
Kyber – Implementation aspects

August 1, 2024



Three properties

1. Efficiency
2. Security
3. Correctness

1



1. Efficiency



What I mean by efficiency

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• We typically care about 10% speedup
• We may care about every byte of RAM
• 0.05% of CPU cycles in Meta’s data centers are spent on X25519
• Saving a hash of 1KB may save an Internet giant some million USD per year
• Consequence:

• Crypto is commonly hand-optimized on ASM level
• Interaction between design and low-level implementation

3



What I mean by efficiency

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• We typically care about 10% speedup
• We may care about every byte of RAM

• 0.05% of CPU cycles in Meta’s data centers are spent on X25519
• Saving a hash of 1KB may save an Internet giant some million USD per year
• Consequence:

• Crypto is commonly hand-optimized on ASM level
• Interaction between design and low-level implementation

3



What I mean by efficiency

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• We typically care about 10% speedup
• We may care about every byte of RAM
• 0.05% of CPU cycles in Meta’s data centers are spent on X25519

• Saving a hash of 1KB may save an Internet giant some million USD per year
• Consequence:

• Crypto is commonly hand-optimized on ASM level
• Interaction between design and low-level implementation

3



What I mean by efficiency

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• We typically care about 10% speedup
• We may care about every byte of RAM
• 0.05% of CPU cycles in Meta’s data centers are spent on X25519
• Saving a hash of 1KB may save an Internet giant some million USD per year

• Consequence:
• Crypto is commonly hand-optimized on ASM level
• Interaction between design and low-level implementation

3



What I mean by efficiency

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• We typically care about 10% speedup
• We may care about every byte of RAM
• 0.05% of CPU cycles in Meta’s data centers are spent on X25519
• Saving a hash of 1KB may save an Internet giant some million USD per year
• Consequence:

• Crypto is commonly hand-optimized on ASM level
• Interaction between design and low-level implementation

3



Parallel computation

“As a result, system designers and software engineers can no longer rely on increasing clock
speed to hide software bloat. Instead, they must somehow learn to make effective use of
increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007

Why multicore does not matter for crypto
• Crypto is fast
• > 30000 X25519 shared-key computations on a 3 GHz Skylake
• > 50000 Kyber-768 encapsulations
• ≈ 70000 Kyber-768 decapsulations

• If you perform only one crypto operation, you don’t care
• Many crypto operations are trivially parallel on multiple cores

4



Parallel computation

“As a result, system designers and software engineers can no longer rely on increasing clock
speed to hide software bloat. Instead, they must somehow learn to make effective use of
increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007

Why multicore does not matter for crypto
• Crypto is fast
• > 30000 X25519 shared-key computations on a 3 GHz Skylake
• > 50000 Kyber-768 encapsulations
• ≈ 70000 Kyber-768 decapsulations

• If you perform only one crypto operation, you don’t care
• Many crypto operations are trivially parallel on multiple cores

4



Parallel computation

“As a result, system designers and software engineers can no longer rely on increasing clock
speed to hide software bloat. Instead, they must somehow learn to make effective use of
increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007

Why multicore does not matter for crypto
• Crypto is fast
• > 30000 X25519 shared-key computations on a 3 GHz Skylake
• > 50000 Kyber-768 encapsulations
• ≈ 70000 Kyber-768 decapsulations
• If you perform only one crypto operation, you don’t care

• Many crypto operations are trivially parallel on multiple cores

4



Parallel computation

“As a result, system designers and software engineers can no longer rely on increasing clock
speed to hide software bloat. Instead, they must somehow learn to make effective use of
increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007

Why multicore does not matter for crypto
• Crypto is fast
• > 30000 X25519 shared-key computations on a 3 GHz Skylake
• > 50000 Kyber-768 encapsulations
• ≈ 70000 Kyber-768 decapsulations
• If you perform only one crypto operation, you don’t care
• Many crypto operations are trivially parallel on multiple cores

4



Vector computations

Scalar computation
• Load 32-bit integer a
• Load 32-bit integer b
• Perform addition c←a + b
• Store 32-bit integer c

Vectorized computation
• Load 4 consecutive 32-bit integers (a0, a1, a2, a3)
• Load 4 consecutive 32-bit integers (b0, b1, b2, b3)

• Perform addition
(c0, c1, c2, c3)←(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• Store 128-bit vector (c0, c1, c2, c3)

• Perform the same operations on independent data streams (SIMD)
• Vector instructions available on most “large” processors
• Instructions for vectors of bytes, integers, floats. . .
• Need to interleave data items (e.g., 32-bit integers) in memory
• Compilers will not help with vectorization

