
Software implementation of ECC

Radboud University, Nijmegen, The Netherlands

June 4, 2015

Summer school on real-world crypto and privacy
Šibenik, Croatia

Software implementation of (H)ECC

Radboud University, Nijmegen, The Netherlands

June 4, 2015

Summer school on real-world crypto and privacy
Šibenik, Croatia

The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

Efficient ECC

I First idea: user needs to compute kP , so make that fast
I Actual situation is more complex:

I Keypair generation: Compute kP for fixed P ,
don’t leak information about scalar k

I DH common-key computation: Compute kP for variable P ,
don’t leak information about scalar k

I Signature verification needs k1P1 + k2P2,
ok to leak information about (public) scalars k1 and k2

3

The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

Efficient ECC
I First idea: user needs to compute kP , so make that fast

I Actual situation is more complex:
I Keypair generation: Compute kP for fixed P ,

don’t leak information about scalar k

I DH common-key computation: Compute kP for variable P ,
don’t leak information about scalar k

I Signature verification needs k1P1 + k2P2,
ok to leak information about (public) scalars k1 and k2

3

The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

Efficient ECC
I First idea: user needs to compute kP , so make that fast
I Actual situation is more complex:

I Keypair generation: Compute kP for fixed P ,
don’t leak information about scalar k

I DH common-key computation: Compute kP for variable P ,
don’t leak information about scalar k

I Signature verification needs k1P1 + k2P2,
ok to leak information about (public) scalars k1 and k2

3

The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

Efficient ECC
I First idea: user needs to compute kP , so make that fast
I Actual situation is more complex:

I Keypair generation: Compute kP for fixed P ,
don’t leak information about scalar k

I DH common-key computation: Compute kP for variable P ,
don’t leak information about scalar k

I Signature verification needs k1P1 + k2P2,
ok to leak information about (public) scalars k1 and k2

3

The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

Efficient ECC
I First idea: user needs to compute kP , so make that fast
I Actual situation is more complex:

I Keypair generation: Compute kP for fixed P ,
don’t leak information about scalar k

I DH common-key computation: Compute kP for variable P ,
don’t leak information about scalar k

I Signature verification needs k1P1 + k2P2,
ok to leak information about (public) scalars k1 and k2

3

The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

Efficient ECC
I First idea: user needs to compute kP , so make that fast
I Actual situation is more complex:

I Keypair generation: Compute kP for fixed P ,
don’t leak information about scalar k

I DH common-key computation: Compute kP for variable P ,
don’t leak information about scalar k

I Signature verification needs k1P1 + k2P2,
ok to leak information about (public) scalars k1 and k2

3

The ECC implementation pyramid

Scalar multiplication

ECC add/double

Finite-field arithmetic

Big-integer or polynomial arithmetic

4

Why I don’t like the pyramid. . .

I Pyramid levels are not independent
I Interactions through all levels, relevant for

I Correctness,
I Security, and
I Performance

I Plan for today: demonstrate these dependencies
I Fix target architecture: AMD64 (aka x86_64, aka x64)
I Fix target microarchitecture: Intel Sandy Bridge and Ivy Bridge

5

Why I don’t like the pyramid. . .

I Pyramid levels are not independent
I Interactions through all levels, relevant for

I Correctness,
I Security, and
I Performance

I Plan for today: demonstrate these dependencies

I Fix target architecture: AMD64 (aka x86_64, aka x64)
I Fix target microarchitecture: Intel Sandy Bridge and Ivy Bridge

5

Why I don’t like the pyramid. . .

I Pyramid levels are not independent
I Interactions through all levels, relevant for

I Correctness,
I Security, and
I Performance

I Plan for today: demonstrate these dependencies
I Fix target architecture: AMD64 (aka x86_64, aka x64)
I Fix target microarchitecture: Intel Sandy Bridge and Ivy Bridge

5

Let’s start with 255-bit integers

typedef struct{
unsigned long long a[4];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)
I This is not the same as arithmetic on 256-bit integers
I Need to ripple the carries of all additions!

6

Let’s start with 255-bit integers

typedef struct{
unsigned long long a[4];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?

I This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 264)

I This is not the same as arithmetic on 256-bit integers
I Need to ripple the carries of all additions!

6

Let’s start with 255-bit integers

typedef struct{
unsigned long long a[4];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)

I This is not the same as arithmetic on 256-bit integers
I Need to ripple the carries of all additions!

6

Let’s start with 255-bit integers

typedef struct{
unsigned long long a[4];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)
I This is not the same as arithmetic on 256-bit integers
I Need to ripple the carries of all additions!

