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The setting for “boring” crypto software

• Primitives, no protocols

• “Secure-channel” primitives

• Only software-visible side channels

• Big CPUs
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Back in the days. . .

• Use X25519, Ed25519

(or NISTP256-ECDH, ECDSA)

• Use SHA2, ChaCha20, Poly1305

(or AES, HMAC)

• Follow “constant-time” paradigm
• No secret-dependent branches
• No memory access at secret-dependent location
• No variable-time arithmetic (e.g., DIV)

• Fairly little code, doesn’t even need function calls!
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PQC

• More assumptions, more schemes, more parameters, more code

• More complexity in implementations, protocols, and proofs

• Initially many bugs that were not caught by functional testing

• Early personal intuition:
• no big-integer arithmetic → no “rare” bugs
• Confidence in functional correctness through test vectors . . . ?

• Shattered by Hwang, Liu, Seiler, Shi, Tsai, Wang, and Yang (CHES 2022): Verified NTT
Multiplications for NISTPQC KEM Lattice Finalists: Kyber, SABER, and NTRU.
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Advanced microarchitectural side channels
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https://www.metal-archives.com/bands/Downfall/3540377075

4

https://www.metal-archives.com/bands/Downfall/3540377075


Advanced microarchitectural side channels
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Tools from the last century

Who here has written some crypto software?

Who used C?
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What’s wrong with C?

• No memory safety

• Finicky semantics
• Undefined behavior
• Implementation-specific behavior
• Context-specific behavior

• No mandatory initialization

• No (optional) runtime checks
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What’s wrong with C?

• No memory safety

• Finicky semantics
• Undefined behavior
• Implementation-specific behavior
• Context-specific behavior

• No mandatory initialization

• No (optional) runtime checks

but. . . Rust!
• Memory safe

• More clear semantics (?)

• Mandatory variable initialization

• (Optional) runtime checks for, e.g.,
overflows
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What’s wrong with C?

Lack of security features

“Security engineers have been fighting with C compilers for years.”
—Simon, Chisnall, Anderson, 20181

• No concept of secret vs. public data

• No preservation of “constant-time”

• No (or very limited) protection against microarchitectural attacks

• No erasure of sensitive data

1What you get is what you C: Controlling side effects in mainstream C compilers. EuroS&P 2018
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Let’s fix those tools!

“We argue that we must stop fighting the compiler, and instead make it our ally.”

—Simon, Chisnall, Anderson, 2018
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Let’s fix those tools!

Secure erasure in LLVM
• Simon, Chisnall, Anderson implement secure erasure in LLVM

• Code available at https://github.com/lmrs2/zerostack

• Not adopted in mainline LLVM

7
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Let’s fix those tools!

Secret types in Rust + LLVM
• Initiative at HACS 2020: secret integer types in Rust, C++, and LLVM

• Rust draft RFC online at https://github.com/rust-lang/rfcs/pull/2859

• Implementation in LLVM is massive effort, no real progress, yet
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Let’s fix those tools!

Spectre protections in LLVM

• Carruth, 2019: Spectre v1 countermeasure in LLVM2 (see later in the talk)

• “does not defend against secret data already loaded from memory and residing in registers”

• Zhang, Barthe, Chuengsatiansup, Schwabe, Yarom, 2023: More principled approach3

• Report and proposed patches to LLVM in March 2022

• September 2022: Status: WontFix (was: New)

2https://llvm.org/docs/SpeculativeLoadHardening.html
3Ultimate SLH: Taking Speculative Load Hardening to the Next Level. USENIX Security, 2023
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High-assurance crypto

• Effort to formally verify crypto

• Goal: verified PQC ready for deployment
• Three main projects:

• EasyCrypt proof assistant
• Jasmin programming language
• Libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with >180 people
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High-assurance crypto

https://en.wikipedia.org/wiki/Formosan_black_bear
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Joint work with. . .

Aaron Kaiser, Adrien Koutsos, Alley Stoughton, Amber Sprenkels, Andreas Hülsing,
Antoine Séré, Basavesh Ammanaghatta Shivakumar, Benjamin Grégoire, Benjamin Lipp,
Bo-Yin Yang, Bow-Yaw Wang, Chitchanok Chuengsatiansup, Christian Doczkal, Daniel Genkin,
Denis Firsov, Fabio Campos, François Dupressoir, Gilles Barthe, Hugo Pacheco, Jack Barnes,
Jean-Christophe Léchenet, José Bacelar Almeida, Kai-Chun Ning, Lionel Blatter,
Lucas Tabary-Maujean, Manuel Barbosa, Matthias Meijers, Miguel Quaresma,
Ming-Hsien Tsai, Peter Schwabe, Pierre Boutry, Pierre-Yves Strub, Ruben Gonzalez,
Rui Qi Sim, Sabrina Manickam, Santiago Arranz Olmos, Sioli O’Connell, Sunjay Cauligi,
Swarn Priya, Tiago Oliveira, Vincent Hwang, Vincent Laporte, William Wang, Yi Lee,
Yuval Yarom, Zhiyuan Zhang
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The toolchain and workflow
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PQC security proofs in EasyCrypt

