Radboud University

On implementation issues of post-quantum cryptography

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
June 13, 2019

Count of Problem Category Column Labels $\boldsymbol{\nabla}$			
Row Labels	- Key Exchange	Signature	Grand Total
?	1		1
Braids	1	1	2
Chebychev	1		1
Codes	19	5	24
Finite Automata	1	1	2
Hash		4	4
Hypercomplex Numbers	1		1
Isogeny	1		1
Lattice	24	4	28
Mult. Var	6	7	13
Rand. walk	1		1
RSA	1	1	2
Grand Total	57	23	80
Q 4	饣ᄀ31 O_{27}	\bullet	

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

The NIST competition (ctd.)

"Key exchange"

- What is meant is key encapsulation mechanisms (KEMs)
- ($\mathrm{vk}, \mathrm{sk}) \leftarrow \operatorname{KeyGen}()$
- $(c, k) \leftarrow E n c a p s(v k)$
- $k \leftarrow \operatorname{Decaps}(c, s k)$

The NIST competition (ctd.)

"Key exchange"

- What is meant is key encapsulation mechanisms (KEMs)
- ($\mathrm{vk}, \mathrm{sk}) \leftarrow \operatorname{KeyGen}()$
- $(c, k) \leftarrow E n c a p s(v k)$
- $k \leftarrow \operatorname{Decaps}(c, s k)$

Status of the NIST competition

- In total 69 submissions accepted as "complete and proper"
- Several broken, 5 withdrawn
- Jan 2019: NIST announces 26 round-2 candidates
- 17 KEMs and PKEs
- 9 signature schemes

NIST reference and "optimized" implementations

" Two implementations are required in the submission package: a reference implementation and an optimized implementation.
[...]
Both implementations shall consist of source code written in ANSI C"

NIST reference and "optimized" implementations

" Two implementations are required in the submission package: a reference implementation and an optimized implementation.
[...]
Both implementations shall consist of source code written in ANSI C"

- Allowed to use some third-party libraries:
- NTL Version 10.5.0
- GMP Version 6.1.2
- OpenSSL
- Keccak Code package

NIST reference and "optimized" implementations

" Two implementations are required in the submission package: a reference implementation and an optimized implementation.
[...]
Both implementations shall consist of source code written in ANSI C"

- Allowed to use some third-party libraries:
- NTL Version 10.5.0
- GMP Version 6.1.2
- OpenSSL
- Keccak Code package
- Not allowed to use intrinsics or assembly
- Can include additional (e.g., architecture-specific) implementations

Code quality
The oncy vacid measurement of code quality: WTFs/minute

- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila, Thom Wiggers

- GitHub repo with extensive Cl to ensure "clean" implementations
- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila, Thom Wiggers

- GitHub repo with extensive Cl to ensure "clean" implementations
- Goal: collect "clean C" code of all round-2 candidates
- Make it easy to use in other projects
- Make it easy to use as starting point for optimization
- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila, Thom Wiggers

- GitHub repo with extensive Cl to ensure "clean" implementations
- Goal: collect "clean C" code of all round-2 candidates
- Make it easy to use in other projects
- Make it easy to use as starting point for optimization
- Longer-term, if there is interest:
- implementations with architecture-specific optimizations?
- implementations in other languages?
- Code is valid C99
- Passes functional tests
- API functions do not write outside provided buffers
- API functions do not need pointers to be aligned
- Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and clang
- Compiles with /W4 /WX with MS compiler
- Consistent test vectors across runs
- Consistent test vectors on big-endian and little-endian machines
- Consistent test vectors on 32 -bit and 64 -bit machines
- No errors/warnings reported by valgrind
- No errors/warnings reported by address sanitizer
- No errors/warnings reported by undefined-behavior sanitizer
- Only dependencies:
- fips202.c
- sha2.c
- aes.c
- randombytes.c
- API functions return 0 on success, negative on failure
- No dynamic memory allocations
- API functions return 0 on success, negative on failure
- No dynamic memory allocations
- Builds under Linux, MacOS, and Windows without warnings
- All exported symbols are namespaced with PQCLEAN_SCHEMENAME_
- Each implementation comes with license and meta information in META.yml

The definition of "clean" - the controversial bits

- No variable-length arrays (required to build under Windows)

