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“It's going to be exhausting. You will start feeling it around the middle of the week.”

—Peter Druschel, July 29, 2024



MPI-SP?

- Located in Bochum
- Founded in 2019 v 4 )
- Currently 11 Pls - e
« Aim to have .
+ 6 Directors
+ 12 MPRGLs
- Around 250 people total
+ Currently on RUB campus B 5 e

From https://imprs-brain-behavior.mpg.de/Max_Planck_Society 2


https://imprs-brain-behavior.mpg.de/Max_Planck_Society

Our new home (move planned for 2027)




[A small demo]



ECDH and X25519

Let G be a finite cyclic group with generator g.

Alice Bob

A+ g? B« gb

K« B2 = (gb)a — gab K« Ab — (ga)b — gab



ECDH and X25519

- Diffie, Hellman, 1976: Use G = GF(q)*
- Miller, Koblitz (independently), 1985/86: Use group of points on an elliptic curve
- Bernstein, 2006: Use specific elliptic curve over GF(22%5 — 19)



(EC)DH is everywhere

Nitrokey
secure your digital life

O

Z00m
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The Discrete Logarithm Problem

Definition
Given P, Q € G such that Q € (P), find an integer k such that kP = Q.

+ DH needs group where DLP is hard
- (EC)DLP-based crypto also for signatures (DSA, ECDSA, EADSA. . .)
- Prominent alternative: RSA (based on factoring)



Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a QQuantum Computer™

Peter W. Shor’

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.
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[Back to our demo]
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Key Encapsulation Mechanisms (KEMs)

Initiator Responder

(pk, sk) «<— KEM.Gen

(ct,K) « KEM.Enc(pk)

ct

K <+ KEM.Dec(ct, sk)



Learning with errors (LWE)

+ Given uniform A € Zg**
- Given "noise distribution”
+ Given samples As + e, with e«
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- Given "noise distribution”

+ Given samples As + e, with e«
- Search version: find s

- Decision version: distinguish from uniform random
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+ Givenuniforma € Rq = Zg[X]/(X" + 1)
- Given "noise distribution”
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- Search version: find s
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How to build a KEM?

Alice (server) Bob (client)
s,e &y s e &y
b«as + e —b . ucas te
P
Alicehas v =us =ass' +¢€s
Bobhas v/ =bs =ass’+es

- Secret and noise polynomials s, s’, e, e’ are small

- v and v’ are approximately the same



How to build a KEM, part 2

Alice Bob
$ 1 ’ $
S,e 4 X s’ e — X
b (b )
<—as—+e _—
u<—as’ + €’
vebs’

Ta

v/<us
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How to build a KEM, part 2

Alice Bob

seed & {0,1}2%6

a«+Parse(XOF(seed))

s,e(ix s’,e’7e”<$4x

(b,seed)

b<as+e ———  a«Parse(XOF(seed))
u«as’ + ¢
vibs' +e”
k& {0,1)"
k<Encode(k)

/ (uvc)

v/<us — c—v+k

k'<—c—v u<—Extract(k)

us—Extract(k’)

Encryption scheme by Lyubashevsky, Peikert, Regev. Eurocrypt 2010.
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+ Azerobitmapsto 0
+ Aone bit mapsto g/2
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Encode and Extract

+ Encoding in LPR encryption: map n bits to n coefficients:

+ Azerobitmapsto 0

+ Aone bit mapsto g/2
- |dea: Noise affects low bits of coefficients, put data into high bits
- Decode: map coefficient into [—q/2,q/2]

- Closerto 0 (i.e., in [—q/4,q/4]): set bit to zero
+ Closer to £q/2: set bit to one



NewHoPE (USENIX Security 2016)

- Improve IEEE S&P 20175 results by Bos, Costello, Naehrig, Stebila (BCNS)
+ Use reconcilation to go from approximate agreement to agreement

« Originally proposed by Ding (2012)

- Improvements by Peikert (2014)

+ More improvements in NEWHOPE
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NewHoPE (USENIX Security 2016)