6

Radix-251 representation

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries

I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

I Example 2: When using vector arithmetic, carries are typically lost
(expensive to recompute)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

7

Radix-251 representation

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

I Example 2: When using vector arithmetic, carries are typically lost
(expensive to recompute)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

7

Radix-251 representation

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(expensive to recompute)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

7

Radix-251 representation

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(expensive to recompute)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation

I Multiple ways to write the same integer A, for example A = 252:
I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

7

Radix-251 representation

I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(expensive to recompute)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

7

Addition of two bigint255

typedef struct{
unsigned long long a[5];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This works as long as all coefficients are in [0, . . . , 263 − 1]

I When starting with 51-bit coefficients, we can do quite a few
additions before we have to carry

8

Addition of two bigint255

typedef struct{
unsigned long long a[5];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This works as long as all coefficients are in [0, . . . , 263 − 1]

I When starting with 51-bit coefficients, we can do quite a few
additions before we have to carry

8

Addition of two bigint255

typedef struct{
unsigned long long a[5];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This works as long as all coefficients are in [0, . . . , 263 − 1]

I When starting with 51-bit coefficients, we can do quite a few
additions before we have to carry

8

Addition of two bigint255

typedef struct{
unsigned long long a[5];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This works as long as all coefficients are in [0, . . . , 263 − 1]

I When starting with 51-bit coefficients, we can do quite a few
additions before we have to carry

8

Subtraction of two bigint255

typedef struct{
signed long long a[5];

} bigint255;

void bigint255_sub(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->a[0] = x->a[0] - y->a[0];
r->a[1] = x->a[1] - y->a[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->a[3];
r->a[4] = x->a[4] - y->a[4];

}

I Slightly update our bigint255 definition to work with signed 64-bit
integers

9

Carrying in radix-251

I With many additions, coefficients may grow larger than 63 bits
I They grow even faster in multiplication

I Eventually we have to carry en bloc:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I Similar for all higher coefficients. . .

10

Carrying in radix-251

I With many additions, coefficients may grow larger than 63 bits
I They grow even faster in multiplication
I Eventually we have to carry en bloc:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I Similar for all higher coefficients. . .

10

Carrying in radix-251

I With many additions, coefficients may grow larger than 63 bits
I They grow even faster in multiplication
I Eventually we have to carry en bloc:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I Similar for all higher coefficients. . .

10

Big integers and polynomials

I Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

I This is no coincidence: We actually perform arithmetic in Z[x]
I Inputs to addition/subtraction are 5-coefficient polynomials
I Nice thing about arithmetic Z[x]: no carries!
I To go from Z[x] to Z, evaluate at the radix (this is a ring

homomorphism)
I Carrying means evaluating at the radix
I Thinking of multiprecision integers as polynomials is very powerful

for efficient arithmetic

11

Big integers and polynomials

I Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

I This is no coincidence: We actually perform arithmetic in Z[x]
I Inputs to addition/subtraction are 5-coefficient polynomials

I Nice thing about arithmetic Z[x]: no carries!
I To go from Z[x] to Z, evaluate at the radix (this is a ring

homomorphism)
I Carrying means evaluating at the radix
I Thinking of multiprecision integers as polynomials is very powerful

for efficient arithmetic

11

Big integers and polynomials

I Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

I This is no coincidence: We actually perform arithmetic in Z[x]
I Inputs to addition/subtraction are 5-coefficient polynomials
I Nice thing about arithmetic Z[x]: no carries!

I To go from Z[x] to Z, evaluate at the radix (this is a ring
homomorphism)

I Carrying means evaluating at the radix
I Thinking of multiprecision integers as polynomials is very powerful

for efficient arithmetic

11

Big integers and polynomials

I Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

I This is no coincidence: We actually perform arithmetic in Z[x]
I Inputs to addition/subtraction are 5-coefficient polynomials
I Nice thing about arithmetic Z[x]: no carries!
I To go from Z[x] to Z, evaluate at the radix (this is a ring

homomorphism)
I Carrying means evaluating at the radix

I Thinking of multiprecision integers as polynomials is very powerful
for efficient arithmetic

11

Big integers and polynomials

I Addition/Subtraction code would look exactly the same for
5-coefficient polynomial addition

I This is no coincidence: We actually perform arithmetic in Z[x]
I Inputs to addition/subtraction are 5-coefficient polynomials
I Nice thing about arithmetic Z[x]: no carries!
I To go from Z[x] to Z, evaluate at the radix (this is a ring

homomorphism)
I Carrying means evaluating at the radix
I Thinking of multiprecision integers as polynomials is very powerful

for efficient arithmetic

11

Using floating-point limbs
I Now we can also use floats for our coefficients
I An IEEE-754 floating-point number has value

(−1)s · (1.bm−1bm−2 . . . b0) · 2e−t with bi ∈ {0, 1}

I For double-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 52 “mantissa bits”
I e ∈ {1, . . . , 2046} “exponent”
I t = 1023

I For single-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 23 “mantissa bits”
I e ∈ {1, . . . , 254} “exponent”
I t = 127

I Exponent = 0 used to represent 0
I Any number that can be represented like this, will be precise
I Other numbers will be rounded, according to a rounding mode

12

Using floating-point limbs
I Now we can also use floats for our coefficients
I An IEEE-754 floating-point number has value

(−1)s · (1.bm−1bm−2 . . . b0) · 2e−t with bi ∈ {0, 1}

I For double-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 52 “mantissa bits”
I e ∈ {1, . . . , 2046} “exponent”
I t = 1023