5



Vector computations

Scalar computation
• Load 32-bit integer a
• Load 32-bit integer b
• Perform addition c←a + b
• Store 32-bit integer c

Vectorized computation
• Load 4 consecutive 32-bit integers (a0, a1, a2, a3)
• Load 4 consecutive 32-bit integers (b0, b1, b2, b3)

• Perform addition
(c0, c1, c2, c3)←(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• Store 128-bit vector (c0, c1, c2, c3)

• Perform the same operations on independent data streams (SIMD)
• Vector instructions available on most “large” processors
• Instructions for vectors of bytes, integers, floats. . .

• Need to interleave data items (e.g., 32-bit integers) in memory
• Compilers will not help with vectorization

5



Vector computations

Scalar computation
• Load 32-bit integer a
• Load 32-bit integer b
• Perform addition c←a + b
• Store 32-bit integer c

Vectorized computation
• Load 4 consecutive 32-bit integers (a0, a1, a2, a3)
• Load 4 consecutive 32-bit integers (b0, b1, b2, b3)

• Perform addition
(c0, c1, c2, c3)←(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• Store 128-bit vector (c0, c1, c2, c3)

• Perform the same operations on independent data streams (SIMD)
• Vector instructions available on most “large” processors
• Instructions for vectors of bytes, integers, floats. . .
• Need to interleave data items (e.g., 32-bit integers) in memory
• Compilers will not help with vectorization

5



Vector computations

Scalar computation
• Load 32-bit integer a
• Load 32-bit integer b
• Perform addition c←a + b
• Store 32-bit integer c

Vectorized computation
• Load 4 consecutive 32-bit integers (a0, a1, a2, a3)
• Load 4 consecutive 32-bit integers (b0, b1, b2, b3)

• Perform addition
(c0, c1, c2, c3)←(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• Store 128-bit vector (c0, c1, c2, c3)

• Perform the same operations on independent data streams (SIMD)
• Vector instructions available on most “large” processors
• Instructions for vectors of bytes, integers, floats. . .
• Need to interleave data items (e.g., 32-bit integers) in memory
• Compilers will not really help with vectorization

5



Performance of vector arithmetic

• Consider the Intel Skylake processor with AVX2

• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• AVX2 vector instructions are almost as fast as scalar instructions but do 8× the
work

• Situation on other architectures/microarchitectures is similar
• Reason: cheap way to increase arithmetic throughput (less decoding, address

computation, etc.)

6



Performance of vector arithmetic

• Consider the Intel Skylake processor with AVX2
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle

• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• AVX2 vector instructions are almost as fast as scalar instructions but do 8× the
work

• Situation on other architectures/microarchitectures is similar
• Reason: cheap way to increase arithmetic throughput (less decoding, address

computation, etc.)

6



Performance of vector arithmetic

• Consider the Intel Skylake processor with AVX2
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• AVX2 vector instructions are almost as fast as scalar instructions but do 8× the
work

• Situation on other architectures/microarchitectures is similar
• Reason: cheap way to increase arithmetic throughput (less decoding, address

computation, etc.)

6



Performance of vector arithmetic

• Consider the Intel Skylake processor with AVX2
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• AVX2 vector instructions are almost as fast as scalar instructions but do 8× the
work

• Situation on other architectures/microarchitectures is similar
• Reason: cheap way to increase arithmetic throughput (less decoding, address

computation, etc.)

6



Performance of vector arithmetic

• Consider the Intel Skylake processor with AVX2
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• AVX2 vector instructions are almost as fast as scalar instructions but do 8× the
work

• Situation on other architectures/microarchitectures is similar
• Reason: cheap way to increase arithmetic throughput (less decoding, address

computation, etc.)

6



The NTT

Core operation in LPR encryption: multiply in Rq

• Schoolbook approach: Θ(n2)

• Karatsuba: Θ(nlog2 3)

• Approach for multiplication in Rq = Zq[X]/(Xn + 1) with n = 2m:

a · b = NTT−1(NTT(a) ◦ NTT(b))
• Number Theoretic Transform (NTT) is discrete FFT
• Complexity Θ(n log n)
• ◦ is “pointwise” multiplication
• Requires that 2n divides q− 1

• Split (Xn + 1), perform multiplication modulo factors

7



The NTT

Core operation in LPR encryption: multiply in Rq

• Schoolbook approach: Θ(n2)

