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Part I

Making software fast



Computers and computer programs
A highly simplified view

M
em

ory

Branch Unit

ALU

Registers

L/S Unit

implicit

explicit

CPU

◮ A program is a sequence of
instructions

◮ Load/Store instructions move
data between memory and
registers (processed by the L/S
unit)

◮ Branch instructions
(conditionally) jump to a
position in the program

◮ Arithmetic instructions perform
simple operations on values in
registers (processed by the
ALU)

◮ Registers are fast (fixed-size)
storage units, addressed “by
name”
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A first program
Adding up 1000 integers

1. Set register R1 to zero

2. Set register R2 to zero

3. Load 32-bits from address START+R2 into register R3

4. Add 32-bit integers in R1 and R3, write the result in R1

5. Increase value in register R2 by 4

6. Compare value in register R2 to 4000

7. Goto line 3 if R2 was smaller than 4000
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A first program
Adding up 1000 integers in readable syntax

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr]

result += tmp

ctr += 4

unsigned <? ctr - 4000

goto looptop if unsigned <
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Running the program

◮ Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

◮ Cycles needs to be long enough to finish the most complex
supported instruction
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Running the program

◮ Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

◮ Cycles needs to be long enough to finish the most complex
supported instruction

◮ Other approach: Chop instructions into smaller tasks, e.g. for
addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

◮ Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

◮ This is called pipelined execution (many more stages possible)
◮ Advantage: cycles can be much shorter (higher clock speed)
◮ Requirement for overlapping execution: instructions have to be

independent
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Instruction throughput and latency

◮ While the ALU is executing an instruction the L/S and branch units
are idle
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Instruction throughput and latency

◮ While the ALU is executing an instruction the L/S and branch units
are idle

◮ Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

◮ While we’re at it: Why not deploy two ALUs
◮ This concept is called superscalar execution
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Instruction throughput and latency

◮ While the ALU is executing an instruction the L/S and branch units
are idle

◮ Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

◮ While we’re at it: Why not deploy two ALUs
◮ This concept is called superscalar execution
◮ Number of independent instructions of one type per cycle:

throughput

◮ Number of cycles that need to pass before the result can be used:
latency
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An example computer
Still highly simplified

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

implicit

explicit

CPU

Latencies and throughputs

◮ At most 4 instructions per cycle
◮ At most 1 Load/Store

instruction per cycle
◮ At most 2 arithmetic

instructions per cycle
◮ Arithmetic latency: 2 cycles
◮ Load latency: 3 cycles
◮ Branches have to be last

instruction in a cycle
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Adding up 1000 integers on this computer

◮ Need at least 1000 load
instructions: ≥ 1000 cycles

Latencies and throughputs

◮ At most 4 instructions per cycle
◮ At most 1 Load/Store

instruction per cycle
◮ At most 2 arithmetic

instructions per cycle
◮ Arithmetic latency: 2 cycles
◮ Load latency: 3 cycles
◮ Branches have to be last

instruction in a cycle

9



Adding up 1000 integers on this computer
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Adding up 1000 integers on this computer

◮ Need at least 1000 load
instructions: ≥ 1000 cycles

◮ Need at least 999 addition
instructions: ≥ 500 cycles

◮ At least 1999 instructions:
≥ 500 cycles

◮ Lower bound: 1000 cycles

Latencies and throughputs

◮ At most 4 instructions per cycle
◮ At most 1 Load/Store

instruction per cycle
◮ At most 2 arithmetic

instructions per cycle
◮ Arithmetic latency: 2 cycles
◮ Load latency: 3 cycles
◮ Branches have to be last

instruction in a cycle
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How about our program?

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr]

result += tmp

ctr += 4

unsigned <? ctr - 4000

goto looptop if unsigned <
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How about our program?

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr ]

# wait 2 cycles for tmp

result += tmp

ctr += 4

# wait 1 cycle for ctr

unsigned <? ctr - 4000

# wait 1 cycle for unsigned <

goto looptop if unsigned <

◮ Addition has to wait for load
◮ Comparison has to wait for

addition
◮ Each iteration of the loop takes

8 cycles
◮ Total: > 8000 cycles
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How about our program?

