto 3

http://nacl.cr.yp.to


VENI project
“High-speed high-security crypto”

NaCl for embedded microcontrollers
I Very restricted environment (speed, memory, storage)
I Typically exposed to physical attacks

A finite-field compiler
I ECC needs operations in large finite fields
I Idea: compile sequence of field operations to superfast assembly

Verification of crypto software
I Started in the context of the finite-field compiler
I Generally important: ensure correctness of crypto software
I Additional: ensure security of crypto software
I Verification on the assembly level

Verifying crypto 4



VENI project
“High-speed high-security crypto”

NaCl for embedded microcontrollers
I Very restricted environment (speed, memory, storage)
I Typically exposed to physical attacks

A finite-field compiler
I ECC needs operations in large finite fields
I Idea: compile sequence of field operations to superfast assembly

Verification of crypto software
I Started in the context of the finite-field compiler
I Generally important: ensure correctness of crypto software
I Additional: ensure security of crypto software
I Verification on the assembly level

Verifying crypto 4



VENI project
“High-speed high-security crypto”

NaCl for embedded microcontrollers
I Very restricted environment (speed, memory, storage)
I Typically exposed to physical attacks

A finite-field compiler
I ECC needs operations in large finite fields
I Idea: compile sequence of field operations to superfast assembly

Verification of crypto software
I Started in the context of the finite-field compiler
I Generally important: ensure correctness of crypto software
I Additional: ensure security of crypto software
I Verification on the assembly level

Verifying crypto 4



High-speed crypto

I Crypto algorithms are typically small in software
I Example: AES, just a few lines of C
I Executed very often (AES encrypts terabytes each day)

I Crypto needs to work fast on busy servers
I Crypto needs to work fast on small embedded devices
I Serious optimization is feasible and worth the effort
I Typical high-speed crypto:

I Optimize on the assembly level
I Use instruction set to an extent that C does not allow
I Inline, unroll, . . .

I 10% speedup are typically a paper!

Verifying crypto 5



High-speed crypto

I Crypto algorithms are typically small in software
I Example: AES, just a few lines of C
I Executed very often (AES encrypts terabytes each day)
I Crypto needs to work fast on busy servers
I Crypto needs to work fast on small embedded devices

I Serious optimization is feasible and worth the effort
I Typical high-speed crypto:

I Optimize on the assembly level
I Use instruction set to an extent that C does not allow
I Inline, unroll, . . .

I 10% speedup are typically a paper!

Verifying crypto 5



High-speed crypto

I Crypto algorithms are typically small in software
I Example: AES, just a few lines of C
I Executed very often (AES encrypts terabytes each day)
I Crypto needs to work fast on busy servers
I Crypto needs to work fast on small embedded devices
I Serious optimization is feasible and worth the effort
I Typical high-speed crypto:

I Optimize on the assembly level
I Use instruction set to an extent that C does not allow
I Inline, unroll, . . .

I 10% speedup are typically a paper!

Verifying crypto 5



High-speed crypto

I Crypto algorithms are typically small in software
I Example: AES, just a few lines of C
I Executed very often (AES encrypts terabytes each day)
I Crypto needs to work fast on busy servers
I Crypto needs to work fast on small embedded devices
I Serious optimization is feasible and worth the effort
I Typical high-speed crypto:

I Optimize on the assembly level
I Use instruction set to an extent that C does not allow
I Inline, unroll, . . .

I 10% speedup are typically a paper!

Verifying crypto 5



High-security crypto

I Best known attacks take ≥ 2128 operations
I Attacks have been extensively studied

I Implementations must not leak secret information
I Execution time must be independent of secret data

I No data flow from secrets into branch conditions
I No data flow from secrets into load/store addresses
I Timing attacks are practical and efficient

I Implementations must be correct (bug attacks!)

Verifying crypto 6



High-security crypto

I Best known attacks take ≥ 2128 operations
I Attacks have been extensively studied
I Implementations must not leak secret information

I Execution time must be independent of secret data

I No data flow from secrets into branch conditions
I No data flow from secrets into load/store addresses
I Timing attacks are practical and efficient

I Implementations must be correct (bug attacks!)

Verifying crypto 6



High-security crypto

I Best known attacks take ≥ 2128 operations
I Attacks have been extensively studied
I Implementations must not leak secret information

I Execution time must be independent of secret data
I No data flow from secrets into branch conditions
I No data flow from secrets into load/store addresses

I Timing attacks are practical and efficient
I Implementations must be correct (bug attacks!)

