Verifying crypto

Many questions and the beginning of an answer

Peter Schwabe
Radboud University Nijmegen, The Netherlands

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang and Shang-Yi Yang

May 20, 2014
Brouwer Seminar

About me

- 2001-2006: Studies of computer science at RWTH Aachen (Germany)
- 2006-2007: Ph.D. student at RWTH Aachen
- 2008-2011: Ph.D. student at TU Eindhoven
- 2011-2012: Postdoc at Academia Sincia (Taiwan) and National Taiwan University
- Since 2013: UD in the Digital Security Group
- Since 2014: Work on VENI project "High-speed high-security cryptography"

Research topics

During Ph.D. time

- High-speed cryptography
- Optimizing the Advanced Encryption Standard (AES)
- Elliptic-curve cryptography (ECC)
- Cryptographic pairings
- NaCl (http://nacl.cr.yp.to)
- High-speed cryptanalysis
- Attacking ECC (parallel Pollard rho algorithm)
- Attacking code-based crypto (generalized birthday attack)

Research topics

During Ph.D. time

- High-speed cryptography
- Optimizing the Advanced Encryption Standard (AES)
- Elliptic-curve cryptography (ECC)
- Cryptographic pairings
- NaCl (http://nacl.cr.yp.to)
- High-speed cryptanalysis
- Attacking ECC (parallel Pollard rho algorithm)
- Attacking code-based crypto (generalized birthday attack)

As a Postdoc

- Focus on constructive side (NaCl)
- Starting to look into automated optimization

VENI project

"High-speed high-security crypto"
NaCl for embedded microcontrollers

- Very restricted environment (speed, memory, storage)
- Typically exposed to physical attacks

VENI project

"High-speed high-security crypto"

NaCl for embedded microcontrollers

- Very restricted environment (speed, memory, storage)
- Typically exposed to physical attacks

A finite-field compiler

- ECC needs operations in large finite fields
- Idea: compile sequence of field operations to superfast assembly

VENI project

"High-speed high-security crypto"

NaCl for embedded microcontrollers

- Very restricted environment (speed, memory, storage)
- Typically exposed to physical attacks

A finite-field compiler

- ECC needs operations in large finite fields
- Idea: compile sequence of field operations to superfast assembly

Verification of crypto software

- Started in the context of the finite-field compiler
- Generally important: ensure correctness of crypto software
- Additional: ensure security of crypto software
- Verification on the assembly level

High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)

High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
- Crypto needs to work fast on busy servers
- Crypto needs to work fast on small embedded devices

High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
- Crypto needs to work fast on busy servers
- Crypto needs to work fast on small embedded devices
- Serious optimization is feasible and worth the effort
- Typical high-speed crypto:
- Optimize on the assembly level
- Use instruction set to an extent that C does not allow
- Inline, unroll, ...

High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
- Crypto needs to work fast on busy servers
- Crypto needs to work fast on small embedded devices
- Serious optimization is feasible and worth the effort
- Typical high-speed crypto:
- Optimize on the assembly level
- Use instruction set to an extent that C does not allow
- Inline, unroll, ...
- 10% speedup are typically a paper!

High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied

High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
- Execution time must be independent of secret data

High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
- Execution time must be independent of secret data
- No data flow from secrets into branch conditions
- No data flow from secrets into load/store addresses

High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
- Execution time must be independent of secret data
- No data flow from secrets into branch conditions
- No data flow from secrets into load/store addresses
- Timing attacks are practical and efficient

High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
- Execution time must be independent of secret data
- No data flow from secrets into branch conditions
- No data flow from secrets into load/store addresses
- Timing attacks are practical and efficient
- Implementations must be correct (bug attacks!)

Correct crypto?

"Are you actually sure that your implementations are correct?" -Gerhard Woeginger, Jan. 24, 2011.

Correct crypto?

Testing

- Is cheap, catches many bugs
- Does not conflict with performance
- Provides very high confidence in correctness for some crypto algorithms
- Typically fails to catch very rarely triggered bugs

Correct crypto?

Audits

- Expensive (time and/or money)
- Conflicts with performance
- Standard approach to ensure correctness and quality of (crypto) software

Correct crypto?

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance

Correct crypto?