The definition of "clean" - the controversial bits

- No variable-length arrays (required to build under Windows)
- Separate subdirectories (without symlinks) for each parameter set of each scheme
- No variable-length arrays (required to build under Windows)
- Separate subdirectories (without symlinks) for each parameter set of each scheme
- \#ifdefs only for header encapsulation
- No variable-length arrays (required to build under Windows)
- Separate subdirectories (without symlinks) for each parameter set of each scheme
- \#ifdefs only for header encapsulation
- No stringification macros
- No variable-length arrays (required to build under Windows)
- Separate subdirectories (without symlinks) for each parameter set of each scheme
- \#ifdefs only for header encapsulation
- No stringification macros
- Dealing with controversial warnings (unary minus on unsigned integers)
- No variable-length arrays (required to build under Windows)
- Separate subdirectories (without symlinks) for each parameter set of each scheme
- \#ifdefs only for header encapsulation
- No stringification macros
- Dealing with controversial warnings (unary minus on unsigned integers)
- Argument names consistent between .h and .c files

Limitations and lessons learned

- MS compiler does not support C99 \rightarrow no variable-length arrays

Limitations and lessons learned

- MS compiler does not support $\mathrm{C} 99 \rightarrow$ no variable-length arrays
- Public Cl services impose serious limitations through timeouts

Limitations and lessons learned

- MS compiler does not support $\mathrm{C} 99 \rightarrow$ no variable-length arrays
- Public Cl services impose serious limitations through timeouts
- Not yet testing for "constant-time" behavior
- Could use valgrind with uninitialized secret data (dynamic)
- Alternative: ct-verif (static)
- MS compiler does not support $\mathrm{C} 99 \rightarrow$ no variable-length arrays
- Public Cl services impose serious limitations through timeouts
- Not yet testing for "constant-time" behavior
- Could use valgrind with uninitialized secret data (dynamic)
- Alternative: ct-verif (static)
- Tricky to even find the right definition(s)

Limitations and lessons learned

- MS compiler does not support $\mathrm{C} 99 \rightarrow$ no variable-length arrays
- Public Cl services impose serious limitations through timeouts
- Not yet testing for "constant-time" behavior
- Could use valgrind with uninitialized secret data (dynamic)
- Alternative: ct-verif (static)
- Tricky to even find the right definition(s)
- Valgrind does not work with environments running on qemu

CRYSTALS-Dilithium	\checkmark
FALCON	-
GeMSS	-
LUOV	WIP
MQDSS	\checkmark
Picnic	-
qTESLA	-
Rainbow	WIP
SPHINCS+	\checkmark

PQClean status quo - KEMs

BIKE	-
Classic McEliece	WIP
CRYSTALS-Kyber	\checkmark
Frodo-KEM	\checkmark
HQC	-
LAC	-
LEDAcrypt	WIP
NewHope	\checkmark
NTRU	\checkmark
NTRU Prime	WIP
NTS-KEM	-
ROLLO	-
Round5	-
RQC	-
SABER	-
SIKE	-
ThreeBears	WIP

Using code from PQClean

- Copy files from origin directory

Using code from PQClean

- Copy files from origin directory
- Instantiate SHA-3, SHA-2, AES (or copy from PQClean)

Using code from PQClean

- Copy files from origin directory
- Instantiate SHA-3, SHA-2, AES (or copy from PQClean)
- Add .c and .h files to build system
- Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

- Started as part of PQCRYPTO H2020 project
- Continued within EPOQUE ERC StG
- Library and testing/benchmarking framework
- PQ-crypto on ARM Cortex-M4
- Uses STM32F4 Discovery board
- 192 KB of RAM, benchmarks at 24 MHz
- Easy to add schemes using NIST API
- Optimized SHA3 and AES shared across primitives

pqm4 usage

- Run functional tests of all primitives and implementations: python3 test.py
- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks:
python3 benchmarks.py
- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks:
python3 benchmarks.py
- Easy to evaluate only subset of schemes, e.g.: python3 test.py newhope1024cca sphincs-shake256-128s

Signatures (not) in pqm4

KEMs (not) in pqm4

	ref/clean	opt
BIKE	-	-
Classic McEliece	x	x
CRYSTALS-Kyber	\checkmark	\checkmark
Frodo-KEM	\checkmark	(\checkmark)
HQC	-	-
LAC	\checkmark	-
LEDAcrypt	WIP	WIP
NewHope	\checkmark	\checkmark
NTRU	\checkmark	\checkmark
NTRU Prime	$\boxed{ }$	-
NTS-KEM	-	-
ROLLO	-	-
Round5	\checkmark	-
RQC	-	\checkmark
SABER	\checkmark	-
SIKE		
ThreeBears		

