

Post-quantum crypto on ARM Cortex-M

Peter Schwabe peter@cryptojedi.org https://cryptojedi.org November 11, 2019

Crypto today

5 building blocks for a "secure channel" Symmetric crypto

- Block or stream cipher (e.g., AES, ChaCha20)
- Authenticator (e.g., HMAC, GMAC, Poly1305)
- Hash function (e.g., SHA-2, SHA-3)

Crypto today

5 building blocks for a "secure channel" Symmetric crypto

- Block or stream cipher (e.g., AES, ChaCha20)
- Authenticator (e.g., HMAC, GMAC, Poly1305)
- Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

- Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman, ECDH)
- Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

5 building blocks for a "secure channel" Symmetric crypto

- Block or stream cipher (e.g., AES, ChaCha20)
- Authenticator (e.g., HMAC, GMAC, Poly1305)
- Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

- Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman, ECDH)
- Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

- All widely deployed asymmetric crypto relies on
 - the hardness of factoring, or
 - the hardness of (elliptic-curve) discrete logarithms

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored. "In the past, people have said, maybe it's 50 years away, it's a dream, maybe it'll happen sometime. I used to think it was 50. Now I'm thinking like it's 15 or a little more. It's within reach. It's within our lifetime. It's going to happen."

-Mark Ketchen (IBM), Feb. 2012, about quantum computers

Definition Post-quantum crypto is (asymmetric) crypto that resists attacks using classical *and quantum* computers. Definition

Post-quantum crypto is (asymmetric) crypto that resists attacks using classical *and quantum* computers.

5 main directions

- Lattice-based crypto (PKE and Sigs)
- Code-based crypto (mainly PKE)
- Multivariate-based crypto (mainly Sigs)
- Hash-based signatures (only Sigs)
- Isogeny-based crypto (so far, mainly PKE)

acks using	

The NIST competition

Count of Problem Category Column Labels 🔽					
Row Labels	Key Exchange	Signature	Grand Total		
?	1		1		
Braids	1	1	2		
Chebychev	1		1		
Codes	19	5	24		
Finite Automata	1	1	2		
Hash		4	4		
Hypercomplex Numbers	1		1		
Isogeny	1		1		
Lattice	24	4	28		
Mult. Var	6	7	13		
Rand. walk	1		1		
RSA	1	1	2		
Grand Total	57	23	80		
♀4	t] 31 ♡ 27	Ø			

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

"Key exchange"

- What is meant is key encapsulation mechanisms (KEMs)
 - (vk,sk)←KeyGen()
 - $(c, k) \leftarrow \text{Encaps}(vk)$
 - $k \leftarrow \text{Decaps}(c, \text{sk})$

"Key exchange"

- What is meant is key encapsulation mechanisms (KEMs)
 - $(vk, sk) \leftarrow KeyGen()$
 - $(c, k) \leftarrow \text{Encaps}(vk)$
 - $k \leftarrow \text{Decaps}(c, \text{sk})$

Status of the NIST competition

- In total 69 submissions accepted as "complete and proper"
- Several broken, 5 withdrawn
- Jan 2019: NIST announces 26 round-2 candidates
 - 17 KEMs and PKEs
 - 9 signature schemes

"Performance (hardware+software) will play more of a role" —Dustin Moody, May 2019

"Performance (hardware+software) will play more of a role" —Dustin Moody, May 2019

"... we will recommend that teams generally focus their hardware implementation efforts on Cortex-M4"

-Daniel Apon, Feb 2019

pqm4

Joint work with Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

- Started as part of PQCRYPTO H2020 project
- Continued within EPOQUE ERC StG
- Library and testing/benchmarking framework
 - PQ-crypto on ARM Cortex-M4
 - Uses STM32F4 Discovery board
 - 192 KB of RAM, benchmarks at 24 MHz
- Easy to add schemes using NIST API
- Optimized SHA3 and AES shared across primitives

• Run functional tests of all primitives and implementations: python3 test.py

- Run functional tests of all primitives and implementations: python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py

- Run functional tests of all primitives and implementations: python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks: python3 benchmarks.py

- Run functional tests of all primitives and implementations: python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks: python3 benchmarks.py
- Easy to evaluate only subset of schemes, e.g.: python3 test.py newhope1024cca sphincs-shake256-128s

Signatures (not) in pqm4

	reference	optimized
CRYSTALS-Dilithium	1	(✔)
FALCON	X _{RAM}	\checkmark
GeMSS	X _{Key}	—
LUOV	\checkmark	—
MQDSS	X _{RAM}	—
Picnic	X _{RAM}	—
qTESLA	\checkmark	_
Rainbow	X _{Key}	—
SPHINCS+	\checkmark	—

