

An Introduction to hash-based signatures

Peter Schwabe December 7, 2021

NIST PQC candidates

So many NIST candidates and one thing they all have in common. . .

NIST PQC candidates

So many NIST candidates and one thing they all have in common. . . they all need a hash function.

NIST PQC candidates

So many NIST candidates and one thing they all have in common. . . they all need a hash function.

What can we do with *just* a hash function?

Hash-based signatures

- Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
 - Collision resistance: Hard two find two inputs that produce the same output
 - Preimage resistance: Given the output, it's hard to find the input
 - 2nd preimage resistance: Given input and output, it's hard to find a second input, producing the same output

Hash-based signatures

- · Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
 - Collision resistance: Hard two find two inputs that produce the same output
 - Preimage resistance: Given the output, it's hard to find the input
 - 2nd preimage resistance: Given input and output, it's hard to find a second input, producing the same output
- Collision resistance is stronger assumption than (2nd) preimage resistance
- · Ideally, don't want to rely on collision resistance

Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signing

• Send $\sigma = r$

Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signing

• Send $\sigma = r$

Verification

• Check that h(r) = p

- Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?

- Clearly an attacker who can invert h can break the scheme
- · Can we reduce from preimage-resistance to unforgeability?
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use oracle to compute x, s.t., h(x) = y
 - Idea: use public-key pk = y, oracle will compute forgery x

- Clearly an attacker who can invert h can break the scheme
- · Can we reduce from preimage-resistance to unforgeability?
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use oracle to compute x, s.t., h(x) = y
 - Idea: use public-key pk = y, oracle will compute forgery x
 - · ... or will it?

- Clearly an attacker who can invert h can break the scheme
- · Can we reduce from preimage-resistance to unforgeability?
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use oracle to compute x, s.t., h(x) = y
 - Idea: use public-key pk = y, oracle will compute forgery x
 - ... or will it?
- Problem: y is not an output of h
- What if A can distinguish legit pk from random?
- Need additional property of h: undetectability
- · From now on assume that all our hash functions are undetectable

Signatures for 1-bit messages

Key generation

- Generate 256-bit random values $(r_0, r_1) = s$ (secret key)
- Compute $(h(r_0), h(r_1)) = (p_0, p_1) = p$ (public key)

Signatures for 1-bit messages

Key generation

- Generate 256-bit random values $(r_0, r_1) = s$ (secret key)
- Compute $(h(r_0), h(r_1)) = (p_0, p_1) = p$ (public key)

Signing

- Signature for message b = 0: $\sigma = r_0$
- Signature for message b=1: $\sigma=r_1$

Signatures for 1-bit messages

Key generation

- Generate 256-bit random values $(r_0, r_1) = s$ (secret key)
- Compute $(h(r_0), h(r_1)) = (p_0, p_1) = p$ (public key)

Signing

- Signature for message b = 0: $\sigma = r_0$
- Signature for message b=1: $\sigma=r_1$

Verification

Check that $h(\sigma) = p_b$

 Same idea as for 0-bit messages: reduce from preimage resistance

- Same idea as for 0-bit messages: reduce from preimage resistance
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$

- Same idea as for 0-bit messages: reduce from preimage resistance
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$
 - \mathcal{A} asks for signature on either 0 or 1
 - · If you can, answer with preimage, otherwise fail (abort)

- Same idea as for 0-bit messages: reduce from preimage resistance
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$
 - \mathcal{A} asks for signature on either 0 or 1
 - · If you can, answer with preimage, otherwise fail (abort)
 - Now ${\cal A}$ returns preimage, i.e., preimage of y

- Same idea as for 0-bit messages: reduce from preimage resistance
- · Proof game:
 - Assume oracle $\mathcal A$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$
 - A asks for signature on either 0 or 1
 - · If you can, answer with preimage, otherwise fail (abort)
 - Now A returns preimage, i.e., preimage of y
- Reduction only works with 1/2 probability
- We get a **tightness loss** of 1/2

One-time signatures for 256-bit messages

Key generation

- Generate 256-bit random values $\mathbf{s} = (r_{0,0}, r_{0,1} \dots, r_{255,0}, r_{255,1})$
- Compute $p = (h(r_{0,0}), h(r_{0,1}), \dots, h(r_{255,0}), h(r_{255,1})) = (p_{0,0}, p_{0,1}, \dots, p_{255,0}, p_{255,1})$

