## Software implementation of ECC

Radboud University, Nijmegen, The Netherlands


June 4, 2015
Summer school on real-world crypto and privacy
Šibenik, Croatia

## Software implementation of (H)ECC

Radboud University, Nijmegen, The Netherlands


June 4, 2015
Summer school on real-world crypto and privacy Šibenik, Croatia

## The ECDLP

## Definition

Given two points $P$ and $Q$ on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer $k$ such that $k P=Q$.

## The ECDLP

## Definition

Given two points $P$ and $Q$ on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer $k$ such that $k P=Q$.

Efficient ECC

- First idea: user needs to compute $k P$, so make that fast


## The ECDLP

## Definition

Given two points $P$ and $Q$ on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer $k$ such that $k P=Q$.

## Efficient ECC

- First idea: user needs to compute $k P$, so make that fast
- Actual situation is more complex:
- Keypair generation: Compute $k P$ for fixed $P$, don't leak information about scalar $k$


## The ECDLP

## Definition

Given two points $P$ and $Q$ on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer $k$ such that $k P=Q$.

## Efficient ECC

- First idea: user needs to compute $k P$, so make that fast
- Actual situation is more complex:
- Keypair generation: Compute $k P$ for fixed $P$, don't leak information about scalar $k$
- DH common-key computation: Compute $k P$ for variable $P$, don't leak information about scalar $k$


## The ECDLP

## Definition

Given two points $P$ and $Q$ on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer $k$ such that $k P=Q$.

## Efficient ECC

- First idea: user needs to compute $k P$, so make that fast
- Actual situation is more complex:
- Keypair generation: Compute $k P$ for fixed $P$, don't leak information about scalar $k$
- DH common-key computation: Compute $k P$ for variable $P$, don't leak information about scalar $k$
- Signature verification needs $k_{1} P_{1}+k_{2} P_{2}$, ok to leak information about (public) scalars $k_{1}$ and $k_{2}$


## The ECDLP

## Definition

Given two points $P$ and $Q$ on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer $k$ such that $k P=Q$.

## Efficient ECC

- First idea: user needs to compute $k P$, so make that fast
- Actual situation is more complex:
- Keypair generation: Compute $k P$ for fixed $P$, don't leak information about scalar $k$
- DH common-key computation: Compute $k P$ for variable $P$, don't leak information about scalar $k$
- Signature verification needs $k_{1} P_{1}+k_{2} P_{2}$, ok to leak information about (public) scalars $k_{1}$ and $k_{2}$


## The ECC implementation pyramid



## Why I don't like the pyramid. . .

- Pyramid levels are not independent
- Interactions through all levels, relevant for
- Correctness,
- Security, and
- Performance


## Why I don't like the pyramid. . .

- Pyramid levels are not independent
- Interactions through all levels, relevant for
- Correctness,
- Security, and
- Performance
- Plan for today: demonstrate these dependencies


## Why I don't like the pyramid. . .

- Pyramid levels are not independent
- Interactions through all levels, relevant for
- Correctness,
- Security, and
- Performance
- Plan for today: demonstrate these dependencies
- Fix target architecture: AMD64 (aka x86_64, aka x64)
- Fix target microarchitecture: Intel Sandy Bridge and Ivy Bridge


## Let's start with 255-bit integers

```
typedef struct{
    unsigned long long a[4];
} bigint255;
```

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
\{
$\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0]$;
$r->a[1]=x->a[1]+y->a[1] ;$
$\mathrm{r}->\mathrm{a}[2]=\mathrm{x}->\mathrm{a}[2]+\mathrm{y}->\mathrm{a}[2] ;$
$\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3]$;
\}

## Let's start with 255-bit integers

```
typedef struct{
    unsigned long long a[4];
} bigint255;
```

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
\{
$\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0]$;
$r->a[1]=x->a[1]+y->a[1] ;$
$\mathrm{r}->\mathrm{a}[2]=\mathrm{x}->\mathrm{a}[2]+\mathrm{y}->\mathrm{a}[2] ;$
$\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3]$;
\}

- What's wrong about this?