• Karatsuba: Θ(nlog2 3)

• Approach for multiplication in Rq = Zq[X]/(Xn + 1) with n = 2m:

a · b = NTT−1(NTT(a) ◦ NTT(b))
• Number Theoretic Transform (NTT) is discrete FFT
• Complexity Θ(n log n)
• ◦ is “pointwise” multiplication
• Requires that 2n divides q− 1

• Split (Xn + 1), perform multiplication modulo factors

7



The NTT

Core operation in LPR encryption: multiply in Rq

• Schoolbook approach: Θ(n2)

• Karatsuba: Θ(nlog2 3)

• Approach for multiplication in Rq = Zq[X]/(Xn + 1) with n = 2m:

a · b = NTT−1(NTT(a) ◦ NTT(b))

• Number Theoretic Transform (NTT) is discrete FFT
• Complexity Θ(n log n)
• ◦ is “pointwise” multiplication
• Requires that 2n divides q− 1

• Split (Xn + 1), perform multiplication modulo factors

7



The NTT

Core operation in LPR encryption: multiply in Rq

• Schoolbook approach: Θ(n2)

• Karatsuba: Θ(nlog2 3)

• Approach for multiplication in Rq = Zq[X]/(Xn + 1) with n = 2m:

a · b = NTT−1(NTT(a) ◦ NTT(b))
• Number Theoretic Transform (NTT) is discrete FFT
• Complexity Θ(n log n)
• ◦ is “pointwise” multiplication

• Requires that 2n divides q− 1

• Split (Xn + 1), perform multiplication modulo factors

7



The NTT

Core operation in LPR encryption: multiply in Rq

• Schoolbook approach: Θ(n2)

• Karatsuba: Θ(nlog2 3)

• Approach for multiplication in Rq = Zq[X]/(Xn + 1) with n = 2m:

a · b = NTT−1(NTT(a) ◦ NTT(b))
• Number Theoretic Transform (NTT) is discrete FFT
• Complexity Θ(n log n)
• ◦ is “pointwise” multiplication
• Requires that 2n divides q− 1

• Split (Xn + 1), perform multiplication modulo factors

7



Structure of (INV)NTT
a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

×

ω0

+

−

a0

a1

×

ω1

+

−

a2

a3

×

ω2

+

−

a4

a5

×

ω3

+

−

a6

a7

×

ω4

+

−

a8

a9

×

ω5

+

−

a10

a11

×

ω6

+

−

a12

a13

×

ω7

+

−

a14

a15

×

ω8

+

−

a0

a2

×

ω8

+

−

a1

a3

×

ω9

+

−

a4

a6

×

ω9

+

−

a5

a7

×

ω10

+

−

a8

a10

×

ω10

+

−

a9

a11

×

ω11

+

−

a12

a14

×

ω11

+

−

a13

a15

×

ω12

+

−

a0

a4

×

ω12

+

−

a1

a5

×

ω12

+

−

a2

a6

×

ω12

+

−

a3

a7

×

ω13

+

−

a8

a12

×

ω13

+

−

a9

a13

×

ω13

+

−

a10

a14

×

ω13

+

−

a11

a15

×

ω14

+

−

a0

a8

×

ω14

+

−

a1

a9

×

ω14

+

−

a2

a10

×

ω14

+

−

a3

a11

×

ω14

+

−

a4

a12

×

ω14

+

−

a5

a13

×

ω14

+

−

a6

a14

×

ω14

+

−

a7

a15

Picture credit: Matthias Kannwischer

• log n layers of “butterfly
operations”

• Each layer has n/2 butterflies
• On most layers straight-forwardly

vectorizable
• Some layers need

vector-permutation instructions

8



Generation of A

• Kyber needs to generate A←Parse(XOF(seed))
• For Kyber-1024, generate 16 polynomials in Rq = Zq[X]/(X256 + 1)

• XOF generates uniform-looking bytes in blocks of size 168

• Take 12 bits from XOF output, check if < 3329

• Two options:
1. Run XOF once, use for all 16 polynomials
2. Run XOF 16×, once per polynomial

• Option 1 needs less computation (on average)
• Option 2 lets us use vectorization across XOF invocations
• Kyber uses Option 2

9



Generation of A

• Kyber needs to generate A←Parse(XOF(seed))
• For Kyber-1024, generate 16 polynomials in Rq = Zq[X]/(X256 + 1)

• XOF generates uniform-looking bytes in blocks of size 168

• Take 12 bits from XOF output, check if < 3329

• Two options:
1. Run XOF once, use for all 16 polynomials
2. Run XOF 16×, once per polynomial

