
On implementation issues of post-quantum

cryptography

Peter Schwabe

peter@cryptojedi.org

https://cryptojedi.org

June 13, 2019

mailto:peter@cryptojedi.org
https://cryptojedi.org


The NIST competition

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

1



The NIST competition (ctd.)

“Key exchange”

• What is meant is key encapsulation mechanisms (KEMs)

• (vk, sk)←KeyGen()

• (c, k)←Encaps(vk)

• k←Decaps(c, sk)

Status of the NIST competition

• In total 69 submissions accepted as “complete and proper”

• Several broken, 5 withdrawn

• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs

• 9 signature schemes

2



The NIST competition (ctd.)

“Key exchange”

• What is meant is key encapsulation mechanisms (KEMs)

• (vk, sk)←KeyGen()

• (c, k)←Encaps(vk)

• k←Decaps(c, sk)

Status of the NIST competition

• In total 69 submissions accepted as “complete and proper”

• Several broken, 5 withdrawn

• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs

• 9 signature schemes

2



NIST reference and “optimized” implementations

“ Two implementations are required in the submission package: a

reference implementation and an optimized implementation.

[...]

Both implementations shall consist of source code written in ANSI C”

• Allowed to use some third-party libraries:

• NTL Version 10.5.0

• GMP Version 6.1.2

• OpenSSL

• Keccak Code package

• Not allowed to use intrinsics or assembly

• Can include additional (e.g., architecture-specific) implementations

3



NIST reference and “optimized” implementations

“ Two implementations are required in the submission package: a

reference implementation and an optimized implementation.

[...]

Both implementations shall consist of source code written in ANSI C”

• Allowed to use some third-party libraries:

• NTL Version 10.5.0

• GMP Version 6.1.2

• OpenSSL

• Keccak Code package

• Not allowed to use intrinsics or assembly

• Can include additional (e.g., architecture-specific) implementations

3



NIST reference and “optimized” implementations

“ Two implementations are required in the submission package: a

reference implementation and an optimized implementation.

[...]

Both implementations shall consist of source code written in ANSI C”

• Allowed to use some third-party libraries:

• NTL Version 10.5.0

• GMP Version 6.1.2

• OpenSSL

• Keccak Code package

• Not allowed to use intrinsics or assembly

• Can include additional (e.g., architecture-specific) implementations

3



Code quality

4



PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: collect “clean C” code of all round-2 candidates

• Make it easy to use in other projects

• Make it easy to use as starting point for optimization

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

5



PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: collect “clean C” code of all round-2 candidates

• Make it easy to use in other projects

• Make it easy to use as starting point for optimization

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

5



PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: collect “clean C” code of all round-2 candidates

• Make it easy to use in other projects

• Make it easy to use as starting point for optimization

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

5



The definition of “clean”

• Code is valid C99

• Passes functional tests

• API functions do not write outside provided buffers

• API functions do not need pointers to be aligned

• Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and clang

• Compiles with /W4 /WX with MS compiler

• Consistent test vectors across runs

• Consistent test vectors on big-endian and little-endian machines

• Consistent test vectors on 32-bit and 64-bit machines

6



The definition of “clean”

• No errors/warnings reported by valgrind

• No errors/warnings reported by address sanitizer

• No errors/warnings reported by undefined-behavior sanitizer

• Only dependencies:

• fips202.c

• sha2.c

• aes.c

• randombytes.c

6



The definition of “clean”

• API functions return 0 on success, negative on failure

• No dynamic memory allocations

• Builds under Linux, MacOS, and Windows without warnings

• All exported symbols are namespaced with PQCLEAN SCHEMENAME

• Each implementation comes with license and meta information in

META.yml

6



The definition of “clean”

• API functions return 0 on success, negative on failure

• No dynamic memory allocations

• Builds under Linux, MacOS, and Windows without warnings

• All exported symbols are namespaced with PQCLEAN SCHEMENAME

• Each implementation comes with license and meta information in

META.yml

6



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned

integers)

• Argument names consistent between .h and .c files

7



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned

integers)

• Argument names consistent between .h and .c files

7



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned

integers)

• Argument names consistent between .h and .c files

7



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned

integers)

• Argument names consistent between .h and .c files

7



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned

integers)

