

#### An Introduction to Lattice-based KEMs

Peter Schwabe December 7, 2021

# The NIST competition

| Count of Problem Category | Column Labels |           |                    |
|---------------------------|---------------|-----------|--------------------|
| Row Labels                | Key Exchange  | Signature | <b>Grand Total</b> |
| ?                         | 1             |           | 1                  |
| Braids                    | 1             | 1         | 2                  |
| Chebychev                 | 1             |           | 1                  |
| Codes                     | 19            | 5         | 24                 |
| Finite Automata           | 1             | 1         | 2                  |
| Hash                      |               | 4         | 4                  |
| Hypercomplex Numbers      | 1             |           | 1                  |
| Isogeny                   | 1             |           | 1                  |
| Lattice                   | 24            | 4         | 28                 |
| Mult. Var                 | 6             | 7         | 13                 |
| Rand. walk                | 1             |           | 1                  |
| RSA                       | 1             | 1         | 2                  |
| Grand Total               | 57            | 23        | 80                 |
| Q 4                       | 1 31          | M         |                    |

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

Announcement planned at Real-World Crypto 2019

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later

#### Encryption / Key agreement

- · 9 lattice-based
- 7 code-based
- 1 isogeny-based

- Announcement planned at Real-World Crypto 2019
- · Due to US government lockdown slightly later

#### Encryption / Key agreement

- · 9 lattice-based
- 7 code-based
- 1 isogeny-based

#### Signature schemes

- · 3 lattice-based
- 2 symmetric-crypto based
- 4 MQ-based

Announcement planned for June 2020

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

#### **Finalists**

- 4 key-agreement schemes
  - · 3 lattice-based
  - 1 code-based
- · 3 signature schemes
  - · 2 lattice-based
  - · 1 MQ-based

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

#### **Finalists**

- 4 key-agreement schemes
  - · 3 lattice-based
  - · 1 code-based
- · 3 signature schemes
  - · 2 lattice-based
  - · 1 MQ-based

#### Alternate schemes

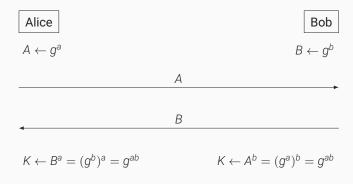
- 5 key-agreement schemes
  - · 2 lattice-based
  - 2 code-based
  - 1 isogeny-based
- 3 signature schemes
  - · 2 symmetric-crypto based
  - 1 MQ-based

# What NIST means by "Key exchange"

#### Key encapsulation mechanisms (KEMs)

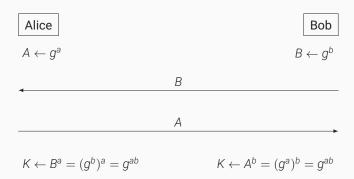
- (pk, sk)←KeyGen()
- $(c,k)\leftarrow \text{Encaps}(pk)$
- k←Decaps(c, sk)

#### A reminder of Diffie-Hellman



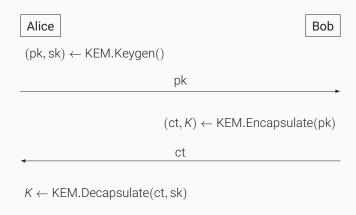
5

#### A reminder of Diffie-Hellman

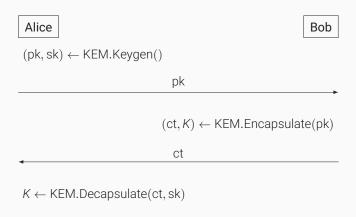


5

# KEMs: as close as you'll get to DH



### KEMs: as close as you'll get to DH\*



<sup>\*</sup>Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

# Lattice-based KEMs



"We're indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe, the researchers who developed "New Hope", the post-quantum algorithm that we selected for this experiment."