## Let's start with 255-bit integers

```
typedef struct{
    unsigned long long a[4];
} bigint255;
```

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
\{
$\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0]$;
$r->a[1]=x->a[1]+y->a[1] ;$
$r->a[2]=x->a[2]+y->a[2] ;$
$\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3]$;
\}

- What's wrong about this?
- This performs arithmetic on a vector of 4 independent 64 -bit integers (modulo $2^{64}$ )


## Let's start with 255-bit integers

```
typedef struct{
    unsigned long long a[4];
} bigint255;
```

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
\{
$r->a[0]=x->a[0]+y->a[0] ;$
$\mathrm{r}->\mathrm{a}[1]=\mathrm{x}->\mathrm{a}[1]+\mathrm{y}->\mathrm{a}[1]$;
$\mathrm{r}->\mathrm{a}[2]=\mathrm{x}->\mathrm{a}[2]+\mathrm{y}->\mathrm{a}[2]$;
$\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3]$;
\}

- What's wrong about this?
- This performs arithmetic on a vector of 4 independent 64 -bit integers (modulo $2^{64}$ )
- This is not the same as arithmetic on 256-bit integers
- Need to ripple the carries of all additions!


## Radix $-2^{51}$ representation

- Radix-2 ${ }^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries


## Radix $-2^{51}$ representation

- Radix-2 $2^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6 !)


## Radix- $2^{51}$ representation

- Radix- $2^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)


## Radix- $2^{51}$ representation

- Radix- $2^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)
- Let's get rid of the carries, represent $A$ as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- $2^{51}$ representation


## Radix- $2^{51}$ representation

- Radix- $2^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)
- Let's get rid of the carries, represent $A$ as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- $2^{51}$ representation
- Multiple ways to write the same integer $A$, for example $A=2^{52}$ :
- $\left(2^{52}, 0,0,0,0\right)$
- $(0,2,0,0,0)$


## Addition of two bigint255

```
typedef struct{
    unsigned long long a[5];
} bigint255;
void bigint255_add(bigint255 *r,
    const bigint255 *x,
    const bigint255 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```


## Addition of two bigint255

```
typedef struct{
    unsigned long long a[5];
} bigint255;
void bigint255_add(bigint255 *r,
    const bigint255 *x,
    const bigint255 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```


## Addition of two bigint255

```
typedef struct{
    unsigned long long a[5];
} bigint255;
```

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
\{
$\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0]$;
$\mathrm{r}->\mathrm{a}[1]=\mathrm{x}->\mathrm{a}[1]+\mathrm{y}->\mathrm{a}[1]$;
$r->a[2]=x->a[2]+y->a[2] ;$
$r->a[3]=x->a[3]+y->a[3] ;$
$r->a[4]=x->a[4]+y->a[4] ;$
\}

- This works as long as all coefficients are in $\left[0, \ldots, 2^{63}-1\right]$


## Addition of two bigint255

```
typedef struct{
    unsigned long long a[5];
} bigint255;
void bigint255_add(bigint255 *r,
    const bigint255 *x,
    const bigint255 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```

- This works as long as all coefficients are in $\left[0, \ldots, 2^{63}-1\right]$
- When starting with 51-bit coefficients, we can do quite a few additions before we have to carry


## Subtraction of two bigint255