KEMs (not) in pqm4

	ref/clean	opt
BIKE	-	-
Classic McEliece	x	x
CRYSTALS-Kyber	\checkmark	\checkmark
Frodo-KEM	\checkmark	(\checkmark)
HQC	-	-
LAC	\checkmark	-
LEDAcrypt	WIP	WIP
NewHope	\checkmark	\checkmark
NTRU	\checkmark	\checkmark
NTRU Prime	\checkmark	-
NTS-KEM	x	x
ROLLO	-	-
Round5	WIP	WIP
RQC	-	-
SABER	\checkmark	\checkmark
SIKE	-	-
ThreeBears	\checkmark	\checkmark

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As + e, with $\mathbf{e} \leftarrow \chi$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As + e, with $\mathbf{e} \leftarrow \chi$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given samples $\lceil\mathbf{A s}\rfloor_{p}$, with $p<q$

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given samples $\lceil\mathbf{A s}\rfloor_{p}$, with $p<q$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Alice (server)		Bob (client)
$\mathbf{s}, \mathbf{e}{ }^{s} \chi$		$\mathbf{s}^{\prime}, \mathbf{e}^{\prime} \leftarrow^{s} \chi$
$\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e}$	$\underset{\mathbf{b}}{\leftrightarrows}$	$\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$
	\longleftarrow	

Alice has $\mathbf{v}=\mathbf{u s}=$ ass $^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
Bob has $\mathbf{v}^{\prime}=\mathbf{b s}^{\prime}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}$

- Secret and noise $\mathbf{s}, \mathbf{s}^{\prime}, \mathbf{e}, \mathbf{e}^{\prime}$ are small
- \mathbf{v} and \mathbf{v}^{\prime} are approximately the same

Core operation: multiplication in $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] / f$

Power-of-two q

- Several schemes use $q=2^{m}$, for small m
- Examples: Round5, NTRU, Saber
- More round-1 examples: Kindi, RLizard

Power-of-two q

- Several schemes use $q=2^{m}$, for small m
- Examples: Round5, NTRU, Saber
- More round-1 examples: Kindi, RLizard

Prime "NTT-friendly" q

- Kyber and NewHope use prime q supporting fast NTT
- For $A, B \in \mathcal{R}_{q}, A \cdot B=\mathrm{NTT}^{-1}(\mathrm{NTT}(A) \circ \mathrm{NTT}(B))$
- NTT is Fourier Transform over finite field
- Use $f=X^{n}+1$ for power-of-two n

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Can do better using Karatsuba:

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b_{\ell}-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Recursive application yields complexity $\Theta\left(n^{\log _{2} 3}\right)$

Multiplication in $\mathbb{Z}_{2^{m}}[X]$

- Joint work with Matthias Kannwischer and Joost Rijneveld
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Can do better using Karatsuba:

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b_{\ell}-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Recursive application yields complexity $\Theta\left(n^{\log _{2} 3}\right)$
- Generalization: Toom-Cook
- Toom-3: split into 5 multiplications of $1 / 3$ size
- Toom-4: split into 7 multiplications of $1 / 4$ size
- Approach: Evaluate, multiply, interpolate

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
- Optimize Saber, $q=2^{13}, n=256$
- Use Toom-4 + two levels of Karatsuba
- Optimized 16 -coefficient schoolbook multiplication

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
- Optimize Saber, $q=2^{13}, n=256$
- Use Toom-4 + two levels of Karatsuba
- Optimized 16 -coefficient schoolbook multiplication
- Is this the best approach? How about other values of q and n ?

- Generate optimized assembly for Karatsuba/Toom
- Use Python scripts, receive as input n and q
- Hand-optimize "small" schoolbook multiplications
- Make heavy use of "vector instructions"
- Perform two 16×16-bit multiply-accumulate in one cycle
- Carefully schedule instructions to minimize loads/stores
- Benchmark different options, pick fastest

Multiplication results

	approach	"small"	cycles	stack
Saber$\left(n=256, q=2^{13}\right)$	Karatsuba only	16	41121	2020
	Toom-3	11	41225	3480
	Toom-4	16	39124	3800
	Toom-4 + Toom-3	-	-	-
$\begin{aligned} & \text { Kindi-256-3-4-2 } \\ & \left(n=256, q=2^{14}\right) \end{aligned}$	Karatsuba only	16	41121	2020
	Toom-3	11	41225	3480
	Toom-4	-	-	-
	Toom-4 + Toom-3	-	-	-
NTRU-HRSS$\left(n=701, q=2^{13}\right)$	Karatsuba only	11	230132	5676
	Toom-3	15	217436	9384
	Toom-4	11	182129	10596
	Toom-4 + Toom-3	-	-	-
NTRU-KEM-743$\left(n=743, q=2^{11}\right)$	Karatsuba only	12	247489	6012
	Toom-3	16	219061	9920
	Toom-4	12	196940	11208
	Toom-4 + Toom-3	16	197227	12152
$\begin{aligned} & \text { RLizard-1024 } \\ & (n=1024, \\ & \left.q=2^{11}\right) \end{aligned}$	Karatsuba only	16	400810	8188
	Toom-3	11	360589	13756
	Toom-4	16	313744	15344
	Toom-4 + Toom-3	11	315788	16816