One-time signatures for 256-bit messages

Key generation

- Generate 256-bit random values $\mathbf{s} = (r_{0,0}, r_{0,1} \dots, r_{255,0}, r_{255,1})$
- Compute $p = (h(r_{0,0}), h(r_{0,1}), \dots, h(r_{255,0}), h(r_{255,1})) = (p_{0,0}, p_{0,1}, \dots, p_{255,0}, p_{255,1})$

Signing

• Signature for message $(b_0, ..., b_{255})$: $\sigma = (\sigma_0, ..., \sigma_{255}) = (r_{0,b_0}, ..., r_{255,b_{255}})$

One-time signatures for 256-bit messages

Key generation

- Generate 256-bit random values $\mathbf{s} = (r_{0,0}, r_{0,1} \dots, r_{255,0}, r_{255,1})$
- Compute $p = (h(r_{0,0}), h(r_{0,1}), \dots, h(r_{255,0}), h(r_{255,1})) = (p_{0,0}, p_{0,1}, \dots, p_{255,0}, p_{255,1})$

Signing

• Signature for message $(b_0, ..., b_{255})$: $\sigma = (\sigma_0, ..., \sigma_{255}) = (r_{0,b_0}, ..., r_{255,b_{255}})$

Verification

- Check that $h(\sigma_0) = p_{0,b_0}$
- . . .
- Check that $h(\sigma_{255}) = p_{255,b_{255}}$

- Same idea as before, replace one $p_{j,b}$ in the public key by challenge y
- Fail if signing needs the preimage of y
- In forgery, attacker has to flip at least one bit in m
- \bullet Chance of 1/256 that attacker flips the bit with the challenge
- Overall tightness loss of 1/512

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

Key generation

- Generate 256-bit random values r_0, \ldots, r_{63} (secret key)
- Compute $(p_0, \dots, p_{63}) = (h^{15}(r_0), \dots, h^{15}(r_{63})$ (public key)

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

Key generation

- Generate 256-bit random values r_0, \ldots, r_{63} (secret key)
- Compute $(p_0, \dots, p_{63}) = (h^{15}(r_0), \dots, h^{15}(r_{63})$ (public key)

Signing

- Chop 256 bit message into 64 chunks of 4 bits $m=(m_0,\ldots,m_{63})$
- Compute $\sigma = (\sigma_0, \dots, \sigma_{63}) = (h^{m_0}(r_0), \dots, h^{m_{63}}(r_{63}))$

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

Key generation

- Generate 256-bit random values r_0, \ldots, r_{63} (secret key)
- Compute $(p_0, \dots, p_{63}) = (h^{15}(r_0), \dots, h^{15}(r_{63})$ (public key)

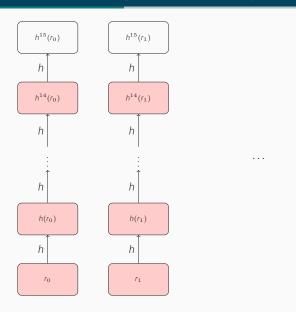
Signing

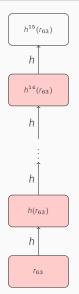
- Chop 256 bit message into 64 chunks of 4 bits $m=(m_0,\ldots,m_{63})$
- Compute $\sigma = (\sigma_0, \dots, \sigma_{63}) = (h^{m_0}(r_0), \dots, h^{m_{63}}(r_{63}))$

Verification

• Check that $p_0 = h^{15-m_0}(\sigma_0), \dots, p_{63} = h^{15-m_{63}}(\sigma_{63})$

Winternitz OTS (basic idea, ctd.)





Winternitz OTS (making it secure)

- Once you signed, say, $m=(8,m_1,\ldots,m_{63})$, can easily forge signature on $m=(9,m_1,\ldots,m_{63})$
- Idea: introduce checksum, force attacker to "go down" some chain in exchange

Winternitz OTS (making it secure)

- Once you signed, say, $m=(8,m_1,\ldots,m_{63})$, can easily forge signature on $m=(9,m_1,\ldots,m_{63})$
- Idea: introduce checksum, force attacker to "go down" some chain in exchange
- Compute $c = 960 \sum_{i=0}^{63} m_i \in \{0, \dots, 960\}$
- Write c in radix 16, obtain c_0, c_1, c_2
- Compute hash chains for c_0, c_1, c_2 as well

Winternitz OTS (making it secure)