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
- Should focus on cases where test and audits fail

Elliptic-curve cryptography

- Let \mathbb{F}_{q} be a finite field
- For $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$, an equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve E over \mathbb{F}_{q}

Elliptic-curve cryptography

- Let \mathbb{F}_{q} be a finite field
- For $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$, an equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve E over \mathbb{F}_{q}

- Points $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ on E together with a "point at infinity" form a group $E\left(\mathbb{F}_{q}\right)$

Elliptic-curve cryptography

- Let \mathbb{F}_{q} be a finite field
- For $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$, an equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve E over \mathbb{F}_{q}

- Points $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ on E together with a "point at infinity" form a group $E\left(\mathbb{F}_{q}\right)$
- Group addition can be computed with a few operations in \mathbb{F}_{q}

Elliptic-curve cryptography

- Let \mathbb{F}_{q} be a finite field
- For $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$, an equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve E over \mathbb{F}_{q}

- Points $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ on E together with a "point at infinity" form a group $E\left(\mathbb{F}_{q}\right)$
- Group addition can be computed with a few operations in \mathbb{F}_{q}
- For $P \in E\left(\mathbb{F}_{q}\right)$ and $k \in \mathbb{Z}$, computing $k P$ is easy $(\Theta(\log (k)))$

Elliptic-curve cryptography

- Let \mathbb{F}_{q} be a finite field
- For $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$, an equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve E over \mathbb{F}_{q}

- Points $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ on E together with a "point at infinity" form a group $E\left(\mathbb{F}_{q}\right)$
- Group addition can be computed with a few operations in \mathbb{F}_{q}
- For $P \in E\left(\mathbb{F}_{q}\right)$ and $k \in \mathbb{Z}$, computing $k P$ is easy $(\Theta(\log (k)))$
- Given $Q \in\langle P\rangle$ and P, computing k with $k P=Q$ is hard $(\Theta(\sqrt{k}))$

Elliptic-curve cryptography

- Let \mathbb{F}_{q} be a finite field
- For $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{q}$, an equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

defines an elliptic curve E over \mathbb{F}_{q}

- Points $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ on E together with a "point at infinity" form a group $E\left(\mathbb{F}_{q}\right)$
- Group addition can be computed with a few operations in \mathbb{F}_{q}
- For $P \in E\left(\mathbb{F}_{q}\right)$ and $k \in \mathbb{Z}$, computing $k P$ is easy $(\Theta(\log (k)))$
- Given $Q \in\langle P\rangle$ and P, computing k with $k P=Q$ is hard $(\Theta(\sqrt{k}))$
- Use in crypto: choose random k, compute and publish $k P$

Curve25519 ECDH

- Diffie-Hellman key exchange protocol by Bernstein (2006)
- Uses curve $E: y^{2}=x^{3}+486662 x^{2}+x$ defined over $\mathbb{F}_{2^{255}-19}$
- Conservative parameter choice, targeting high security
- Set speed records on a variety of platforms

Curve25519 ECDH

- Diffie-Hellman key exchange protocol by Bernstein (2006)
- Uses curve $E: y^{2}=x^{3}+486662 x^{2}+x$ defined over $\mathbb{F}_{2^{255}-19}$
- Conservative parameter choice, targeting high security
- Set speed records on a variety of platforms
- High-level view:
- Input: x-coordinate x_{P} of a point P, scalar k
- Compute x-coordinate $x_{k P}$ of $k P$ as $x_{k P}=X_{k P} / Z_{k P}$
- Invert $Z_{k P}$, multiply by $X_{k P}$ to obtain $x_{k P}$
- Inputs and outputs encoded as little-endian byte arrays of length 32

The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_{P} of some point P Ensure: $\left(X_{k P}, Z_{k P}\right)$ fulfilling $x_{k P}=X_{k P} / Z_{k P}$
$X_{1}=x_{P} ; X_{2}=1 ; Z_{2}=0 ; X_{3}=x_{P} ; Z_{3}=1$
for $i \leftarrow n-1$ downto 0 do
if bit i of k is 1 then
$(X 3, Z 3, X 2, Z 2) \leftarrow \operatorname{ladderstep}(X 1, X 3, Z 3, X 2, Z 2)$
else
$(X 2, Z 2, X 3, Z 3) \leftarrow$ ladderstep $(X 1, X 2, Z 2, X 3, Z 3)$
end if
end for
return $\left(X_{2}, Z_{2}\right)$