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html



"Key Agreement using the 'NewHope' lattice-based algorithm detailed in the New Hope paper, and LUKE (Lattice-based Unique Key Exchange), an ISARA speed-optimized version of the NewHope algorithm."

https://www.isara.com/isara-radiate/



"The deployed algorithm is a variant of "New Hope", a quantum-resistant cryptosystem"

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

# Learning with errors (LWE)

- Given uniform  $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given "noise distribution"  $\chi$
- Given samples  $\mathbf{A}\mathbf{s}+\mathbf{e}$ , with  $\mathbf{e}{\leftarrow}\chi$

# Learning with errors (LWE)

- Given uniform  $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given "noise distribution"  $\chi$
- Given samples  $\mathbf{A}\mathbf{s} + \mathbf{e}$ , with  $\mathbf{e} \leftarrow \chi$
- Search version: find s
- Decision version: distinguish from uniform random

# Learning with rounding (LWR)

- Given uniform  $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given samples  $[\mathbf{A}\mathbf{s}]_p$ , with p < q

# Learning with rounding (LWR)

- Given uniform  $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given samples  $[\mathbf{A}\mathbf{s}]_p$ , with p < q
- Search version: find s
- · Decision version: distinguish from uniform random

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix  ${\bf A}$ , e.g.,

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
  - NewHope: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$ ; n a power of 2, q prime

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix A, e.g.,
  - NewHope: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$ ; n a power of 2, q prime
  - NTRU: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$ ; n prime, q a power of 2

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
  - NewHope: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$ ; n a power of 2, q prime
  - NTRU: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$ ; n prime, q a power of 2
  - NTRU Prime: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$ ; q prime, n prime

- · Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
  - NewHope: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$ ; n a power of 2, q prime
  - NTRU: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$ ; n prime, q a power of 2
  - NTRU Prime: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$ ; q prime, n prime
  - Kyber/Saber: use small-dimension matrices and vectors over  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256}+1)$

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
  - NewHope: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$ ; n a power of 2, q prime
  - NTRU: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$ ; n prime, q a power of 2
  - NTRU Prime: work in  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$ ; q prime, n prime
  - Kyber/Saber: use small-dimension matrices and vectors over  $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256}+1)$
- Perform arithmetic on (vectors of) polynomials instead of vectors/matrices over  $\mathbb{Z}_q$

#### How to build a KEM?

| Alice (server)                                |                                                             | Bob (client)                                                 |
|-----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| $\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$ |                                                             | $\mathbf{s}', \mathbf{e}' \stackrel{\$}{\leftarrow} \chi$    |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$  | $\overset{\mathbf{b}}{-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$ | $\mathbf{u} \leftarrow \mathbf{a} \mathbf{s}' + \mathbf{e}'$ |
|                                               | $\longleftarrow^{\mathbf{u}}$                               |                                                              |

Alice has 
$$\mathbf{v} = \mathbf{u}\mathbf{s} = \mathbf{a}\mathbf{s}\mathbf{s}' + \mathbf{e}'\mathbf{s}$$
  
Bob has  $\mathbf{v}' = \mathbf{b}\mathbf{s}' = \mathbf{a}\mathbf{s}\mathbf{s}' + \mathbf{e}\mathbf{s}'$ 

- Secret and noise polynomials  $\mathbf{s},\mathbf{s}',\mathbf{e},\mathbf{e}'$  are small
- $\mathbf{v}$  and  $\mathbf{v}'$  are approximately the same

| Alice                                                                                          |             | Bob                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$ $\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$ | <u>(b</u> ) | $\mathbf{s'}, \mathbf{e'} \qquad \stackrel{\$}{\leftarrow} \chi$ $\mathbf{u} \leftarrow \mathbf{a} \mathbf{s'} + \mathbf{e'}$ $\mathbf{v} \leftarrow \mathbf{b} \mathbf{s'}$ |
| v'←us                                                                                          | <u>(u )</u> |                                                                                                                                                                              |

