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“It’s going to be exhausting. You will start feeling it around the middle of the week.”

—Peter Druschel, July 29, 2024
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MPI-SP?

• Located in Bochum

• Founded in 2019

• Currently 11 PIs
• Aim to have

• 6 Directors
• 12 MPRGLs
• Around 250 people total

• Currently on RUB campus

From https://imprs-brain-behavior.mpg.de/Max_Planck_Society 2
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Our new home (move planned for 2027)
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[A small demo]



ECDH and X25519

Let G be a finite cyclic group with generator g.

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab
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ECDH and X25519

• Diffie, Hellman, 1976: Use G = GF(q)∗

• Miller, Koblitz (independently), 1985/86: Use group of points on an elliptic curve

• Bernstein, 2006: Use specific elliptic curve over GF(2255 − 19)
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(EC)DH is everywhere
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The Discrete Logarithm Problem

Definition
Given P,Q ∈ G such that Q ∈ ⟨P⟩, find an integer k such that Pk = Q.

• DH needs group where DLP is hard

• (EC)DLP-based crypto also for signatures (DSA, ECDSA, EdDSA. . . )

• Prominent alternative: RSA (based on factoring)
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See https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025
9
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[Back to our demo]





Key Encapsulation Mechanisms (KEMs)

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

12



Learning with errors (LWE)

• Given uniform A ∈ Zk×ℓ
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s
• Decision version: distinguish from uniform random
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How to build a KEM?

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• v and v′ are approximately the same
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How to build a KEM, part 2

Alice Bob

seed $← {0, 1}256

a←Parse(XOF(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b

,seed

)−−−−−→

a←Parse(XOF(seed))

u←as′ + e′
v←bs′

k $← {0, 1}n

k←Encode(k)

v′←us (u

,c

)←−−−

c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

Encryption scheme by Lyubashevsky, Peikert, Regev. Eurocrypt 2010.
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Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0

• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]
• Closer to 0 (i.e., in [−q/4, q/4]): set bit to zero
• Closer to ±q/2: set bit to one
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NEWHOPE (USENIX Security 2016)

• Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila (BCNS)
• Use reconcilation to go from approximate agreement to agreement

• Originally proposed by Ding (2012)
• Improvements by Peikert (2014)
• More improvements in NEWHOPE

• NEWHOPE-Simple (2016): Scrap complex reconciliation (pay 6.25% increase in
ciphertext size)

• Very conservative parameters (n = 1024, q = 12289)
• Parameters chosen to enable fast implementations (NTT)
• Centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)
• Achieve ≈ 256 bits of post-quantum security according to very conservative analysis
• Higher security, shorter messages, and > 10× speedup
• Choose a fresh parameter a for every protocol run (more later)
• Multiple implementations
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Beyond the paper. . .

“Key Agreement using the ‘NewHope’ lattice-based algorithm detailed in the New Hope paper,
and LUKE (Lattice-based Unique Key Exchange), an ISARA speed-optimized version of the
NewHope algorithm.”

https://www.isara.com/isara-radiate/

19
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Beyond the paper. . .

“The deployed algorithm is a variant of “New Hope”, a quantum-resistant cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

19
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Beyond the paper. . .

“We’re indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe, the
researchers who developed “New Hope”, the post-quantum algorithm that we selected for this
experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

19
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Also back in 2016: NIST PQC

• National Institute of Standards and Technology

• Public call for PQC proposals, aims at finding schemes for standardization

• Similar to earlier AES and SHA-3 efforts

• Process draft online in August 2016, comments by September 2016

• Call for proposals in December 2016, deadline November 2017

How it went (so far)

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”
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Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3

• Keygen:
• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f · m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption
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Design space 1: What ring?

• Structured lattice-based schemes use ringRq = Zq[X]/f
• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n+ 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1), n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in theirRq

• NewHope and Kyber have fastest (NTT-based) arithmetic

23
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Design space 2: module vs. ring?

• “Traditionally”, work directly with elements ofRq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE

• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

24



Design space 2: module vs. ring?

• “Traditionally”, work directly with elements ofRq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE

• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

24



Design space 2: module vs. ring?

