
High-assurance crypto software

Peter Schwabe

Radboud University, Nijmegen, The Netherlands

June 22, 2016

CECC 2016, Piešťany, Slovakia

Some questions. . .

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?

Who believes that their software is secure and correct?

Who is sure that their software is secure and correct?

2

Some questions. . .

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?

Who believes that their software is secure and correct?

Who is sure that their software is secure and correct?

2

Some questions. . .

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?

Who believes that their software is secure and correct?

Who is sure that their software is secure and correct?

2

Some questions. . .

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?

Who believes that their software is secure and correct?

Who is sure that their software is secure and correct?

2

Bug attacks

I Imagine bug in crypto that is triggered with very low probability
I Attacker finds this bug, crafts input that

I triggers the bug if secret bit is 0
I does not trigger the bug if secret bit is 1

I Attacker observes output, learns secret bit

I Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in
OpenSSL 0.9.8g elliptic-curve Diffie-Hellman

I Bug was a mis-handled carry bit (which was almost always zero)
I Similar bug, again in OpenSSL, fixed in Jan. 2015
I Unclear whether that one can be exploited
I Similar bug, again in OpenSSL, fixed in Dec. 2015
I Hard to exploit, but probably possible

3

Bug attacks

I Imagine bug in crypto that is triggered with very low probability
I Attacker finds this bug, crafts input that

I triggers the bug if secret bit is 0
I does not trigger the bug if secret bit is 1

I Attacker observes output, learns secret bit
I Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in

OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
I Bug was a mis-handled carry bit (which was almost always zero)

I Similar bug, again in OpenSSL, fixed in Jan. 2015
I Unclear whether that one can be exploited
I Similar bug, again in OpenSSL, fixed in Dec. 2015
I Hard to exploit, but probably possible

3

Bug attacks

I Imagine bug in crypto that is triggered with very low probability
I Attacker finds this bug, crafts input that

I triggers the bug if secret bit is 0
I does not trigger the bug if secret bit is 1

I Attacker observes output, learns secret bit
I Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in

OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
I Bug was a mis-handled carry bit (which was almost always zero)
I Similar bug, again in OpenSSL, fixed in Jan. 2015
I Unclear whether that one can be exploited

I Similar bug, again in OpenSSL, fixed in Dec. 2015
I Hard to exploit, but probably possible

3

Bug attacks

I Imagine bug in crypto that is triggered with very low probability
I Attacker finds this bug, crafts input that

I triggers the bug if secret bit is 0
I does not trigger the bug if secret bit is 1

I Attacker observes output, learns secret bit
I Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in

OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
I Bug was a mis-handled carry bit (which was almost always zero)
I Similar bug, again in OpenSSL, fixed in Jan. 2015
I Unclear whether that one can be exploited
I Similar bug, again in OpenSSL, fixed in Dec. 2015
I Hard to exploit, but probably possible

3

Timing Attacks

General idea of those attacks
I Secret data has influence on timing of software
I Attacker measures timing
I Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .
I Timing attacks are a type of side-channel attacks
I Unlike other side-channel attacks, they work remotely:

I Some need to run attack code in parallel to the target software
I Attacker can log in remotely (ssh)

I Some attacks work by measuring network delays
I Attacker does not even need an account on the target machine

I Can’t protect against timing attacks by locking a room

4

Timing Attacks

General idea of those attacks
I Secret data has influence on timing of software
I Attacker measures timing
I Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .
I Timing attacks are a type of side-channel attacks
I Unlike other side-channel attacks, they work remotely:

I Some need to run attack code in parallel to the target software
I Attacker can log in remotely (ssh)

I Some attacks work by measuring network delays
I Attacker does not even need an account on the target machine

I Can’t protect against timing attacks by locking a room

4

Timing Attacks

General idea of those attacks
I Secret data has influence on timing of software
I Attacker measures timing
I Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .
I Timing attacks are a type of side-channel attacks
I Unlike other side-channel attacks, they work remotely:

I Some need to run attack code in parallel to the target software
I Attacker can log in remotely (ssh)
I Some attacks work by measuring network delays
I Attacker does not even need an account on the target machine

I Can’t protect against timing attacks by locking a room

4

Timing Attacks

General idea of those attacks
I Secret data has influence on timing of software
I Attacker measures timing
I Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .
I Timing attacks are a type of side-channel attacks
I Unlike other side-channel attacks, they work remotely:

I Some need to run attack code in parallel to the target software
I Attacker can log in remotely (ssh)
I Some attacks work by measuring network delays
I Attacker does not even need an account on the target machine

I Can’t protect against timing attacks by locking a room

4

Examples of timing attacks

I Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65ms

I AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

I Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

I Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

5

Examples of timing attacks

I Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65ms

I AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

I Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

I Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

5

Examples of timing attacks

I Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65ms

I AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

I Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

I Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

5

Examples of timing attacks

I Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of
Linux’s dmcrypt in just 65ms

I AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of
CBC-mode encryption in pretty much all TLS implementations

I Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13:
“On average, the attack is able to recover 96.7% of the bits of the
secret key by observing a single signature or decryption round.”

I Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of
success in recovering the secret key” for OpenSSL ECDSA using
secp256k1 “with as little as 200 signatures”

5

Example for this talk: X25519

I Bernstein 2006: X25519 Diffie-Hellman key exchange (originally:
“Curve25519”)

I Secret keys: 32-byte little-endian scalars
I Public keys: 32-byte arrays, encoding x-coordinate of a point on

E : y2 = x3 + 486662x2 + x

over F2255−19

I Base point: (9, 0, . . . , 0)

I Given secret key s and public key (or base point) P :
I Copy s to s′

I Set least significant 3 bits of s′ to zero
I Set most significant bit of s′ to zero
I Set second-most significant bit of s′ to one
I Compute x-coordinate of s′P

6

Example for this talk: X25519

I Bernstein 2006: X25519 Diffie-Hellman key exchange (originally:
“Curve25519”)

I Secret keys: 32-byte little-endian scalars
I Public keys: 32-byte arrays, encoding x-coordinate of a point on

E : y2 = x3 + 486662x2 + x

over F2255−19

I Base point: (9, 0, . . . , 0)
I Given secret key s and public key (or base point) P :

I Copy s to s′

I Set least significant 3 bits of s′ to zero
I Set most significant bit of s′ to zero
I Set second-most significant bit of s′ to one
I Compute x-coordinate of s′P

6

The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: xkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return X2 · Z−1

2

7

One Montgomery “ladder step”

const a24 = (A+ 2)/4 (A from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← XQ−P · (t8 − t9)
2

X2P ← t6 · t7
Z2P ← t5 · (t7 + a24 · t5)
return (X2P , Z2P , XP+Q, ZP+Q)

end function

8

Curve25519 implementations

I Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
I Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
I Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
I Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel

Nehalem/Westmere
I Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015:

X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
I Chou, 2015: The fastest Curve25519 software ever
I Many more implementations, most without scientific papers

I All of this software set speed records on the respective platform

9

Curve25519 implementations

I Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
I Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
I Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
I Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel

Nehalem/Westmere
I Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015:

X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
I Chou, 2015: The fastest Curve25519 software ever
I Many more implementations, most without scientific papers
I All of this software set speed records on the respective platform

9

Curve25519 implementations

I Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
I Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
I Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
I Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel

Nehalem/Westmere
I Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015:

X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
I Chou, 2015: The fastest Curve25519 software ever
I Many more implementations, most without scientific papers
I All of this software set speed records on the respective platform

9

Constant-time software

Avoid secret branch conditions
I Branches largely influence timing of program
I Secret branch conditions leak information
I “Balancing branches” is typically insufficient
I ⇒ No data flow from secret data into branch conditions!

Avoid memory access at secret positions
I Caches influence timing depending on address
I Attackers can potentially control cache lines
I Caches are not the only problem (e.g., store-to-load forwarding)
I ⇒ No data flow from secret data into addresses!

10

Constant-time software

Avoid secret branch conditions
I Branches largely influence timing of program
I Secret branch conditions leak information
I “Balancing branches” is typically insufficient
I ⇒ No data flow from secret data into branch conditions!

Avoid memory access at secret positions
I Caches influence timing depending on address
I Attackers can potentially control cache lines
I Caches are not the only problem (e.g., store-to-load forwarding)
I ⇒ No data flow from secret data into addresses!