```
typedef struct{
    signed long long a[5];
} bigint255;
void bigint255_sub(bigint255 *r,
{
    r->a[0] = x->a[0] - y->a[0];
    r->a[1] = x->a[1] - y->a[1];
    r->a[2] = x->a[2] - y->a[2];
    r->a[3] = x->a[3] - y->a[3];
    r->a[4] = x->a[4] - y->a[4];
}
```

                const bigint255 *x,
                const bigint255 *y)
    - Slightly update our bigint255 definition to work with signed 64-bit integers


## Carrying in radix- $2^{51}$

- With many additions, coefficients may grow larger than 63 bits
- They grow even faster in multiplication


## Carrying in radix- $2^{51}$

- With many additions, coefficients may grow larger than 63 bits
- They grow even faster in multiplication
- Eventually we have to carry en bloc:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```


## Carrying in radix- $2^{51}$

- With many additions, coefficients may grow larger than 63 bits
- They grow even faster in multiplication
- Eventually we have to carry en bloc:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- Similar for all higher coefficients. . .


## Big integers and polynomials

- Addition/Subtraction code would look exactly the same for 5-coefficient polynomial addition


## Big integers and polynomials

- Addition/Subtraction code would look exactly the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5 -coefficient polynomials


## Big integers and polynomials

- Addition/Subtraction code would look exactly the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5 -coefficient polynomials
- Nice thing about arithmetic $\mathbb{Z}[x]$ : no carries!


## Big integers and polynomials

- Addition/Subtraction code would look exactly the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5 -coefficient polynomials
- Nice thing about arithmetic $\mathbb{Z}[x]$ : no carries!
- To go from $\mathbb{Z}[x]$ to $\mathbb{Z}$, evaluate at the radix (this is a ring homomorphism)
- Carrying means evaluating at the radix


## Big integers and polynomials

- Addition/Subtraction code would look exactly the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5 -coefficient polynomials
- Nice thing about arithmetic $\mathbb{Z}[x]$ : no carries!
- To go from $\mathbb{Z}[x]$ to $\mathbb{Z}$, evaluate at the radix (this is a ring homomorphism)
- Carrying means evaluating at the radix
- Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic


## Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

$$
(-1)^{s} \cdot\left(1 . b_{m-1} b_{m-2} \ldots b_{0}\right) \cdot 2^{e-t} \text { with } b_{i} \in\{0,1\}
$$

## Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

$$
(-1)^{s} \cdot\left(1 . b_{m-1} b_{m-2} \ldots b_{0}\right) \cdot 2^{e-t} \text { with } b_{i} \in\{0,1\}
$$

- For double-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=52$ "mantissa bits"
- $e \in\{1, \ldots, 2046\}$ "exponent"
- $t=1023$


## Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

$$
(-1)^{s} \cdot\left(1 . b_{m-1} b_{m-2} \ldots b_{0}\right) \cdot 2^{e-t} \text { with } b_{i} \in\{0,1\}
$$

- For double-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=52$ "mantissa bits"
- $e \in\{1, \ldots, 2046\}$ "exponent"
- $t=1023$
- For single-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=23$ "mantissa bits"
- $e \in\{1, \ldots, 254\}$ "exponent"
- $t=127$


## Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

$$
(-1)^{s} \cdot\left(1 . b_{m-1} b_{m-2} \ldots b_{0}\right) \cdot 2^{e-t} \text { with } b_{i} \in\{0,1\}
$$

- For double-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=52$ "mantissa bits"
- $e \in\{1, \ldots, 2046\}$ "exponent"
- $t=1023$
- For single-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=23$ "mantissa bits"
- $e \in\{1, \ldots, 254\}$ "exponent"
- $t=127$
- Exponent $=0$ used to represent 0


## Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

$$
(-1)^{s} \cdot\left(1 . b_{m-1} b_{m-2} \ldots b_{0}\right) \cdot 2^{e-t} \text { with } b_{i} \in\{0,1\}
$$

- For double-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=52$ "mantissa bits"
- $e \in\{1, \ldots, 2046\}$ "exponent"
- $t=1023$
- For single-precision floats:
- $s \in\{0,1\}$ "sign bit"
- $m=23$ "mantissa bits"
- $e \in\{1, \ldots, 254\}$ "exponent"
- $t=127$
- Exponent $=0$ used to represent 0
- Any number that can be represented like this, will be precise
- Other numbers will be rounded, according to a rounding mode


## Addition

```
typedef struct{
    double a[12];
} bigint255;
void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)
{
    int i;
    for(i=0;i<12;i++)
        r->a[i] = x->a[i] + y->a[i];
}
```


## Subtraction