• Argument names consistent between .h and .c files

7



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned

integers)

• Argument names consistent between .h and .c files

7



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts

• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)

• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

8



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts

• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)

• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

8



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts

• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)

• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

8



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts

• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)

• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

8



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts

• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)

• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

8



PQClean status quo – Signatures

CRYSTALS-Dilithium 3

FALCON —

GeMSS —

LUOV WIP

MQDSS 3

Picnic —

qTESLA —

Rainbow WIP

SPHINCS+ 3

9



PQClean status quo – KEMs

BIKE —

Classic McEliece WIP

CRYSTALS-Kyber 3

Frodo-KEM 3

HQC —

LAC —

LEDAcrypt WIP

NewHope 3

NTRU 3

NTRU Prime WIP

NTS-KEM —

ROLLO —

Round5 —

RQC —

SABER —

SIKE —

ThreeBears WIP
10



Using code from PQClean

• Copy files from origin directory

• Instantiate SHA-3, SHA-2, AES (or copy from PQClean)

• Add .c and .h files to build system

11



Using code from PQClean

• Copy files from origin directory

• Instantiate SHA-3, SHA-2, AES (or copy from PQClean)

• Add .c and .h files to build system

11



Using code from PQClean

• Copy files from origin directory

• Instantiate SHA-3, SHA-2, AES (or copy from PQClean)

• Add .c and .h files to build system

11



pqm4

• Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

• Started as part of PQCRYPTO H2020 project

• Continued within EPOQUE ERC StG

• Library and testing/benchmarking framework

• PQ-crypto on ARM Cortex-M4

• Uses STM32F4 Discovery board

• 192 KB of RAM, benchmarks at 24 MHz

• Easy to add schemes using NIST API

• Optimized SHA3 and AES shared across primitives

12



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

13



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

13



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

13



pqm4 usage

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

13



Signatures (not) in pqm4

CRYSTALS-Dilithium 3

FALCON —

GeMSS 7

LUOV 3

MQDSS 3

Picnic 7

qTESLA 3

Rainbow 7

SPHINCS+ 3

14



KEMs (not) in pqm4

ref/clean opt

BIKE — —

Classic McEliece 7 7

CRYSTALS-Kyber 3 3

Frodo-KEM 3 (3)

HQC — —

LAC 3 —

LEDAcrypt WIP WIP

NewHope 3 3

NTRU 3 3

NTRU Prime 3 —

NTS-KEM 7 7

ROLLO — —

Round5 WIP WIP

RQC — —

SABER 3 3

SIKE — —

ThreeBears 3 3
15



KEMs (not) in pqm4

ref/clean opt

BIKE — —

Classic McEliece 7 7

CRYSTALS-Kyber 3 3

Frodo-KEM 3 (3)

HQC — —

LAC 3 —

LEDAcrypt WIP WIP

NewHope 3 3

NTRU 3 3

NTRU Prime 3 —

NTS-KEM 7 7

ROLLO — —

Round5 WIP WIP

RQC — —

SABER 3 3

SIKE — —

ThreeBears 3 3
15



Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

16



Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ
• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

16



Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ
• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

16



Learning with rounding (LWR)

• Given uniform A ∈ Zk×`
q

• Given samples dAscp, with p < q

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

17



Learning with rounding (LWR)

• Given uniform A ∈ Zk×`
q

• Given samples dAscp, with p < q

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x ]/f

17



Lattice-based KEMs – the basic idea

Alice (server) Bob (client)

s, e
$← χ s′, e′

$← χ

b←as + e
b−−−−→ u←as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s

Bob has v′ = bs′ = ass′ + es′

• Secret and noise s, s′, e, e′ are small

• v and v′ are approximately the same

18



Core operation: multiplication in Rq = Zq[X ]/f

Power-of-two q

• Several schemes use q = 2m, for small m

• Examples: Round5, NTRU, Saber

• More round-1 examples: Kindi, RLizard

Prime “NTT-friendly” q

• Kyber and NewHope use prime q supporting fast NTT

• For A,B ∈ Rq, A · B = NTT−1(NTT(A) ◦ NTT(B))