- Improve IEEE S&P 20175 results by Bos, Costello, Naehrig, Stebila (BCNS)
+ Use reconcilation to go from approximate agreement to agreement

« Originally proposed by Ding (2012)

- Improvements by Peikert (2014)

+ More improvements in NEWHOPE

- NEwHoPE-Simple (2016): Scrap complex reconciliation (pay 6.25% increase in
ciphertext size)

- Very conservative parameters (n = 1024, g = 12289)

- Parameters chosen to enable fast implementations (NTT)

- Centered binomial noise v (HW(a)—HW(b) for k-bit a, b)

- Achieve = 256 bits of post-quantum security according to very conservative analysis

+ Higher security, shorter messages, and > 10x speedup

+ Choose a fresh parameter a for every protocol run (more later)

+ Multiple implementations



ABOUT  SOLUTIONS ~ DOCUMENTATION ~ EVENTS  PRESS ~ BLOG  CONTACT US

ISARA Radiate is the first commercially available security solution offering quantum resistant algorithms that replace or augment classical algorithms,

which will be weakened or broken by quantum computing threats.

"Key Agreement using the ‘NewHope' lattice-based algorithm detailed in the New Hope paper,
and LUKE (Lattice-based Unique Key Exchange), an ISARA speed-optimized version of the
NewHope algorithm.”

https://www.isara.com/isara-radiate/


https://www.isara.com/isara-radiate/

Beyond the paper. ..

_ Newsletter Contact Where o 8uy Engisn = myinfincon ogn ~
Infineon
Products  Applications Tools About Infineon ~ Careers

Press Generalinformation  Press Releases MarketNews  Press Kits MediaPool Events Contacts

>Home >aboutinfineon > Press > Press Releases.

Ready for tomorrow: Infineon demonstrates first =<
post-quantum cryptography on a contactless i
security chip

W

“The deployed algorithm is a variant of “New Hope®, a quantum-resistant cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html


https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

Beyo e paper. ..

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Experimenting with Post-Quantum Cryptography
July 7,2016

Q_ Searchblog

B Archive -

Posted by Matt Braithwaite, Software Engineer

“We're indebted to Erdem Alkim, Léo Ducas, Thomas Péppelmann and Peter Schwabe, the
researchers who developed “New Hope®, the post-quantum algorithm that we selected for this

experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Also back in 2016: NIST PQC

- National Institute of Standards and Technology

+ Public call for PQC proposals, aims at finding schemes for standardization
+ Similar to earlier AES and SHA-3 efforts

+ Process draft online in August 2016, comments by September 2016

- Call for proposals in December 2016, deadline November 2017

20



Also back in 2016: NIST PQC

- National Institute of Standards and Technology

+ Public call for PQC proposals, aims at finding schemes for standardization
+ Similar to earlier AES and SHA-3 efforts

+ Process draft online in August 2016, comments by September 2016

- Call for proposals in December 2016, deadline November 2017

How it went (so far)

Nov. 2017 Round 1 Feb. 2019 Round 2 Jul. 2020 Round 3 Jul. 2022
" . n
69 proposals 26 proposals 7+8 proposals 4 “winners

20



Count of Problem Category Column Labels k4

Row Labels ﬂ Key Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1
Lattice 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

21
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+ Historically first: NTRU
- Use parametersgandp = 3
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Design space 0: The NTRU approach

+ Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
- Findf,g € Rgandf, =f ' mod q,f, =f ' mod p
- public key: h = pfyg, secret key: (£, f,)
+ Encrypt:
+ Map message m to m € R4 with coefficients in {—1,0, 1}
- Sample random small-coefficient polynomial r € Rq
« Compute ciphertexte =r-h +m
+ Decrypt:
« Computev=f-e=f-(r-h+m)="f(r (pfyg) + m) =prg+f - m
+ Computem = v -f, mod p
- Advantages/Disadvantages compared to LPR:
-+ Asymptotically weaker than Ring-LWE approach
- Slower keygen, but faster encryption/decryption

22
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Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Zq[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime  (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime  (Round5)

+ Fourth option: g prime, f = (X" +1),n =27
(NewHope, Kyber, LAC)

+ Fifth option: g prime, f = (X" — X — 1) irreducible, n prime
(NTRU Prime)

- Sixth option: ThreeBears works on large integers instead of polynomials

- No proof that any option is more or less secure

+ NTRU Prime advertises “less structure” in their R,

- NewHope and Kyber have fastest (NTT-based) arithmetic

23



Design space 2: module vs. ring?