```
typedef struct{
    double a[12];
} bigint255;
void bigint255_sub(bigint255 *r,
                const bigint255 *x,
                const bigint255 *y)
{
    int i;
    for(i=0;i<12;i++)
        r->a[i] = x->a[i] - y->a[i];
}
```


## Carrying

- For carrying integers we used a right shift (discard lowest bits)


## Carrying

- For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix $2^{22}$, multiply by $2^{-22}$
- This does not cut off lowest bits, need to round


## Carrying

- For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix $2^{22}$, multiply by $2^{-22}$
- This does not cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., vroundpd


## Carrying

- For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix $2^{22}$, multiply by $2^{-22}$
- This does not cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., vroundpd
- Otherwise (for double-precision):
- add constant $2^{52}+2^{51}$
- subtract constant $2^{52}+2^{51}$
- This will round the number to an integer according to the rounding mode (to nearest, towards zero, away from zero, or truncate)


## Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
- One $64 \times 64 \rightarrow 128$ multiplication per cycle


## Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
- One $64 \times 64 \rightarrow 128$ multiplication per cycle
- Four (vectorized) double-precision multiplications per cycle


## Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
- One $64 \times 64 \rightarrow 128$ multiplication per cycle
- Four (vectorized) double-precision multiplications per cycle
- Four (vectorized) double-precision additions in the same cycle


## Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
- One $64 \times 64 \rightarrow 128$ multiplication per cycle
- Four (vectorized) double-precision multiplications per cycle
- Four (vectorized) double-precision additions in the same cycle
- Operations on 256-bit vector registers introduced with AVX


## Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
- One $64 \times 64 \rightarrow 128$ multiplication per cycle
- Four (vectorized) double-precision multiplications per cycle
- Four (vectorized) double-precision additions in the same cycle
- Operations on 256-bit vector registers introduced with AVX
- Integer operations on those registers introduced only with AVX2
- Sandy Bridge and Ivy Bridge don't have AVX2


## Vectorizing EC scalar multiplication

Computing multiple scalar multiplications

- Changes the rules of the game
- Increases size of active data set


## Vectorizing EC scalar multiplication

## Computing multiple scalar multiplications

- Changes the rules of the game
- Increases size of active data set

Parallelism inside multiprecision arithmetic

- Addition (in redundant representation) is trivially vectorized
- Vectorizing multiplication needs many shuffles
- Vectorization "eats up" instruction-level parallelism


## Vectorizing EC scalar multiplication

## Computing multiple scalar multiplications

- Changes the rules of the game
- Increases size of active data set

Parallelism inside multiprecision arithmetic

- Addition (in redundant representation) is trivially vectorized
- Vectorizing multiplication needs many shuffles
- Vectorization "eats up" instruction-level parallelism


## Parallelism inside EC arithmetic

- Vectorize independent multiplications in EC addition
- May still need some shuffles (after each block of operations)
- Efficiency depends on EC formulas


## Example: Montgomery ladder step

function ladderstep $\left(x_{Q-P}, X_{P}, Z_{P}, X_{Q}, Z_{Q}\right)$
$t_{1} \leftarrow X_{P}+Z_{P}$
$t_{6} \leftarrow t_{1}^{2}$
$t_{2} \leftarrow X_{P}-Z_{P}$
$t_{7} \leftarrow t_{2}^{2}$
$t_{5} \leftarrow t_{6}-t_{7}$
$t_{3} \leftarrow X_{Q}+Z_{Q}$
$t_{4} \leftarrow X_{Q}-Z_{Q}$
$t_{8} \leftarrow t_{4} \cdot t_{1}$
$t_{9} \leftarrow t_{3} \cdot t_{2}$
$X_{P+Q} \leftarrow\left(t_{8}+t_{9}\right)^{2}$