 X_{Key} : keys too large X_{RAM} : implementation uses too much RAM X_{Lib} : available implementations depend on external libraries

KEMs (not) in pqm4

	reference	optimized
BIKE	X Lib	
Classic McEliece	X Key	—
CRYSTALS-Kyber		\checkmark
Frodo-KEM	\checkmark	\checkmark
HQC	X _{Lib}	_
LAC	\checkmark	_
LEDAcrypt	X _{RAM}	WIP
NewHope	1	\checkmark
NTRU	\checkmark	\checkmark
NTRU Prime	\checkmark	_
NTS-KEM	X Key	
ROLLO	XLib	
Round5	1	\checkmark
RQC	X _{Lib}	_
SABER	\checkmark	\checkmark
SIKE	\checkmark	_
ThreeBears	1	\checkmark

 X_{Key} : keys too large X_{RAM} : implementation uses too much RAM X_{Lib} : available implementations depend on external libraries

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k imes \ell}$
- Given "noise distribution" $\boldsymbol{\chi}$
- Given samples $\mathbf{As} + \mathbf{e},$ with $\mathbf{e} {\leftarrow} \chi$

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k imes \ell}$
- Given "noise distribution" $\boldsymbol{\chi}$
- Given samples $\mathbf{As} + \mathbf{e},$ with $\mathbf{e} {\leftarrow} \chi$
- Search version: find **s**
- Decision version: distinguish from uniform random

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k imes \ell}$
- Given "noise distribution" $\boldsymbol{\chi}$
- Given samples $\mathbf{As} + \mathbf{e},$ with $\mathbf{e} {\leftarrow} \chi$
- Search version: find s
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_q[x]/f$

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k imes \ell}$
- Given samples $[\mathbf{As}]_p$, with p < q

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k imes \ell}$
- Given samples $[\mathbf{As}]_p$, with p < q
- Search version: find s
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_q[x]/f$

Alice (server)		Bob (client)
$\mathbf{s}, \mathbf{e} \xleftarrow{s} \chi$		$\mathbf{s'}, \mathbf{e'} \xleftarrow{\hspace{0.15cm} \$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{ \ \ b \ \ }$	$\mathbf{u}{\leftarrow}\mathbf{a}\mathbf{s}'+\mathbf{e}'$
	<u> </u>	

Alice has $\mathbf{v} = \mathbf{us} = \mathbf{ass'} + \mathbf{e's}$ Bob has $\mathbf{v'} = \mathbf{bs'} = \mathbf{ass'} + \mathbf{es'}$

- Secret and noise ${\boldsymbol{s}}, {\boldsymbol{s}}', {\boldsymbol{e}}, {\boldsymbol{e}}'$ are small
- **v** and **v**' are *approximately* the same

Core operation: multiplication in $\mathcal{R}_q = \mathbb{Z}_q[X]/f$

Power-of-two q

- Several schemes use $q = 2^m$, for small m
- Examples: Round5, NTRU, Saber
- More round-1 examples: Kindi, RLizard

Core operation: multiplication in $\mathcal{R}_q = \mathbb{Z}_q[X]/f$

Power-of-two q

- Several schemes use $q = 2^m$, for small m
- Examples: Round5, NTRU, Saber
- More round-1 examples: Kindi, RLizard

Prime "NTT-friendly" q

- Kyber and NewHope use prime q supporting fast NTT
- For $A, B \in \mathcal{R}_q$, $A \cdot B = \mathsf{NTT}^{-1}(\mathsf{NTT}(A) \circ \mathsf{NTT}(B))$
- NTT is Fourier Transform over finite field
- Use $f = X^n + 1$ for power-of-two n

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16-bit integers
- No modular reductions required, 2^{16} is a multiple of $q = 2^m$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16-bit integers
- No modular reductions required, 2^{16} is a multiple of $q = 2^m$
- Schoolbook multiplication takes n^2 integer muls, $(n-1)^2$ adds

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16-bit integers
- No modular reductions required, 2^{16} is a multiple of $q = 2^m$
- Schoolbook multiplication takes n^2 integer muls, $(n-1)^2$ adds
- Can do better using Karatsuba:

$$(a_{\ell} + X^{k}a_{h}) \cdot (b_{\ell} + X^{k}b_{h})$$

= $a_{\ell}b_{\ell} + X^{k}(a_{\ell}b_{h} + a_{h}b_{\ell}) + X^{n}a_{h}b_{h}$
= $a_{\ell}b_{\ell} + X^{k}((a_{\ell} + a_{h})(b_{\ell} + b_{h}) - a_{\ell}b_{\ell} - a_{h}b_{h}) + X^{n}a_{h}b_{h}$