• Option 1 needs less computation (on average)
• Option 2 lets us use vectorization across XOF invocations
• Kyber uses Option 2

9



Generation of A

• Kyber needs to generate A←Parse(XOF(seed))
• For Kyber-1024, generate 16 polynomials in Rq = Zq[X]/(X256 + 1)

• XOF generates uniform-looking bytes in blocks of size 168

• Take 12 bits from XOF output, check if < 3329

• Two options:
1. Run XOF once, use for all 16 polynomials
2. Run XOF 16×, once per polynomial

• Option 1 needs less computation (on average)
• Option 2 lets us use vectorization across XOF invocations
• Kyber uses Option 2

9



Generation of A

• Kyber needs to generate A←Parse(XOF(seed))
• For Kyber-1024, generate 16 polynomials in Rq = Zq[X]/(X256 + 1)

• XOF generates uniform-looking bytes in blocks of size 168

• Take 12 bits from XOF output, check if < 3329

• Two options:
1. Run XOF once, use for all 16 polynomials
2. Run XOF 16×, once per polynomial

• Option 1 needs less computation (on average)
• Option 2 lets us use vectorization across XOF invocations

• Kyber uses Option 2

9



Generation of A

• Kyber needs to generate A←Parse(XOF(seed))
• For Kyber-1024, generate 16 polynomials in Rq = Zq[X]/(X256 + 1)

• XOF generates uniform-looking bytes in blocks of size 168

• Take 12 bits from XOF output, check if < 3329

• Two options:
1. Run XOF once, use for all 16 polynomials
2. Run XOF 16×, once per polynomial

• Option 1 needs less computation (on average)
• Option 2 lets us use vectorization across XOF invocations
• Kyber uses Option 2

9



2. Security



Side-channel attacks

• Attackers see more than input/output:
• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks
• Software visible
• Can be performed remotely

11



Side-channel attacks

• Attackers see more than input/output:
• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks
• Software visible
• Can be performed remotely

11



Side-channel attacks

• Attackers see more than input/output:
• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks
• Software visible
• Can be performed remotely

11



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state
• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret
• Even if A and B take the same amount of cycles this is generally not constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

12



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state

• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret
• Even if A and B take the same amount of cycles this is generally not constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

12



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state
• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret

• Even if A and B take the same amount of cycles this is generally not constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

12



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state
• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret
• Even if A and B take the same amount of cycles this is generally not constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

12



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

• For very fast A and B this can even be faster

13



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

• For very fast A and B this can even be faster

13



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

• For very fast A and B this can even be faster

13



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

• For very fast A and B this can even be faster

13



Fun with optimizing compilers

void poly_frommsg(poly *r, const uint8_t msg[KYBER_INDCPA_MSGBYTES])
{

unsigned int i,j;
int16_t mask;

for(i=0;i<KYBER_N/8;i++) {
for(j=0;j<8;j++) {

mask = -(int16_t)((msg[i] >> j)&1);
r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);

}
}

}

• LLVM from version 15 optimizes this to a branch with some flags
• Pointed out by Antoon Purnal, May 2024
• Different options to fix, all amount to “fighting the compiler”

14



Fun with optimizing compilers

void poly_frommsg(poly *r, const uint8_t msg[KYBER_INDCPA_MSGBYTES])
{

unsigned int i,j;
int16_t mask;

for(i=0;i<KYBER_N/8;i++) {
for(j=0;j<8;j++) {

mask = -(int16_t)((msg[i] >> j)&1);
r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);

}
}

}

• LLVM from version 15 optimizes this to a branch with some flags
• Pointed out by Antoon Purnal, May 2024
• Different options to fix, all amount to “fighting the compiler”

14



Timing leakage part II

T[0] . . .T[15]
T[16] . . .T[31]
T[32] . . .T[47]
T[48] . . .T[63]
T[64] . . .T[79]
T[80] . . .T[95]
T[96] . . .T[111]
T[112] . . .T[127]
T[128] . . .T[143]
T[144] . . .T[159]
T[160] . . .T[175]
T[176] . . .T[191]
T[192] . . .T[207]
T[208] . . .T[223]
T[224] . . .T[239]
T[240] . . .T[255]

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run on the same

CPU
• Tables are in cache

• The attacker’s program replaces some cache lines
• Crypto continues, loads from table again
• Attacker loads his data:

• Fast: cache hit (crypto did not just load from this
line)