I For single-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 23 “mantissa bits”
I e ∈ {1, . . . , 254} “exponent”
I t = 127

I Exponent = 0 used to represent 0
I Any number that can be represented like this, will be precise
I Other numbers will be rounded, according to a rounding mode

12

Using floating-point limbs
I Now we can also use floats for our coefficients
I An IEEE-754 floating-point number has value

(−1)s · (1.bm−1bm−2 . . . b0) · 2e−t with bi ∈ {0, 1}

I For double-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 52 “mantissa bits”
I e ∈ {1, . . . , 2046} “exponent”
I t = 1023

I For single-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 23 “mantissa bits”
I e ∈ {1, . . . , 254} “exponent”
I t = 127

I Exponent = 0 used to represent 0
I Any number that can be represented like this, will be precise
I Other numbers will be rounded, according to a rounding mode

12

Using floating-point limbs
I Now we can also use floats for our coefficients
I An IEEE-754 floating-point number has value

(−1)s · (1.bm−1bm−2 . . . b0) · 2e−t with bi ∈ {0, 1}

I For double-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 52 “mantissa bits”
I e ∈ {1, . . . , 2046} “exponent”
I t = 1023

I For single-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 23 “mantissa bits”
I e ∈ {1, . . . , 254} “exponent”
I t = 127

I Exponent = 0 used to represent 0

I Any number that can be represented like this, will be precise
I Other numbers will be rounded, according to a rounding mode

12

Using floating-point limbs
I Now we can also use floats for our coefficients
I An IEEE-754 floating-point number has value

(−1)s · (1.bm−1bm−2 . . . b0) · 2e−t with bi ∈ {0, 1}

I For double-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 52 “mantissa bits”
I e ∈ {1, . . . , 2046} “exponent”
I t = 1023

I For single-precision floats:
I s ∈ {0, 1} “sign bit”
I m = 23 “mantissa bits”
I e ∈ {1, . . . , 254} “exponent”
I t = 127

I Exponent = 0 used to represent 0
I Any number that can be represented like this, will be precise
I Other numbers will be rounded, according to a rounding mode

12

Addition

typedef struct{
double a[12];

} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
int i;
for(i=0;i<12;i++)

r->a[i] = x->a[i] + y->a[i];
}

13

Subtraction

typedef struct{
double a[12];

} bigint255;

void bigint255_sub(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
int i;
for(i=0;i<12;i++)

r->a[i] = x->a[i] - y->a[i];
}

14

Carrying

I For carrying integers we used a right shift (discard lowest bits)

I For floating-point numbers we can use multiplication by the inverse
of the radix

I Example: Radix 222, multiply by 2−22

I This does not cut off lowest bits, need to round
I Some processors have efficient rounding instructions, e.g., vroundpd
I Otherwise (for double-precision):

I add constant 252 + 251

I subtract constant 252 + 251

I This will round the number to an integer according to the rounding
mode (to nearest, towards zero, away from zero, or truncate)

15

Carrying

I For carrying integers we used a right shift (discard lowest bits)
I For floating-point numbers we can use multiplication by the inverse

of the radix
I Example: Radix 222, multiply by 2−22

I This does not cut off lowest bits, need to round

I Some processors have efficient rounding instructions, e.g., vroundpd
I Otherwise (for double-precision):

I add constant 252 + 251

I subtract constant 252 + 251

I This will round the number to an integer according to the rounding
mode (to nearest, towards zero, away from zero, or truncate)

15

Carrying

I For carrying integers we used a right shift (discard lowest bits)
I For floating-point numbers we can use multiplication by the inverse

of the radix
I Example: Radix 222, multiply by 2−22

I This does not cut off lowest bits, need to round
I Some processors have efficient rounding instructions, e.g., vroundpd

I Otherwise (for double-precision):
I add constant 252 + 251

I subtract constant 252 + 251

I This will round the number to an integer according to the rounding
mode (to nearest, towards zero, away from zero, or truncate)

15

Carrying

I For carrying integers we used a right shift (discard lowest bits)
I For floating-point numbers we can use multiplication by the inverse

of the radix
I Example: Radix 222, multiply by 2−22

I This does not cut off lowest bits, need to round
I Some processors have efficient rounding instructions, e.g., vroundpd
I Otherwise (for double-precision):

I add constant 252 + 251

I subtract constant 252 + 251

I This will round the number to an integer according to the rounding
mode (to nearest, towards zero, away from zero, or truncate)

15

Why would you want this?

I ECC is typically bottlenecked by speed of multiplier
I Intel Sandy Bridge, Ivy Bridge:

I One 64× 64→ 128 multiplication per cycle

I Four (vectorized) double-precision multiplications per cycle
I Four (vectorized) double-precision additions in the same cycle

I Operations on 256-bit vector registers introduced with AVX
I Integer operations on those registers introduced only with AVX2
I Sandy Bridge and Ivy Bridge don’t have AVX2

16

Why would you want this?

