

Post-quantum crypto on ARM Cortex-M

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
November 11, 2019

Crypto today

5 building blocks for a "secure channel" Symmetric crypto

- Block or stream cipher (e.g., AES, ChaCha20)
- Authenticator (e.g., HMAC, GMAC, Poly1305)
- Hash function (e.g., SHA-2, SHA-3)

Crypto today

5 building blocks for a "secure channel" Symmetric crypto

- Block or stream cipher (e.g., AES, ChaCha20)
- Authenticator (e.g., HMAC, GMAC, Poly1305)
- Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

- Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman, ECDH)
- Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

Crypto today

5 building blocks for a "secure channel" Symmetric crypto

- Block or stream cipher (e.g., AES, ChaCha20)
- Authenticator (e.g., HMAC, GMAC, Poly1305)
- Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

- Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman, ECDH)
- Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

- All widely deployed asymmetric crypto relies on
- the hardness of factoring, or
- the hardness of (elliptic-curve) discrete logarithms

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor ${ }^{\dagger}$

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

"In the past, people have said, maybe it's 50 years away, it's a dream, maybe it'll happen sometime. I used to think it was 50 . Now I'm thinking like it's 15 or a little more. It's within reach. It's within our lifetime. It's going to happen."
—Mark Ketchen (IBM), Feb. 2012, about quantum computers

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum computers.

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum computers.

5 main directions

- Lattice-based crypto (PKE and Sigs)
- Code-based crypto (mainly PKE)
- Multivariate-based crypto (mainly Sigs)
- Hash-based signatures (only Sigs)
- Isogeny-based crypto (so far, mainly PKE)

The NIST competition

Count of Problem Category Column Labels $\mathrm{\nabla}$			
Row Labels	v Key Exchange	Signature	Grand Total
?	1		1
Braids	1	1	2
Chebychev	1		1
Codes	19	5	24
Finite Automata	1	1	2
Hash		4	4
Hypercomplex Numbers	1		1
Isogeny	1		1
Lattice	24	4	28
Mult. Var	6	7	13
Rand. walk	1		1
RSA	1	1	2
Grand Total	57	23	80
Q 4	¢て ${ }_{31} \quad \bigcirc_{27}$	\bullet	

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

The NIST competition (ctd.)

"Key exchange"

- What is meant is key encapsulation mechanisms (KEMs)
- ($\mathrm{vk}, \mathrm{sk}) \leftarrow$ KeyGen ()
- $(c, k) \leftarrow E n c a p s(v k)$
- $k \leftarrow \operatorname{Decaps}(c, s k)$
"Key exchange"
- What is meant is key encapsulation mechanisms (KEMs)
- ($\mathrm{vk}, \mathrm{sk}) \leftarrow$ KeyGen ()
- $(c, k) \leftarrow E n c a p s(v k)$
- $k \leftarrow \operatorname{Decaps}(c, s k)$

Status of the NIST competition

- In total 69 submissions accepted as "complete and proper"
- Several broken, 5 withdrawn
- Jan 2019: NIST announces 26 round-2 candidates
- 17 KEMs and PKEs
- 9 signature schemes

Round-2 of the NIST PQC project

"Performance (hardware+software) will play more of a role"
—Dustin Moody, May 2019

Round-2 of the NIST PQC project

"Performance (hardware+software) will play more of a role" —Dustin Moody, May 2019
"... we will recommend that teams generally focus their hardware implementation efforts on Cortex-M4"
—Daniel Apon, Feb 2019

pqm4

Joint work with
Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

- Started as part of PQCRYPTO H2O20 project
- Continued within EPOQUE ERC StG
- Library and testing/benchmarking framework
- PQ-crypto on ARM Cortex-M4
- Uses STM32F4 Discovery board
- 192 KB of RAM, benchmarks at 24 MHz
- Easy to add schemes using NIST API
- Optimized SHA3 and AES shared
 across primitives

pqm4 usage

- Run functional tests of all primitives and implementations:
python3 test.py

pqm4 usage

- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py

pqm4 usage

- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks:
python3 benchmarks.py

pqm4 usage

- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks:
python3 benchmarks.py
- Easy to evaluate only subset of schemes, e.g.:
python3 test.py newhope1024cca sphincs-shake256-128s

Signatures (not) in pqm4

reference optimized
CRYSTALS-Dilithium FALCON
GeMSS
LUOV
MQDSS
Picnic
qTESLA
Rainbow
SPHINCS+

\checkmark	(\checkmark)
$X_{\text {RAM }}$	\checkmark
$X_{\text {Key }}$	-
\checkmark	-
$X_{\text {RAM }}$	-
$X_{\text {RAM }}$	-
\checkmark	-
$X_{\text {Key }}$	-
\checkmark	-