Verifying crypto 6



High-security crypto

I Best known attacks take ≥ 2128 operations
I Attacks have been extensively studied
I Implementations must not leak secret information

I Execution time must be independent of secret data
I No data flow from secrets into branch conditions
I No data flow from secrets into load/store addresses
I Timing attacks are practical and efficient

I Implementations must be correct (bug attacks!)

Verifying crypto 6



High-security crypto

I Best known attacks take ≥ 2128 operations
I Attacks have been extensively studied
I Implementations must not leak secret information

I Execution time must be independent of secret data
I No data flow from secrets into branch conditions
I No data flow from secrets into load/store addresses
I Timing attacks are practical and efficient

I Implementations must be correct (bug attacks!)

Verifying crypto 6



Correct crypto?

“Are you actually sure that your implementations are correct?”
—Gerhard Woeginger, Jan. 24, 2011.

Verifying crypto 7



Correct crypto?

Testing
I Is cheap, catches many bugs
I Does not conflict with performance
I Provides very high confidence in correctness for some crypto

algorithms
I Typically fails to catch very rarely triggered bugs

Verifying crypto 7



Correct crypto?

Audits
I Expensive (time and/or money)
I Conflicts with performance
I Standard approach to ensure correctness and quality of (crypto)

software

Verifying crypto 7



Correct crypto?

Formal verification
I Strongest guarantees of correctness
I Probably conflicts with performance

I Should focus on cases where test and audits fail

Verifying crypto 7



Correct crypto?

Formal verification
I Strongest guarantees of correctness
I Probably conflicts with performance
I Should focus on cases where test and audits fail

Verifying crypto 7



Elliptic-curve cryptography

I Let Fq be a finite field
I For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defines an elliptic curve E over Fq

I Points (x, y) ∈ Fq × Fq on E together with a “point at infinity” form
a group E(Fq)

I Group addition can be computed with a few operations in Fq

I For P ∈ E(Fq) and k ∈ Z, computing kP is easy (Θ(log(k)))
I Given Q ∈ 〈P 〉 and P , computing k with kP = Q is hard (Θ(

√
k))

I Use in crypto: choose random k, compute and publish kP

Verifying crypto 8



Elliptic-curve cryptography

I Let Fq be a finite field
I For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defines an elliptic curve E over Fq

I Points (x, y) ∈ Fq × Fq on E together with a “point at infinity” form
a group E(Fq)

I Group addition can be computed with a few operations in Fq

I For P ∈ E(Fq) and k ∈ Z, computing kP is easy (Θ(log(k)))
I Given Q ∈ 〈P 〉 and P , computing k with kP = Q is hard (Θ(

√
k))

I Use in crypto: choose random k, compute and publish kP

Verifying crypto 8



Elliptic-curve cryptography

I Let Fq be a finite field
I For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defines an elliptic curve E over Fq

I Points (x, y) ∈ Fq × Fq on E together with a “point at infinity” form
a group E(Fq)

I Group addition can be computed with a few operations in Fq

I For P ∈ E(Fq) and k ∈ Z, computing kP is easy (Θ(log(k)))
I Given Q ∈ 〈P 〉 and P , computing k with kP = Q is hard (Θ(

√
k))

I Use in crypto: choose random k, compute and publish kP

Verifying crypto 8



Elliptic-curve cryptography

I Let Fq be a finite field
I For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defines an elliptic curve E over Fq

I Points (x, y) ∈ Fq × Fq on E together with a “point at infinity” form
a group E(Fq)

I Group addition can be computed with a few operations in Fq

I For P ∈ E(Fq) and k ∈ Z, computing kP is easy (Θ(log(k)))

I Given Q ∈ 〈P 〉 and P , computing k with kP = Q is hard (Θ(
√
k))

I Use in crypto: choose random k, compute and publish kP

Verifying crypto 8



Elliptic-curve cryptography

I Let Fq be a finite field
I For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defines an elliptic curve E over Fq

I Points (x, y) ∈ Fq × Fq on E together with a “point at infinity” form
a group E(Fq)

I Group addition can be computed with a few operations in Fq

I For P ∈ E(Fq) and k ∈ Z, computing kP is easy (Θ(log(k)))
I Given Q ∈ 〈P 〉 and P , computing k with kP = Q is hard (Θ(

√
k))