• “Traditionally”, work directly with elements ofRq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE

• MLWE eliminates some of the structure of Ring-LWE

• MLWE can very easily scale security (change dimension of matrix):
• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

24



Design space 2: module vs. ring?

• “Traditionally”, work directly with elements ofRq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE

• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

24



Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption failures
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Design space 4: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time (“Against all authority”)
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates ended up using this approach
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Design space 5: active security

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s

• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s
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Design space 5: active security (ctd.)

The Fujisaki-Okamoto Transform (idea)
• Build CCA-secure KEM from passively secure encryption scheme

• Make failure probability negligible for honest s′, e′, e′′

• Force encapsulator to generate s′, e′, e′′ honestly

28



Design space 5: active security (ctd.)

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)

Gen(): Encaps(pk):

pk, sk←KeyGen() pk→ x←{0, . . . , 255}32
k, coins←SHA3-512(x)

ct← ct←Encrypt(pk, x, coins)
Decaps((sk, pk), ct):
x′← Decrypt(sk, ct)
k′, coins′←SHA3-512(x′)
ct′←Encrypt(pk, x′, coins′)
verify if ct = ct′
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Design space 5: active security (ctd.)

• Ephemeral key exchange does not need active security

• Can offer passively secure version

• Protocols will combine this with signatures for authentication

• Advantages:
• Higher failure probability → more compact
• Simpler to implement, no CCA transform
• More flexibility for secret/noise generation

• Disadvantages:
• Less robust (will somebody reuse keys?)
• More options (CCA vs. CPA): easier to make mistakes
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Design space 6: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
• Tweaks to FO transform:

• Hash public-key into coins: multitarget protection (for non-zero failure probability)

• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: binding properties

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• From round 2, no proposal used explicit rejection
• Would break some security reduction
• More robust in practice (return value always 0)
• Various recent papers argue for explicit rejection
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Design space 7: allow failures?

• Can avoid decryption failures entirely (NTRU, NTRU Prime)
• Advantage:

• Easier CCA security transform and analysis

• Disadvantage:
• Need to limit noise (or have larger q)

• For passive-security-only can go the other way:
• Allow failure probability of, e.g., 2−30

• Reduce size of public key and ciphertext

• Active (CCA) security needs negligible failure probability
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Design space 8: error-correcting codes?

• Ring-LWE/LWR schemes work with polynomials of > 256 coefficients

• “Encrypt” messages of > 256 bits

• Need to encrypt only 256-bit key

• Question: How do we put those additional bits to use?

• Answer: Use error-correcting code (ECC) to reduce failure probability

• NewHope: very simple threshold decoding
• LAC, Round5: more advanced ECC

• Correct more errors, obtain smaller public key and ciphertext
• More complex to implement, in particular without leaking through timing
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K Y B E R

The KEM

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, Damien Stehle, Jintai Ding
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The design of Kyber / ML-KEM

• MLWE version of LPR encryption:
• Small-dimension vectors and matrices over Rq = Zq[X]/(X256 + 1), q = 3329

• Narrow, centered binomial noise with k = 2 or k = 3

• Three parameter sets: Kyber-512, Kyber-768, Kyber-1024

• Tweaked FO transform (hash pk into coins and shared key)

• No error-correcting codes; simple encoding of bits into coefficients

• Negligible probability of decryption errors

• All symmetric crypto based on Keccak permutation (SHA-3)
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Kyber vs. ECDH: a KEM is not DH!

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab
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Kyber vs. ECDH: a KEM is not DH!

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)
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Kyber vs. ECDH: performance

X25519 speed
• keygen: 28187 Skylake cycles

• shared: 87942 Skylake cycles

Kyber-768 speed
• keygen: 39750 Skylake cycles

• encaps: 53936 Skylake cycles

• decaps: 42339 Skylake cycles

X25519 sizes
• public key: 32 bytes

Kyber-768 sizes
• public key: 1184 bytes

• ciphertext: 1088 bytes
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Learn more

• Kyber website: https://pq-crystals.org/kyber/

• NIST PQC: https://csrc.nist.gov/projects/post-quantum-cryptography

• pqc-forum: https://groups.google.com/a/list.nist.gov/g/pqc-forum
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