• NTT is Fourier Transform over finite field

• Use f = X n + 1 for power-of-two n

19



Core operation: multiplication in Rq = Zq[X ]/f

Power-of-two q

• Several schemes use q = 2m, for small m

• Examples: Round5, NTRU, Saber

• More round-1 examples: Kindi, RLizard

Prime “NTT-friendly” q

• Kyber and NewHope use prime q supporting fast NTT

• For A,B ∈ Rq, A · B = NTT−1(NTT(A) ◦ NTT(B))

• NTT is Fourier Transform over finite field

• Use f = X n + 1 for power-of-two n

19



Multiplication in Z2m [X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

20



Multiplication in Z2m [X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

20



Multiplication in Z2m [X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

20



Multiplication in Z2m [X ]

• Joint work with Matthias Kannwischer and Joost Rijneveld

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

20



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

21



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

21



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

21



Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

21



22



Our approach

• Generate optimized assembly for Karatsuba/Toom

• Use Python scripts, receive as input n and q

• Hand-optimize “small” schoolbook multiplications

• Make heavy use of “vector instructions”

• Perform two 16× 16-bit multiply-accumulate in one cycle

• Carefully schedule instructions to minimize loads/stores

• Benchmark different options, pick fastest

23



Multiplication results

approach “small” cycles stack

Saber

(n = 256, q = 213)

Karatsuba only 16 41 121 2 020

Toom-3 11 41 225 3 480

Toom-4 16 39 124 3 800

Toom-4 + Toom-3 - - -

Kindi-256-3-4-2

(n = 256, q = 214)

Karatsuba only 16 41 121 2 020

Toom-3 11 41 225 3 480

Toom-4 - - -

Toom-4 + Toom-3 - - -

NTRU-HRSS

(n = 701, q = 213)

Karatsuba only 11 230 132 5 676

Toom-3 15 217 436 9 384

Toom-4 11 182 129 10 596

Toom-4 + Toom-3 - - -

NTRU-KEM-743

(n = 743, q = 211)

Karatsuba only 12 247 489 6 012

Toom-3 16 219 061 9 920

Toom-4 12 196 940 11 208

Toom-4 + Toom-3 16 197 227 12 152

RLizard-1024

(n = 1024,

q = 211)

Karatsuba only 16 400 810 8 188

Toom-3 11 360 589 13 756

Toom-4 16 313 744 15 344

Toom-4 + Toom-3 11 315 788 16 816
24



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (with room for improvement)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity

• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X 2)

• Huge overlap between evaluating

f (β) = f0(β2) + βf1(β2) and

f (−β) = f0(β2)− βf1(β2)

• f0 has n/2 coefficients

• Evaluate f0 at all (n/2)-th roots of unity by recursive application

• Same for f1

25



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (with room for improvement)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity

• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X 2)

• Huge overlap between evaluating

f (β) = f0(β2) + βf1(β2) and

f (−β) = f0(β2)− βf1(β2)

• f0 has n/2 coefficients

• Evaluate f0 at all (n/2)-th roots of unity by recursive application

• Same for f1

25



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (with room for improvement)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity

• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X 2)

• Huge overlap between evaluating

f (β) = f0(β2) + βf1(β2) and

f (−β) = f0(β2)− βf1(β2)

• f0 has n/2 coefficients

• Evaluate f0 at all (n/2)-th roots of unity by recursive application

• Same for f1

25



NTT-based multiplication

• Joint work with Leon Botros and Matthias Kannwischer

• Primary goal: optimize Kyber

• Secondary effect: optimize NewHope (with room for improvement)

• NTT is an FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity

• Divide-and-conquer approach

• Write polynomial f as f0(X 2) + Xf1(X 2)

• Huge overlap between evaluating

f (β) = f0(β2) + βf1(β2) and

f (−β) = f0(β2)− βf1(β2)

• f0 has n/2 coefficients

• Evaluate f0 at all (n/2)-th roots of unity by recursive application

• Same for f1

25



NTT-based multiplication

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k:

• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k←ai − t

• Compute fi←ai + t

• Main optimizations on Cortex-M4:

• “Merge” levels: fewer loads/stores

• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)

• Lazy reductions

• Carefully optimize using DSP instructions

26



NTT-based multiplication

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k :

• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k←ai − t

• Compute fi←ai + t

• Main optimizations on Cortex-M4:

• “Merge” levels: fewer loads/stores

• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)

• Lazy reductions

• Carefully optimize using DSP instructions

26



NTT-based multiplication

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k :

• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k←ai − t

• Compute fi←ai + t

• Main optimizations on Cortex-M4:

• “Merge” levels: fewer loads/stores

• Optimize modular arithmetic (precompute powers of ω in

Montgomery domain)

• Lazy reductions

• Carefully optimize using DSP instructions

26



Optimized lattice KEM cycles

Scheme Key Generation Encapsulation Decapsulation

ntruhps2048509 77 698 713 645 329 542 439

ntruhps2048677 144 383 491 955 902 836 959

ntruhps4096821 211 758 452 1 205 662 1 066 879

ntruhrss701 154 676 705 402 784 890 231

lightsaber 459 965 651 273 678 810

saber 896 035 1 161 849 1 204 633

firesaber 1 448 776 1 786 930 1 853 339

kyber512 514 291 652 769 621 245

kyber768 976 757 1 146 556 1 094 849

kyber1024 1 575 052 1 779 848 1 709 348

newhope1024cpa 1 034 955 1 495 457 206 112

newhope1024cca 1 219 908 1 903 231 1 927 505

Comparison: Curve25519 scalarmult: 625 358 cycles

27



Optimized lattice KEM stack bytes

Scheme Key Generation Encapsulation Decapsulation

ntruhps2048509 21 412 15 452 14 828

ntruhps2048677 28 524 20 604 19 756

ntruhps4096821 34 532 24 924 23 980

ntruhrss701 27 580 19 372 20 580

lightsaber 9 656 11 392 12 136

saber 13 256 15 544 16 640

firesaber 20 144 23 008 24 592

kyber512 2 952 2 552 2 560

kyber768 3 848 3 128 3 072

kyber1024 4 360 3 584 3 592

newhope1024cpa 11 128 17 288 8 328

newhope1024cca 11 152 17 400 19 640

28



Conclusions and open questions

• Speed-bottleneck of lattice-based KEMs is Keccak

• Long-term solution: hardware acceleration for Keccak

• Much more work to be done on code-based KEMs

• So far very little work on SCA protection

• Start with “constant-time” software for all candidates

• Formally verify constant-time behavior? Definition?

• Would be great to have hacspec implementations of all NIST

candidates

29



Conclusions and open questions

• Speed-bottleneck of lattice-based KEMs is Keccak

• Long-term solution: hardware acceleration for Keccak

• Much more work to be done on code-based KEMs

• So far very little work on SCA protection

• Start with “constant-time” software for all candidates

• Formally verify constant-time behavior? Definition?

• Would be great to have hacspec implementations of all NIST

candidates

29



Conclusions and open questions

• Speed-bottleneck of lattice-based KEMs is Keccak

• Long-term solution: hardware acceleration for Keccak

• Much more work to be done on code-based KEMs

• So far very little work on SCA protection

• Start with “constant-time” software for all candidates

• Formally verify constant-time behavior? Definition?

• Would be great to have hacspec implementations of all NIST

candidates

29



Conclusions and open questions

• Speed-bottleneck of lattice-based KEMs is Keccak

• Long-term solution: hardware acceleration for Keccak

• Much more work to be done on code-based KEMs

• So far very little work on SCA protection

• Start with “constant-time” software for all candidates

• Formally verify constant-time behavior? Definition?

• Would be great to have hacspec implementations of all NIST

candidates

29



Resources online

• PQClean repository:

https://github.com/PQClean/PQClean

• pqm4 library and benchmarking suite:

https://github.com/mupq/pqm4

• pqriscv library and benchmarking suite:

https://github.com/mupq/pqriscv

• Code of Z2m [x ] multiplication paper, including scripts:

https://github.com/mupq/polymul-z2mx-m4

• Z2m [x ] multiplication paper:

https://cryptojedi.org/papers/#latticem4

• Kyber optimization paper:

https://cryptojedi.org/papers/#nttm4

30

https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4
https://github.com/mupq/pqriscv
https://github.com/mupq/polymul-z2mx-m4
https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#nttm4