I Use in crypto: choose random k, compute and publish kP

Verifying crypto 8



Elliptic-curve cryptography

I Let Fq be a finite field
I For a1, a2, a3, a4, a6 ∈ Fq, an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defines an elliptic curve E over Fq

I Points (x, y) ∈ Fq × Fq on E together with a “point at infinity” form
a group E(Fq)

I Group addition can be computed with a few operations in Fq

I For P ∈ E(Fq) and k ∈ Z, computing kP is easy (Θ(log(k)))
I Given Q ∈ 〈P 〉 and P , computing k with kP = Q is hard (Θ(

√
k))

I Use in crypto: choose random k, compute and publish kP

Verifying crypto 8



Curve25519 ECDH

I Diffie-Hellman key exchange protocol by Bernstein (2006)
I Uses curve E : y2 = x3 + 486662x2 + x defined over F2255−19

I Conservative parameter choice, targeting high security
I Set speed records on a variety of platforms

I High-level view:
I Input: x-coordinate xP of a point P , scalar k
I Compute x-coordinate xkP of kP as xkP = XkP /ZkP

I Invert ZkP , multiply by XkP to obtain xkP

I Inputs and outputs encoded as little-endian byte arrays of length 32

Verifying crypto 9



Curve25519 ECDH

I Diffie-Hellman key exchange protocol by Bernstein (2006)
I Uses curve E : y2 = x3 + 486662x2 + x defined over F2255−19

I Conservative parameter choice, targeting high security
I Set speed records on a variety of platforms
I High-level view:

I Input: x-coordinate xP of a point P , scalar k
I Compute x-coordinate xkP of kP as xkP = XkP /ZkP

I Invert ZkP , multiply by XkP to obtain xkP

I Inputs and outputs encoded as little-endian byte arrays of length 32

Verifying crypto 9



The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

Verifying crypto 10



One Montgomery “ladder step”

const a24 = 121666 (from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)2

ZP+Q ← XQ−P · (t8 − t9)2

X2P ← t6 · t7
Z2P ← t5 · (t7 + a24 · t5)
return (X2P , Z2P , XP+Q, ZP+Q)

end function

Verifying crypto 11



Arithmetic in F2255−19

I Need arithmetic on 255-bit integers and reduction mod 2255 − 19

I Speed typically determined by speed of multiplications
I Use fastest hardware multiplier
I On Intel Nehalem: 64× 64→ 128-bit integer multiply

I Represent 256-bit integer A through 4 64-bit integers a0, a1, a2, a3
I Value of A is

∑3
i=0 ai2

64·i

typedef struct{
unsigned long long v[4];

} fe25519;

Verifying crypto 12



Arithmetic in F2255−19

I Need arithmetic on 255-bit integers and reduction mod 2255 − 19

I Speed typically determined by speed of multiplications
I Use fastest hardware multiplier
I On Intel Nehalem: 64× 64→ 128-bit integer multiply
I Represent 256-bit integer A through 4 64-bit integers a0, a1, a2, a3
I Value of A is

∑3
i=0 ai2

64·i

typedef struct{
unsigned long long v[4];

} fe25519;

Verifying crypto 12



Addition

int64 r0
int64 r1
int64 r2
int64 r3
int64 t0
int64 t1

enter fe25519_add

r0 = mem64[input_1 + 0]
r1 = mem64[input_1 + 8]
r2 = mem64[input_1 + 16]
r3 = mem64[input_1 + 24]

carry? r0 += mem64[input_2 + 0]
carry? r1 += mem64[input_2 + 8] + carry
carry? r2 += mem64[input_2 + 16] + carry
carry? r3 += mem64[input_2 + 24] + carry

t0 = 0
t1 = 38
t1 = t0 if !carry

carry? r0 += t1
carry? r1 += t0 + carry
carry? r2 += t0 + carry
carry? r3 += t0 + carry

t0 = t1 if carry
r0 += t0

mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r1
mem64[input_0 + 16] = r2
mem64[input_0 + 24] = r3

return

Verifying crypto 13



Multiplication

x0 = mem64[input_1 + 0]
rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x0
r0 = rax
r1 = rdx

rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x0
carry? r1 += rax
r2 = 0
r2 += rdx + carry

rax = mem64[input_2 + 16]
(uint128) rdx rax = rax * x0
carry? r2 += rax
r3 = 0
r3 += rdx + carry

rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x0
carry? r3 += rax
r4 = 0
r4 += rdx + carry