NTT-based multiplication

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (with room for improvement)

NTT-based multiplication

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (with room for improvement)
- NTT is an FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$

NTT-based multiplication

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (with room for improvement)
- NTT is an FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

NTT-based multiplication

- Joint work with Leon Botros and Matthias Kannwischer
- Primary goal: optimize Kyber
- Secondary effect: optimize NewHope (with room for improvement)
- NTT is an FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- Same for f_{1}

NTT-based multiplication

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each

NTT-based multiplication

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each
- Butterfly on level k :
- Pick up f_{i} and $f_{i+2^{k}}$
- Multiply $f_{i+2^{k}}$ by a power of ω to obtain t
- Compute $f_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $f_{i} \leftarrow a_{i}+t$

NTT-based multiplication

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each
- Butterfly on level k :
- Pick up f_{i} and $f_{i+2^{k}}$
- Multiply $f_{i+2^{k}}$ by a power of ω to obtain t
- Compute $f_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $f_{i} \leftarrow a_{i}+t$
- Main optimizations on Cortex-M4:
- "Merge" levels: fewer loads/stores
- Optimize modular arithmetic (precompute powers of ω in Montgomery domain)
- Lazy reductions
- Carefully optimize using DSP instructions

Optimized lattice KEM cycles

Scheme	Key Generation	Encapsulation	Decapsulation
ntruhps2048509	77698713	645329	542439
ntruhps2048677	144383491	955902	836959
ntruhps4096821	211758452	1205662	1066879
ntruhrss701	154676705	402784	890231
lightsaber	459965	651273	678810
saber	896035	1161849	1204633
firesaber	1448776	1786930	1853339
kyber512	514291	652769	621245
kyber768	976757	1146556	1094849
kyber1024	1575052	1779848	1709348
newhope1024cpa	1034955	1495457	206112
newhope1024cca	1219908	1903231	1927505

Comparison: Curve25519 scalarmult: 625358 cycles

Optimized lattice KEM stack bytes

Scheme	Key Generation	Encapsulation	Decapsulation
ntruhps2048509	21412	15452	14828
ntruhps2048677	28524	20604	19756
ntruhps4096821	34532	24924	23980
ntruhrss701	27580	19372	20580
lightsaber	9656	11392	12136
saber	13256	15544	16640
firesaber	20144	23008	24592
kyber512	2952	2552	2560
kyber768	3848	3128	3072
kyber1024	4360	3584	3592
newhope1024cpa	11128	17288	8328
newhope1024cca	11152	17400	19640

Conclusions and open questions

- Speed-bottleneck of lattice-based KEMs is Keccak
- Long-term solution: hardware acceleration for Keccak

Conclusions and open questions

- Speed-bottleneck of lattice-based KEMs is Keccak
- Long-term solution: hardware acceleration for Keccak
- Much more work to be done on code-based KEMs

Conclusions and open questions

- Speed-bottleneck of lattice-based KEMs is Keccak
- Long-term solution: hardware acceleration for Keccak
- Much more work to be done on code-based KEMs
- So far very little work on SCA protection
- Start with "constant-time" software for all candidates

Conclusions and open questions

- Speed-bottleneck of lattice-based KEMs is Keccak
- Long-term solution: hardware acceleration for Keccak
- Much more work to be done on code-based KEMs
- So far very little work on SCA protection
- Start with "constant-time" software for all candidates
- Formally verify constant-time behavior? Definition?
- Would be great to have hacspec implementations of all NIST candidates
- PQClean repository: https://github.com/PQClean/PQClean
- pqm4 library and benchmarking suite: https://github.com/mupq/pqm4
- pqriscv library and benchmarking suite: https://github.com/mupq/pqriscv
- Code of $\mathbb{Z}_{2^{m}}[x]$ multiplication paper, including scripts: https://github.com/mupq/polymul-z2mx-m4
- $\mathbb{Z}_{2^{m}}[x]$ multiplication paper: https://cryptojedi.org/papers/\#latticem4
- Kyber optimization paper:
https://cryptojedi.org/papers/\#nttm4