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr ]

# wait 2 cycles for tmp

result += tmp

ctr += 4

# wait 1 cycle for ctr

unsigned <? ctr - 4000

# wait 1 cycle for unsigned <

goto looptop if unsigned <

◮ Addition has to wait for load
◮ Comparison has to wait for

addition
◮ Each iteration of the loop takes

8 cycles
◮ Total: > 8000 cycles
◮ This program sucks!
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Making the program fast
Step 1 – Unrolling

result = 0

tmp = mem32[START +0]

result += tmp

tmp = mem32[START +4]

result += tmp

tmp = mem32[START +8]

result += tmp

...

tmp = mem32[START +3996]

result += tmp

◮ Remove all the loop control:
unrolling
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Making the program fast
Step 1 – Unrolling

result = 0

tmp = mem32 [START +0]

# wait 2 cycles for tmp

result += tmp

tmp = mem32 [START +4]

# wait 2 cycles for tmp

result += tmp

tmp = mem32 [START +8]

# wait 2 cycles for tmp

result += tmp

...

tmp = mem32 [START +3996]

# wait 2 cycles for tmp

result += tmp

◮ Remove all the loop control:
unrolling

◮ Each load-and-add now takes 3
cycles

◮ Total: ≈ 3000 cycles
◮ Better, but still too slow
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Making the program fast
Step 2 – Instruction Scheduling

result = mem32[START + 0]

tmp0 = mem32[START + 4]

tmp1 = mem32[START + 8]

tmp2 = mem32[START +12]

result += tmp0

tmp0 = mem32[START +16]

result += tmp1

tmp1 = mem32[START +20]

result += tmp2

tmp2 = mem32[START +24]

...

result += tmp2

tmp2 = mem32[START +3996]

result += tmp0

result += tmp1

result += tmp2

◮ Load values earlier
◮ Load latencies are hidden
◮ Use more registers for loaded

values (tmp0, tmp1, tmp2)
◮ Get rid of one addition to zero
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Making the program fast
Step 2 – Instruction Scheduling

result = mem32 [START + 0]

tmp0 = mem32 [START + 4]

tmp1 = mem32 [START + 8]

tmp2 = mem32 [START +12]

result += tmp0

tmp0 = mem32[START +16]

# wait 1 cycle for result

result += tmp1

tmp1 = mem32[START +20]

# wait 1 cycle for result

result += tmp2

tmp2 = mem32[START +24]

...

result += tmp2

tmp2 = mem32[START +3996]

# wait 1 cycle for result

result += tmp0

# wait 1 cycle for result

result += tmp1

# wait 1 cycle for result

result += tmp2

◮ Load values earlier
◮ Load latencies are hidden
◮ Use more registers for loaded

values (tmp0, tmp1, tmp2)
◮ Get rid of one addition to zero
◮ Now arithmetic latencies kick in
◮ Total: ≈ 2000 cycles
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Making the program fast
Step 3 – More Instruction Scheduling (two accumulators)

result0 = mem32 [START + 0]

tmp0 = mem32 [START + 8]

result1 = mem32 [START + 4]

tmp1 = mem32 [START +12]

tmp2 = mem32 [START +16]

result0 += tmp0

tmp0 = mem32 [START +20]

result1 += tmp1

tmp1 = mem32 [START +24]

result0 += tmp2

tmp2 = mem32 [START +28]

...

result0 += tmp1

tmp1 = mem32 [START +3996]

result1 += tmp2

result0 += tmp0

result1 += tmp1

result0 += result1

◮ Use one more accumulator
register (result1)

◮ All latencies hidden
◮ Total: 1004 cycles
◮ Asymptotically n cycles for n

additions
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Summary of what we did

◮ Analyze the algorithm in terms of machine instructions
◮ Look at what the respective machine is able to do
◮ Compute a lower bound of the cycles
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Summary of what we did

◮ Analyze the algorithm in terms of machine instructions
◮ Look at what the respective machine is able to do
◮ Compute a lower bound of the cycles
◮ Optimize until we (almost) reached the lower bound:

◮ Unroll the loop
◮ Interleave independent instructions (instruction scheduling)
◮ Resulting program is larger and requires more registers!

◮ Note: Good instruction scheduling typically requires more registers
◮ Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
◮ Both instruction scheduling and register allocation are NP hard
◮ So is the joint problem
◮ Many instances are efficiently solvable
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Architectures and microarchitectures

What instructions and how many registers do we have?