| Alice                                                   |                                    | Bob                                                             |
|---------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|
| seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$          |                                    |                                                                 |
| <b>a</b> ←Parse(XOF(seed))                              |                                    |                                                                 |
| $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$ |                                    | $\mathbf{s}',\mathbf{e}' \qquad \stackrel{\$}{\leftarrow} \chi$ |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$            | $\xrightarrow{(\mathbf{b}, seed)}$ | $\mathbf{a} \leftarrow Parse(XOF(seed))$                        |
|                                                         |                                    | $\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$  |
|                                                         |                                    | $\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}'$                |
|                                                         |                                    |                                                                 |
|                                                         | ( )                                |                                                                 |
| v'←us                                                   | <u>⟨u )</u>                        |                                                                 |
|                                                         |                                    |                                                                 |
|                                                         |                                    |                                                                 |

| Alice                                                   |                                        | Bob                                                              |
|---------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|
| seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$          |                                        |                                                                  |
| <b>a</b> ←Parse(XOF(seed))                              |                                        |                                                                  |
| $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$ |                                        | $\mathbf{s}', \mathbf{e}' \qquad \stackrel{\$}{\leftarrow} \chi$ |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$            | $\xrightarrow{(\mathbf{b},seed)}$      | $\mathbf{a} \leftarrow Parse(XOF(seed))$                         |
|                                                         |                                        | $\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$   |
|                                                         |                                        | $\mathbf{v}{\leftarrow}\mathbf{b}\mathbf{s}'$                    |
|                                                         |                                        | $k \stackrel{\$}{\leftarrow} \{0,1\}^n$                          |
|                                                         |                                        | $\mathbf{k}\leftarrow Encode(k)$                                 |
| $v'\leftarrow us$                                       | $\xleftarrow{(\mathbf{u},\mathbf{c})}$ | $\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$                  |
|                                                         |                                        |                                                                  |
|                                                         |                                        |                                                                  |

| Alice                                                   |                                        | Bob                                                                     |
|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$          |                                        |                                                                         |
| <b>a</b> ←Parse(XOF(seed))                              |                                        |                                                                         |
| $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$ |                                        | $\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$ |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$            | $\xrightarrow{(\mathbf{b}, seed)}$     | $\mathbf{a} \leftarrow Parse(XOF(seed))$                                |
|                                                         |                                        | $\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$          |
|                                                         |                                        | $\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$         |
|                                                         |                                        | $k \stackrel{\$}{\leftarrow} \{0,1\}^n$                                 |
|                                                         |                                        | $\mathbf{k}\leftarrow Encode(k)$                                        |
| v′←us                                                   | $\leftarrow$ $(\mathbf{u},\mathbf{c})$ | $\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$                         |
|                                                         |                                        |                                                                         |
|                                                         |                                        |                                                                         |

| Alice                                                   |                                        | Bob                                                                     |
|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| $\mathrm{seed} \overset{\$}{\leftarrow} \{0,1\}^{256}$  |                                        |                                                                         |
| <b>a</b> ←Parse(XOF(seed))                              |                                        |                                                                         |
| $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$ |                                        | $\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$ |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$            | $\xrightarrow{(\mathbf{b}, seed)}$     | <b>a</b> ←Parse(XOF(seed))                                              |
|                                                         |                                        | $\mathbf{u} \leftarrow \mathbf{a}\mathbf{s}' + \mathbf{e}'$             |
|                                                         |                                        | $\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$         |
|                                                         |                                        | $k \stackrel{\$}{\leftarrow} \{0,1\}^n$                                 |
|                                                         |                                        | $\mathbf{k}\leftarrow Encode(k)$                                        |
| $v'\leftarrow us$                                       | $\leftarrow$ $(\mathbf{u},\mathbf{c})$ | $\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$                       |
| $\mathbf{k'}\leftarrow\mathbf{c}-\mathbf{v'}$           |                                        |                                                                         |
|                                                         |                                        |                                                                         |