10

The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: xkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return X2 · Z−1

2

11

The Montgomery ladder rewritten

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: xkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

b← bit i of s
c← b⊕ p
p← b
(X2, X3)← cswap(X2, X3, c)
(Z2, Z3)← cswap(Z2, Z3, c)
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end for
return X2 · Z−1

2

12

cmov

/* decision bit b has to be either 0 or 1 */
void cmov(uint64_t *r, uint64_t *a, uint64_t b)
{

uint64_t t;

b = -b; /* Now b is either 0 or 0xffffffff */
t = (*r ^ *a) & b;
*r ^= t;

}

13

“Verifying” constant-time behavior

Run in valgrind with uninitialized secret data
(or use Langley’s ctgrind)

[short demo]

Static verification
Vagrant (Almeida, Barbosa, Barthe, Dupressoir, Emmi):
https://github.com/imdea-software/verifying-constant-time

FlowTracker (Rodrigues, Pereira, Aranha):
http://cuda.dcc.ufmg.br/flowtracker/

I Both work on LLVM IL level

14

https://github.com/imdea-software/verifying-constant-time
http://cuda.dcc.ufmg.br/flowtracker/

“Verifying” constant-time behavior

Run in valgrind with uninitialized secret data
(or use Langley’s ctgrind)

[short demo]

Static verification
Vagrant (Almeida, Barbosa, Barthe, Dupressoir, Emmi):
https://github.com/imdea-software/verifying-constant-time

FlowTracker (Rodrigues, Pereira, Aranha):
http://cuda.dcc.ufmg.br/flowtracker/

I Both work on LLVM IL level

14

https://github.com/imdea-software/verifying-constant-time
http://cuda.dcc.ufmg.br/flowtracker/

“Verifying” constant-time behavior

Run in valgrind with uninitialized secret data
(or use Langley’s ctgrind)

[short demo]

Static verification
Vagrant (Almeida, Barbosa, Barthe, Dupressoir, Emmi):
https://github.com/imdea-software/verifying-constant-time

FlowTracker (Rodrigues, Pereira, Aranha):
http://cuda.dcc.ufmg.br/flowtracker/

I Both work on LLVM IL level

14

https://github.com/imdea-software/verifying-constant-time
http://cuda.dcc.ufmg.br/flowtracker/

Correct software?

“Are you actually sure that your software is correct?”

—prof. Gerhard Woeginger, Jan. 24, 2011.

15

Arithmetic in F2255−19 for AMD64

Radix 264

I Standard: break elements of F2255−19 into 4 64-bit integers
I (Schoolbook) multiplication breaks down into 16 64-bit integer

multiplications
I Adding up partial results requires many add-with-carry (adc)
I Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

I Instead, break into 5 64-bit integers, use radix 251

I Can delay carry operations; carry “en bloc”
I Schoolbook multiplication now 25 64-bit integer multiplications
I Easy to merge multiplication with reduction (multiplies by 19)
I Better performance on Westmere/Nehalem, worse on 65 nm Core 2

and AMD processors

16

Arithmetic in F2255−19 for AMD64

Radix 264

I Standard: break elements of F2255−19 into 4 64-bit integers
I (Schoolbook) multiplication breaks down into 16 64-bit integer

multiplications
I Adding up partial results requires many add-with-carry (adc)
I Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

I Instead, break into 5 64-bit integers, use radix 251

I Can delay carry operations; carry “en bloc”
I Schoolbook multiplication now 25 64-bit integer multiplications
I Easy to merge multiplication with reduction (multiplies by 19)
I Better performance on Westmere/Nehalem, worse on 65 nm Core 2

and AMD processors

16

Bug in the radix-64 reduction

mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi

17

Bug in the radix-64 reduction

(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry

Full software package contains 8912 lines of qhasm code!

17

Bug in the radix-64 reduction

(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry

Full software package contains 8912 lines of qhasm code!

17

Directions to correct crypto

Testing
I Is cheap, catches many bugs
I Does not conflict with performance
I Provides very high confidence in correctness for some crypto

algorithms
I Typically fails to catch very rarely triggered bugs

18

Directions to correct crypto

Audits
I Expensive (time and/or money)
I Conflicts with performance
I Standard approach to ensure correctness and quality of crypto

software

18

Directions to correct crypto

Formal verification
I Strongest guarantees of correctness
I Probably conflicts with performance

I Should focus on cases where tests fail

18

Directions to correct crypto

Formal verification
I Strongest guarantees of correctness
I Probably conflicts with performance
I Should focus on cases where tests fail

18

Verification: the vision

I C or assembly programmer adds high-level annotations
I More specifically, for example:

I Limbs a0, . . . , an compose a field element A
I Limbs b0, . . . , bn compose a field element B
I Limbs r0, . . . , rn compose a field element R
I R = A ·B

I Annotated code gets fed to verification tool
I Verification ensures that operation on limbs corresponds to

high-level arithmetic
I Audits look at high-level annotations
I Even better: feed to even higher level verification
I Verify that the sequence of field operations accomplishes EC

arithmetic

19

Verification: the vision

I C or assembly programmer adds high-level annotations
I More specifically, for example:

I Limbs a0, . . . , an compose a field element A
I Limbs b0, . . . , bn compose a field element B
I Limbs r0, . . . , rn compose a field element R
I R = A ·B

I Annotated code gets fed to verification tool
I Verification ensures that operation on limbs corresponds to

high-level arithmetic
I Audits look at high-level annotations

I Even better: feed to even higher level verification
I Verify that the sequence of field operations accomplishes EC

arithmetic

19

Verification: the vision

I C or assembly programmer adds high-level annotations
I More specifically, for example:

I Limbs a0, . . . , an compose a field element A
I Limbs b0, . . . , bn compose a field element B
I Limbs r0, . . . , rn compose a field element R
I R = A ·B

I Annotated code gets fed to verification tool
I Verification ensures that operation on limbs corresponds to

high-level arithmetic
I Audits look at high-level annotations
I Even better: feed to even higher level verification
I Verify that the sequence of field operations accomplishes EC

arithmetic

19

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein
I Idea for verification:

I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

20

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein

I Idea for verification:
I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

20

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein
I Idea for verification:

I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

20

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein
I Idea for verification:

I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

20

Example: Addition in radix 251

#// assume 0 <=u x0, x1, x2, x3, x4 <=u 2**51 + 2**15
#// assume 0 <=u y0, y1, y2, y3, y4 <=u 2**51 + 2**15
r0 = x0
r1 = x1
r2 = x2
r3 = x3
r4 = x4
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4
#// var sum_x = x0@u320 + x1@u320 * 2**51 + x2@u320 * 2**102 \

+ x3@u320 * 2**153 + x4@u320 * 2**204
#// sum_y = y0@u320 + y1@u320 * 2**51 + y2@u320 * 2**102 \

+ y3@u320 * 2**153 + y4@u320 * 2**204
#// sum_r = r0@u320 + r1@u320 * 2**51 + r2@u320 * 2**102 \

+ r3@u320 * 2**153 + r4@u320 * 2**204
#// assert (sum_r - (sum_x + sum_y)) % (2**255 - 19) = 0 &&
#// 0 <=u r0, r1, r2, r3, r4 <u 2**53

21

How about multiplication?

I Again, express input field elements and output field elements
I Again, express bounds on the “limb size”
I Again, express algebraic relation of a modular multiplication
I Overall slightly more annoations for an auditor to look at

I Huge amount of intermediate annotations
I SMT solver cannot simply verify from inputs to outputs
I Overall:

I 217 lines of qhasm, including variable declarations
I 589 lines of annotations

I Large amount of manual work on top of assembly optimization
I Writing verifiable code requires expert knowledge from two domains!
I Verification of just multiplication takes > 90 hours

22

How about multiplication?

I Again, express input field elements and output field elements
I Again, express bounds on the “limb size”
I Again, express algebraic relation of a modular multiplication
I Overall slightly more annoations for an auditor to look at
I Huge amount of intermediate annotations
I SMT solver cannot simply verify from inputs to outputs

I Overall:
I 217 lines of qhasm, including variable declarations
I 589 lines of annotations

I Large amount of manual work on top of assembly optimization
I Writing verifiable code requires expert knowledge from two domains!
I Verification of just multiplication takes > 90 hours

22

How about multiplication?

I Again, express input field elements and output field elements
I Again, express bounds on the “limb size”
I Again, express algebraic relation of a modular multiplication
I Overall slightly more annoations for an auditor to look at
I Huge amount of intermediate annotations
I SMT solver cannot simply verify from inputs to outputs
I Overall:

I 217 lines of qhasm, including variable declarations
I 589 lines of annotations

I Large amount of manual work on top of assembly optimization
I Writing verifiable code requires expert knowledge from two domains!
I Verification of just multiplication takes > 90 hours

22

How about multiplication?

I Again, express input field elements and output field elements
I Again, express bounds on the “limb size”
I Again, express algebraic relation of a modular multiplication
I Overall slightly more annoations for an auditor to look at
I Huge amount of intermediate annotations
I SMT solver cannot simply verify from inputs to outputs
I Overall:

I 217 lines of qhasm, including variable declarations
I 589 lines of annotations

I Large amount of manual work on top of assembly optimization
I Writing verifiable code requires expert knowledge from two domains!
I Verification of just multiplication takes > 90 hours

22

Overall results

I Formally verified Montgomery ladderstep
I “Redundant” radix-251 representation
I Non-redundant radix-264 representation
I Reproduced bug in original version of the software

I Most verification used automatic qhasm → boolector translation
I Tiny bit of code in radix-264 needed proof assistant Coq

23

Another approach. . .