◮ Instructions are defined by the instruction set

◮ Supported register names are defined by the set of architectural

registers

◮ Instruction set and set of architectural registers together define the
architecture

◮ Examples for architectures: x86, AMD64, ARMv6, ARMv7,
UltraSPARC

◮ Sometimes base architectures are extended, e.g., MMX, SSE, NEON
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Architectures and microarchitectures

What instructions and how many registers do we have?

◮ Instructions are defined by the instruction set

◮ Supported register names are defined by the set of architectural

registers

◮ Instruction set and set of architectural registers together define the
architecture

◮ Examples for architectures: x86, AMD64, ARMv6, ARMv7,
UltraSPARC

◮ Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?

◮ Different microarchitectures implement an architecture
◮ Latencies and throughputs are specific to a microarchitecture
◮ Example: Intel Core 2 Quad Q9550 implements the AMD64

architecture
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“Thus we arbitrarily select a reference organization : the IBM
704-70927090. This organization is then regarded as the prototype of the
class of machines which we label:
1) Single Instruction Stream–Single Data Stream (SISD).

Three additional organizational classes are evident.
2) Single Instruction Stream–Multiple Data Stream (SIMD)
3) Multiple Instruction Stream–Single Data Stream (MISD)
4) Multiple Instruction Stream–Multiple Data Stream (MIMD)”

– Michael J. Flynn. Very high-speed computing systems. 1966.
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32-bit integer addition: SISD vs SIMD

SISD

int64 a

int64 b

a = mem32[addr1 + 0]

b = mem32[addr2 + 0]

(uint32) a += b

mem32[addr3 + 0] = a

SIMD

reg128 a

reg128 b

a = mem128[addr1 + 0]

b = mem128[addr2 + 0]

4x a += b

mem128[addr3 + 0] = a
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Extending our machine. . .

◮ The two ALUs can now also do vector instructions
◮ Load/Store unit can also handle vector loads and stores
◮ Vector-arithmetic latency : 2 cycles
◮ Vector-load latency: 3 cycles
◮ Vector-store latency: 3 cycles
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Adding 1000 integers with vector instructions

vresult0 = mem128 [START + 0]

vtmp0 = mem128 [START + 16]

vresult1 = mem128 [START + 32]

vtmp1 = mem128 [START + 48]

vtmp2 = mem128 [START + 64]

4x vresult0 += vtmp0

vtmp0 = mem128 [START + 80]

4x vresult1 += vtmp1

vtmp1 = mem128 [START + 96]

4x vresult0 += vtmp2

vtmp2 = mem128 [START + 112]

...

4x vresult0 += vtmp1

vtmp1 = mem128 [START +3984]

4x vresult1 += vtmp2

4x vresult0 += vtmp0

4x vresult1 += vtmp1

4x vresult0 += vresult1

◮ Essentially the same as before
◮ Always load/add 4 integers
◮ Produces 4 independent sums

in vresult0
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Adding 1000 integers with vector instructions

...

mem128 [TMP + 0] = vresult0

result = mem32 [TMP + 0]

tmp0 = mem32 [TMP + 4]

tmp1 = mem32 [TMP + 8]

tmp2 = mem32 [TMP + 12]

result += tmp0

result += tmp1

result += tmp2

◮ Essentially the same as before
◮ Always load/add 4 integers
◮ Produces 4 independent sums

in vresult0

◮ Need to add horizontally across
elements in vresult0

◮ Can do that by storing, loading,
adding

◮ Total cost: 266 cycles
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Is this realistic?

◮ Consider the Intel Nehalem processor:
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Is this realistic?