$Z_{P+Q} \leftarrow x_{Q-P} \cdot\left(t_{8}-t_{9}\right)^{2}$
$X_{[2] P} \leftarrow t_{6} \cdot t_{7}$
$Z_{[2] P} \leftarrow t_{5} \cdot\left(t_{7}+((A+2) / 4) \cdot t_{5}\right)$
return $\left(X_{[2] P}, Z_{[2] P}, X_{P+Q}, Z_{P+Q}\right)$
end function

## Example: Montgomery ladder step

function ladderstep $\left(x_{Q-P}, X_{P}, Z_{P}, X_{Q}, Z_{Q}\right)$

$$
\begin{aligned}
& \quad t_{1} \leftarrow X_{P}+Z_{P} ; t_{2} \leftarrow X_{P}-Z_{P} ; t_{3} \leftarrow X_{Q}+Z_{Q} ; t_{4} \leftarrow X_{Q}-Z_{Q} \\
& t_{6} \leftarrow t_{1} \cdot t_{1} ; t_{7} \leftarrow t_{2} \cdot t_{2} ; t_{8} \leftarrow t_{4} \cdot t_{1} ; t_{9} \leftarrow t_{3} \cdot t_{2} \\
& t_{10} \leftarrow((A+2) / 4) \cdot t_{6} \\
& t_{11} \leftarrow((A+2) / 4-1) \cdot t_{7} \\
& t_{5} \leftarrow t_{6}-t_{7} ; t_{4} \leftarrow t_{10}-t_{11} ; t_{1} \leftarrow t_{8}-t_{9} ; t_{0} \leftarrow t_{8}+t_{9} \\
& Z_{[2] P} \leftarrow t_{5} \cdot t_{4} ; X_{P+Q} \leftarrow t_{0}^{2} ; X_{[2] P} \leftarrow t_{6} \cdot t_{7} ; t_{2} \leftarrow t_{1} \cdot t_{1} \\
& \quad Z_{P+Q} \leftarrow x_{Q-P} \cdot t_{2} \\
& \text { return }\left(X_{[2] P}, Z_{[2] P}, X_{P+Q}, Z_{P+Q}\right) \\
& \text { end function }
\end{aligned}
$$

## A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation


## A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
- Group modulo negation
- Map from group to Kummer surface by rational map $X$
- Elements represented projectively as $(x: y: z: t)$
- $(x: y: z: t)=(r x: r y: r z: r t)$ for any $r \neq 0$
- Efficient doubling and efficient differential addition


## A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
- Group modulo negation
- Map from group to Kummer surface by rational map $X$
- Elements represented projectively as $(x: y: z: t)$
- $(x: y: z: t)=(r x: r y: r z: r t)$ for any $r \neq 0$
- Efficient doubling and efficient differential addition
- Ladderstep: gets as input $X(P)=\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$, $X(Q)=\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$, and $X(Q-P)=\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$
- Computes $X(2 P)=\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$
- Computes $X(P+Q)=\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$


## A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
- Group modulo negation
- Map from group to Kummer surface by rational map $X$
- Elements represented projectively as $(x: y: z: t)$
- $(x: y: z: t)=(r x: r y: r z: r t)$ for any $r \neq 0$
- Efficient doubling and efficient differential addition
- Ladderstep: gets as input $X(P)=\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$, $X(Q)=\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$, and $X(Q-P)=\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$
- Computes $X(2 P)=\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$
- Computes $X(P+Q)=\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$
- Coordinates are elements of a (large) finite field


## A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
- Group modulo negation
- Map from group to Kummer surface by rational map $X$
- Elements represented projectively as $(x: y: z: t)$
- $(x: y: z: t)=(r x: r y: r z: r t)$ for any $r \neq 0$
- Efficient doubling and efficient differential addition
- Ladderstep: gets as input $X(P)=\left(x_{2}: y_{2}: z_{2}: t_{2}\right)$, $X(Q)=\left(x_{3}: y_{3}: z_{3}: t_{3}\right)$, and $X(Q-P)=\left(x_{1}: y_{1}: z_{1}: t_{1}\right)$
- Computes $X(2 P)=\left(x_{4}: y_{4}: z_{4}: t_{4}\right)$
- Computes $X(P+Q)=\left(x_{5}: y_{5}: z_{5}: t_{5}\right)$
- Coordinates are elements of a (large) finite field
- For same security level, underlying field has half the size as for ECC
- Example: Choose $\approx 128$-bit field for $\approx 128$ bits of security


## Arithmetic on the Kummer surface


$10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ ladder formulas