I ECC is typically bottlenecked by speed of multiplier
I Intel Sandy Bridge, Ivy Bridge:

I One 64× 64→ 128 multiplication per cycle
I Four (vectorized) double-precision multiplications per cycle

I Four (vectorized) double-precision additions in the same cycle
I Operations on 256-bit vector registers introduced with AVX
I Integer operations on those registers introduced only with AVX2
I Sandy Bridge and Ivy Bridge don’t have AVX2

16

Why would you want this?

I ECC is typically bottlenecked by speed of multiplier
I Intel Sandy Bridge, Ivy Bridge:

I One 64× 64→ 128 multiplication per cycle
I Four (vectorized) double-precision multiplications per cycle
I Four (vectorized) double-precision additions in the same cycle

I Operations on 256-bit vector registers introduced with AVX
I Integer operations on those registers introduced only with AVX2
I Sandy Bridge and Ivy Bridge don’t have AVX2

16

Why would you want this?

I ECC is typically bottlenecked by speed of multiplier
I Intel Sandy Bridge, Ivy Bridge:

I One 64× 64→ 128 multiplication per cycle
I Four (vectorized) double-precision multiplications per cycle
I Four (vectorized) double-precision additions in the same cycle

I Operations on 256-bit vector registers introduced with AVX

I Integer operations on those registers introduced only with AVX2
I Sandy Bridge and Ivy Bridge don’t have AVX2

16

Why would you want this?

I ECC is typically bottlenecked by speed of multiplier
I Intel Sandy Bridge, Ivy Bridge:

I One 64× 64→ 128 multiplication per cycle
I Four (vectorized) double-precision multiplications per cycle
I Four (vectorized) double-precision additions in the same cycle

I Operations on 256-bit vector registers introduced with AVX
I Integer operations on those registers introduced only with AVX2
I Sandy Bridge and Ivy Bridge don’t have AVX2

16

Vectorizing EC scalar multiplication

Computing multiple scalar multiplications
I Changes the rules of the game
I Increases size of active data set

Parallelism inside multiprecision arithmetic
I Addition (in redundant representation) is trivially vectorized
I Vectorizing multiplication needs many shuffles
I Vectorization “eats up” instruction-level parallelism

Parallelism inside EC arithmetic
I Vectorize independent multiplications in EC addition
I May still need some shuffles (after each block of operations)
I Efficiency depends on EC formulas

17

Vectorizing EC scalar multiplication

Computing multiple scalar multiplications
I Changes the rules of the game
I Increases size of active data set

Parallelism inside multiprecision arithmetic
I Addition (in redundant representation) is trivially vectorized
I Vectorizing multiplication needs many shuffles
I Vectorization “eats up” instruction-level parallelism

Parallelism inside EC arithmetic
I Vectorize independent multiplications in EC addition
I May still need some shuffles (after each block of operations)
I Efficiency depends on EC formulas

17

Vectorizing EC scalar multiplication

Computing multiple scalar multiplications
I Changes the rules of the game
I Increases size of active data set

Parallelism inside multiprecision arithmetic
I Addition (in redundant representation) is trivially vectorized
I Vectorizing multiplication needs many shuffles
I Vectorization “eats up” instruction-level parallelism

Parallelism inside EC arithmetic
I Vectorize independent multiplications in EC addition
I May still need some shuffles (after each block of operations)
I Efficiency depends on EC formulas

17

Example: Montgomery ladder step

function ladderstep(xQ−P , XP , ZP , XQ, ZQ)
t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← xQ−P · (t8 − t9)
2

X[2]P ← t6 · t7
Z[2]P ← t5 · (t7 + ((A+ 2)/4) · t5)
return (X[2]P , Z[2]P , XP+Q, ZP+Q)

end function

18

Example: Montgomery ladder step

function ladderstep(xQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP ; t2 ← XP − ZP ; t3 ← XQ + ZQ; t4 ← XQ − ZQ

t6 ← t1 · t1; t7 ← t2 · t2; t8 ← t4 · t1; t9 ← t3 · t2

t10 ← ((A+ 2)/4) · t6
t11 ← ((A+ 2)/4− 1) · t7

t5 ← t6 − t7; t4 ← t10 − t11; t1 ← t8 − t9; t0 ← t8 + t9

Z[2]P ← t5 · t4;XP+Q ← t20;X[2]P ← t6 · t7; t2 ← t1 · t1

ZP+Q ← xQ−P · t2

return (X[2]P , Z[2]P , XP+Q, ZP+Q)
end function

18

A better candidate: Kummer surfaces

I Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

I Easier way to think about it:
I Group modulo negation
I Map from group to Kummer surface by rational map X
I Elements represented projectively as (x : y : z : t)
I (x : y : z : t) = (rx : ry : rz : rt) for any r 6= 0
I Efficient doubling and efficient differential addition

I Ladderstep: gets as input X(P) = (x2 : y2 : z2 : t2),
X(Q) = (x3 : y3 : z3 : t3), and X(Q− P) = (x1 : y1 : z1 : t1)

I Computes X(2P) = (x4 : y4 : z4 : t4)
I Computes X(P +Q) = (x5 : y5 : z5 : t5)