◮ Consider the Intel Nehalem processor:
◮ 32-bit load throughput: 1 per cycle
◮ 32-bit add throughput: 3 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 128-bit load throughput: 1 per cycle
◮ 4× 32-bit add throughput: 2 per cycle
◮ 128-bit store throughput: 1 per cycle

◮ Vector instructions are about as fast as scalar instructions but

do 4× the work

◮ Situation on other architectures/microarchitectures is similar
◮ Reason: cheapest way to increase computational power

Why isn’t all software vectorized?
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Vectorization issues I
Branches and lookups

◮ Data-dependent branches are tricky
◮ Only efficient if all vector elements branch in the same direction
◮ Otherwise: compute both parts of the branch, mask out results
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Vectorization issues I
Branches and lookups

◮ Data-dependent branches are tricky
◮ Only efficient if all vector elements branch in the same direction
◮ Otherwise: compute both parts of the branch, mask out results
◮ Only consecutive loads are cheap
◮ Variably indexed loads are expensive
◮ Vectorization does not really like lookup-table-based

implementations
◮ Compilers only perform very simple vectorization efficiently
◮ Typically requires re-thinking data structures and algorithms
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Vectorization issues II
Specific parallel computations

◮ Need data-level parallelism

◮ Non-vectorized software turns data-level parallelism into
instruction-level parallelism

◮ Instruction-level parallelism is important for efficient pipelined and
superscalar execution

◮ Vectorization may conflict with efficient pipelined and superscalar
execution
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Vectorization issues III

Carry handling

◮ When adding two 32-bit integers, the result may have 33 bits (32-bit
result + carry)

◮ Scalar additions keep the carry in a special flag register

◮ Subsequent instructions can use this flag, e.g., “add with carry”
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Vectorization issues III

Carry handling

◮ When adding two 32-bit integers, the result may have 33 bits (32-bit
result + carry)

◮ Scalar additions keep the carry in a special flag register

◮ Subsequent instructions can use this flag, e.g., “add with carry”
◮ How about carries of vector additions?

◮ Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)
◮ Answer 2: They’re lost, recomputation is expensive

◮ Need to avoid carries instead of handling them
◮ In particular interesting for big-integer arithmetic (see my talk on

thursday)
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Vectorization issues IV

Data shuffeling

◮ Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

24



Vectorization issues IV

Data shuffeling

◮ Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Ignore carries, overflows etc. for a moment
◮ 16 multiplications, 9 additions
◮ How to vectorize multiplications?
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Vectorization issues IV

Data shuffeling

r0 = f0g0
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◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)
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Vectorization issues IV

Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

◮ And now what?
◮ Answer: Need to shuffle data in input and output registers
◮ Significant overhead, not clear that vectorization speeds up

computation!
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Summary

◮ To optimize software, understand algorithms in terms of machine
instructions

◮ Optimization:
◮ Pick suitable instructions
◮ Instruction scheduling
◮ Register allocation
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Summary

◮ To optimize software, understand algorithms in terms of machine
instructions

◮ Optimization:
◮ Pick suitable instructions
◮ Instruction scheduling
◮ Register allocation

◮ Next level: think vectorized
◮ Consider data-level parallelism
◮ Think branch-free
◮ Think lookup-table free
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Part II
Making software secure



Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software
◮ Attacker measures timing
◮ Attacker computes influence−1 to obtain secret data

27
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◮ Secret data has influence on timing of software
◮ Attacker measures timing
◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks
◮ Unlike other side-channel attacks, they work remotely:

◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

◮ Can’t protect against timing attacks by locking a room
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◮ Secret data has influence on timing of software
◮ Attacker measures timing
◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks
◮ Unlike other side-channel attacks, they work remotely:

◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

◮ Can’t protect against timing attacks by locking a room
◮ We can systematically eliminate all timing attacks!
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Exponentiation

◮ Core operation in RSA, DSA, ElGamal, ECC: exponentiation (or
scalar multiplication) with secret exponent (or scalar).
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Exponentiation

◮ Core operation in RSA, DSA, ElGamal, ECC: exponentiation (or
scalar multiplication) with secret exponent (or scalar).

Example: exponent 105

◮ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

◮ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

◮ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

◮ a105 = ((((((((((a2 · a)2) · 1)2) · a)2) · 1)2) · 1)2) · a

◮ Cost: 6 squarings, 3 multiplications
◮ More generally: 1 squaring per bit, 1 multiplication per 1-bit
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Example: exponentiation mod 2
31 − 1

// Multiplicative group of integers mod 2^31-1

typedef uint32_t group_t;

/* Modular multiplication */

static void group_mul(group_t *r, const group_t *x, const group_t *y)

{

*r = ((uint64_t) *x * *y) % 0x7FFFFFFF;

}
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Example: exponentiation mod 2
31 − 1