# How to build a KEM, part 2

| Alice                                                   |                                        | Bob                                                                     |
|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$          |                                        |                                                                         |
| <b>a</b> ←Parse(XOF(seed))                              |                                        |                                                                         |
| $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$ |                                        | $\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$ |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$            | $\xrightarrow{(\mathbf{b},seed)}$      | $\mathbf{a} \leftarrow Parse(XOF(seed))$                                |
|                                                         |                                        | $\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$          |
|                                                         |                                        | $\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$         |
|                                                         |                                        | $k \stackrel{\$}{\leftarrow} \{0,1\}^n$                                 |
|                                                         |                                        | $\mathbf{k}\leftarrow Encode(k)$                                        |
| v'←us                                                   | $\xleftarrow{(\mathbf{u},\mathbf{c})}$ | $\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$                       |
| $\mathbf{k'}\leftarrow\mathbf{c}-\mathbf{v'}$           |                                        | $\mu \leftarrow Extract(\mathbf{k})$                                    |
| $\mu \leftarrow Extract(\mathbf{k}')$                   |                                        |                                                                         |

#### How to build a KEM, part 2

| Alice                                                   |                                        | Bob                                                                     |
|---------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$          |                                        |                                                                         |
| <b>a</b> ←Parse(XOF(seed))                              |                                        |                                                                         |
| $\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$ |                                        | $\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$ |
| $\mathbf{b}\leftarrow\mathbf{as}+\mathbf{e}$            | $\xrightarrow{(\mathbf{b},seed)}$      | $\mathbf{a} \leftarrow Parse(XOF(seed))$                                |
|                                                         |                                        | $\mathbf{u} \leftarrow \mathbf{a}\mathbf{s}' + \mathbf{e}'$             |
|                                                         |                                        | $\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$         |
|                                                         |                                        | $k \stackrel{\$}{\leftarrow} \{0,1\}^n$                                 |
|                                                         |                                        | $\mathbf{k}\leftarrow Encode(k)$                                        |
| $v'\leftarrow us$                                       | $\xleftarrow{(\mathbf{u},\mathbf{c})}$ | $\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$                       |
| $\mathbf{k'}\leftarrow\mathbf{c}-\mathbf{v'}$           |                                        | $\mu \leftarrow Extract(\mathbf{k})$                                    |
| $\mu \leftarrow Extract(\mathbf{k}')$                   |                                        |                                                                         |

This is LPR encryption, written as KEM (except for generation of a)

#### **Encode and Extract**

- Encoding in LPR encryption: map *n* bits to *n* coefficients:
  - A zero bit maps to 0
  - A one bit maps to q/2
- · Idea: Noise affects low bits of coefficients, put data into high bits

#### **Encode and Extract**

- Encoding in LPR encryption: map *n* bits to *n* coefficients:
  - A zero bit maps to 0
  - A one bit maps to q/2
- Idea: Noise affects low bits of coefficients, put data into high bits
- Decode: map coefficient into [-q/2, q/2]
  - Closer to 0 (i.e., in [-q/4, q/4]): set bit to zero
  - Closer to  $\pm q/2$ : set bit to one

#### From passive to CCA security

- The base scheme does not have active security
- Attacker can choose arbitrary noise, learns  ${f s}$  from failures

#### From passive to CCA security

- The base scheme does not have active security
- · Attacker can choose arbitrary noise, learns s from failures
- · Fujisaki-Okamoto transform (sketched):

```
Alice (Server)
                                                                                          Bob (Client)
Gen():
pk, sk←KeyGen()
                                                                                          Enc(seed, \mathbf{b}):
                                                                                         X \leftarrow \{0, \dots, 255\}^{32}
seed, b←pk
                                                                                         k, coins \leftarrow SHA3-512(x)
                                                                            \overset{\mathbf{u}, \vee}{\leftarrow}
                                                                                         \mathbf{u}, v \leftarrow \text{Encrypt}((\text{seed}, \mathbf{b}), x, \text{coins})
Dec(s, (u, v)):
\overline{x'} \leftarrow \text{Decrypt}(\mathbf{s}, (\mathbf{u}, v))
k', coins' \leftarrow SHA3-512(x')
\mathbf{u}', \mathbf{v}' \leftarrow \mathsf{Encrypt}((\mathsf{seed}, \mathbf{b}), \mathbf{x}', \mathsf{coins}')
verify if (\mathbf{u}', \mathbf{v}') = (\mathbf{u}, \mathbf{v})
```