- Once you signed, say, $m=(8,m_1,\ldots,m_{63})$, can easily forge signature on $m=(9,m_1,\ldots,m_{63})$
- Idea: introduce checksum, force attacker to "go down" some chain in exchange
- Compute $c = 960 \sum_{i=0}^{63} m_i \in \{0, \dots, 960\}$
- Write c in radix 16, obtain c_0, c_1, c_2
- Compute hash chains for c_0, c_1, c_2 as well
- When increasing one of the m_i 's, one of the c_i 's decreases
- In total obtain 67 hash chains, signatures have 2144 bytes

WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)

WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)
- Lots of tradeoffs between speed and size
 - w = 16 yields ≈ 2.1 KB signatures
 - w = 256 yields ≈ 1.1 KB signatures
 - However, w=256 makes signing and verification $\approx 8 \times$ slower

WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)
- · Lots of tradeoffs between speed and size
 - w = 16 yields ≈ 2.1 KB signatures
 - w = 256 yields ≈ 1.1 KB signatures
 - However, w=256 makes signing and verification $\approx 8 \times$ slower
- · Verification recovers (and compares) the full public key
- Can publish h(pk) instead of pk

- An attacker who can compute preimages can go backwards in chains
- Problem: hard to prove that this is the only way to forge

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given *x*
- Can again place preimage challenge anywhere inside the chains

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- · Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- · Can again place preimage challenge anywhere inside the chains
- Problem: two ways for oracle to forge:
 - · compute preimage (solve challenge)
 - find different chain that collides further up
- Forgery gives us either preimage or collision

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- · Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- · Can again place preimage challenge anywhere inside the chains
- Problem: two ways for oracle to forge:
 - · compute preimage (solve challenge)
 - · find different chain that collides further up
- Forgery gives us either preimage or collision
- Idea (Hülsing, 2013): control one input in that collision, get 2nd preimage!

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- · Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- · Can again place preimage challenge anywhere inside the chains
- Problem: two ways for oracle to forge:
 - · compute preimage (solve challenge)
 - find different chain that collides further up
- Forgery gives us either preimage or collision
- Idea (Hülsing, 2013): control one input in that collision, get 2nd preimage!
- Replace h(r) by $h(r \oplus b)$ for "bitmask" b
- Include bitmasks in public key
- Reduction can now choose inputs to hash function

How about the message hash?

- · What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
- Requires collision-resistant hash-function h

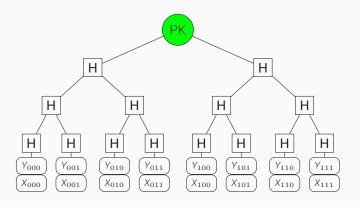
How about the message hash?

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
- Requires collision-resistant hash-function h
- Idea: randomize before feeding *m* into *h*
 - Pick random r
 - Compute $h(r \mid m)$
 - Send r as part of the signature

How about the message hash?

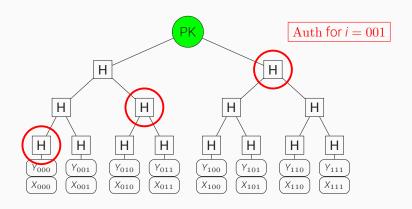
- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
- Requires collision-resistant hash-function h
- Idea: randomize before feeding m into h
 - Pick random r
 - Compute $h(r \mid m)$
 - Send r as part of the signature
- Make deterministic: r←PRF(s, m) for secret s
- · Signature scheme is now collision resilient

Merkle Trees



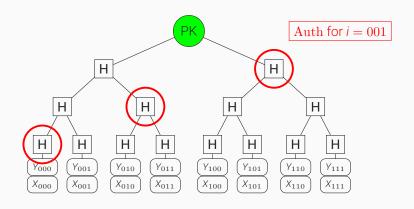
- Merkle, 1979: Leverage one-time signatures to multiple messages
- Binary hash tree on top of OTS public keys

Merkle Trees



- Merkle, 1979: Leverage one-time signatures to multiple messages
- Binary hash tree on top of OTS public keys

Merkle Trees



- · Use OTS keys sequentially
- SIG = $(i, sign(M, X_i), Y_i, Auth)$
- Signer needs to remember current *index* (⇒ stateful scheme)

Merkle security

- · Informally:
 - requires EUF-CMA-secure OTS
 - · requires collision-resistant hash in the tree
- Can apply bitmask trick to get rid of collision-resistance assumption
- Merkle signatures are stateful

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses $\Theta(2^h)$ memory

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses $\Theta(2^h)$ memory
- Better approach, call **TREEHASH** for each leaf, left to right:

```
function treehash(stack, leaf node N)

while stack.peek() is on the same level as N do

neighbor← stack.pop()

N←H(neighbor||N)

end while

stack.push(N)

end function
```

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses $\Theta(2^h)$ memory
- Better approach, call **TREEHASH** for each leaf, left to right:

```
function treehash(stack, leaf node N)

while stack.peek() is on the same level as N do

neighbor← stack.pop()

N←H(neighbor||N)

end while

stack.push(N)

end function
```

- After going through all leaves, root will be on the top of the stack
- Memory requirement: h + 1 hashes

• KeyGen needs to compute the whole tree, but how about signing?