// Multiplicative group of integers mod 2^31-1

typedef uint32_t group_t;

/* Modular multiplication */

static void group_mul(group_t *r, const group_t *x, const group_t *y)

{

*r = ((uint64_t) *x * *y) % 0x7FFFFFFF;

}

◮ Group is way too small for cryptographic purposes
◮ Exponentation in this group is just fine to illustrate timing leaks
◮ From now on consider C code
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Square-and-multiply

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_setone(r);

for(i=EXPBYTES-1;i>=0;i--) {

for(j=7;j>=0;j--) {

group_mul(r, r, r);

if(e[i]>>j & 1) {

group_mul(r, r, x);

}

}

}

}
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Square-and-multiply

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_setone(r);

for(i=EXPBYTES-1;i>=0;i--) {

for(j=7;j>=0;j--) {

group_mul(r, r, r);

if(e[i]>>j & 1) {

group_mul(r, r, x);

}

}

}

}

◮ Secret branch condition leaks through timing!
◮ Idea: Always perform multiplication by x
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Square-and-multiply-always

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_t t;

group_setone(r);

for(i=EXPBYTES;i>=0;i--) {

for(j=7;j>=0;j--) {

group_mul(r,r,r);

if((e[i]>>j)&1)

group_mul(r,r,x);

else

group_mul(&t,r,x);

}

}

}
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void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_t t;

group_setone(r);

for(i=EXPBYTES;i>=0;i--) {

for(j=7;j>=0;j--) {

group_mul(r,r,r);

if((e[i]>>j)&1)

group_mul(r,r,x);

else

group_mul(&t,r,x);

}

}

}

◮ Compiler may optimize else clause away, but can avoid that
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Square-and-multiply-always

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_t t;

group_setone(r);

for(i=EXPBYTES;i>=0;i--) {

for(j=7;j>=0;j--) {

group_mul(r,r,r);

if((e[i]>>j)&1)

group_mul(r,r,x);

else

group_mul(&t,r,x);

}

}

}

◮ Compiler may optimize else clause away, but can avoid that
◮ Still not constant time, reasons:

◮ Branch prediction
◮ Instruction cache
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Eliminating branches

◮ So, what do we do with code like this?
if s then

r ← A

else

r ← B

end if
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Eliminating branches

◮ So, what do we do with code like this?
if s then

r ← A

else

r ← B

end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster
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Fixing Square-and-multiply-always

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_t t;

group_setone(r);

for(i=EXPBYTES;i>=0;i--) {

for(j=7;j>=0;j--) {

group_mul(r,r,r);

group_mul(&t,r,x);

group_cmov(r, &t, (e[i]>>j)&1);

}

}

}
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cmov

/* decision bit b has to be either 0 or 1 */

void group_cmov(group_t *r, const group_t *a, uint32_t b)

{

group_t t;

b = -b; /* Now b is either 0 or 0xffffffff */

t = (*r ^ *a) & b;

*r ^= t;

}
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Faster exponentiation

◮ Idea: precompute some multiples of x
◮ Process multiple bits in parallel
◮ “Fixed-window method”
◮ Let’s process chunks of 4 bits of the exponent
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Fixed-window exponentiation

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j;

group_t t[16];

group_setone(&t[0]);

t[1] = *x;

for(i=2;i<16;i++)

group_mul(&t[i], &t[i-1], x);

group_setone(r);

for(i=EXPBYTES;i>=0;i--) {

for(j=0;j<4;j++)

group_mul(r,r,r);

group_mul(r,r,&t[e[i]>>4]);

for(j=0;j<4;j++)

group_mul(r,r,r);

group_mul(r,r,&t[e[i]&0xf]);

}

}
36



Problem

table[secret]
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Cache-timing attacks

t[0]

t[1]

t[2]

t[3]

t[4]

t[5]

t[6]

t[7]

t[8]

t[9]

t[10]

t[11]

t[12]

t[13]

t[14]

t[15]

◮ Crypto and the attacker’s program run
on the same CPU

◮ Table is in cache
◮ Simplification: each table entry takes

exactly one cache line
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load from this line)
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Cache-timing attacks

t[0]

t[1]

???

???
t[4]

t[5]

???
t[7]

???

???
t[10]

t[11]

t[12]

t[13]

???