- · Historically first: NTRU
- Use parameters q and p=3

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f},\mathbf{f}_p)$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$ ,  $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $\mathbf{e} = \mathbf{r} \cdot \mathbf{h} + \mathbf{m}$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $e = r \cdot h + m$
- · Decrypt:
  - Compute  $\mathbf{v} = \mathbf{f} \cdot \mathbf{e}$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $e = r \cdot h + m$
- · Decrypt:
  - Compute  $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m})$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $e = r \cdot h + m$
- · Decrypt:
  - Compute  $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m})$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$ ,  $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- · Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $e = r \cdot h + m$
- · Decrypt:
  - Compute  $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$ ,  $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- · Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $e = r \cdot h + m$
- · Decrypt:
  - Compute  $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$
  - Compute  $\mathbf{m} = \mathbf{v} \cdot \mathbf{f}_p \mod p$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
  - Find  $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$  and  $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
  - public key:  $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$ , secret key:  $(\mathbf{f}, \mathbf{f}_p)$
- · Encrypt:
  - Map message m to  $\mathbf{m} \in \mathcal{R}_q$  with coefficients in  $\{-1,0,1\}$
  - Sample random small-coefficient polynomial  $\mathbf{r} \in \mathcal{R}_q$
  - Compute ciphertext  $\mathbf{e} = \mathbf{r} \cdot \mathbf{h} + \mathbf{m}$
- · Decrypt:
  - Compute  $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$
  - Compute  $\mathbf{m} = \mathbf{v} \cdot \mathbf{f}_p \mod p$
- Advantages/Disadvantages compared to LPR:
  - Asymptotically weaker than Ring-LWE approach
  - Slower keygen, but faster encryption/decryption

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot q$  typically either prime or a power of two
  - $\it f$  typically of degree between 512 and 1024

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot$  q typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)
- Fourth option: q prime,  $f=(X^n+1)=\Phi_{2n}, n=2^m$  (NewHope, Kyber, LAC)

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)
- Fourth option: q prime,  $f = (X^n + 1) = \Phi_{2n}$ ,  $n = 2^m$  (NewHope, Kyber, LAC)
- Fifth option: q prime,  $f = (X^n X 1)$  irreducible, n prime (NTRU Prime)

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)
- Fourth option: q prime,  $f = (X^n + 1) = \Phi_{2n}$ ,  $n = 2^m$  (NewHope, Kyber, LAC)
- Fifth option: q prime,  $f = (X^n X 1)$  irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)
- Fourth option: q prime,  $f=(X^n+1)=\Phi_{2n},$   $n=2^m$  (NewHope, Kyber, LAC)
- Fifth option: q prime,  $f = (X^n X 1)$  irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $\cdot \, q$  typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)
- Fourth option: q prime,  $f=(X^n+1)=\Phi_{2n}, n=2^m$  (NewHope, Kyber, LAC)
- Fifth option: q prime,  $f = (X^n X 1)$  irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their  $\mathcal{R}_q$

- Structured lattice-based schemes use ring  $\mathcal{R}_q = \mathbb{Z}_q[X]/f$ 
  - $oldsymbol{\cdot}$  q typically either prime or a power of two
  - f typically of degree between 512 and 1024
- First option:  $q = 2^k$ ,  $f = (X^n 1)$ , n prime (NTRU)
- Second option:  $q = 2^k$ ,  $f = (X^n + 1)$ ,  $n = 2^m$  (Saber)
- Third option:  $q = 2^k$ ,  $f = \Phi_{n+1}$ , n+1 prime (Round5)
- Fourth option: q prime,  $f = (X^n + 1) = \Phi_{2n}$ ,  $n = 2^m$  (NewHope, Kyber, LAC)
- Fifth option: q prime,  $f = (X^n X 1)$  irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their  $\mathcal{R}_q$
- NewHope and Kyber have fastest (NTT-based) arithmetic