Barbosa, Barthe, Fan, Grégoire, Hung, Katz, Strub, Wu, and Zhou. EasyPQC: Verifying Post-Quantum

Cryptography. ACM CCS 2021

Hülsing, Meijers, and Strub. Formal Verification of Saber’s Public-Key Encryption Scheme in EasyCrypt.

CRYPTO 2022

Barbosa, Barthe, Doczkal, Don, Fehr, Grégoire, Huang, Hülsing, Lee, and Wu. Fixing and Mechanizing the

Security Proof of Fiat-Shamir with Aborts and Dilithium. CRYPTO 2023

Barbosa, Dupressoir, Grégoire, Hülsing, Meijers, and Strub. Machine-Checked Security for XMSS as in RFC

8391 and SPHINCS+. CRYPTO 2023
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3 properties for crypto software

1. Efficiency
• Speed (clock cycles)

• RAM usage

• Binary size

• Energy consumption

2. Security
• Don’t leak secrets

• “Constant-time”

• Resist Spectre attacks

• Resist Power/EM attacks

• Fault protection

• Easy-to-use APIs

3. Correctness
• Functionally correct

• Memory safety

• Thread safety

• Termination
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Jasmin – assembly in your head

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-

Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax

• Programming in Jasmin is much closer to assembly:
• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics

• Compiler is formally proven to preserve constant-time property4

• Many new features since 2017 paper!

4Barthe, Grégoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. ACM CCS 2022
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Jasmin “Hello World!”

C code

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

Jasmin code

• We don’t implement main in Jasmin

• We don’t have I/O in Jasmin (yet)
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Jasmin “Hello World!”

export fn add42(reg u64 x) -> reg u64 {
reg u64 r;
r = x;
r += 42;
return r;

}

14



Jasmin “Hello World!”

https://cryptojedi.org/programming/jasmin.shtml
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Jasmin “Hello World!”

param int VLEN = 128;

fn addvec_for(reg ptr u32[VLEN] r a b) -> stack u32[VLEN]
{

inline int i;
reg u32 t;

for i = 0 to VLEN {
t = a[i];
t += b[i];
r[i] = t;

}
return r;

}

14



Jasmin “Hello World!”

param int VLEN = 128;

fn addvec_while(reg ptr u32[VLEN] r a b) -> stack u32[VLEN]
{

reg u64 i;
reg u32 t;

i = 0;
while (i < VLEN) {

t = a[(int)i];
t += b[(int)i];
r[(int)i] = t;
i += 1;

}
return r;

} 14



Jasmin “Hello World!”

param int VLEN = 128;

fn addvec_avx2(reg ptr u32[VLEN] r a b) -> stack u32[VLEN]
{

inline int i;
reg u256 t0, t1;

for i = 0 to VLEN/8 {
t0 = a.[u256 (int)(32 *64u i)];
t1 = b.[u256 (int)(32 *64u i)];
t0 = #VPADD_8u32(t0, t1);
r.[u256 (int)(32 *64u i)] = t0;

}
return r;

}
14



Efficiency of Jasmin code

• Can do (almost) everything you can do in assembly
• (Almost) full control
• Architecture-specific implementations

• Easier to write and maintain than assembly:
• Loops, conditionals
• Function calls (optional: inline)
• Function-local variables
• Register and stack arrays
• Register and stack allocation

• No raw pointers, no pointer arithmetic

• Very limited control over register allocation

As efficient as hand-optimized assembly!
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Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

• #declassify creates a proof obligation!

16



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

• #declassify creates a proof obligation!

16



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

• #declassify creates a proof obligation!

16



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

• #declassify creates a proof obligation!

16



Spectre v1 (“Speculative bounds-check bypass”)

stack u8[10] public;
stack u8[32] secret;
reg u8 t;
reg u64 r, i;

i = 0;
while(i < 10) {

t = public[(int) i] ;
r = leak(t);
...

}

17



It’s more subtle than this

fn aes_rounds (stack u128[11] rkeys, reg u128 in) -> reg u128 {
reg u64 rkoffset;
state = in;

state ^= rkeys[0];
rkoffset = 0;
while(rkoffset < 9*16) {

rk = rkeys.[(int)rkoffset];
state = #AESENC(state, rk);
rkoffset += 16;

}
rk = rkeys[10];
#declassify state = #AESENCLAST(state, rk);
return state;

}
18



It’s more subtle than this

Spectre declassified
• Caller is free to leak (declassified) state

• Very common in crypto: ciphertext is actually sent!