???

◮ Crypto and the attacker’s program run
on the same CPU

◮ Table is in cache
◮ Simplification: each table entry takes

exactly one cache line
◮ The attacker’s program replaces some

cache lines
◮ Crypto continues, loads from table

again
◮ Attacker loads his data:

◮ Fast: cache hit (crypto did not just
load from this line)

◮ Slow: cache miss (crypto just loaded
from this line)
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“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe
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“Countermeasure”

◮ Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

◮ Idea: Lookups within one cache line should be safe. . . or are they?
◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?

No!”

◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

◮ Reasons:
◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮

. . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime

◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure
◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access

within one cache line
◮ TODO: Real attack against, e.g., OpenSSL
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Fixing fixed-window exponentiation

void group_exp(group_t *r, const group_t *x, const uint8_t e[EXPBYTES])

{

int i,j; group_t t[16],d;

group_setone(&t[0]);

t[1] = *x;

for(i=2;i<16;i++)

group_mul(&t[i], &t[i-1], x);

group_setone(r);

for(i=EXPBYTES;i>=0;i--) {

for(j=0;j<4;j++)

group_mul(r,r,r);

lookup(&d,t,e[i]>>4); group_mul(r,r,&d);

for(j=0;j<4;j++)

group_mul(r,r,r);

lookup(&d,t,e[i]&0xf); group_mul(r,r,&d);

}

}
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Lookup

void lookup(group_t *r, const group_t *t, uint32_t pos)

{

uint32_t i;

group_t d;

*r = t[0];

for(i=1;i<16;i++)

{

d = t[i];

group_cmov(r,&d, i==pos);

}

}
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Lookup

void lookup(group_t *r, const group_t *t, uint32_t pos)

{

uint32_t i;

group_t d;

*r = t[0];

for(i=1;i<16;i++)

{

d = t[i];

group_cmov(r,&d, i==pos);

}

}

Does this leak? Depends on how the compiler handles i==pos
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Fixing lookup

void lookup(group_t *r, const group_t *t, uint32_t pos)

{

uint32_t i;

group_t d;

*r = t[0];

for(i=1;i<16;i++)

{

d = t[i];

group_cmov(r,&d, uint_iseq(i,pos));

}

}

Does this leak? Depends on how the compiler handles i==pos
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Constant-time comparison

int uint_iseq(unsigned int a, unsigned int b)

{

uint64_t t = a ^ b;

t = -t; /* Assuming 2’s complement */

t >>= 63;

return 1-t;

}
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Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

44



Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm
◮ Huge synergies with vectorizing algorithms!

44



Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm
◮ Huge synergies with vectorizing algorithms!

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

44



Is that all?

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm
◮ Huge synergies with vectorizing algorithms!

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
◮ MUL, MULHW, MULHWU on many PowerPC CPUs
◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution

◮ Avoid these instructions
◮ Make sure that inputs to the instructions don’t leak timing

information
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Are we using any *DIV?
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Are we using any *DIV?

Suspicious line of code

*r = ((uint64_t) *x * *y) % 0x7FFFFFFF;
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Are we using any *DIV?

Suspicious line of code

*r = ((uint64_t) *x * *y) % 0x7FFFFFFF;

◮ Compiler actually optimizes for fixed modulus
◮ No *DIV in the disassembly
◮ Generally better to avoid / and % with secret arguments:

◮ Avoid issues with different compilers and options
◮ Also simplifies static analysis on source level
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Fixing our group multiplication

static void group_mul(group_t *r, const group_t *x, const group_t *y)

{

uint64_t t,c;

t = (uint64_t) *x * *y;

c = t >> 31;

*r = t & 0x7FFFFFFF;

*r += c;

c = *r >> 31;

*r &= 0x7FFFFFFF;

*r += c;

}
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Summary

◮ Think about performance in terms of architectural bottlenecks
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Summary

◮ Think about performance in terms of architectural bottlenecks
◮ Vectorization rocks
◮ Vectorization requires re-thinking algorithms
◮ Systematic timing-attack protection is doable, but requires care
◮ Timing-attack protection requires re-thinking algorithms
◮ Huge synergies between timing-attack protection and vectorization

Design crypto as secret-branch-free, secret-lookup-free programs
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