• Recursive application yields complexity $\Theta(n^{\log_2 3})$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16-bit integers
- No modular reductions required, 2^{16} is a multiple of $q = 2^m$
- Schoolbook multiplication takes n^2 integer muls, $(n-1)^2$ adds
- Can do better using Karatsuba:

$$(a_{\ell} + X^{k}a_{h}) \cdot (b_{\ell} + X^{k}b_{h})$$

= $a_{\ell}b_{\ell} + X^{k}(a_{\ell}b_{h} + a_{h}b_{\ell}) + X^{n}a_{h}b_{h}$
= $a_{\ell}b_{\ell} + X^{k}((a_{\ell} + a_{h})(b_{\ell} + b_{h}) - a_{\ell}b_{\ell} - a_{h}b_{h}) + X^{n}a_{h}b_{h}$

- Recursive application yields complexity $\Theta(n^{\log_2 3})$
- Generalization: Toom-Cook
 - Toom-3: split into 5 multiplications of 1/3 size
 - Toom-4: split into 7 multiplications of 1/4 size
- Approach: Evaluate, multiply, interpolate

• Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2, loses 1 bit of precision
- Toom-4 needs division by 8, loses 3 bits of precision
- This limits recursive application when using 16-bit integers
- Can use Toom-4 only for $q \leq 2^{13}$

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2, loses 1 bit of precision
- Toom-4 needs division by 8, loses 3 bits of precision
- This limits recursive application when using 16-bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
 - Optimize Saber, $q = 2^{13}, n = 256$
 - Use Toom-4 + two levels of Karatsuba
 - Optimized 16-coefficient schoolbook multiplication

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2, loses 1 bit of precision
- Toom-4 needs division by 8, loses 3 bits of precision
- This limits recursive application when using 16-bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
 - Optimize Saber, $q = 2^{13}, n = 256$
 - Use Toom-4 + two levels of Karatsuba
 - Optimized 16-coefficient schoolbook multiplication
- Is this the best approach? How about other values of q and n?

- Generate optimized assembly for Karatsuba/Toom
- Use Python scripts, receive as input n and q
- Hand-optimize "small" schoolbook multiplications
 - Make heavy use of DSP "vector instructions"
 - Perform two 16 \times 16-bit multiply-accumulate in one cycle
 - Carefully schedule instructions to minimize loads/stores
- Benchmark different options, pick fastest

Multiplication results

	approach	"small"	cycles	stack
Saber $(n = 256, q = 2^{13})$	Karatsuba only	16	41 121	2 0 2 0
	Toom-3	11	41 225	3 480
	Toom-4	16	39 124	3 800
	Toom-4 + Toom-3	-	-	-
Kindi-256-3-4-2 (<i>n</i> = 256, <i>q</i> = 2 ¹⁴)	Karatsuba only	16	41 121	2 0 2 0
	Toom-3	11	41 225	3 480
	Toom-4	-	-	
	Toom-4 + Toom-3	-	-	
NTRU-HRSS $(n = 701, q = 2^{13})$	Karatsuba only	11	230 132	5 676
	Toom-3	15	217 436	9 3 8 4
	Toom-4	11	182 129	10 596
	Toom-4 + Toom-3	-	- 1	
NTRU-KEM-743 $(n = 743, q = 2^{11})$	Karatsuba only	12	247 489	6 0 1 2
	Toom-3	16	219061	9 920
	Toom-4	12	196 940	11 208
	Toom-4 + Toom-3	16	197 227	12 152
RLizard-1024 ($n = 1024$, $q = 2^{11}$)	Karatsuba only	16	400 810	8 1 8 8
	Toom-3	11	360 589	13756
	Toom-4	16	313 744	15 344
	Toom-4 + Toom-3	11	315 788	16816

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)
- NTT is an FFT in a finite field
- Evaluate polynomial $f = f_0 + f_1 X + \dots + f_{n-1} X^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(X^2) + X f_1(X^2)$

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)
- NTT is an FFT in a finite field
- Evaluate polynomial $f = f_0 + f_1 X + \dots + f_{n-1} X^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(X^2) + X f_1(X^2)$
 - Huge overlap between evaluating

 $f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \text{ and}$ $f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)$

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (improved by Gérard)
- NTT is an FFT in a finite field
- Evaluate polynomial $f = f_0 + f_1 X + \dots + f_{n-1} X^{n-1}$ at all *n*-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(X^2) + Xf_1(X^2)$
 - Huge overlap between evaluating

 $f(\beta) = f_0(\beta^2) + \beta f_1(\beta^2) \text{ and}$ $f(-\beta) = f_0(\beta^2) - \beta f_1(\beta^2)$