Verifying crypto 14



Multiplication

x1 = mem64[input_1 + 8]
rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x1
carry? r1 += rax
c = 0
c += rdx + carry

rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x1
carry? r2 += rax
rdx += 0 + carry
carry? r2 += c
c = 0
c += rdx + carry

rax = mem64[input_2 + 16]
(uint128) rdx rax = rax * x1
carry? r3 += rax
rdx += 0 + carry
carry? r3 += c
c = 0
c += rdx + carry

rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x1
carry? r4 += rax
rdx += 0 + carry
carry? r4 += c
r5 = 0
r5 += rdx + carry

...

Verifying crypto 14



Multiplication

x3 = mem64[input_1 + 24]
rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x3
carry? r3 += rax
c = 0
c += rdx + carry

rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x3
carry? r4 += rax
rdx += 0 + carry
carry? r4 += c
c = 0
c += rdx + carry

rax = mem64[input_2 + 16]
(uint128) rdx rax = rax * x3
carry? r5 += rax
rdx += 0 + carry
carry? r5 += c
c = 0
c += rdx + carry

rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x3
carry? r6 += rax
rdx += 0 + carry
carry? r6 += c
r7 = 0
r7 += rdx + carry

Verifying crypto 14



Reduction mod 2255 − 19

I “Lazy” reduction modulo 2256 − 38: multiply upper half by 38, add
to lower half

I In assembly:
rax = r4
(uint128) rdx rax = rax * mem64[&const_38]
r4 = rax
rax = r5
r5 = rdx
(uint128) rdx rax = rax * mem64[&const_38]
carry? r5 += rax
rax = r6
r6 = 0
r6 += rdx + carry
...

(uint128) rdx rax = rax * mem64[&const_38]
carry? r7 += rax
r8 = 0
r8 += rdx + carry

Verifying crypto 15



Reduction mod 2255 − 19

I “Lazy” reduction modulo 2256 − 38: multiply upper half by 38, add
to lower half

I In assembly:
rax = r4
(uint128) rdx rax = rax * mem64[&const_38]
r4 = rax
rax = r5
r5 = rdx
(uint128) rdx rax = rax * mem64[&const_38]
carry? r5 += rax
rax = r6
r6 = 0
r6 += rdx + carry
...

(uint128) rdx rax = rax * mem64[&const_38]
carry? r7 += rax
r8 = 0
r8 += rdx + carry

Verifying crypto 15



Reduction mod 2255 − 19

I “Lazy” reduction modulo 2256 − 38: multiply upper half by 38, add
to lower half

I In assembly:
carry? r0 += r4
carry? r1 += r5 + carry
carry? r2 += r6 + carry
carry? r3 += r7 + carry

zero = 0
r8 += zero + carry
r8 *= 38
carry? r0 += r8
carry? r1 += zero + carry
carry? r2 += zero + carry
carry? r3 += zero + carry
zero += zero + carry
zero *= 38
r0 += zero

Verifying crypto 16



Changing the radix

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries

I Example: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Verifying crypto 17



Changing the radix

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Verifying crypto 17



Changing the radix

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Verifying crypto 17



Changing the radix

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation

I Multiple ways to write the same integer A, for example A = 252:
I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Verifying crypto 17



Changing the radix

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Verifying crypto 17



Changing the radix

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Verifying crypto 17



Addition

enter fe25519_add
r0 = mem64[input_1 + 0]
r1 = mem64[input_1 + 8]
r2 = mem64[input_1 + 16]
r3 = mem64[input_1 + 24]
r4 = mem64[input_1 + 32]

r0 += mem64[input_2 + 0]
r1 += mem64[input_2 + 8]
r2 += mem64[input_2 + 16]
r3 += mem64[input_2 + 24]
r4 += mem64[input_2 + 32]

mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r1
mem64[input_0 + 16] = r2
mem64[input_0 + 24] = r3
mem64[input_0 + 32] = r4
return

Verifying crypto 18



Multiplication

rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 0]
r0 = rax
r0h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 8]
r1 = rax
r1h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 16]
r2 = rax
r2h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 24]
r3 = rax
r3h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 32]
r4 = rax
r4h = rdx

Verifying crypto 19



Multiplication

rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 0]
carry? r1 += rax
r1h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 8]
carry? r2 += rax
r2h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 16]
carry? r3 += rax
r3h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 24]
carry? r4 += rax
r4h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 32]
r5 = rax
r5h = rdx

