
Post-quantum crypto on ARM Cortex-M

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org

November 11, 2019

mailto:peter@cryptojedi.org
https://cryptojedi.org


Crypto today

5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)

• Authenticator (e.g., HMAC, GMAC, Poly1305)

• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



Crypto today

5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)

• Authenticator (e.g., HMAC, GMAC, Poly1305)

• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



Crypto today

5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)

• Authenticator (e.g., HMAC, GMAC, Poly1305)

• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



2



“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4



The NIST competition

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

5



The NIST competition (ctd.)

“Key exchange”

• What is meant is key encapsulation mechanisms (KEMs)
• (vk, sk)←KeyGen()
• (c, k)←Encaps(vk)
• k←Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”

• Several broken, 5 withdrawn

• Jan 2019: NIST announces 26 round-2 candidates
• 17 KEMs and PKEs
• 9 signature schemes

6



The NIST competition (ctd.)

“Key exchange”

• What is meant is key encapsulation mechanisms (KEMs)
• (vk, sk)←KeyGen()
• (c, k)←Encaps(vk)
• k←Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”

• Several broken, 5 withdrawn

• Jan 2019: NIST announces 26 round-2 candidates
• 17 KEMs and PKEs
• 9 signature schemes

6



Round-2 of the NIST PQC project

“Performance (hardware+software) will play more of a role”
—Dustin Moody, May 2019

“ . . .we will recommend that teams generally focus their hardware
implementation efforts on Cortex-M4”

—Daniel Apon, Feb 2019

7



Round-2 of the NIST PQC project

“Performance (hardware+software) will play more of a role”
—Dustin Moody, May 2019

“ . . .we will recommend that teams generally focus their hardware
implementation efforts on Cortex-M4”

—Daniel Apon, Feb 2019

7



pqm4

Joint work with
Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

• Started as part of PQCRYPTO H2020
project

• Continued within EPOQUE ERC StG

• Library and testing/benchmarking
framework

• PQ-crypto on ARM Cortex-M4
• Uses STM32F4 Discovery board
• 192KB of RAM, benchmarks at

24MHz

• Easy to add schemes using NIST API

• Optimized SHA3 and AES shared
across primitives

8



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

9



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

9



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

9



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

9



Signatures (not) in pqm4

reference optimized
CRYSTALS-Dilithium 3 (3)
FALCON 7RAM 3

GeMSS 7Key —
LUOV 3 —
MQDSS 7RAM —
Picnic 7RAM —
qTESLA 3 —
Rainbow 7Key —
SPHINCS+ 3 —

7Key : keys too large 7RAM : implementation uses too much RAM
7Lib: available implementations depend on external libraries

10



KEMs (not) in pqm4

reference optimized
BIKE 7Lib —
Classic McEliece 7Key —
CRYSTALS-Kyber 3 3
Frodo-KEM 3 3
HQC 7Lib —
LAC 3 —
LEDAcrypt 7RAM WIP
NewHope 3 3
NTRU 3 3
NTRU Prime 3 —
NTS-KEM 7Key —
ROLLO 7Lib —
Round5 3 3
RQC 7Lib —
SABER 3 3
SIKE 3 —
ThreeBears 3 3

7Key : keys too large 7RAM : implementation uses too much RAM
7Lib: available implementations depend on external libraries

11



Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

12



Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ
• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

12



Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ
• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

12



Learning with rounding (LWR)

• Given uniform A ∈ Zk×`
q

• Given samples dAscp, with p < q

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

13



Learning with rounding (LWR)

• Given uniform A ∈ Zk×`
q

• Given samples dAscp, with p < q

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

13



Lattice-based KEMs – the basic idea

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise s, s′, e, e′ are small

• v and v′ are approximately the same

14



Core operation: multiplication in Rq = Zq[X ]/f

Power-of-two q

• Several schemes use q = 2m, for small m

• Examples: Round5, NTRU, Saber

• More round-1 examples: Kindi, RLizard

Prime “NTT-friendly” q
• Kyber and NewHope use prime q supporting fast NTT

• For A,B ∈ Rq, A · B = NTT−1(NTT(A) ◦ NTT(B))

• NTT is Fourier Transform over finite field

• Use f = X n + 1 for power-of-two n

15



Core operation: multiplication in Rq = Zq[X ]/f

Power-of-two q

• Several schemes use q = 2m, for small m

• Examples: Round5, NTRU, Saber

• More round-1 examples: Kindi, RLizard

Prime “NTT-friendly” q
• Kyber and NewHope use prime q supporting fast NTT

• For A,B ∈ Rq, A · B = NTT−1(NTT(A) ◦ NTT(B))