- "Traditionally", work directly with elements of  $\mathcal{R}_q$  ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
  - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
  - Work with small-dimension matrices and vectors over  $\mathcal{R}_{\text{q}}$

- "Traditionally", work directly with elements of  $\mathcal{R}_q$  ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
  - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
  - Work with small-dimension matrices and vectors over  $\mathcal{R}_q$
- MLWE encrypts shorter messages than Ring-LWE

- "Traditionally", work directly with elements of  $\mathcal{R}_q$  ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
  - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
  - Work with small-dimension matrices and vectors over  $\mathcal{R}_q$
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE

- "Traditionally", work directly with elements of  $\mathcal{R}_q$  ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
  - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
  - Work with small-dimension matrices and vectors over  $\mathcal{R}_q$
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE
- MLWE can very easily scale security (change dimension of matrix):
  - Optimize arithmetic in  $\mathcal{R}_a$  once
  - Use same optimized  $\mathcal{R}_q$  arithmetic for all security levels

- Need to sample noise (for LWE schemes) and small secrets
- · More noise means
  - more security from the underlying hard problem
  - higher failure probability of decryption

- Need to sample noise (for LWE schemes) and small secrets
- · More noise means
  - · more security from the underlying hard problem
  - higher failure probability of decryption
- · Three main choices to make:
  - · Narrow or wide noise
    - Narrow noise (e.g., in  $\{-1,0,1\}$ ) not conservative
    - Wide noise requires larger q (or more failures)
    - ullet Larger q means larger public key and ciphertext

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
  - more security from the underlying hard problem
  - higher failure probability of decryption
- · Three main choices to make:
  - · Narrow or wide noise
    - Narrow noise (e.g., in  $\{-1,0,1\}$ ) not conservative
    - Wide noise requires larger q (or more failures)
    - ullet Larger q means larger public key and ciphertext
  - · LWE or LWR
    - · LWE considered more conservative (independent noise)
    - LWR easier to implement (no noise sampling)
    - LWR allows more compact public key and ciphertext

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
  - more security from the underlying hard problem
  - higher failure probability of decryption
- Three main choices to make:
  - Narrow or wide noise
    - Narrow noise (e.g., in  $\{-1,0,1\}$ ) not conservative
    - Wide noise requires larger q (or more failures)
    - ullet Larger q means larger public key and ciphertext
  - IWF or IWR
    - · LWE considered more conservative (independent noise)
    - LWR easier to implement (no noise sampling)
    - LWR allows more compact public key and ciphertext
  - · Fixed-weight noise or not?
    - Fixed-weight noise needs random permutation (sorting)
    - · Naive implementations leak secrets through timing
    - Advantage of fixed-weight: easier to bound (or eliminate) decryption failures

# Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- · Advantage:
  - · Easier CCA security transform and analysis
- · Disadvantage:
  - Need to limit noise (or have larger q)

#### Design space 4: allow failures?

- · Can avoid decryption failures entirely (NTRU, NTRU Prime)
- · Advantage:
  - · Easier CCA security transform and analysis
- · Disadvantage:
  - Need to limit noise (or have larger q)
- For passive-security-only can go the other way:
  - Allow failure probability of, e.g.,  $2^{-30}$
  - Reduce size of public key and ciphertext

#### Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- · Advantage:
  - · Easier CCA security transform and analysis
- · Disadvantage:
  - Need to limit noise (or have larger q)
- · For passive-security-only can go the other way:
  - Allow failure probability of, e.g.,  $2^{-30}$
  - · Reduce size of public key and ciphertext
- · Active (CCA) security needs negligible failure probability

- "Traditional" approach to choosing  ${\bf a}$  in LWE/LWR schemes: "Let  ${\bf a}$  be a uniformly random. . . "