## Arithmetic on the Kummer surface


$10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ ladder formulas

$7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ ladder formulas

## The "squared Kummer surface"

- In fact, we use arithmetic on a different, "squared" surface
- Each point $(x: y: z: t)$ on the original surface corresponds to $\left(x^{2}: y^{2}: z^{2}: t^{2}\right)$ on the squared surface
- No operation-count advantages
- Easier to construct squared surface with small constants
- In the following rename $\left(x^{2}: y^{2}: z^{2}: t^{2}\right)$ to $(x: y: z: t)$


## Arithmetic on the squared Kummer surface


$10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ ladder formulas

## Arithmetic on the squared Kummer surface


$10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ ladder formulas

$7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ ladder formulas

## Arithmetic on the (original) Kummer surface


$10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ ladder formulas

$7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ ladder formulas

## A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
- Originally proposed by Chudnovsky, Chudnovsky, 1986
- $10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ formulas by Gaudry, 2006
- $7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ formulas by Bernstein, 2006


## A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
- Originally proposed by Chudnovsky, Chudnovsky, 1986
- $10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ formulas by Gaudry, 2006
- $7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ formulas by Bernstein, 2006
- Problem: find cryptographically secure surface with small constants


## A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
- Originally proposed by Chudnovsky, Chudnovsky, 1986
- $10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ formulas by Gaudry, 2006
- $7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ formulas by Bernstein, 2006
- Problem: find cryptographically secure surface with small constants
- Gaudry, Schost, 2012: suitable (squared) surface:
- Defined over the field $\mathbb{F}_{2^{127}-1}$
- $\left(1: a^{2} / b^{2}: a^{2} / c^{2}: a^{2} / d^{2}\right)=(-114: 57: 66: 418)$
- $\left(1: A^{2} / B^{2}: A^{2} / C^{2}: A^{2} / D^{2}\right)=(-833: 2499: 1617: 561)$


## A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
- Originally proposed by Chudnovsky, Chudnovsky, 1986
- $10 \mathbf{M}+9 \mathbf{S}+6 \mathbf{m}$ formulas by Gaudry, 2006
- $7 \mathbf{M}+12 \mathbf{S}+9 \mathbf{m}$ formulas by Bernstein, 2006
- Problem: find cryptographically secure surface with small constants
- Gaudry, Schost, 2012: suitable (squared) surface:
- Defined over the field $\mathbb{F}_{2^{127}-1}$
- $\left(1: a^{2} / b^{2}: a^{2} / c^{2}: a^{2} / d^{2}\right)=(-114: 57: 66: 418)$
- $\left(1: A^{2} / B^{2}: A^{2} / C^{2}: A^{2} / D^{2}\right)=(-833: 2499: 1617: 561)$
- Finding this surface cost 1000000 CPU hours
- The same surface has been used by Bos, Costello, Hisil, and Lauter (Eurocrypt 2013)


## Representing elements of $\mathbb{F}_{2^{127}-1}$

- Represent an element $A$ in radix- $2^{127 / 6}$
- Write $A$ as $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, where
- $a_{0}$ is a small multiple of $2^{0}$
- $a_{1}$ is a small multiple of $2^{22}$
- $a_{2}$ is a small multiple of $2^{43}$
- $a_{3}$ is a small multiple of $2^{64}$
- $a_{4}$ is a small multiple of $2^{85}$
- $a_{5}$ is a small multiple of $2^{106}$


## Multiplication

- Consider multiplication of $A$ and $B$ with reduction $\bmod 2^{127}-1$
- Make use of the fact that $2^{127} \equiv 1$
- With radix $2^{127 / 6}$ we obtain:

$$
\begin{array}{lllll}
r_{0}=a_{0} b_{0}+2^{-127} a_{1} b_{5}+2^{-127} a_{2} b_{4}+2^{-127} a_{3} b_{3}+2^{-127} a_{4} b_{2}+2^{-127} a_{5} b_{1} \\
r_{1}=a_{0} b_{1}+ & a_{1} b_{0}+2^{-127} a_{2} b_{5}+2^{-127} a_{3} b_{4}+2^{-127} a_{4} b_{3}+2^{-127} a_{5} b_{2} \\