I Coordinates are elements of a (large) finite field
I For same security level, underlying field has half the size as for ECC
I Example: Choose ≈ 128-bit field for ≈ 128 bits of security

19

A better candidate: Kummer surfaces

I Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

I Easier way to think about it:
I Group modulo negation
I Map from group to Kummer surface by rational map X
I Elements represented projectively as (x : y : z : t)
I (x : y : z : t) = (rx : ry : rz : rt) for any r 6= 0
I Efficient doubling and efficient differential addition

I Ladderstep: gets as input X(P) = (x2 : y2 : z2 : t2),
X(Q) = (x3 : y3 : z3 : t3), and X(Q− P) = (x1 : y1 : z1 : t1)

I Computes X(2P) = (x4 : y4 : z4 : t4)
I Computes X(P +Q) = (x5 : y5 : z5 : t5)

I Coordinates are elements of a (large) finite field
I For same security level, underlying field has half the size as for ECC
I Example: Choose ≈ 128-bit field for ≈ 128 bits of security

19

A better candidate: Kummer surfaces

I Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

I Easier way to think about it:
I Group modulo negation
I Map from group to Kummer surface by rational map X
I Elements represented projectively as (x : y : z : t)
I (x : y : z : t) = (rx : ry : rz : rt) for any r 6= 0
I Efficient doubling and efficient differential addition

I Ladderstep: gets as input X(P) = (x2 : y2 : z2 : t2),
X(Q) = (x3 : y3 : z3 : t3), and X(Q− P) = (x1 : y1 : z1 : t1)

I Computes X(2P) = (x4 : y4 : z4 : t4)
I Computes X(P +Q) = (x5 : y5 : z5 : t5)

I Coordinates are elements of a (large) finite field
I For same security level, underlying field has half the size as for ECC
I Example: Choose ≈ 128-bit field for ≈ 128 bits of security

19

A better candidate: Kummer surfaces

I Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

I Easier way to think about it:
I Group modulo negation
I Map from group to Kummer surface by rational map X
I Elements represented projectively as (x : y : z : t)
I (x : y : z : t) = (rx : ry : rz : rt) for any r 6= 0
I Efficient doubling and efficient differential addition

I Ladderstep: gets as input X(P) = (x2 : y2 : z2 : t2),
X(Q) = (x3 : y3 : z3 : t3), and X(Q− P) = (x1 : y1 : z1 : t1)

I Computes X(2P) = (x4 : y4 : z4 : t4)
I Computes X(P +Q) = (x5 : y5 : z5 : t5)

I Coordinates are elements of a (large) finite field

I For same security level, underlying field has half the size as for ECC
I Example: Choose ≈ 128-bit field for ≈ 128 bits of security

19

A better candidate: Kummer surfaces

I Think of a Kummer surface as the Jacobian of a hyperelliptic curve
modulo negation

I Easier way to think about it:
I Group modulo negation
I Map from group to Kummer surface by rational map X
I Elements represented projectively as (x : y : z : t)
I (x : y : z : t) = (rx : ry : rz : rt) for any r 6= 0
I Efficient doubling and efficient differential addition

I Ladderstep: gets as input X(P) = (x2 : y2 : z2 : t2),
X(Q) = (x3 : y3 : z3 : t3), and X(Q− P) = (x1 : y1 : z1 : t1)

I Computes X(2P) = (x4 : y4 : z4 : t4)
I Computes X(P +Q) = (x5 : y5 : z5 : t5)

I Coordinates are elements of a (large) finite field
I For same security level, underlying field has half the size as for ECC
I Example: Choose ≈ 128-bit field for ≈ 128 bits of security

19

Arithmetic on the Kummer surface

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×
��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

��

�� �� ��

H

��

�� �� ��
·ab
��

·ac
��

·ad
��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

10M+ 9S+ 6m ladder formulas

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×
��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

��

�� �� ��

H

��

�� �� ��
·ab
��

·ac
��

·ad
��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

7M+ 12S+ 9m ladder formulas

20

Arithmetic on the Kummer surface

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×
��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

��

�� �� ��

H

��

�� �� ��
·ab
��

·ac
��

·ad
��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

10M+ 9S+ 6m ladder formulas

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×
��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

��

�� �� ��

H

��

�� �� ��
·ab
��

·ac
��

·ad
��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

7M+ 12S+ 9m ladder formulas
20

The “squared Kummer surface”

I In fact, we use arithmetic on a different, “squared” surface
I Each point (x : y : z : t) on the original surface corresponds to

(x2 : y2 : z2 : t2) on the squared surface
I No operation-count advantages
I Easier to construct squared surface with small constants
I In the following rename (x2 : y2 : z2 : t2) to (x : y : z : t)

21

Arithmetic on the squared Kummer surface

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��
×
��
×
��
×

��

×
��

×
��

×
��

·a
2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

10M+ 9S+ 6m ladder formulas

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��
×
��
×
��
×

��

×
��

×
��

×
��

·a
2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

7M+ 12S+ 9m ladder formulas

22

Arithmetic on the squared Kummer surface

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��
×
��
×
��
×

��

×
��

×
��

×
��

·a
2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

10M+ 9S+ 6m ladder formulas

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��
×
��
×
��
×

��

×
��

×
��

×
��

·a
2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

7M+ 12S+ 9m ladder formulas
22

Arithmetic on the (original) Kummer surface

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×
��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