Verifying crypto 19



Multiplication

...

mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r0h
mem64[input_0 + 16] = r1
mem64[input_0 + 24] = r1h
mem64[input_0 + 32] = r2
mem64[input_0 + 40] = r2h

...

mem64[input_0 + 128] = r8
mem64[input_0 + 136] = r8h

Verifying crypto 19



Reduction mod p

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)
I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I We can reduce modulo p as
r0 ← r0 + 19r5

r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Can even merge this reduction with multiplication:
I Precompute 19a1, 19a2, 19a3, 19a4

I Multiply bj by 19ai if i+ j > 4

Verifying crypto 20



Reduction mod p

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)
I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I We can reduce modulo p as
r0 ← r0 + 19r5

r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Can even merge this reduction with multiplication:
I Precompute 19a1, 19a2, 19a3, 19a4

I Multiply bj by 19ai if i+ j > 4

Verifying crypto 20



Reduction mod p

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)
I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I We can reduce modulo p as
r0 ← r0 + 19r5
r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Can even merge this reduction with multiplication:
I Precompute 19a1, 19a2, 19a3, 19a4

I Multiply bj by 19ai if i+ j > 4

Verifying crypto 20



Reduction mod p

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)
I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I We can reduce modulo p as
r0 ← r0 + 19r5
r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Can even merge this reduction with multiplication:
I Precompute 19a1, 19a2, 19a3, 19a4

I Multiply bj by 19ai if i+ j > 4

Verifying crypto 20



Carrying after multiplication

I Coefficients ri are way too large
I Need to carry. In pseudocode:

carry = (r0h.r0) >> 51
(r1h.r1) += carry
carry <<= 51
(r0h.r0) -= carry

I Carry from r0 to r1; from r1 to r2, and so on
I Multiply carry from r4 by 19 and add to r0
I After one round of carries we have signed 64-bit integers
I Perform another round of carries to obtain reduced coefficients

Verifying crypto 21



Carrying after multiplication

I Coefficients ri are way too large
I Need to carry. In pseudocode:

carry = (r0h.r0) >> 51
(r1h.r1) += carry
carry <<= 51
(r0h.r0) -= carry

I Carry from r0 to r1; from r1 to r2, and so on
I Multiply carry from r4 by 19 and add to r0

I After one round of carries we have signed 64-bit integers
I Perform another round of carries to obtain reduced coefficients

Verifying crypto 21



Carrying after multiplication

I Coefficients ri are way too large
I Need to carry. In pseudocode:

carry = (r0h.r0) >> 51
(r1h.r1) += carry
carry <<= 51
(r0h.r0) -= carry

I Carry from r0 to r1; from r1 to r2, and so on
I Multiply carry from r4 by 19 and add to r0
I After one round of carries we have signed 64-bit integers
I Perform another round of carries to obtain reduced coefficients

Verifying crypto 21



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

Verifying crypto 22



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

Nice for formal verification
I Code is completely branch-free
I Can even write down branch-free Montgomery ladder (unrolling)

I No dynamic memory allocations
I No function calls
I No side effects (except for flags)
I “abnormally straight line code” —Adam Langley

Verifying crypto 22



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

Nice for formal verification
I Code is completely branch-free
I Can even write down branch-free Montgomery ladder (unrolling)
I No dynamic memory allocations
I No function calls
I No side effects (except for flags)

I “abnormally straight line code” —Adam Langley

Verifying crypto 22



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

Nice for formal verification
I Code is completely branch-free
I Can even write down branch-free Montgomery ladder (unrolling)
I No dynamic memory allocations
I No function calls
I No side effects (except for flags)
I “abnormally straight line code” —Adam Langley

Verifying crypto 22



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

. . . not so nice
I Only very high-level and very low-level description

I Pseudocode – sequence of operations in F2255−19

I Hand-optimized assembly (2 versions with different radices)

I Non-linear operations on non-native data types
I 1419 LOC in radix 264

I 1533 LOC in radix 251

Verifying crypto 22



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

. . . not so nice
I Only very high-level and very low-level description

I Pseudocode – sequence of operations in F2255−19

I Hand-optimized assembly (2 versions with different radices)
I Non-linear operations on non-native data types

I 1419 LOC in radix 264

I 1533 LOC in radix 251

Verifying crypto 22



Ladderstep observations

Ladderstep
I Two versions, fully inlined sequence of F2255−19 operations:

I One using radix-264 representation
I One using radix-251 representation

. . . not so nice
I Only very high-level and very low-level description

I Pseudocode – sequence of operations in F2255−19

I Hand-optimized assembly (2 versions with different radices)
I Non-linear operations on non-native data types
I 1419 LOC in radix 264

I 1533 LOC in radix 251

Verifying crypto 22



Assembly?