$X_{\text {Key }}$: keys too large $X_{\text {RAM }}$: implementation uses too much RAM
$X_{\text {Lib }}$: available implementations depend on external libraries

KEMs (not) in pqm4

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given samples $\lceil\mathbf{A s}\rfloor_{p}$, with $p<q$

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given samples $\lceil\mathbf{A s}\rfloor_{p}$, with $p<q$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Lattice-based KEMs - the basic idea

Alice (server)		Bob (client)
$\mathbf{s , ~} \stackrel{L}{*}^{\text {s }} \chi$		$\mathbf{s}^{\prime}, \mathbf{e}^{\prime} \stackrel{s}{5}^{5} \chi$
$\mathbf{b} \leftarrow$ as $+\mathbf{e}$	b	$\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$
	u	

Alice has $\mathbf{v}=\mathbf{u s}=$ ass $^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
Bob has $\mathbf{v}^{\prime}=\mathbf{b s}^{\prime}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}$

- Secret and noise $\mathbf{s}, \mathbf{s}^{\prime}, \mathbf{e}, \mathbf{e}^{\prime}$ are small
- \mathbf{v} and \mathbf{v}^{\prime} are approximately the same

Core operation: multiplication in $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] / f$

Power-of-two q

- Several schemes use $q=2^{m}$, for small m
- Examples: Round5, NTRU, Saber
- More round-1 examples: Kindi, RLizard

Core operation: multiplication in $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] / f$

Power-of-two q

- Several schemes use $q=2^{m}$, for small m
- Examples: Round5, NTRU, Saber
- More round-1 examples: Kindi, RLizard

Prime "NTT-friendly" q

- Kyber and NewHope use prime q supporting fast NTT
- For $A, B \in \mathcal{R}_{q}, A \cdot B=\mathrm{NTT}^{-1}(\mathrm{NTT}(A) \circ \mathrm{NTT}(B))$
- NTT is Fourier Transform over finite field
- Use $f=X^{n}+1$ for power-of-two n

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Can do better using Karatsuba:

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b_{\ell}-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Recursive application yields complexity $\Theta\left(n^{\log _{2} 3}\right)$

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Can do better using Karatsuba:

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b_{\ell}-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Recursive application yields complexity $\Theta\left(n^{\log _{2} 3}\right)$
- Generalization: Toom-Cook
- Toom-3: split into 5 multiplications of $1 / 3$ size
- Toom-4: split into 7 multiplications of $1 / 4$ size
- Approach: Evaluate, multiply, interpolate

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
- Optimize Saber, $q=2^{13}, n=256$
- Use Toom-4 + two levels of Karatsuba
- Optimized 16 -coefficient schoolbook multiplication

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
- Optimize Saber, $q=2^{13}, n=256$
- Use Toom-4 + two levels of Karatsuba
- Optimized 16 -coefficient schoolbook multiplication
- Is this the best approach? How about other values of q and n ?

©PTIMTHs

Our approach

- Generate optimized assembly for Karatsuba/Toom
- Use Python scripts, receive as input n and q
- Hand-optimize "small" schoolbook multiplications
- Make heavy use of DSP "vector instructions"
- Perform two 16×16-bit multiply-accumulate in one cycle
- Carefully schedule instructions to minimize loads/stores
- Benchmark different options, pick fastest

Multiplication results

	approach	"small"	cycles	stack
Saber$\left(n=256, q=2^{13}\right)$	Karatsuba only	16	41121	2020
	Toom-3	11	41225	3480
	Toom-4	16	39124	3800
	Toom-4 + Toom-3	-	-	-
Kindi-256-3-4-2$\left(n=256, q=2^{14}\right)$	Karatsuba only	16	41121	2020
	Toom-3	11	41225	3480
	Toom-4	-	-	-
	Toom-4 + Toom-3	-	-	-
NTRU-HRSS$\left(n=701, q=2^{13}\right)$	Karatsuba only	11	230132	5676
	Toom-3	15	217436	9384
	Toom-4	11	182129	10596
	Toom-4 + Toom-3	-	-	-
NTRU-KEM-743$\left(n=743, q=2^{11}\right)$	Karatsuba only	12	247489	6012
	Toom-3	16	219061	9920
	Toom-4	12	196940	11208
	Toom-4 + Toom-3	16	197227	12152
$\begin{aligned} & \text { RLizard-1024 } \\ & (n=1024, \\ & \left.q=2^{11}\right) \end{aligned}$	Karatsuba only	16	400810	8188
	Toom-3	11	360589	13756
	Toom-4	16	313744	15344
	Toom-4 + Toom-3	11	315788	16816