• NTT is Fourier Transform over finite field

• Use f = X n + 1 for power-of-two n

15



Multiplication in Z2m[X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook
• Toom-3: split into 5 multiplications of 1/3 size
• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

16



Multiplication in Z2m[X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook
• Toom-3: split into 5 multiplications of 1/3 size
• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

16



Multiplication in Z2m[X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook
• Toom-3: split into 5 multiplications of 1/3 size
• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

16



Multiplication in Z2m[X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook
• Toom-3: split into 5 multiplications of 1/3 size
• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

16



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

17



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

17



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

17



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”
polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
• Optimize Saber, q = 213, n = 256
• Use Toom-4 + two levels of Karatsuba
• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

17



18



Our approach

• Generate optimized assembly for Karatsuba/Toom

• Use Python scripts, receive as input n and q

• Hand-optimize “small” schoolbook multiplications
• Make heavy use of DSP “vector instructions”
• Perform two 16× 16-bit multiply-accumulate in one cycle
• Carefully schedule instructions to minimize loads/stores

• Benchmark different options, pick fastest

19



Multiplication results
approach “small” cycles stack

Saber
(n = 256, q = 213)

Karatsuba only 16 41 121 2 020
Toom-3 11 41 225 3 480
Toom-4 16 39 124 3 800
Toom-4 + Toom-3 - - -

Kindi-256-3-4-2
(n = 256, q = 214)

Karatsuba only 16 41 121 2 020
Toom-3 11 41 225 3 480
Toom-4 - - -
Toom-4 + Toom-3 - - -

NTRU-HRSS
(n = 701, q = 213)

Karatsuba only 11 230 132 5 676
Toom-3 15 217 436 9 384
Toom-4 11 182 129 10 596
Toom-4 + Toom-3 - - -

NTRU-KEM-743
(n = 743, q = 211)

Karatsuba only 12 247 489 6 012
Toom-3 16 219 061 9 920
Toom-4 12 196 940 11 208
Toom-4 + Toom-3 16 197 227 12 152

RLizard-1024
(n = 1024,
q = 211)

Karatsuba only 16 400 810 8 188
Toom-3 11 360 589 13 756
Toom-4 16 313 744 15 344
Toom-4 + Toom-3 11 315 788 16 816

20



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (improved by Gérard)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity
• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X
2)

• Huge overlap between evaluating

f (β) = f0(β
2) + βf1(β

2) and

f (−β) = f0(β
2)− βf1(β2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1

21



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (improved by Gérard)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity
• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X
2)

• Huge overlap between evaluating

f (β) = f0(β
2) + βf1(β

2) and

f (−β) = f0(β
2)− βf1(β2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1

21



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (improved by Gérard)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity
• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X
2)

• Huge overlap between evaluating

f (β) = f0(β
2) + βf1(β

2) and

f (−β) = f0(β
2)− βf1(β2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1

21



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (improved by Gérard)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity
• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X
2)

• Huge overlap between evaluating

f (β) = f0(β
2) + βf1(β

2) and

f (−β) = f0(β
2)− βf1(β2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1

21



NTT-based multiplication

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k :
• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k←ai − t

• Compute fi←ai + t

• Main optimizations on Cortex-M4:
• “Merge” levels: fewer loads/stores
• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)
• Lazy reductions
• Carefully optimize using DSP instructions

22



NTT-based multiplication

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k :
• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k←ai − t

• Compute fi←ai + t

• Main optimizations on Cortex-M4:
• “Merge” levels: fewer loads/stores
• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)
• Lazy reductions
• Carefully optimize using DSP instructions

22



NTT-based multiplication

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k :
• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k←ai − t

• Compute fi←ai + t

• Main optimizations on Cortex-M4:
• “Merge” levels: fewer loads/stores
• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)
• Lazy reductions
• Carefully optimize using DSP instructions

22



Selected optimized lattice KEM cycles

Scheme Key Generation Encapsulation Decapsulation
ntruhps2048509 77 698 713 645 329 542 439
ntruhps2048677 144 383 491 955 902 836 959
ntruhps4096821 211 758 452 1 205 662 1 066 879
ntruhrss701 154 676 705 402 784 890 231
lightsaber 459 965 651 273 678 810
saber 896 035 1 161 849 1 204 633
firesaber 1 448 776 1 786 930 1 853 339

kyber512 514 291 652 769 621 245
kyber768 976 757 1 146 556 1 094 849
kyber1024 1 575 052 1 779 848 1 709 348
newhope1024cpa 975 736 975 452 162 660
newhope1024cca 1 161 112 1 777 918 1 760 470