r_{2} & =a_{0} b_{2}+ & a_{1} b_{1}+ & a_{2} b_{0}+2^{-127} a_{3} b_{5}+2^{-127} a_{4} b_{4}+2^{-127} a_{5} b_{3} \\
r_{3} & =a_{0} b_{3}+ & a_{1} b_{2}+ & a_{2} b_{1}+ & a_{3} b_{0}+2^{-127} a_{4} b_{5}+2^{-127} a_{5} b_{4} \\
r_{4} & =a_{0} b_{4}+ & a_{1} b_{3}+ & a_{2} b_{2}+ & a_{3} b_{1}+ \\
r_{5} & =a_{0} b_{5}+ & a_{1} b_{4}+ & a_{2} b_{3}+ & a_{3} b_{2}+ \\
a_{4} b_{1}+ & a_{5} a_{5} b_{0}
\end{array}
$$

## Multiplication

- Consider multiplication of $A$ and $B$ with reduction $\bmod 2^{127}-1$
- Make use of the fact that $2^{127} \equiv 1$
- With radix $2^{127 / 6}$ we obtain:

$$
\begin{array}{lllll}
r_{0}=a_{0} b_{0}+2^{-127} a_{1} b_{5}+2^{-127} a_{2} b_{4}+2^{-127} a_{3} b_{3}+2^{-127} a_{4} b_{2}+2^{-127} a_{5} b_{1} \\
r_{1}=a_{0} b_{1}+ & a_{1} b_{0}+2^{-127} a_{2} b_{5}+2^{-127} a_{3} b_{4}+2^{-127} a_{4} b_{3}+2^{-127} a_{5} b_{2} \\
r_{2} & =a_{0} b_{2}+ & a_{1} b_{1}+ & a_{2} b_{0}+2^{-127} a_{3} b_{5}+2^{-127} a_{4} b_{4}+2^{-127} a_{5} b_{3} \\
r_{3} & =a_{0} b_{3}+ & a_{1} b_{2}+ & a_{2} b_{1}+ & a_{3} b_{0}+2^{-127} a_{4} b_{5}+2^{-127} a_{5} b_{4} \\
r_{4} & =a_{0} b_{4}+ & a_{1} b_{3}+ & a_{2} b_{2}+ & a_{3} b_{1}+ \\
r_{5} & =a_{0} b_{5}+ & a_{1} b_{4}+ & a_{2} b_{3}+ & a_{3} b_{2}+ \\
a_{4} b_{1}+ & a_{5} a_{5} b_{0}
\end{array}
$$

- Obviously, we always perform this whole thing $4 \times$ in parallel


## Multiplication

- Consider multiplication of $A$ and $B$ with reduction $\bmod 2^{127}-1$
- Make use of the fact that $2^{127} \equiv 1$
- With radix $2^{127 / 6}$ we obtain:

$$
\begin{array}{lllll}
r_{0} & =a_{0} b_{0}+2^{-127} a_{1} b_{5}+2^{-127} a_{2} b_{4}+2^{-127} a_{3} b_{3}+2^{-127} a_{4} b_{2}+2^{-127} a_{5} b_{1} \\
r_{1} & =a_{0} b_{1}+ & a_{1} b_{0}+2^{-127} a_{2} b_{5}+2^{-127} a_{3} b_{4}+2^{-127} a_{4} b_{3}+2^{-127} a_{5} b_{2} \\
r_{2} & =a_{0} b_{2}+ & a_{1} b_{1}+ & a_{2} b_{0}+2^{-127} a_{3} b_{5}+2^{-127} a_{4} b_{4}+2^{-127} a_{5} b_{3} \\
r_{3} & =a_{0} b_{3}+ & a_{1} b_{2}+ & a_{2} b_{1}+ & a_{3} b_{0}+2^{-127} a_{4} b_{5}+2^{-127} a_{5} b_{4} \\
r_{4} & =a_{0} b_{4}+ & a_{1} b_{3}+ & a_{2} b_{2}+ & a_{3} b_{1}+ \\
r_{5} & =a_{0} b_{5}+ & a_{1} b_{4}+ & a_{2} b_{3}+ & a_{3} b_{2}+ \\
a_{4} b_{1}+ & a_{5} a_{5} b_{0}
\end{array}
$$

- Obviously, we always perform this whole thing $4 \times$ in parallel
- Obviously, we specialize squaring


## Multiplication

- Consider multiplication of $A$ and $B$ with reduction $\bmod 2^{127}-1$
- Make use of the fact that $2^{127} \equiv 1$
- With radix $2^{127 / 6}$ we obtain:

$$
\begin{array}{lllll}
r_{0} & =a_{0} b_{0}+2^{-127} a_{1} b_{5}+2^{-127} a_{2} b_{4}+2^{-127} a_{3} b_{3}+2^{-127} a_{4} b_{2}+2^{-127} a_{5} b_{1} \\
r_{1} & =a_{0} b_{1}+ & a_{1} b_{0}+2^{-127} a_{2} b_{5}+2^{-127} a_{3} b_{4}+2^{-127} a_{4} b_{3}+2^{-127} a_{5} b_{2} \\
r_{2} & =a_{0} b_{2}+ & a_{1} b_{1}+ & a_{2} b_{0}+2^{-127} a_{3} b_{5}+2^{-127} a_{4} b_{4}+2^{-127} a_{5} b_{3} \\
r_{3} & =a_{0} b_{3}+ & a_{1} b_{2}+ & a_{2} b_{1}+ & a_{3} b_{0}+2^{-127} a_{4} b_{5}+2^{-127} a_{5} b_{4} \\
r_{4} & =a_{0} b_{4}+ & a_{1} b_{3}+ & a_{2} b_{2}+ & a_{3} b_{1}+ \\
r_{5} & =a_{0} b_{5}+ & a_{1} b_{4}+ & a_{2} b_{3}+ & a_{3} b_{2}+ \\
a_{4} b_{1}+ & a_{5} a_{5} b_{0}
\end{array}
$$

- Obviously, we always perform this whole thing $4 \times$ in parallel
- Obviously, we specialize squaring
- Obviously, we specialize multiplications by small constants


## The Hadamard transform



- Only shuffeling operation in Kummer arithmetic
- AVX has limited shuffeling across left and right half
- Plain Hadamard turns out to be expensive


## The Hadamard transform



- Only shuffeling operation in Kummer arithmetic
- AVX has limited shuffeling across left and right half
- Plain Hadamard turns out to be expensive


## Permuted and negated Hadamard

- Allow generalized Hadamard to output permuted vector
- Self-inverting permutation "cleans" after two generalized Hadamards