• Slow: cache miss (crypto just loaded from this line)

15



Timing leakage part II

T[0] . . .T[15]
T[16] . . .T[31]
attacker’s data
attacker’s data
T[64] . . .T[79]
T[80] . . .T[95]
attacker’s data
attacker’s data
attacker’s data
attacker’s data

T[160] . . .T[175]
T[176] . . .T[191]
T[192] . . .T[207]
T[208] . . .T[223]
attacker’s data
attacker’s data

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run on the same

CPU
• Tables are in cache
• The attacker’s program replaces some cache lines

• Crypto continues, loads from table again
• Attacker loads his data:

• Fast: cache hit (crypto did not just load from this
line)

• Slow: cache miss (crypto just loaded from this line)

15



Timing leakage part II

T[0] . . .T[15]
T[16] . . .T[31]

???
???

T[64] . . .T[79]
T[80] . . .T[95]

???
???
???
???

T[160] . . .T[175]
T[176] . . .T[191]
T[192] . . .T[207]
T[208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run on the same

CPU
• Tables are in cache
• The attacker’s program replaces some cache lines
• Crypto continues, loads from table again

• Attacker loads his data:

• Fast: cache hit (crypto did not just load from this
line)

• Slow: cache miss (crypto just loaded from this line)

15



Timing leakage part II

T[0] . . .T[15]
T[16] . . .T[31]

???
???

T[64] . . .T[79]
T[80] . . .T[95]

???
???
???
???

T[160] . . .T[175]
T[176] . . .T[191]
T[192] . . .T[207]
T[208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run on the same

CPU
• Tables are in cache
• The attacker’s program replaces some cache lines
• Crypto continues, loads from table again
• Attacker loads his data:

• Fast: cache hit (crypto did not just load from this
line)

• Slow: cache miss (crypto just loaded from this line)

15



Timing leakage part II

T[0] . . .T[15]
T[16] . . .T[31]

???
???

T[64] . . .T[79]
T[80] . . .T[95]

???
attacker’s data

???
???

T[160] . . .T[175]
T[176] . . .T[191]
T[192] . . .T[207]
T[208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run on the same

CPU
• Tables are in cache
• The attacker’s program replaces some cache lines
• Crypto continues, loads from table again
• Attacker loads his data:

• Fast: cache hit (crypto did not just load from this
line)

• Slow: cache miss (crypto just loaded from this line)

15



Timing leakage part II

T[0] . . .T[15]
T[16] . . .T[31]

???
???

T[64] . . .T[79]
T[80] . . .T[95]

???
T[112] . . .T[127]

???
???

T[160] . . .T[175]
T[176] . . .T[191]
T[192] . . .T[207]
T[208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run on the same

CPU
• Tables are in cache
• The attacker’s program replaces some cache lines
• Crypto continues, loads from table again
• Attacker loads his data:

• Fast: cache hit (crypto did not just load from this
line)

• Slow: cache miss (crypto just loaded from this line)

15



Some comments on cache-timing

• This is only the most basic cache-timing attack

• Non-secret cache lines are not enough for security
• Load/Store addresses influence timing in many different ways
• Do not access memory at secret-data-dependent addresses
• Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

16



Some comments on cache-timing

• This is only the most basic cache-timing attack
• Non-secret cache lines are not enough for security
• Load/Store addresses influence timing in many different ways
• Do not access memory at secret-data-dependent addresses

• Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

16



Some comments on cache-timing

• This is only the most basic cache-timing attack
• Non-secret cache lines are not enough for security
• Load/Store addresses influence timing in many different ways
• Do not access memory at secret-data-dependent addresses
• Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

16



Some comments on cache-timing

• This is only the most basic cache-timing attack
• Non-secret cache lines are not enough for security
• Load/Store addresses influence timing in many different ways
• Do not access memory at secret-data-dependent addresses
• Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

16



Eliminating lookups
• Want to load item at (secret) position p from table of size n

• Load all items, use arithmetic to pick the right one:
for i from 0 to n− 1 do

d←T[i]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons are not constant time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{
unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

17



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d←T[i]
if p = i then

r←d
end if

end for

• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons are not constant time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{
unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

17



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d←T[i]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)

• Problem 2: Comparisons are not constant time, replace by, e.g.:
static unsigned long long eq(uint32_t a, uint32_t b)
{
unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

17



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d←T[i]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons are not constant time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{
unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

} 17



Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory addresses
• This can always be done; cost highly depends on the algorithm

• Test this with valgrind and uninitialized secret data (see
https://www.post-apocalyptic-crypto.org/timecop/)

“In order for a function to be constant time, the branches taken and memory addresses
accessed must be independent of any secret inputs. (That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel, takes a variable
amount of time depending on its arguments!”