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key

- KeyGen needs to compute the whole tree, but how about signing?
- · Can simply remember the tree from KeyGen: large secret key
- Can recompute tree every time: very slow signing

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key
- Can recompute tree every time: very slow signing
- Obvious tradeoff: remember last authentication path
- Most of the time can reuse most nodes

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key
- Can recompute tree every time: very slow signing
- Obvious tradeoff: remember last authentication path
- Most of the time can reuse most nodes
- Signing speed now depends largely on index
- Idea: balance computations, store nodes required for future signatures
- Commonly used algorithm (again allowing tradeoffs): BDS traversal Buchmann, Dahmen, Schneider, 2008: Merkle tree traversal revisited

```
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.420.4170&rep=rep1&type=pdf
```

Stateful signatures: downside

- · Secret key changes with every signature
- Going back to previous secret key is security disaster

Stateful signatures: downside

- · Secret key changes with every signature
- · Going back to previous secret key is security disaster
- Huge problem in many contexts:
 - Backups
 - · VM Snapshots
 - · Load balancing
 - · API is incompatible!

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature forward security: old signatures remain valid after key compromise

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature forward security: old signatures remain valid after key compromise
- Need "timestamp" baked into signature
- Secret key has to evolve to disable signing "in the past"

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature forward security: old signatures remain valid after key compromise
- · Need "timestamp" baked into signature
- Secret key has to evolve to disable signing "in the past"
- · For Hash-based signatures:
 - generate OTS secret keys as $s_i = h(s_{i-1})$
 - · store only next valid OTS secret key
 - Need to keep hashes of old public keys

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature forward security: old signatures remain valid after key compromise
- · Need "timestamp" baked into signature
- Secret key has to evolve to disable signing "in the past"
- · For Hash-based signatures:
 - generate OTS secret keys as $s_i = h(s_{i-1})$
 - · store only next valid OTS secret key
 - Need to keep hashes of old public keys
- After key compromise publish index of compromised key
- · Signatures with lower index remain valid

Multi-tree constructions

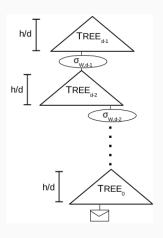
- Remember that KeyGen has to compute the whole tree
- Infeasible for very large trees

Multi-tree constructions

- Remember that KeyGen has to compute the whole tree
- Infeasible for very large trees
- Idea: generate all secret keys pseudo-randomly
- Use PRF on secret seed with position in the tree

Multi-tree constructions

- Remember that KeyGen has to compute the whole tree
- Infeasible for very large trees
- Idea: generate all secret keys pseudo-randomly
- Use PRF on secret seed with position in the tree
- Use hierarchy of trees, connected via one-time signatures
- Key generation computes only the top tree
- Many more size-speed tradeoffs



SPHINCS: stateless practical hash-based signatures (2015)

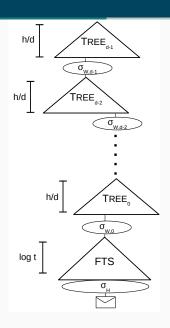
Daniel J. Bernstein
Daira Hopwood
Andreas Hülsing
Tanja Lange
Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider
Peter Schwabe
Zooko Wilcox-O'Hearn

SPHINCS: stateless practical hash-based incredibly nice cryptographic signatures (2015)

Daniel J. Bernstein
Daira Hopwood
Andreas Hülsing
Tanja Lange
Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider
Peter Schwabe
Zooko Wilcox-O'Hearn

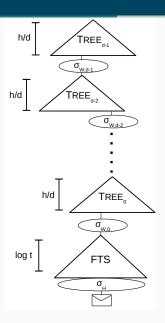
The SPHINCS approach

- Use a "hyper-tree" of total height h
- Parameter $d \ge 1$, such that $d \mid h$
- Each (Merkle) tree has height h/d
- (h/d)-ary certification tree