## The Hadamard transform



- Only shuffeling operation in Kummer arithmetic
- AVX has limited shuffeling across left and right half
- Plain Hadamard turns out to be expensive


## Permuted and negated Hadamard

- Allow generalized Hadamard to output permuted vector
- Self-inverting permutation "cleans" after two generalized Hadamards
- Allow generalized Hadamard to negate vector entries
- "Clean" negations by multiplication by negated constants


## Arithmetic on the squared Kummer surface



## Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas


## Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas "dictate" the scalar multiplication algorithm


## Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas "dictate" the scalar multiplication algorithm
- Choose representation of field elements for fast reduction


## Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas "dictate" the scalar multiplication algorithm
- Choose representation of field elements for fast reduction
- Adjust formulas according to fast shuffle instructions


## Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas "dictate" the scalar multiplication algorithm
- Choose representation of field elements for fast reduction
- Adjust formulas according to fast shuffle instructions
- Optimizations go through all levels of the pyramid!


## Results

128-bit secure, constant-time scalar multiplication

| arch | cycles | open | $g$ | source of software |
| :---: | :---: | :---: | :---: | :---: |
| Sandy | 194036 | yes | 1 | Bernstein-Duif-Lange-Schwabe- Yang $\quad$ CHES 2011 |
| Sandy | 153000? | no | 1 | Hamburg |
| Sandy | 137000? | no | 1 | Longa-Sica Asiacrypt 2012 |
| Sandy | 122716 | yes | 2 | Bos-Costello-Hisil-Lauter Eurocrypt 2013 |
| Sandy | 119904 | yes | 1 | Oliveira-López-Aranha-Rodríguez- <br> Henríquez CHES 2013 |
| Sandy | 96000? | no | 1 | Faz-Hernández-Longa-Sánchez CTRSA 2014 |
| Sandy | 92000? | no | 1 | Faz-Hernández-Longa-Sánchez July 2014 |
| Sandy | 88916 | yes | 2 | new (our results) |

## Results

128-bit secure, constant-time scalar multiplication

| arch | cycles | open | $g$ | source of software |
| :---: | :---: | :---: | :---: | :---: |
| Ivy | 182708 | yes | 1 | Bernstein-Duif-Lange-Schwabe-Yang CHES 2011 |
| Ivy | 145000? | yes | 1 | Costello-Hisil-Smith Eurocrypt 2014 |
| Ivy | 119032 | yes | 2 | Bos-Costello-Hisil-Lauter Euro- crypt 2013 |
| Ivy | 114036 | yes | 1 | Oliveira-López-Aranha-Rodríguez- <br> Henríquez CHES 2013 |
| Ivy | 92000? | no | 1 | Faz-Hernández-Longa-Sánchez CT- |
| Ivy | 89000? | no | 1 | Faz-Hernández-Longa-Sánchez July 2014 |
| Ivy | 88448 | yes | 2 | new (our results) |

## More results

Also optimized for Intel Haswell
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { arch } & \text { cycles } & \text { open } & g & \text { source of software } \\ \hline \text { Haswell } & 145907 & \text { yes } & 1 & \begin{array}{l}\text { Bernstein-Duif-Lange- } \\ \text { Schwabe-Yang CHES 2011 } \\ \text { Haswell } \\ \text { Haswell } \\ 100895\end{array} \\ 55595 & \text { yes } & 2 & \text { no } & 1 \\ \text { Bos-Costello-Hisi-Lauter } \\ \text { Eurocrypt 2013 } \\ \text { Oliveira-López-Aranha- } \\ \text { Rodríguez-Henríquez } \\ \text { CHES 2013 }\end{array}\right\}$

## Even more results

Also optimized for ARM Cortex-A8

| arch | cycles | open | $g$ | source of software |
| :--- | :--- | :--- | :--- | :--- |
| A8-slow | 497389 | yes | 1 | Bernstein-Schwabe CHES 2012 |
| A8-slow | 305395 | yes | 2 | new (our result) |
| A8-fast | 460200 | yes | 1 | Bernstein-Schwabe CHES 2012 |
| A8-fast | 273349 | yes | 2 | new (our result) |

## Resources online

## Paper:

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Peter Schwabe. "Kummer strikes back: new DH speed records".
http://cryptojedi.org/papers/\#kummer

## Software:

Included in SUPERCOP, subdirectory crypto_scalarmult/kummer/ http://bench.cr.yp.to/supercop.html