—Langley, Feb. 2013

18

https://www.post-apocalyptic-crypto.org/timecop/


Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory addresses
• This can always be done; cost highly depends on the algorithm
• Test this with valgrind and uninitialized secret data (see

https://www.post-apocalyptic-crypto.org/timecop/)

“In order for a function to be constant time, the branches taken and memory addresses
accessed must be independent of any secret inputs. (That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel, takes a variable
amount of time depending on its arguments!”

—Langley, Feb. 2013

18

https://www.post-apocalyptic-crypto.org/timecop/


Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory addresses
• This can always be done; cost highly depends on the algorithm
• Test this with valgrind and uninitialized secret data (see

https://www.post-apocalyptic-crypto.org/timecop/)

“In order for a function to be constant time, the branches taken and memory addresses
accessed must be independent of any secret inputs. (That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel, takes a variable
amount of time depending on its arguments!”

—Langley, Feb. 2013

18

https://www.post-apocalyptic-crypto.org/timecop/


Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory addresses
• This can always be done; cost highly depends on the algorithm
• Test this with valgrind and uninitialized secret data (see

https://www.post-apocalyptic-crypto.org/timecop/)

“In order for a function to be constant time, the branches taken and memory addresses
accessed must be independent of any secret inputs. (That’s assuming that the fundamental
processor instructions are constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel, takes a variable
amount of time depending on its arguments!”

—Langley, Feb. 2013 18

https://www.post-apocalyptic-crypto.org/timecop/


More fun with optimizing compilers

void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const poly *a)
{

unsigned int i,j;
uint16_t t;

for(i=0;i<KYBER_N/8;i++) {
msg[i] = 0;
for(j=0;j<8;j++) {

t = a->coeffs[8*i+j];
t += ((int16_t)t >> 15) & KYBER_Q;
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
msg[i] |= t << j;

}
}

}

19



More fun with optimizing compilers

• Division by a constant typically uses multiplication
Division by Invariant Integers using Multiplication, Granlund, Montgomery, PLDI 1994

• With some flags, gcc and LLVM will actually use a DIV instruction
• See “KyberSlash” paper by Bernstein, Bhargavan, Bhasin, Chattopadhyay, Kiah Chia,

Kannwischer, Kiefer, Paiva, Ravi, Tamvada. https://eprint.iacr.org/2024/1049
• Rewrite division, but still no guarantee that compilers won’t use DIV

20

https://eprint.iacr.org/2024/1049


More fun with optimizing compilers

• Division by a constant typically uses multiplication
Division by Invariant Integers using Multiplication, Granlund, Montgomery, PLDI 1994

• With some flags, gcc and LLVM will actually use a DIV instruction
• See “KyberSlash” paper by Bernstein, Bhargavan, Bhasin, Chattopadhyay, Kiah Chia,

Kannwischer, Kiefer, Paiva, Ravi, Tamvada. https://eprint.iacr.org/2024/1049

• Rewrite division, but still no guarantee that compilers won’t use DIV

20

https://eprint.iacr.org/2024/1049


More fun with optimizing compilers

• Division by a constant typically uses multiplication
Division by Invariant Integers using Multiplication, Granlund, Montgomery, PLDI 1994

• With some flags, gcc and LLVM will actually use a DIV instruction
• See “KyberSlash” paper by Bernstein, Bhargavan, Bhasin, Chattopadhyay, Kiah Chia,

Kannwischer, Kiefer, Paiva, Ravi, Tamvada. https://eprint.iacr.org/2024/1049
• Rewrite division, but still no guarantee that compilers won’t use DIV

20

https://eprint.iacr.org/2024/1049


Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code

• is formally proven to preserve semantics through compilation
• is formally proven to preserve “constant-time” through compilation
• can check safety properties at compile time
• can automatically zeroize sensitive data at well-defined spots
• interfaces to interactive theorem provers to verify functional correctness

21



Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code

• is formally proven to preserve semantics through compilation
• is formally proven to preserve “constant-time” through compilation
• can check safety properties at compile time
• can automatically zeroize sensitive data at well-defined spots
• interfaces to interactive theorem provers to verify functional correctness

21



Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code
• is formally proven to preserve semantics through compilation