Comparison: Curve25519 scalarmult: 625 358 cycles

23



Selected optimized lattice KEM stack bytes

Scheme Key Generation Encapsulation Decapsulation

ntruhps2048509 21 412 15 452 14 828
ntruhps2048677 28 524 20 604 19 756
ntruhps4096821 34 532 24 924 23 980
ntruhrss701 27 580 19 372 20 580
lightsaber 9 656 11 392 12 136
saber 13 256 15 544 16 640
firesaber 20 144 23 008 24 592

kyber512 2 952 2 552 2 560
kyber768 3 848 3 128 3 072
kyber1024 4 360 3 584 3 592
newhope1024cpa 11 096 17 288 8 308
newhope1024cca 11 080 17 360 19 576

24



Some lessons learned and TODOs

• Lattice-based KEMs are bottlenecked by hashing

• HW accelerators for PQ crypto: start with Keccak
• Careful about API, want speedup also for hash-based signatures
• Faster Keccak will accelerate several more schemes (e.g., Dilithium)

• NTRU-HPS is currently additionally bottlenecked by slow
constant-time sorting

• Some more speedups possible (≈ 5%?) by using floating-point
registers

25



Some lessons learned and TODOs

• Lattice-based KEMs are bottlenecked by hashing
• HW accelerators for PQ crypto: start with Keccak

• Careful about API, want speedup also for hash-based signatures
• Faster Keccak will accelerate several more schemes (e.g., Dilithium)

• NTRU-HPS is currently additionally bottlenecked by slow
constant-time sorting

• Some more speedups possible (≈ 5%?) by using floating-point
registers

25



Some lessons learned and TODOs

• Lattice-based KEMs are bottlenecked by hashing
• HW accelerators for PQ crypto: start with Keccak
• Careful about API, want speedup also for hash-based signatures

• Faster Keccak will accelerate several more schemes (e.g., Dilithium)

• NTRU-HPS is currently additionally bottlenecked by slow
constant-time sorting

• Some more speedups possible (≈ 5%?) by using floating-point
registers

25



Some lessons learned and TODOs

• Lattice-based KEMs are bottlenecked by hashing
• HW accelerators for PQ crypto: start with Keccak
• Careful about API, want speedup also for hash-based signatures
• Faster Keccak will accelerate several more schemes (e.g., Dilithium)

• NTRU-HPS is currently additionally bottlenecked by slow
constant-time sorting

• Some more speedups possible (≈ 5%?) by using floating-point
registers

25



Some lessons learned and TODOs

• Lattice-based KEMs are bottlenecked by hashing
• HW accelerators for PQ crypto: start with Keccak
• Careful about API, want speedup also for hash-based signatures
• Faster Keccak will accelerate several more schemes (e.g., Dilithium)

• NTRU-HPS is currently additionally bottlenecked by slow
constant-time sorting

• Some more speedups possible (≈ 5%?) by using floating-point
registers

25



Some lessons learned and TODOs

• Lattice-based KEMs are bottlenecked by hashing
• HW accelerators for PQ crypto: start with Keccak
• Careful about API, want speedup also for hash-based signatures
• Faster Keccak will accelerate several more schemes (e.g., Dilithium)

• NTRU-HPS is currently additionally bottlenecked by slow
constant-time sorting

• Some more speedups possible (≈ 5%?) by using floating-point
registers

25



Resources online

• NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST “PQC forum” mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/

email-list

• pqm4 library and benchmarking suite:
https://github.com/mupq/pqm4

• Code of Z2m [x ] multiplication paper, including scripts:
https://github.com/mupq/polymul-z2mx-m4

• Z2m [x ] multiplication paper:
https://cryptojedi.org/papers/#latticem4

• Kyber/NTT optimization paper:
https://cryptojedi.org/papers/#nttm4

26

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://github.com/mupq/pqm4
https://github.com/mupq/polymul-z2mx-m4
https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#nttm4


Resources online

• NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST “PQC forum” mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/

email-list

• pqm4 library and benchmarking suite:
https://github.com/mupq/pqm4

• Code of Z2m [x ] multiplication paper, including scripts:
https://github.com/mupq/polymul-z2mx-m4

• Z2m [x ] multiplication paper:
https://cryptojedi.org/papers/#latticem4

• Kyber/NTT optimization paper:
https://cryptojedi.org/papers/#nttm4

26

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://github.com/mupq/pqm4
https://github.com/mupq/polymul-z2mx-m4
https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#nttm4