+ “Traditionally”, work directly with elements of R4 ("Ring-LWE")
- Alternative: Module-LWE (MLWE):

- Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
+ Work with small-dimension matrices and vectors over Rq
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Design space 2: module vs. ring?

+ “Traditionally”, work directly with elements of R4 ("Ring-LWE")
- Alternative: Module-LWE (MLWE):

- Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
+ Work with small-dimension matrices and vectors over Rq

+ MLWE encrypts shorter messages than Ring-LWE
+ MLWE eliminates some of the structure of Ring-LWE

- MLWE can very easily scale security (change dimension of matrix):
- Optimize arithmetic in R4 once
+ Use same optimized R4 arithmetic for all security levels

24
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Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets
+ More noise means
+ more security from the underlying hard problem
- higher failure probability of decryption
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Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets
+ More noise means

+ more security from the underlying hard problem

- higher failure probability of decryption

+ Three main choices to make:

+ Narrow or wide noise
- Narrow noise (e.g., in {—1, 0, 1}) not conservative
+ Wide noise requires larger g (or more failures)
+ Larger g means larger public key and ciphertext

+ LWE or LWR
+ LWE considered more conservative (independent noise)
- LWR easier to implement (no noise sampling)
+ LWR allows more compact public key and ciphertext

- Fixed-weight noise or not?
- Fixed-weight noise needs random permutation (sorting)
+ Naive implementations leak secrets through timing
- Advantage of fixed-weight: easier to bound (or eliminate) decryption failures
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Design space 4: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. . ."
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Design space 4: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. ..”"

- Before NewHope: real-world approach: generate fixed a once
- What if a is backdoored?
+ Parameter-generating authority can break key exchange
« “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
+ Even without backdoor:

+ Perform massive precomputation based on a

+ Use precomputation to break all key exchanges

+ Infeasible today, but who knows. . .
- Attack in the spirit of Logjam

- Solution in NewHope: Choose a fresh a every time (“Against all authority”)
- Server can cache a for some time (e.g., 1h)
-+ AIINIST PQC candidates ended up using this approach

26



Design space 5: active security

- Decryption failures are a function of s, e, §’, €’
- Attacker can choose larger secret/noise ¢’ and s’
- Observe if decryption fails

- Learn something about s
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Design space 5: active security

- Decryption failures are a function of s, e, §’, €’

- Attacker can choose larger secret/noise ¢’ and s’
- Observe if decryption fails

- Learn something about s

- This is a chosen ciphertext attack (CCA)

+ Learn full s after a few thousand queries

+ NEWHOPE never claimed CCA-security!

- This “attack” is completely expected

+ Not a problem for ephemeral s

27



Design space 5: active security (ctd.)

The Fujisaki-Okamoto Transform (idea)

+ Build CCA-secure KEM from passively secure encryption scheme
- Make failure probability negligible for honest ¢’, €/, €”

- Force encapsulator to generate s/, €/, €” honestly
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Design space 5: active security (ctd.)

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)
Gen(): Encaps(pk):
pk, sk«KeyGen() ¢ x+{0,...,255}32

Kk, coins<+—SHA3-512(x)

ct«—Encrypt(pk, x, coins)
Decaps((sk, pk), ct):

x"«+ Decrypt(sk, ct)

k', coins’<—SHA3-512(x")

ct/«+Encrypt(pk, x’, coins’)

verify if ct = ct/
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Design space 5: active security (ctd.)

- Ephemeral key exchange does not need active security
- Can offer passively secure version
+ Protocols will combine this with signatures for authentication
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Design space 5: active security (ctd.)