The SPHINCS approach

- · Pick index (pseudo-)randomly
- Messages signed with few-time signature scheme
- Significantly reduce total tree height
- Require
 Pr[r-times Coll] · Pr[Forgery after r signatures] = negl(n)



The HORS few-time signature scheme

Lamport signatures reveal half of the secret key with each signature

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - · use much bigger secret key
 - · reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - · attacker won't have enough secret-key to forge

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - · reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge
- Example parameters:
 - Generate sk = $(r_0, ..., r_{2^{16}})$
 - Compute public key $(h(r_0), \dots, h(r_{2^{16}}))$

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - · reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge
- Example parameters:
 - Generate sk = $(r_0, ..., r_{2^{16}})$
 - Compute public key $(h(r_0), \ldots, h(r_{2^{16}}))$
 - Sign 512-bit hash $g(m) = (g_0, \dots, g_{31})$
 - Each $g_i \in 0, \dots, 2^{16}$

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - · reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge
- Example parameters:
 - Generate sk = $(r_0, ..., r_{2^{16}})$
 - Compute public key $(h(r_0), \ldots, h(r_{2^{16}}))$
 - Sign 512-bit hash $g(m) = (g_0, ..., g_{31})$
 - Each $g_i \in 0, \dots, 2^{16}$
 - Signature is $(r_{g_0}, \ldots, r_{g_{31}})$
 - Signature reveals 32 out of 65536 secret-key values
 - Even after, say, 5 signatures, attacker does not know enough secret key to forge with non-negligible probability

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!
- · Idea:
 - · build hash-tree on top of public-key chunks
 - use root of tree as new public key (32 bytes)
 - · include authentication paths in signature

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!
- · Idea:
 - · build hash-tree on top of public-key chunks
 - use root of tree as new public key (32 bytes)
 - · include authentication paths in signature
- · Signature size (naïve):

$$32 \cdot 32 + 32 \cdot 16 \cdot 32 = 17408$$
 Bytes

- · Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!
- · Idea:
 - · build hash-tree on top of public-key chunks
 - use root of tree as new public key (32 bytes)
 - · include authentication paths in signature
- · Signature size (naïve):

$$32 \cdot 32 + 32 \cdot 16 \cdot 32 = 17408$$
 Bytes

Signature size (somewhat optimized): 13312 Bytes

SPHINCS-256

- Designed for 128 bits of post-quantum security
- Support up to 2^{50} signatures
- 12 trees of height 5 each

SPHINCS-256

- · Designed for 128 bits of post-quantum security
- Support up to 2^{50} signatures
- 12 trees of height 5 each
- n=256 bit hashes in WOTS and HORST
- Winternitz paramter w = 16
- HORST with 2¹⁶ expanded-secret-key chunks (total: 2 MB)

SPHINCS-256

- · Designed for 128 bits of post-quantum security
- Support up to 2^{50} signatures
- · 12 trees of height 5 each
- n = 256 bit hashes in WOTS and HORST
- Winternitz paramter w = 16
- HORST with 2¹⁶ expanded-secret-key chunks (total: 2 MB)
- m = 512 bit message hash (BLAKE-512)
- · ChaCha12 as PRG

Cost of SPHINCS-256 signing

- Three main components:
 - PRG for HORST secret-key expansion to 2 MB
 - Hashing in WOTS and HORS public-key generation:

$$F: \{0,1\}^{256} \to \{0,1\}^{256}$$

Hashing in trees (mainly HORST public-key):

$$H: \{0,1\}^{512} \to \{0,1\}^{256}$$

Overall: 451 456 invocations of F, 91 251 invocations of H

Cost of SPHINCS-256 signing

- Three main components:
 - PRG for HORST secret-key expansion to 2 MB
 - Hashing in WOTS and HORS public-key generation:

$$F: \{0,1\}^{256} \to \{0,1\}^{256}$$

Hashing in trees (mainly HORST public-key):

$$H: \{0,1\}^{512} \to \{0,1\}^{256}$$

- Overall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
- Construction in SPHINCS-256:
 - $F(M_1) = \text{Chop}_{256}(\pi(M_1||C))$
 - $H(M_1||M_2) = \text{Chop}_{256}(\pi(\pi(M_1||C) \oplus (M_2||0^{256})))$