One Montgomery "ladder step"

const $a 24=121666$ (from the curve equation) function ladderstep $\left(X_{Q-P}, X_{P}, Z_{P}, X_{Q}, Z_{Q}\right)$
$t_{1} \leftarrow X_{P}+Z_{P}$
$t_{6} \leftarrow t_{1}^{2}$
$t_{2} \leftarrow X_{P}-Z_{P}$
$t_{7} \leftarrow t_{2}^{2}$
$t_{5} \leftarrow t_{6}-t_{7}$
$t_{3} \leftarrow X_{Q}+Z_{Q}$
$t_{4} \leftarrow X_{Q}-Z_{Q}$
$t_{8} \leftarrow t_{4} \cdot t_{1}$
$t_{9} \leftarrow t_{3} \cdot t_{2}$
$X_{P+Q} \leftarrow\left(t_{8}+t_{9}\right)^{2}$
$Z_{P+Q} \leftarrow X_{Q-P} \cdot\left(t_{8}-t_{9}\right)^{2}$
$X_{2 P} \leftarrow t_{6} \cdot t_{7}$
$Z_{2 P} \leftarrow t_{5} \cdot\left(t_{7}+a 24 \cdot t_{5}\right)$
return $\left(X_{2 P}, Z_{2 P}, X_{P+Q}, Z_{P+Q}\right)$
end function

Arithmetic in $\mathbb{F}_{2^{255}-19}$

- Need arithmetic on 255 -bit integers and reduction $\bmod 2^{255}-19$
- Speed typically determined by speed of multiplications
- Use fastest hardware multiplier
- On Intel Nehalem: $64 \times 64 \rightarrow 128$-bit integer multiply

Arithmetic in $\mathbb{F}_{2^{255}-19}$

- Need arithmetic on 255 -bit integers and reduction $\bmod 2^{255}-19$
- Speed typically determined by speed of multiplications
- Use fastest hardware multiplier
- On Intel Nehalem: $64 \times 64 \rightarrow 128$-bit integer multiply
- Represent 256 -bit integer A through 464 -bit integers $a_{0}, a_{1}, a_{2}, a_{3}$
- Value of A is $\sum_{i=0}^{3} a_{i} 2^{64 \cdot i}$

```
typedef struct{
    unsigned long long v[4];
} fe25519;
```


Addition

```
int64 r0
int64 r1
int64 r2
int64 r3
int64 t0
int64 t1
enter fe25519_add
r0 = mem64[input_1 + 0]
r1 = mem64[input_1 + 8]
r2 = mem64[input_1 + 16]
r3 = mem64[input_1 + 24]
carry? r0 += mem64[input_2 + 0]
carry? r1 += mem64[input_2 + 8] + carry
carry? r2 += mem64[input_2 + 16] + carry
carry? r3 += mem64[input_2 + 24] + carry
```


Multiplication

```
x0 = mem64[input_1 + 0]
rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x0
r0 = rax
r1 = rdx
rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x0
carry? r1 += rax
r2 = 0
r2 += rdx + carry
```

```
rax = mem64[input_2 + 16]
(uint128) rdx rax = rax * x0
carry? r2 += rax
r3 = 0
r3 += rdx + carry
rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x0
carry? r3 += rax
r4 = 0
r4 += rdx + carry
```


Multiplication

```
x1 = mem64[input_1 + 8]
rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x1
carry? r1 += rax
c = 0
c += rdx + carry
rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x1
carry? r2 += rax
rdx += 0 + carry
carry? r2 += c
c = 0
c += rdx + carry
```

```
rax \(=\) mem64[input_2 + 16]
(uint128) \(r d x\) rax \(=r a x * x 1\)
carry? r3 += rax
rdx += 0 + carry
carry? r3 += c
\(c=0\)
c += rdx + carry
rax = mem64[input_2 + 24]
(uint128) \(r d x\) rax \(=r a x * x 1\)
carry? r4 += rax
rdx += 0 + carry
carry? r4 += c
r5 = 0
r5 += rdx + carry
```