- Ephemeral key exchange does not need active security
- Can offer passively secure version
+ Protocols will combine this with signatures for authentication

- Advantages:
+ Higher failure probability — more compact
- Simpler to implement, no CCA transform
- More flexibility for secret/noise generation
- Disadvantages:

- Less robust (will somebody reuse keys?)
+ More options (CCA vs. CPA): easier to make mistakes
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Design space 6: CCA transforms

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
+ Hash public-key into coins: multitarget protection (for non-zero failure probability)
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Design space 6: CCA transforms

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
+ Hash public-key into coins: multitarget protection (for non-zero failure probability)
+ Hash public-key into shared key: KEM becomes contributory
+ Hash ciphertext into shared key: binding properties
+ How to handle rejection?
- Return special symbol (return -1): explicit
- Return H(s, C) for secret s: implicit
+ From round 2, no proposal used explicit rejection
- Would break some security reduction
- More robust in practice (return value always 0)
- Various recent papers argue for explicit rejection
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Design space 7: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:

- Easier CCA security transform and analysis
- Disadvantage:

- Need to limit noise (or have larger g)
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Design space 7: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
- Easier CCA security transform and analysis
- Disadvantage:
- Need to limit noise (or have larger g)
- For passive-security-only can go the other way:
« Allow failure probability of, e.g., 273°
- Reduce size of public key and ciphertext

- Active (CCA) security needs negligible failure probability
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Design space 8: error-correcting codes?

+ Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt” messages of > 256 bits

- Need to encrypt only 256-bit key

+ Question: How do we put those additional bits to use?

- Answer: Use error-correcting code (ECC) to reduce failure probability
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Design space 8: error-correcting codes?

+ Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt” messages of > 256 bits

- Need to encrypt only 256-bit key

+ Question: How do we put those additional bits to use?

- Answer: Use error-correcting code (ECC) to reduce failure probability
+ NewHope: very simple threshold decoding

+ LAC, Round5: more advanced ECC

+ Correct more errors, obtain smaller public key and ciphertext
+ More complex to implement, in particular without leaking through timing
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The design of Kyber / ML-KEM

+ MLWE version of LPR encryption:

« Small-dimension vectors and matrices over Rq = Zq[X]/(X**® 4 1), g = 3329
+ Narrow, centered binomial noise withk =2 ork =3
+ Three parameter sets: Kyber-512, Kyber-768, Kyber-1024

- Tweaked FO transform (hash pk into coins and shared key)

+ No error-correcting codes; simple encoding of bits into coefficients
+ Negligible probability of decryption errors

- All symmetric crypto based on Keccak permutation (SHA-3)
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Kyber vs. ECDH: a KEM is not DH!

Alice Bob

A+ g? B« gb

K « B2 — (gb)a — gab K« AP — (ga)b — gab
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Kyber vs. ECDH: a KEM is not DH!

Initiator Responder

(pk, sk) «<— KEM.Gen

(ct,K) « KEM.Enc(pk)

ct

K <+ KEM.Dec(ct, sk)
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Kyber vs. ECDH: performance

X25519 speed Kyber-768 speed
- keygen: 28187 Skylake cycles + keygen: 39750 Skylake cycles
- shared: 87942 Skylake cycles - encaps: 53936 Skylake cycles

- decaps: 42339 Skylake cycles
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Kyber vs. ECDH: performance

X25519 speed

- keygen: 28187 Skylake cycles
- shared: 87942 Skylake cycles

X25519 sizes
+ public key: 32 bytes

Kyber-768 speed
+ keygen: 39750 Skylake cycles
- encaps: 53936 Skylake cycles
- decaps: 42339 Skylake cycles

Kyber-768 sizes
+ public key: 1184 bytes
+ ciphertext: 1088 bytes
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Learn more

+ Kyber website: https://pg-crystals.org/kyber/
« NIST PQC: https://csrc.nist.gov/projects/post-quantum-cryptography
* pgc-forum: https://groups.google.com/a/list.nist.gov/g/pqc-forum
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