Cost of SPHINCS-256 signing

- · Three main components:
 - · PRG for HORST secret-key expansion to 2 MB
 - Hashing in WOTS and HORS public-key generation:

$$F: \{0,1\}^{256} \to \{0,1\}^{256}$$

Hashing in trees (mainly HORST public-key):

$$H: \{0,1\}^{512} \to \{0,1\}^{256}$$

- Overall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
- Construction in SPHINCS-256:
 - $F(M_1) = \text{Chop}_{256}(\pi(M_1||C))$
 - $H(M_1||M_2) = \text{Chop}_{256}(\pi(\pi(M_1||C) \oplus (M_2||0^{256})))$
- Use fast ChaCha12 permutation for π
- All building blocks (PRG, message hash, H, F) built from very similar permutations

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

- $\approx 40\,\mathrm{KB}$ signature
- $\approx 1 \text{ KB public key (mainly bitmasks)}$
- $\approx 1\,\mathrm{KB}$ private key

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

- $\approx 40\,\mathrm{KB}$ signature
- ≈ 1 KB public key (mainly bitmasks)
- $\approx 1 \, \text{KB}$ private key

High-speed implementation

- Target Intel Haswell with 256-bit AVX2 vector instructions
- Use $8 \times$ parallel hashing, vectorize on high level
- pprox 1.6 cycles/byte for H and F

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

- $pprox 40\,\mathrm{KB}$ signature
- $\approx 1 \text{ KB public key (mainly bitmasks)}$
- $\approx 1 \, \text{KB}$ private key

High-speed implementation

- Target Intel Haswell with 256-bit AVX2 vector instructions
- Use $8 \times$ parallel hashing, vectorize on high level
- pprox 1.6 cycles/byte for H and F

SPHINCS-256 speed

- Signing: <52 Mio. Haswell cycles (>200 sigs/sec, 4 Core, 3GHz)
- Verification: $< 1.5 \, \mathrm{Mio}$. Haswell cycles
- Keygen: < 3.3 Mio. Haswell cycles

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS+ have many hash calls

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - try all inputs of appropriate size
 - win if output matches any of the challenges

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - · try all inputs of appropriate size
 - win if output matches any of the challenges
- Idea: use different hash function for each call
- Use address in the tree to pick hash function

From SPHINCS to SPHINCS+, part I

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - · try all inputs of appropriate size
 - · win if output matches any of the challenges
- · Idea: use different hash function for each call
- · Use address in the tree to pick hash function
- · Proposed in 2016 by Hülsing, Rijneveld, and Song
- First adopted in XMSS (see RFC 8391)

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - · try all inputs of appropriate size
 - win if output matches any of the challenges
- · Idea: use different hash function for each call
- · Use address in the tree to pick hash function
- · Proposed in 2016 by Hülsing, Rijneveld, and Song
- First adopted in XMSS (see RFC 8391)
- Merge with random bitmasks into tweakable hash function
- NIST proposal: tweakable hash from SHA-256, SHAKE-256, or Haraka

- Verifiable index computation:
 - · SPHINCS:
 - $(i,r)\leftarrow PRF(s,m)$,
 - $d \leftarrow h(r, m)$
 - $\bullet \ \ \text{sign digest } d \text{ with FTS} \\$
 - include \emph{i} in signature

- · Verifiable index computation:
 - · SPHINCS:
 - $(i,r)\leftarrow PRF(s,m)$,
 - $d \leftarrow h(r, m)$
 - sign digest d with FTS
 - include *i* in signature
 - · SPHINCS+:
 - r←PRF(s, m)
 - $(i,d)\leftarrow h(r,m)$,
 - sign digest d with FTS
 - \cdot include r in signature

- · Verifiable index computation:
 - · SPHINCS:
 - $(i,r) \leftarrow PRF(s,m)$,
 - $d \leftarrow h(r, m)$
 - sign digest d with FTS
 - include i in signature
 - SPHINCS⁺:
 - r←PRF(s, m)
 - $(i,d)\leftarrow h(r,m)$,
 - sign digest d with FTS
 - include r in signature
 - Verifier can check that d and i belong together
 - Attacker cannot pick d and i independently

- · Verifiable index computation:
 - · SPHINCS:
 - $(i,r) \leftarrow PRF(s,m)$,
 - $d \leftarrow h(r, m)$
 - sign digest d with FTS
 - include i in signature
 - SPHINCS⁺:
 - r←PRF(s, m)
 - $(i,d)\leftarrow h(r,m)$,
 - sign digest d with FTS
 - include *r* in signature
 - Verifier can check that d and i belong together
 - Attacker cannot pick d and i independently
- Additionally: Improvements to FTS (FORS)
- Use multiple smaller trees instead of one big tree
- · Per signature, reveal one secret-key leaf per tree

Know more?

https://sphincs.org