I The code I showed you is not native assembly
I It’s qhasm code:

I High-level (“portable”) assembler by Bernstein
I Unified syntax across architectures
I Efficient register allocation (linear-scan like)
I All freedom of assembly but faster development time

Verifying crypto 23



Annotated qhasm

Idea for proof of correctness
I Annotate qhasm code with pre- and post-conditions
I Automatically translate to boolector
I Use boolector -minisat to prove correctness

Experience so far
I Don’t verify ladderstep “en bloc”, chop in pieces, use composition of

Hoare logic

I Extensive annotation needed, in particular for multiplication
I Carries cause trouble (verification of radix-251 implementation is

easier)
I Cannot prove everything with boolector, need 2 proofs in Coq (not

automated)

Verifying crypto 24



Annotated qhasm

Idea for proof of correctness
I Annotate qhasm code with pre- and post-conditions
I Automatically translate to boolector
I Use boolector -minisat to prove correctness

Experience so far
I Don’t verify ladderstep “en bloc”, chop in pieces, use composition of

Hoare logic

I Extensive annotation needed, in particular for multiplication
I Carries cause trouble (verification of radix-251 implementation is

easier)
I Cannot prove everything with boolector, need 2 proofs in Coq (not

automated)

Verifying crypto 24



Annotated qhasm

Idea for proof of correctness
I Annotate qhasm code with pre- and post-conditions
I Automatically translate to boolector
I Use boolector -minisat to prove correctness

Experience so far
I Don’t verify ladderstep “en bloc”, chop in pieces, use composition of

Hoare logic
I Extensive annotation needed, in particular for multiplication

I Carries cause trouble (verification of radix-251 implementation is
easier)

I Cannot prove everything with boolector, need 2 proofs in Coq (not
automated)

Verifying crypto 24



Annotated qhasm

Idea for proof of correctness
I Annotate qhasm code with pre- and post-conditions
I Automatically translate to boolector
I Use boolector -minisat to prove correctness

Experience so far
I Don’t verify ladderstep “en bloc”, chop in pieces, use composition of

Hoare logic
I Extensive annotation needed, in particular for multiplication
I Carries cause trouble (verification of radix-251 implementation is

easier)

I Cannot prove everything with boolector, need 2 proofs in Coq (not
automated)

Verifying crypto 24



Annotated qhasm

Idea for proof of correctness
I Annotate qhasm code with pre- and post-conditions
I Automatically translate to boolector
I Use boolector -minisat to prove correctness

Experience so far
I Don’t verify ladderstep “en bloc”, chop in pieces, use composition of

Hoare logic
I Extensive annotation needed, in particular for multiplication
I Carries cause trouble (verification of radix-251 implementation is

easier)
I Cannot prove everything with boolector, need 2 proofs in Coq (not

automated)

Verifying crypto 24



Results

I Fully verified ladderstep (code matches annotations)

I Most costly to verify: radix-251 multiplication:
I 27 intermediate conditions/annotations
I 5658 minutes, ≈ 4 days
I Out of this, 2723 minutes for delayed carry
I Two-phase carry is only 264 minutes

I Finding a known bug in early radix-264 multiplication is fast: < 9
seconds

Verifying crypto 25



Results

I Fully verified ladderstep (code matches annotations)
I Most costly to verify: radix-251 multiplication:

I 27 intermediate conditions/annotations
I 5658 minutes, ≈ 4 days
I Out of this, 2723 minutes for delayed carry
I Two-phase carry is only 264 minutes

I Finding a known bug in early radix-264 multiplication is fast: < 9
seconds

Verifying crypto 25



Results

I Fully verified ladderstep (code matches annotations)
I Most costly to verify: radix-251 multiplication:

I 27 intermediate conditions/annotations
I 5658 minutes, ≈ 4 days
I Out of this, 2723 minutes for delayed carry
I Two-phase carry is only 264 minutes

I Finding a known bug in early radix-264 multiplication is fast: < 9
seconds

Verifying crypto 25



Questions

I Is annotated assembly/qhasm the right approach?