Multiplication

```
x3 = mem64[input_1 + 24]
rax \(=\) mem64[input_2 + 0]
(uint128) \(r d x\) rax \(=r a x * x 3\)
carry? r3 += rax
\(c=0\)
c += rdx + carry
rax = mem64[input_2 + 8]
(uint128) \(r d x\) rax \(=r a x * x 3\)
carry? r4 += rax
rdx += 0 + carry
carry? r4 += c
\(\mathrm{c}=0\)
c += rdx + carry
```

```
rax = mem64[input_2 + 16]
(uint128) rdx rax = rax * x3
carry? r5 += rax
rdx += 0 + carry
carry? r5 += c
c = 0
c += rdx + carry
rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x3
carry? r6 += rax
rdx += 0 + carry
carry? r6 += c
r7 = 0
r7 += rdx + carry
```

Reduction mod $2^{255}-19$

- "Lazy" reduction modulo 2^{256} - 38: multiply upper half by 38 , add to lower half

Reduction $\bmod 2^{255}-19$

- "Lazy" reduction modulo $2^{256}-38$: multiply upper half by 38 , add to lower half
- In assembly:

```
rax = r4
(uint128) \(r d x \operatorname{rax}=\operatorname{rax} * \operatorname{mem} 64\left[\& c o n s t \_38\right]\)
r4 = rax
rax \(=r 5\)
r5 = rdx
(uint128) \(r d x \operatorname{rax}=\operatorname{rax} * \operatorname{mem} 64\left[\& c o n s t \_38\right]\)
carry? r5 += rax
rax \(=r 6\)
\(r 6=0\)
\(r 6+=r d x+c a r r y\)
...
(uint128) \(r d x \operatorname{rax}=\operatorname{rax} * \operatorname{mem} 64\left[\& c o n s t \_38\right]\)
carry? r7 += rax
\(r 8=0\)
r8 += rdx + carry
```


Reduction $\bmod 2^{255}-19$

- "Lazy" reduction modulo $2^{256}-38$: multiply upper half by 38 , add to lower half
- In assembly:

```
carry? r0 += r4
carry? r1 += r5 + carry
carry? r2 += r6 + carry
carry? r3 += r7 + carry
zero \(=0\)
r8 += zero + carry
r8 *= 38
carry? r0 += r8
carry? r1 += zero + carry
carry? r2 += zero + carry
carry? r3 += zero + carry
zero += zero + carry
zero *= 38
r0 += zero
```


Changing the radix

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries

Changing the radix

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)

Changing the radix

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)

Changing the radix

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6 !)
- Let's get rid of the carries, represent A as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- 2^{51} representation

Changing the radix

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Let's get rid of the carries, represent A as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- 2^{51} representation
- Multiple ways to write the same integer A, for example $A=2^{52}$:
- $\left(2^{52}, 0,0,0,0\right)$
- $(0,2,0,0,0)$

Changing the radix

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Let's get rid of the carries, represent A as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix-2 ${ }^{51}$ representation
- Multiple ways to write the same integer A, for example $A=2^{52}$:
- $\left(2^{52}, 0,0,0,0\right)$
- $(0,2,0,0,0)$
- Call a representation $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ reduced, if all $a_{i} \in\left[0, \ldots, 2^{52}-1\right]$

Addition

$$
\begin{aligned}
& \text { enter fe25519_add } \\
& \text { r0 = mem64[input_1 + 0] } \\
& \text { r1 = mem64[input_1 + 8] } \\
& \text { r2 = mem64[input_1 + 16] } \\
& \text { r3 = mem64[input_1 + 24] } \\
& \text { r4 = mem64[input_1 + 32] } \\
& \text { r0 += mem64[input_2 + 0] } \\
& \text { r1 += mem64[input_2 + 8] } \\
& \text { r2 += mem64[input_2 + 16] } \\
& \text { r3 += mem64[input_2 + 24] } \\
& \text { r4 += mem64[input_2 + 32] } \\
& \text { mem64[input_0 + 0] = r0 } \\
& \text { mem64[input_0 + 8] = r1 } \\
& \text { mem64[input_0 + 16] = r2 } \\
& \text { mem64[input_0 + 24] = r3 } \\
& \text { mem64[input_0 + 32] = r4 } \\
& \text { return }
\end{aligned}
$$