• state is not “out of bounds” data, it’s “early data”

• Must not speculatively #declassify early!

Ammanaghatta Shivakumar, Barnes, Barthe, Cauligi, Chuengsatiansup, Genkin, O’Connell, Schwabe, Sim,

and Yarom. Spectre Declassified: Reading from the Right Place at the Wrong Time. IEEE S&P 2023.
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Countermeasures

Fencing
• Can prevent speculation through barriers (LFENCE)

• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)

• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value

• Implemented in LLVM since version 8
• Still large performance overhead
• No formal guarantees of security

19
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Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!

• Obvious idea: mask only loads into public registers
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Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument
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The special case of crypto

• We know what inputs are secret and what inputs are public

• Most of the state is actually secret

• Most loads do not need protect!

• Even better: mark additional inputs as secret

• No cost if those inputs don’t flow into leaking instructions

• Even better: Spills don’t need protect if there is no branch between store and load

• Even better: “Spill” public data to MMX registers instead of stack

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.
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Performance impact (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

ChaCha20

avx2 32B 314 352 12.10
avx2 32B xor 314 352 12.10
avx2 128B 330 370 12.12
avx2 128B xor 338 374 10.65
avx2 1KiB 1190 1234 3.70
avx2 1KiB xor 1198 1242 3.67
avx2 1KiB 18872 18912 0.21
avx2 16KiB xor 18970 18994 0.13
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Performance impact (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

Poly1305

avx2 32B 46 78 69.57
avx2 32B verif 48 84 75.00
avx2 128B 136 172 26.47
avx2 128B verif 140 170 21.43
avx2 1KiB 656 686 4.57
avx2 1KiB verif 654 686 4.89
avx2 16KiB 8420 8450 0.36
avx2 16KiB verif 8416 8466 0.59
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Performance impact (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

X25519
mulx smult 98352 98256 -0.098
mulx base 98354 98262 -0.094

Kyber512
avx2 keypair 25694 25912 0.848
avx2 enc 35186 35464 0.790
avx2 dec 27684 27976 1.055

Kyber768
avx2 keypair 42768 42888 0.281
avx2 enc 54518 54818 0.550
avx2 dec 43824 44152 0.748
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Correctness – memory and thread safety, termination

• No global variables → thread safety

• Static safety checker:
• Uses language limitations
• Ensures termination
• Ensures memory safety (and prints conditions for inputs)
• Not part of “standard compilation”: -checksafety

• Some limitations/caveats:

• Sound, but not complete
• Very slow (about 1 day for Kyber’s Encaps)
• Overly strict alignment requirements
• May need annotations (e.g., #bounded, #no_termination_check)
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Correctness – the missing link

Wednesday, 11:25, Track 1 (South Hall 2): Miguel Quaresma. Formally verifying Kyber
– Episode IV: Implementation Correctness.

“I’m carefully optimistic that we have the full proof and optimized software done by summer.”

—me, May 2020

• Started in Feb. 2020 as a “4-month-sabbatical” project

• 3-year effort, 12 authors (so far)

• A lot of work to link Jasmin implementation with EasyCrypt specification

• This is per-implementation effort, not per-scheme effort
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Challenges, ongoing work, TODOs

More proof automation!

• Integrate with CryptoLine (https://github.com/fmlab-iis/cryptoline)5

• (semi-)automated proof of branch-free arithmetic
• “Prove without understanding code”

• Automated equivalence proving. . .

Beyond Spectre v1
• Spectre v2: Avoid by not using indirect branches

• Spectre v4: Use SSBD: https://github.com/tyhicks/ssbd-tools

• Spectre protection requires separation of crypto code!

5Fu, Liu, Shi, Tsai, Wang, and Yang. Signed Cryptographic Program Verification with Typed CryptoLine. ACM
CCS 2019
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Challenges, ongoing work, TODOs, part 2

Support more architectures
• 32-bit Arm (ARMv7ME): works, needs users!

• Opentitan’s OTBN: work in progress

• 64-bit ARM and RISC-V: very early WIP

Secure interfacing
• Currently use C function-call ABI (caller/callee contract through documentation)

• Check/Enforce caller requirements?

• Stronger safety notions (e.g., interfacing with Rust)
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The big challenge

Make high-assurance tools mainstream/default!

28



Resources

Join the effort:

https://formosa-crypto.org

Use the results:

https://github.com/formosa-crypto/libjade
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