��

�� �� ��

H

��

�� �� ��
·ab
��

·ac
��

·ad
��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

10M+ 9S+ 6m ladder formulas

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×
��

×
��

×
��

×
��

×
��

×
��

×
��

×
��

H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��
×
��
×
��
×

��

×
��
×
��
×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

��

�� �� ��

H

��

�� �� ��
·ab
��

·ac
��

·ad
��

·x1

y1

��

·x1

z1

��

·x1

t1

��
x4 y4 z4 t4 x5 y5 z5 t5

7M+ 12S+ 9m ladder formulas
23

A suitable Kummer surface

I Formulas for efficient Kummer surface arithmetic known for a while
I Originally proposed by Chudnovsky, Chudnovsky, 1986
I 10M+ 9S+ 6m formulas by Gaudry, 2006
I 7M+ 12S+ 9m formulas by Bernstein, 2006

I Problem: find cryptographically secure surface with small constants
I Gaudry, Schost, 2012: suitable (squared) surface:

I Defined over the field F2127−1

I (1 : a2/b2 : a2/c2 : a2/d2) = (−114 : 57 : 66 : 418)
I (1 : A2/B2 : A2/C2 : A2/D2) = (−833 : 2499 : 1617 : 561)

I Finding this surface cost 1 000 000 CPU hours
I The same surface has been used by Bos, Costello, Hisil, and Lauter

(Eurocrypt 2013)

24

A suitable Kummer surface

I Formulas for efficient Kummer surface arithmetic known for a while
I Originally proposed by Chudnovsky, Chudnovsky, 1986
I 10M+ 9S+ 6m formulas by Gaudry, 2006
I 7M+ 12S+ 9m formulas by Bernstein, 2006

I Problem: find cryptographically secure surface with small constants

I Gaudry, Schost, 2012: suitable (squared) surface:
I Defined over the field F2127−1

I (1 : a2/b2 : a2/c2 : a2/d2) = (−114 : 57 : 66 : 418)
I (1 : A2/B2 : A2/C2 : A2/D2) = (−833 : 2499 : 1617 : 561)

I Finding this surface cost 1 000 000 CPU hours
I The same surface has been used by Bos, Costello, Hisil, and Lauter

(Eurocrypt 2013)

24

A suitable Kummer surface

I Formulas for efficient Kummer surface arithmetic known for a while
I Originally proposed by Chudnovsky, Chudnovsky, 1986
I 10M+ 9S+ 6m formulas by Gaudry, 2006
I 7M+ 12S+ 9m formulas by Bernstein, 2006

I Problem: find cryptographically secure surface with small constants
I Gaudry, Schost, 2012: suitable (squared) surface:

I Defined over the field F2127−1

I (1 : a2/b2 : a2/c2 : a2/d2) = (−114 : 57 : 66 : 418)
I (1 : A2/B2 : A2/C2 : A2/D2) = (−833 : 2499 : 1617 : 561)

I Finding this surface cost 1 000 000 CPU hours
I The same surface has been used by Bos, Costello, Hisil, and Lauter

(Eurocrypt 2013)

24

A suitable Kummer surface

I Formulas for efficient Kummer surface arithmetic known for a while
I Originally proposed by Chudnovsky, Chudnovsky, 1986
I 10M+ 9S+ 6m formulas by Gaudry, 2006
I 7M+ 12S+ 9m formulas by Bernstein, 2006

I Problem: find cryptographically secure surface with small constants
I Gaudry, Schost, 2012: suitable (squared) surface:

I Defined over the field F2127−1

I (1 : a2/b2 : a2/c2 : a2/d2) = (−114 : 57 : 66 : 418)
I (1 : A2/B2 : A2/C2 : A2/D2) = (−833 : 2499 : 1617 : 561)

I Finding this surface cost 1 000 000 CPU hours
I The same surface has been used by Bos, Costello, Hisil, and Lauter

(Eurocrypt 2013)

24

Representing elements of F2127−1

I Represent an element A in radix-2127/6

I Write A as a0, a1, a2, a3, a4, a5, where
I a0 is a small multiple of 20
I a1 is a small multiple of 222
I a2 is a small multiple of 243
I a3 is a small multiple of 264
I a4 is a small multiple of 285
I a5 is a small multiple of 2106

25

Multiplication

I Consider multiplication of A and B with reduction mod 2127 − 1

I Make use of the fact that 2127 ≡ 1

I With radix 2127/6 we obtain:

r0 = a0b0 + 2−127a1b5 + 2−127a2b4 + 2−127a3b3 + 2−127a4b2 + 2−127a5b1

r1 = a0b1 + a1b0 + 2−127a2b5 + 2−127a3b4 + 2−127a4b3 + 2−127a5b2

r2 = a0b2 + a1b1 + a2b0 + 2−127a3b5 + 2−127a4b4 + 2−127a5b3

r3 = a0b3 + a1b2 + a2b1 + a3b0 + 2−127a4b5 + 2−127a5b4

r4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 2−127a5b5

r5 = a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0

I Obviously, we always perform this whole thing 4× in parallel
I Obviously, we specialize squaring
I Obviously, we specialize multiplications by small constants