Multiplication

```
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 0]
r0 = rax
rOh = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 8]
r1 = rax
r1h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 16]
r2 = rax
r2h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 24]
r3 = rax
r3h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 32]
r4 = rax
r4h = rdx
```


Multiplication

```
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 0]
carry? r1 += rax
r1h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 8]
carry? r2 += rax
r2h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 16]
carry? r3 += rax
r3h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 24]
carry? r4 += rax
r4h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 32]
r5 = rax
r5h = rdx
```


Multiplication

```
mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r0h
mem64[input_0 + 16] = r1
mem64[input_0 + 24] = r1h
mem64[input_0 + 32] = r2
mem64[input_0 + 40] = r2h
mem64[input_0 + 128] = r8
mem64[input_0 + 136] = r8h
```


Reduction $\bmod p$

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

Reduction $\bmod p$

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- We can reduce modulo p as

$$
r_{0} \leftarrow r_{0}+19 r_{5}
$$

Reduction $\bmod p$

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- We can reduce modulo p as

$$
\begin{aligned}
& r_{0} \leftarrow r_{0}+19 r_{5} \\
& r_{1} \leftarrow r_{1}+19 r_{6} \\
& r_{2} \leftarrow r_{2}+19 r_{7} \\
& r_{3} \leftarrow r_{3}+19 r_{8}
\end{aligned}
$$

Reduction $\bmod p$

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- We can reduce modulo p as

$$
\begin{aligned}
& r_{0} \leftarrow r_{0}+19 r_{5} \\
& r_{1} \leftarrow r_{1}+19 r_{6} \\
& r_{2} \leftarrow r_{2}+19 r_{7} \\
& r_{3} \leftarrow r_{3}+19 r_{8}
\end{aligned}
$$

- Can even merge this reduction with multiplication:
- Precompute $19 a_{1}, 19 a_{2}, 19 a_{3}, 19 a_{4}$
- Multiply b_{j} by $19 a_{i}$ if $i+j>4$

Carrying after multiplication

- Coefficients r_{i} are way too large
- Need to carry. In pseudocode:

$$
\begin{aligned}
& \text { carry }=(r 0 h \cdot r 0) \gg 51 \\
& (r 1 h . r 1)+=\text { carry } \\
& \text { carry <<= } 51 \\
& (r 0 h \cdot r 0)-=\text { carry }
\end{aligned}
$$

Carrying after multiplication

- Coefficients r_{i} are way too large
- Need to carry. In pseudocode:

$$
\begin{aligned}
& \text { carry = (r0h.r0) >> } 51 \\
& \text { (r1h.r1) += carry } \\
& \text { carry <<= } 51 \\
& \text { (r0h.r0) -= carry }
\end{aligned}
$$

- Carry from r_{0} to r_{1}; from r_{1} to r_{2}, and so on
- Multiply carry from r_{4} by 19 and add to r_{0}

Carrying after multiplication

- Coefficients r_{i} are way too large
- Need to carry. In pseudocode:

$$
\begin{aligned}
& \text { carry = (r0h.r0) >> } 51 \\
& \text { (r1h.r1) += carry } \\
& \text { carry <<= } 51 \\
& \text { (r0h.r0) -= carry }
\end{aligned}
$$

- Carry from r_{0} to r_{1}; from r_{1} to r_{2}, and so on
- Multiply carry from r_{4} by 19 and add to r_{0}
- After one round of carries we have signed 64-bit integers
- Perform another round of carries to obtain reduced coefficients

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- 2^{51} representation

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- -2^{51} representation

Nice for formal verification

- Code is completely branch-free
- Can even write down branch-free Montgomery ladder (unrolling)

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- -2^{51} representation

Nice for formal verification

- Code is completely branch-free
- Can even write down branch-free Montgomery ladder (unrolling)
- No dynamic memory allocations
- No function calls
- No side effects (except for flags)

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- -2^{51} representation

Nice for formal verification

- Code is completely branch-free
- Can even write down branch-free Montgomery ladder (unrolling)
- No dynamic memory allocations
- No function calls
- No side effects (except for flags)
- "abnormally straight line code" -Adam Langley