I 2 problems with SMT approach:
I Huge amount of (manual) annotations
I Long verification time

I Idea: automagically translate to input for computer-algebra system
I Accept failures to prove correctness

Work in progress with Bernstein
I Annotate C code (later: also qhasm)
I (Currently) use C++ compiler and operator overloading to

I Keep track of computation graph
I Keep track of worst-case ranges of limbs
I Output polynomial relations to Sage
I Use Sage to verify correctness of C code

24

Another approach. . .

I 2 problems with SMT approach:
I Huge amount of (manual) annotations
I Long verification time

I Idea: automagically translate to input for computer-algebra system
I Accept failures to prove correctness

Work in progress with Bernstein
I Annotate C code (later: also qhasm)
I (Currently) use C++ compiler and operator overloading to

I Keep track of computation graph
I Keep track of worst-case ranges of limbs
I Output polynomial relations to Sage
I Use Sage to verify correctness of C code

24

Another approach. . .

I 2 problems with SMT approach:
I Huge amount of (manual) annotations
I Long verification time

I Idea: automagically translate to input for computer-algebra system
I Accept failures to prove correctness

Work in progress with Bernstein
I Annotate C code (later: also qhasm)
I (Currently) use C++ compiler and operator overloading to

I Keep track of computation graph
I Keep track of worst-case ranges of limbs
I Output polynomial relations to Sage
I Use Sage to verify correctness of C code

24

Example: addition (radix 225.5)

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_add(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);

25

Example: multiplication

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_mul(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertprodmod(&vh,&vf,&vg,"2^255-19");

26

A small demo

I Consider computation of x2100 in F2127−1

I Input is little-endian byte array
I Convert to internal representation in radix 226

I Verify a single squaring
I Put a loop around it
I Still too slow for big chunks of code

I Problem: verification always goes back to the beginning
I Idea: Declare that we trust already verified results
I This is known as “cutting” the verification

27

A small demo

I Consider computation of x2100 in F2127−1

I Input is little-endian byte array
I Convert to internal representation in radix 226

I Verify a single squaring

I Put a loop around it
I Still too slow for big chunks of code

I Problem: verification always goes back to the beginning
I Idea: Declare that we trust already verified results
I This is known as “cutting” the verification

27

A small demo

I Consider computation of x2100 in F2127−1

I Input is little-endian byte array
I Convert to internal representation in radix 226

I Verify a single squaring
I Put a loop around it

I Still too slow for big chunks of code
I Problem: verification always goes back to the beginning
I Idea: Declare that we trust already verified results
I This is known as “cutting” the verification

27

A small demo

I Consider computation of x2100 in F2127−1

I Input is little-endian byte array
I Convert to internal representation in radix 226

I Verify a single squaring
I Put a loop around it
I Still too slow for big chunks of code

I Problem: verification always goes back to the beginning
I Idea: Declare that we trust already verified results
I This is known as “cutting” the verification

27

Let’s “cut some limbs”

28

Let’s call it a draw

29

First results and TODOs

Results
I Verification of modular multiplication in a few seconds
I Verification of full X25519 Montgomery ladder in ≈1:10 minutes
I Translate to higher-level view (ECC arithmetic, inversion)

TODOs
I Support assembly
I Support “non-redundant” arithmetic
I Support ECC signatures
I Change interface
I Test, test, test

30

First results and TODOs

Results
I Verification of modular multiplication in a few seconds
I Verification of full X25519 Montgomery ladder in ≈1:10 minutes
I Translate to higher-level view (ECC arithmetic, inversion)

TODOs
I Support assembly
I Support “non-redundant” arithmetic
I Support ECC signatures
I Change interface
I Test, test, test

30

Papers and Software

I Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi
Yang. Verifying Curve25519 Software.
https://cryptojedi.org/papers/#verify25519

I Many X25519 implementations in SUPERCOP
(crypto_scalarmult/curve25519)
http://bench.cr.yp.to/supercop.html

I Verification using boolector:
https://cryptojedi.org/crypto/#verify25519

I Verification using Sage: http://gfverif.cryptojedi.org/

31

https://cryptojedi.org/papers/#verify25519
http://bench.cr.yp.to/supercop.html
https://cryptojedi.org/crypto/#verify25519
http://gfverif.cryptojedi.org/