- "Traditional" approach to choosing  ${\bf a}$  in LWE/LWR schemes: "Let  ${\bf a}$  be a uniformly random..."
- Before NewHope: real-world approach: generate fixed  ${\bf a}$  once

- "Traditional" approach to choosing a in LWE/LWR schemes:

  "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed a once
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)

- "Traditional" approach to choosing a in LWE/LWR schemes:

  "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed a once
- What if a is backdoored?
- · Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- · Even without backdoor:
  - · Perform massive precomputation based on a
  - Use precomputation to break all key exchanges
  - · Infeasible today, but who knows...
  - · Attack in the spirit of Logjam

- "Traditional" approach to choosing a in LWE/LWR schemes:

  "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed a once
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- · Even without backdoor:
  - · Perform massive precomputation based on a
  - Use precomputation to break all key exchanges
  - Infeasible today, but who knows...
  - · Attack in the spirit of Logjam
- Solution in NewHope: Choose a fresh a every time
- Server can cache a for some time (e.g., 1h)
- · All NIST PQC candidates now use this approach

### Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of  $> 256 \ \mathrm{bits}$
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability

### Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of  $> 256 \ \mathrm{bits}$
- Need to encrypt only 256-bit key
- · Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- NewHope: very simple threshold decoding

## Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of  $> 256 \ \mathrm{bits}$
- Need to encrypt only 256-bit key
- · Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- · NewHope: very simple threshold decoding
- LAC, Round5: more advanced ECC
  - Correct more errors, obtain smaller public key and ciphertext
  - More complex to implement, in particular without leaking through timing

## Design space 7: CCA security?

- Ephemeral key exchange does not need CCA security
- · Can offer passively secure version
- Protocols will combine this with signatures for authentication

## Design space 7: CCA security?

- · Ephemeral key exchange does not need CCA security
- · Can offer passively secure version
- · Protocols will combine this with signatures for authentication
- · Advantages:
  - Higher failure probability → more compact
  - · Simpler to implement, no CCA transform
  - · More flexibility for secret/noise generation

## Design space 7: CCA security?

- · Ephemeral key exchange does not need CCA security
- · Can offer passively secure version
- Protocols will combine this with signatures for authentication
- Advantages:
  - Higher failure probability → more compact
  - Simpler to implement, no CCA transform
  - · More flexibility for secret/noise generation
- Disadvantages:
  - Less robust (will somebody reuse keys?)
  - More options (CCA vs. CPA): easier to make mistakes

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- · Tweaks to FO transform:
  - Hash public-key into coins: multitarget protection (for non-zero failure probability)

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
  - Hash public-key into coins: multitarget protection (for non-zero failure probability)
  - Hash public-key into shared key: KEM becomes contributory

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
  - Hash public-key into coins: multitarget protection (for non-zero failure probability)
  - Hash public-key into shared key: KEM becomes contributory
  - · Hash ciphertext into shared key: more robust (?)

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
  - Hash public-key into coins: multitarget protection (for non-zero failure probability)
  - Hash public-key into shared key: KEM becomes contributory
  - · Hash ciphertext into shared key: more robust (?)
- · How to handle rejection?
  - Return special symbol (return -1): explicit
  - Return H(s, C) for secret s: implicit

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
  - Hash public-key into coins: multitarget protection (for non-zero failure probability)
  - Hash public-key into shared key: KEM becomes contributory
  - · Hash ciphertext into shared key: more robust (?)
- · How to handle rejection?
  - Return special symbol (return -1): explicit
  - Return H(s, C) for secret s: implicit
- As of round 2, no proposal uses explicit rejection
  - · Would break some security reduction
  - More robust in practice (return value alwas 0)

#### Summary

- Lattice-based KEMs offer best overall performance in the PQ world
- · Many tradeoffs between
  - · Security (including passive vs. active)
  - · Failure rate
  - Size
  - Speed
- · More information about NIST PQC:
  - https://csrc.nist.gov/projects/post-quantum-cryptography
  - https://pqc-wiki.fau.edu/