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- 2^{51} representation
. . . not so nice
- Only very high-level and very low-level description
- Pseudocode - sequence of operations in $\mathbb{F}_{2^{255}-19}$
- Hand-optimized assembly (2 versions with different radices)

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- 2^{51} representation
. . . not so nice
- Only very high-level and very low-level description
- Pseudocode - sequence of operations in $\mathbb{F}_{2^{255}-19}$
- Hand-optimized assembly (2 versions with different radices)
- Non-linear operations on non-native data types

Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
- One using radix- 2^{64} representation
- One using radix- 2^{51} representation
. . . not so nice
- Only very high-level and very low-level description
- Pseudocode - sequence of operations in $\mathbb{F}_{2^{255}-19}$
- Hand-optimized assembly (2 versions with different radices)
- Non-linear operations on non-native data types
- 1419 LOC in radix 2^{64}
- 1533 LOC in radix 2^{51}

Assembly?

- The code I showed you is not native assembly
- It's qhasm code:
- High-level ("portable") assembler by Bernstein
- Unified syntax across architectures
- Efficient register allocation (linear-scan like)
- All freedom of assembly but faster development time

Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don't verify ladderstep "en bloc", chop in pieces, use composition of Hoare logic

Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don't verify ladderstep "en bloc", chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication

Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don't verify ladderstep "en bloc", chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication
- Carries cause trouble (verification of radix- 2^{51} implementation is easier)

Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don't verify ladderstep "en bloc", chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication
- Carries cause trouble (verification of radix-2 2^{51} implementation is easier)
- Cannot prove everything with boolector, need 2 proofs in Coq (not automated)

Results

- Fully verified ladderstep (code matches annotations)

Results

- Fully verified ladderstep (code matches annotations)
- Most costly to verify: radix- 2^{51} multiplication:
- 27 intermediate conditions/annotations
- 5658 minutes, ≈ 4 days
- Out of this, 2723 minutes for delayed carry
- Two-phase carry is only 264 minutes

Results

- Fully verified ladderstep (code matches annotations)
- Most costly to verify: radix- 2^{51} multiplication:
- 27 intermediate conditions/annotations
- 5658 minutes, ≈ 4 days
- Out of this, 2723 minutes for delayed carry
- Two-phase carry is only 264 minutes
- Finding a known bug in early radix- 2^{64} multiplication is fast: <9 seconds

Questions

- Is annotated assembly/qhasm the right approach?

Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?

Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?

Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
- Will this scale to less friendly cases
- Highly interleaved operations
- Arithmetic using floats
- Vector instructions

Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
- Will this scale to less friendly cases
- Highly interleaved operations
- Arithmetic using floats
- Vector instructions
- How about proofs of timing-attack resistance?

Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
- Will this scale to less friendly cases
- Highly interleaved operations
- Arithmetic using floats
- Vector instructions
- How about proofs of timing-attack resistance?
- Can we prove equivalence with a reference implementation?

An equivalent(?) Curve25519 implementation

Tweet NaCl

- Joint work with Bernstein, Janssen, and Lange
- Re-implementation of NaCl in just 100 Tweets
- Aims at auditability
- Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher, Poly1305 authenticator, SHA-512 hash
- All written in portable ISO C

An equivalent(?) Curve25519 implementation

Tweet NaCl

- Joint work with Bernstein, Janssen, and Lange
- Re-implementation of NaCl in just 100 Tweets
- Aims at auditability
- Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher, Poly1305 authenticator, SHA-512 hash
- All written in portable ISO C
- Curve25519 is $>10 \times$ slower on Ivy Bridge than speed-optimized software

An equivalent(?) Curve25519 implementation

Tweet NaCl

- Joint work with Bernstein, Janssen, and Lange
- Re-implementation of NaCl in just 100 Tweets
- Aims at auditability
- Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher, Poly1305 authenticator, SHA-512 hash
- All written in portable ISO C
- Curve25519 is $>10 \times$ slower on Ivy Bridge than speed-optimized software
- Code available at http://tweetnacl.cr.yp.to

Resources online

- Paper: http://cryptojedi.org/papers/\#verify25519
- Translator, proofs: http://cryptojedi.org/crypto/\#verify25519
- qhasm:
http://cr.yp.to/qhasm.html