NTT-based multiplication

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)

NTT-based multiplication

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)
- NTT is an FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)
- NTT is an FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)
- NTT is an FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- Same for f_{1}

NTT-based multiplication

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each

NTT-based multiplication

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each
- Butterfly on level k :
- Pick up f_{i} and $f_{i+2^{k}}$
- Multiply $f_{i+2^{k}}$ by a power of ω to obtain t
- Compute $f_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $f_{i} \leftarrow a_{i}+t$

NTT-based multiplication

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each
- Butterfly on level k :
- Pick up f_{i} and $f_{i+2^{k}}$
- Multiply $f_{i+2^{k}}$ by a power of ω to obtain t
- Compute $f_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $f_{i} \leftarrow a_{i}+t$
- Main optimizations on Cortex-M4:
- "Merge" levels: fewer loads/stores
- Optimize modular arithmetic (precompute powers of ω in Montgomery domain)
- Lazy reductions
- Carefully optimize using DSP instructions

Selected optimized lattice KEM cycles

Scheme	Key Generation	Encapsulation	Decapsulation
ntruhps2048509	77698713	645329	542439
ntruhps2048677	144383491	955902	836959
ntruhps4096821	211758452	1205662	1066879
ntruhrss701	154676705	402784	890231
lightsaber	459965	651273	678810
saber	896035	1161849	1204633
firesaber	1448776	1786930	1853339
kyber512	514291	652769	621245
kyber768	976757	1146556	1094849
kyber1024	1575052	1779848	1709348
newhope1024cpa	975736	975452	162660
newhope1024cca	1161112	1777918	1760470

Comparison: Curve25519 scalarmult: 625358 cycles

Selected optimized lattice KEM stack bytes

Scheme	Key Generation	Encapsulation	Decapsulation
ntruhps2048509	21412	15452	14828
ntruhps2048677	28524	20604	19756
ntruhps4096821	34532	24924	23980
ntruhrss701	27580	19372	20580
lightsaber	9656	11392	12136
saber	13256	15544	16640
firesaber	20144	23008	24592
kyber512	2952	2552	2560
kyber768	3848	3128	3072
kyber1024	4360	3584	3592
newhope1024cpa	11096	17288	8308
newhope1024cca	11080	17360	19576

Some lessons learned and TODOs

- Lattice-based KEMs are bottlenecked by hashing

Some lessons learned and TODOs

- Lattice-based KEMs are bottlenecked by hashing
- HW accelerators for PQ crypto: start with Keccak

Some lessons learned and TODOs

- Lattice-based KEMs are bottlenecked by hashing
- HW accelerators for PQ crypto: start with Keccak
- Careful about API, want speedup also for hash-based signatures

Some lessons learned and TODOs

- Lattice-based KEMs are bottlenecked by hashing
- HW accelerators for PQ crypto: start with Keccak
- Careful about API, want speedup also for hash-based signatures
- Faster Keccak will accelerate several more schemes (e.g., Dilithium)

Some lessons learned and TODOs

- Lattice-based KEMs are bottlenecked by hashing
- HW accelerators for PQ crypto: start with Keccak
- Careful about API, want speedup also for hash-based signatures
- Faster Keccak will accelerate several more schemes (e.g., Dilithium)
- NTRU-HPS is currently additionally bottlenecked by slow constant-time sorting

Some lessons learned and TODOs

- Lattice-based KEMs are bottlenecked by hashing
- HW accelerators for PQ crypto: start with Keccak
- Careful about API, want speedup also for hash-based signatures
- Faster Keccak will accelerate several more schemes (e.g., Dilithium)
- NTRU-HPS is currently additionally bottlenecked by slow constant-time sorting
- Some more speedups possible ($\approx 5 \%$?) by using floating-point registers
- NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
- NIST "PQC forum" mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/ email-list
- NIST PQC website: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
- NIST "PQC forum" mailing list: https://csrc.nist.gov/projects/post-quantum-cryptography/ email-list
- pqm4 library and benchmarking suite: https://github.com/mupq/pqm4
- Code of $\mathbb{Z}_{2^{m}}[x]$ multiplication paper, including scripts: https://github.com/mupq/polymul-z2mx-m4
- $\mathbb{Z}_{2^{m}}[x]$ multiplication paper: https://cryptojedi.org/papers/\#latticem4
- Kyber/NTT optimization paper:
https://cryptojedi.org/papers/\#nttm4