26

Multiplication

I Consider multiplication of A and B with reduction mod 2127 − 1

I Make use of the fact that 2127 ≡ 1

I With radix 2127/6 we obtain:

r0 = a0b0 + 2−127a1b5 + 2−127a2b4 + 2−127a3b3 + 2−127a4b2 + 2−127a5b1

r1 = a0b1 + a1b0 + 2−127a2b5 + 2−127a3b4 + 2−127a4b3 + 2−127a5b2

r2 = a0b2 + a1b1 + a2b0 + 2−127a3b5 + 2−127a4b4 + 2−127a5b3

r3 = a0b3 + a1b2 + a2b1 + a3b0 + 2−127a4b5 + 2−127a5b4

r4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 2−127a5b5

r5 = a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0

I Obviously, we always perform this whole thing 4× in parallel

I Obviously, we specialize squaring
I Obviously, we specialize multiplications by small constants

26

Multiplication

I Consider multiplication of A and B with reduction mod 2127 − 1

I Make use of the fact that 2127 ≡ 1

I With radix 2127/6 we obtain:

r0 = a0b0 + 2−127a1b5 + 2−127a2b4 + 2−127a3b3 + 2−127a4b2 + 2−127a5b1

r1 = a0b1 + a1b0 + 2−127a2b5 + 2−127a3b4 + 2−127a4b3 + 2−127a5b2

r2 = a0b2 + a1b1 + a2b0 + 2−127a3b5 + 2−127a4b4 + 2−127a5b3

r3 = a0b3 + a1b2 + a2b1 + a3b0 + 2−127a4b5 + 2−127a5b4

r4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 2−127a5b5

r5 = a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0

I Obviously, we always perform this whole thing 4× in parallel
I Obviously, we specialize squaring

I Obviously, we specialize multiplications by small constants

26

Multiplication

I Consider multiplication of A and B with reduction mod 2127 − 1

I Make use of the fact that 2127 ≡ 1

I With radix 2127/6 we obtain:

r0 = a0b0 + 2−127a1b5 + 2−127a2b4 + 2−127a3b3 + 2−127a4b2 + 2−127a5b1

r1 = a0b1 + a1b0 + 2−127a2b5 + 2−127a3b4 + 2−127a4b3 + 2−127a5b2

r2 = a0b2 + a1b1 + a2b0 + 2−127a3b5 + 2−127a4b4 + 2−127a5b3

r3 = a0b3 + a1b2 + a2b1 + a3b0 + 2−127a4b5 + 2−127a5b4

r4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 + 2−127a5b5

r5 = a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0

I Obviously, we always perform this whole thing 4× in parallel
I Obviously, we specialize squaring
I Obviously, we specialize multiplications by small constants

26

The Hadamard transform

x

�� ''

y

�� ��

z

�� ��

t

ww ��
+

��

+

~~ ��

−

��

−

~~ ��
+ − + −

I Only shuffeling operation in
Kummer arithmetic

I AVX has limited shuffeling
across left and right half

I Plain Hadamard turns out to be
expensive

Permuted and negated Hadamard
I Allow generalized Hadamard to output permuted vector
I Self-inverting permutation “cleans” after two generalized Hadamards

I Allow generalized Hadamard to negate vector entries
I “Clean” negations by multiplication by negated constants

27

The Hadamard transform

x

�� ''

y

�� ��

z

�� ��

t

ww ��
+

��

+

~~ ��

−

��

−

~~ ��
+ − + −

I Only shuffeling operation in
Kummer arithmetic

I AVX has limited shuffeling
across left and right half

I Plain Hadamard turns out to be
expensive

Permuted and negated Hadamard
I Allow generalized Hadamard to output permuted vector
I Self-inverting permutation “cleans” after two generalized Hadamards

I Allow generalized Hadamard to negate vector entries
I “Clean” negations by multiplication by negated constants

27

The Hadamard transform

x

�� ''

y

�� ��

z

�� ��

t

ww ��
+

��

+

~~ ��

−

��

−

~~ ��
+ − + −

I Only shuffeling operation in
Kummer arithmetic

I AVX has limited shuffeling
across left and right half

I Plain Hadamard turns out to be
expensive

Permuted and negated Hadamard
I Allow generalized Hadamard to output permuted vector
I Self-inverting permutation “cleans” after two generalized Hadamards
I Allow generalized Hadamard to negate vector entries
I “Clean” negations by multiplication by negated constants

27

Arithmetic on the squared Kummer surface
x2

��

y2

��

−z2

��

t2

��

x3

��

y3

��

−z3

��

t3

��
H

x
����

33

t
����

33

−z
����

33

y
����

33

H

x
��

t
��

−z
��

y
��

×

x

��

×
t��

×
z��

×
y��

×

x

��

×
t��

×
z��

×
y��

·(A2/D2)

t��

·(−A2/C2)