- f₀ has n/2 coefficients
- Evaluate f_0 at all (n/2)-th roots of unity by recursive application
- Same for f₁

- First thing to do: replace recursion by iteration
- Loop over log n levels with n/2 "butterflies" each

- First thing to do: replace recursion by iteration
- Loop over log n levels with n/2 "butterflies" each
- Butterfly on level k:
 - Pick up f_i and f_{i+2^k}
 - Multiply f_{i+2^k} by a power of ω to obtain t
 - Compute $f_{i+2^k} \leftarrow a_i t$
 - Compute $f_i \leftarrow a_i + t$

- First thing to do: replace recursion by iteration
- Loop over log n levels with n/2 "butterflies" each
- Butterfly on level k:
 - Pick up f_i and f_{i+2^k}
 - Multiply f_{i+2^k} by a power of ω to obtain t
 - Compute $f_{i+2^k} \leftarrow a_i t$
 - Compute $f_i \leftarrow a_i + t$
- Main optimizations on Cortex-M4:
 - "Merge" levels: fewer loads/stores
 - Optimize modular arithmetic (precompute powers of ω in Montgomery domain)
 - Lazy reductions
 - Carefully optimize using DSP instructions

Selected optimized lattice KEM cycles

Scheme	Key Generation	Encapsulation	Decapsulation
ntruhps2048509	77 698 713	645 329	542 439
ntruhps2048677	144 383 491	955 902	836 959
ntruhps4096821	211 758 452	1 205 662	1 066 879
ntruhrss701	154 676 705	402 784	890 231
lightsaber	459 965	651 273	678 810
saber	896 035	1 161 849	1 204 633
firesaber	1 448 776	1 786 930	1 853 339
kyber512	514 291	652 769	621 245
kyber768	976 757	1 146 556	1 094 849
kyber1024	1 575 052	1 779 848	1 709 348
newhope1024cpa	975 736	975 452	162 660
newhope1024cca	1 161 112	1 777 918	1 760 470

Comparison: Curve25519 scalarmult: 625358 cycles

Selected optimized lattice KEM stack bytes

Scheme	Key Generation	Encapsulation	Decapsulation
ntruhps2048509	21 412	15 452	14 828
ntruhps2048677	28 524	20 604	19756
ntruhps4096821	34 532	24 924	23 980
ntruhrss701	27 580	19 372	20 580
lightsaber	9 6 5 6	11 392	12136
saber	13 256	15 544	16 640
firesaber	20 144	23 008	24 592
kyber512	2 952	2 552	2 560
kyber768	3 848	3 1 2 8	3072
kyber1024	4 360	3 584	3 592
newhope1024cpa	11 096	17 288	8 308
newhope1024cca	11 080	17 360	19 576

• Lattice-based KEMs are bottlenecked by hashing

- Lattice-based KEMs are bottlenecked by hashing
 - HW accelerators for PQ crypto: start with Keccak

- Lattice-based KEMs are bottlenecked by hashing
 - HW accelerators for PQ crypto: start with Keccak
 - · Careful about API, want speedup also for hash-based signatures

- Lattice-based KEMs are bottlenecked by hashing
 - HW accelerators for PQ crypto: start with Keccak
 - Careful about API, want speedup also for hash-based signatures
 - Faster Keccak will accelerate several more schemes (e.g., Dilithium)

- Lattice-based KEMs are bottlenecked by hashing
 - HW accelerators for PQ crypto: start with Keccak
 - Careful about API, want speedup also for hash-based signatures
 - Faster Keccak will accelerate several more schemes (e.g., Dilithium)
- NTRU-HPS is currently additionally bottlenecked by slow constant-time sorting

- Lattice-based KEMs are bottlenecked by hashing
 - HW accelerators for PQ crypto: start with Keccak
 - Careful about API, want speedup also for hash-based signatures
 - Faster Keccak will accelerate several more schemes (e.g., Dilithium)
- NTRU-HPS is currently additionally bottlenecked by slow constant-time sorting
- \bullet Some more speedups possible (\approx 5%?) by using floating-point registers

• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST "PQC forum" mailing list:

https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list

• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST "PQC forum" mailing list:

https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list

- pqm4 library and benchmarking suite: https://github.com/mupq/pqm4
- Code of Z_{2^m}[x] multiplication paper, including scripts: https://github.com/mupq/polymul-z2mx-m4
- Z_{2^m}[x] multiplication paper: https://cryptojedi.org/papers/#latticem4
- Kyber/NTT optimization paper: https://cryptojedi.org/papers/#nttm4