I Is translation to boolector the right approach?
I How can we reduce the amount of annotations?
I How can we automate the whole process (incl. Coq)?
I Will this scale to less friendly cases

I Highly interleaved operations
I Arithmetic using floats
I Vector instructions

I How about proofs of timing-attack resistance?
I Can we prove equivalence with a reference implementation?

Verifying crypto 26



Questions

I Is annotated assembly/qhasm the right approach?
I Is translation to boolector the right approach?

I How can we reduce the amount of annotations?
I How can we automate the whole process (incl. Coq)?
I Will this scale to less friendly cases

I Highly interleaved operations
I Arithmetic using floats
I Vector instructions

I How about proofs of timing-attack resistance?
I Can we prove equivalence with a reference implementation?

Verifying crypto 26



Questions

I Is annotated assembly/qhasm the right approach?
I Is translation to boolector the right approach?
I How can we reduce the amount of annotations?
I How can we automate the whole process (incl. Coq)?

I Will this scale to less friendly cases
I Highly interleaved operations
I Arithmetic using floats
I Vector instructions

I How about proofs of timing-attack resistance?
I Can we prove equivalence with a reference implementation?

Verifying crypto 26



Questions

I Is annotated assembly/qhasm the right approach?
I Is translation to boolector the right approach?
I How can we reduce the amount of annotations?
I How can we automate the whole process (incl. Coq)?
I Will this scale to less friendly cases

I Highly interleaved operations
I Arithmetic using floats
I Vector instructions

I How about proofs of timing-attack resistance?
I Can we prove equivalence with a reference implementation?

Verifying crypto 26



Questions

I Is annotated assembly/qhasm the right approach?
I Is translation to boolector the right approach?
I How can we reduce the amount of annotations?
I How can we automate the whole process (incl. Coq)?
I Will this scale to less friendly cases

I Highly interleaved operations
I Arithmetic using floats
I Vector instructions

I How about proofs of timing-attack resistance?

I Can we prove equivalence with a reference implementation?

Verifying crypto 26



Questions

I Is annotated assembly/qhasm the right approach?
I Is translation to boolector the right approach?
I How can we reduce the amount of annotations?
I How can we automate the whole process (incl. Coq)?
I Will this scale to less friendly cases

I Highly interleaved operations
I Arithmetic using floats
I Vector instructions

I How about proofs of timing-attack resistance?
I Can we prove equivalence with a reference implementation?

Verifying crypto 26



An equivalent(?) Curve25519 implementation

TweetNaCl
I Joint work with Bernstein, Janssen, and Lange
I Re-implementation of NaCl in just 100 Tweets
I Aims at auditability
I Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher,

Poly1305 authenticator, SHA-512 hash
I All written in portable ISO C

I Curve25519 is > 10× slower on Ivy Bridge than speed-optimized
software

I Code available at http://tweetnacl.cr.yp.to

Verifying crypto 27

http://tweetnacl.cr.yp.to


An equivalent(?) Curve25519 implementation

TweetNaCl
I Joint work with Bernstein, Janssen, and Lange
I Re-implementation of NaCl in just 100 Tweets
I Aims at auditability
I Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher,

Poly1305 authenticator, SHA-512 hash
I All written in portable ISO C
I Curve25519 is > 10× slower on Ivy Bridge than speed-optimized

software

I Code available at http://tweetnacl.cr.yp.to

Verifying crypto 27

http://tweetnacl.cr.yp.to


An equivalent(?) Curve25519 implementation

TweetNaCl
I Joint work with Bernstein, Janssen, and Lange
I Re-implementation of NaCl in just 100 Tweets
I Aims at auditability
I Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher,

Poly1305 authenticator, SHA-512 hash
I All written in portable ISO C
I Curve25519 is > 10× slower on Ivy Bridge than speed-optimized

software
I Code available at http://tweetnacl.cr.yp.to

Verifying crypto 27

http://tweetnacl.cr.yp.to


Resources online

I Paper:
http://cryptojedi.org/papers/#verify25519

I Translator, proofs:
http://cryptojedi.org/crypto/#verify25519

I qhasm:
http://cr.yp.to/qhasm.html

Verifying crypto 28

http://cryptojedi.org/papers/#verify25519
http://cryptojedi.org/crypto/#verify25519
http://cr.yp.to/qhasm.html