−z��

·(A2/B2)

y
��

·(A2/D2)

t��

·(−A2/C2)

−z��

·(A2/B2)

y
��

H

x
����

y
����

−z
����

t
����

H

x
����

y
����

−z
����

t
����

×

x

��

×
y��

×
z��

×
t��

×

x

��

×
y
��

×
z��

×
t��

·(a2/b2)
y

��

·(−a2/c2)
−z
��

·(a2/d2)
t
��

·(x1/y1)

y

��

·(−x1/z1)

−z
��

·(x1/t1)

t
��

x4 y4 −z4 t4 x5 y5 −z5 t5

28

Looking back. . .

I Fastest computation units are vector units
I Choose (H)ECC with efficiently vectorizable formulas

I Formulas “dictate” the scalar multiplication algorithm
I Choose representation of field elements for fast reduction
I Adjust formulas according to fast shuffle instructions
I Optimizations go through all levels of the pyramid!

29

Looking back. . .

I Fastest computation units are vector units
I Choose (H)ECC with efficiently vectorizable formulas
I Formulas “dictate” the scalar multiplication algorithm

I Choose representation of field elements for fast reduction
I Adjust formulas according to fast shuffle instructions
I Optimizations go through all levels of the pyramid!

29

Looking back. . .

I Fastest computation units are vector units
I Choose (H)ECC with efficiently vectorizable formulas
I Formulas “dictate” the scalar multiplication algorithm
I Choose representation of field elements for fast reduction

I Adjust formulas according to fast shuffle instructions
I Optimizations go through all levels of the pyramid!

29

Looking back. . .

I Fastest computation units are vector units
I Choose (H)ECC with efficiently vectorizable formulas
I Formulas “dictate” the scalar multiplication algorithm
I Choose representation of field elements for fast reduction
I Adjust formulas according to fast shuffle instructions

I Optimizations go through all levels of the pyramid!

29

Looking back. . .

I Fastest computation units are vector units
I Choose (H)ECC with efficiently vectorizable formulas
I Formulas “dictate” the scalar multiplication algorithm
I Choose representation of field elements for fast reduction
I Adjust formulas according to fast shuffle instructions
I Optimizations go through all levels of the pyramid!

29

Results

128-bit secure, constant-time scalar multiplication

arch cycles open g source of software
Sandy 194036 yes 1 Bernstein–Duif–Lange–Schwabe–

Yang CHES 2011
Sandy 153000? no 1 Hamburg
Sandy 137000? no 1 Longa–Sica Asiacrypt 2012
Sandy 122716 yes 2 Bos–Costello–Hisil–Lauter Euro-

crypt 2013
Sandy 119904 yes 1 Oliveira–López–Aranha–Rodríguez-

Henríquez CHES 2013
Sandy 96000? no 1 Faz-Hernández–Longa–Sánchez CT-

RSA 2014
Sandy 92000? no 1 Faz-Hernández–Longa–Sánchez

July 2014
Sandy 88916 yes 2 new (our results)

30

Results

128-bit secure, constant-time scalar multiplication

arch cycles open g source of software
Ivy 182708 yes 1 Bernstein–Duif–Lange–Schwabe–Yang

CHES 2011
Ivy 145000? yes 1 Costello–Hisil–Smith Eurocrypt 2014
Ivy 119032 yes 2 Bos–Costello–Hisil–Lauter Euro-

crypt 2013
Ivy 114036 yes 1 Oliveira–López–Aranha–Rodríguez-

Henríquez CHES 2013
Ivy 92000? no 1 Faz-Hernández–Longa–Sánchez CT-

RSA 2014
Ivy 89000? no 1 Faz-Hernández–Longa–Sánchez

July 2014
Ivy 88448 yes 2 new (our results)

30

More results

Also optimized for Intel Haswell

arch cycles open g source of software
Haswell 145907 yes 1 Bernstein–Duif–Lange–

Schwabe–Yang CHES 2011
Haswell 100895 yes 2 Bos–Costello–Hisil–Lauter

Eurocrypt 2013
Haswell 55595 no 1 Oliveira–López–Aranha–

Rodríguez-Henríquez
CHES 2013

Haswell 54389 yes 2 new (our results)

31

Even more results

Also optimized for ARM Cortex-A8

arch cycles open g source of software
A8-slow 497389 yes 1 Bernstein–Schwabe CHES 2012
A8-slow 305395 yes 2 new (our result)
A8-fast 460200 yes 1 Bernstein–Schwabe CHES 2012
A8-fast 273349 yes 2 new (our result)

32

Resources online

Paper:
Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Peter
Schwabe. “Kummer strikes back: new DH speed records” .
http://cryptojedi.org/papers/#kummer

Software:
Included in SUPERCOP, subdirectory crypto_scalarmult/kummer/
http://bench.cr.yp.to/supercop.html

33

http://cryptojedi.org/papers/#kummer
http://bench.cr.yp.to/supercop.html