• is formally proven to preserve “constant-time” through compilation
• can check safety properties at compile time
• can automatically zeroize sensitive data at well-defined spots
• interfaces to interactive theorem provers to verify functional correctness

21



Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code
• is formally proven to preserve semantics through compilation
• is formally proven to preserve “constant-time” through compilation

• can check safety properties at compile time
• can automatically zeroize sensitive data at well-defined spots
• interfaces to interactive theorem provers to verify functional correctness

21



Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code
• is formally proven to preserve semantics through compilation
• is formally proven to preserve “constant-time” through compilation
• can check safety properties at compile time

• can automatically zeroize sensitive data at well-defined spots
• interfaces to interactive theorem provers to verify functional correctness

21



Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code
• is formally proven to preserve semantics through compilation
• is formally proven to preserve “constant-time” through compilation
• can check safety properties at compile time
• can automatically zeroize sensitive data at well-defined spots

• interfaces to interactive theorem provers to verify functional correctness

21



Imagine

Problem: There is no concept of secret data in LLVM or GCC!

Imagine a language+compiler compiler that. . .
• distinguishes between public and secret data
• gives programmers all power to optimize (crypto) code
• is formally proven to preserve semantics through compilation
• is formally proven to preserve “constant-time” through compilation
• can check safety properties at compile time
• can automatically zeroize sensitive data at well-defined spots
• interfaces to interactive theorem provers to verify functional correctness

21



Jasmin – assembly in your head

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-
Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax
• Programming in Jasmin is much closer to assembly:

• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Many new features since 2017 paper
• Big credit also to Santiago Arranz Olmos and Jean-Christophe Léchenet!
• See Ph.D. thesis by Oliveira:

High-speed and High-assurance Cryptographic Software

22

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078
https://repositorio-aberto.up.pt/bitstream/10216/144015/2/580364.pdf


Jasmin – assembly in your head

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-
Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax
• Programming in Jasmin is much closer to assembly:

• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Many new features since 2017 paper
• Big credit also to Santiago Arranz Olmos and Jean-Christophe Léchenet!
• See Ph.D. thesis by Oliveira:

High-speed and High-assurance Cryptographic Software

22

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078
https://repositorio-aberto.up.pt/bitstream/10216/144015/2/580364.pdf


Constant-time code in Jasmin

• Enforce constant-time on jasmin source level
• Every piece of data is either secret or public
• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public
• In principle can do this also in, e.g., Rust (secret_integers crate)
• Jasmin compiler is verified to preserve constant-time!
• Explicit #declassify primitive to move from secret to public
• #declassify creates a proof obligation!

Barthe, Gregoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. CCS 2021. https://eprint.iacr.org/2021/650

23

https://eprint.iacr.org/2021/650


Constant-time code in Jasmin

• Enforce constant-time on jasmin source level
• Every piece of data is either secret or public
• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)
• Jasmin compiler is verified to preserve constant-time!
• Explicit #declassify primitive to move from secret to public
• #declassify creates a proof obligation!

Barthe, Gregoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. CCS 2021. https://eprint.iacr.org/2021/650

23

https://eprint.iacr.org/2021/650


Constant-time code in Jasmin

• Enforce constant-time on jasmin source level
• Every piece of data is either secret or public
• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
• Branch conditions and memory indices need to be public
• In principle can do this also in, e.g., Rust (secret_integers crate)

• Jasmin compiler is verified to preserve constant-time!
• Explicit #declassify primitive to move from secret to public
• #declassify creates a proof obligation!

Barthe, Gregoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. CCS 2021. https://eprint.iacr.org/2021/650

23

https://eprint.iacr.org/2021/650


Constant-time code in Jasmin

• Enforce constant-time on jasmin source level
• Every piece of data is either secret or public
• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
• Branch conditions and memory indices need to be public
• In principle can do this also in, e.g., Rust (secret_integers crate)
• Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public
• #declassify creates a proof obligation!

Barthe, Gregoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. CCS 2021. https://eprint.iacr.org/2021/650

23

https://eprint.iacr.org/2021/650


Constant-time code in Jasmin

• Enforce constant-time on jasmin source level
• Every piece of data is either secret or public
• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
• Branch conditions and memory indices need to be public
• In principle can do this also in, e.g., Rust (secret_integers crate)
• Jasmin compiler is verified to preserve constant-time!
• Explicit #declassify primitive to move from secret to public
• #declassify creates a proof obligation!

Barthe, Gregoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. CCS 2021. https://eprint.iacr.org/2021/650

23

https://eprint.iacr.org/2021/650


Spectre v1 (“Speculative bounds-check bypass”)

stack u8[10] public;
stack u8[32] secret;
reg u8 t;
reg u64 r, i;

i = 0;
while(i < 10) {
t = public[(int) i] ;
r = leak(t);
...

}

24



It’s more subtle than this

fn aes_rounds (stack u128[11] rkeys, reg u128 in) -> reg u128 {
reg u64 rkoffset;
state = in;

state ^= rkeys[0];
rkoffset = 0;
while(rkoffset < 9*16) {
rk = rkeys.[(int)rkoffset];
state = #AESENC(state, rk);
rkoffset += 16;

}
rk = rkeys[10];
#declassify state = #AESENCLAST(state, rk);
return state;

}
25



It’s more subtle than this

Spectre declassified
• Caller is free to leak (declassified) state
• Very common in crypto: ciphertext is actually sent!
• state is not “out of bounds” data, it’s “early data”
• Must not speculatively #declassify early!

Ammanaghatta Shivakumar, Barnes, Barthe, Cauligi, Chuengsatiansup, Genkin, O’Connell, Schwabe, Sim,
and Yarom: Spectre Declassified: Reading from the Right Place at the Wrong Time. IEEE S&P 2023.
https://eprint.iacr.org/2022/426

25

https://eprint.iacr.org/2022/426


Countermeasures
Fencing

• Can prevent speculation through barriers (LFENCE)
• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)
• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value
• Implemented in LLVM since version 8

• Still noticable performance overhead
• No formal guarantees of security

26



Countermeasures
Fencing

• Can prevent speculation through barriers (LFENCE)
• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)
• At every branch use arithmetic to update predicate
• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value

• Implemented in LLVM since version 8
• Still noticable performance overhead
• No formal guarantees of security

26



Countermeasures
Fencing

• Can prevent speculation through barriers (LFENCE)
• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)
• At every branch use arithmetic to update predicate
• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value
• Implemented in LLVM since version 8

• Still noticable performance overhead
• No formal guarantees of security

26



Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!
• Obvious idea: mask only loads into public registers

27



Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!
• Obvious idea: mask only loads into public registers

27



Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions
• secret registers never enter leaking instructions!
• Obvious idea: mask only loads into public registers

27



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

28



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

28



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

28



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms
• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

28



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms
• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

28



The special case of crypto

• We know what inputs secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!

• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!

29



The special case of crypto

• We know what inputs secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions

• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!

29



The special case of crypto

• We know what inputs secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load

• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!

29



The special case of crypto

• We know what inputs secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!

29



The special case of crypto

• We know what inputs secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!

29



Performance impact (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

ChaCha20

avx2 32 B 314 352 12.10
avx2 32 B xor 314 352 12.10
avx2 128 B 330 370 12.12
avx2 128 B xor 338 374 10.65
avx2 1 KiB 1190 1234 3.70
avx2 1 KiB xor 1198 1242 3.67
avx2 1 KiB 18872 18912 0.21
avx2 16 KiB xor 18970 18994 0.13

30



Performance impact (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

X25519 mulx smult 98352 98256 -0.098
mulx base 98354 98262 -0.094

Kyber512
avx2 keypair 25694 25912 0.848
avx2 enc 35186 35464 0.790
avx2 dec 27684 27976 1.055

Kyber768
avx2 keypair 42768 42888 0.281
avx2 enc 54518 54818 0.550
avx2 dec 43824 44152 0.748

30



References

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean: Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023. https://eprint.iacr.org/2022/1270

Arranz Olmos, Barthe, Blatter, Grégoire, and Laporte: Preservation of Speculative Constant-time by Compi-
lation. https://eprint.iacr.org/2024/1203

31

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2024/1203


Formosa Crypto

• Goal: Formally verified post-quantum crypto
• Software written in Jasmin
• Implementation security through Jasmin

language features
• Proofs of functional correctness using

EasyCrypt
• Security proofs in EasyCrypt

32



Formosa Crypto

https://en.wikipedia.org/wiki/Formosan_black_bear
32

https://en.wikipedia.org/wiki/Formosan_black_bear


Learn more

Kyber website: https://pq-crystals.org/kyber/
NIST PQC: https://csrc.nist.gov/projects/post-quantum-cryptography
pqc-forum: https://groups.google.com/a/list.nist.gov/g/pqc-forum
Formosa Crypto: https://formosa-crypto.org

33

https://pq-crystals.org/kyber/
https://csrc.nist.gov/projects/post-quantum-cryptography
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://formosa-crypto.org

