How to use the negation map in the Pollard rho method

Joint work with Daniel J. Bernstein and Tanja Lange
March 09, 2012
EiPSI Crypto Working Group, Utrecht

A few words about Taiwan and Academia Sinica

－Taiwan（台灣）is an island south of China
－About $36,200 \mathrm{~km}^{2}$ large
－Territory of the Republic of China（not to be confused with the People＇s Republic of China）
－Capital is Taipei（台北）
－Marine tropical climate

A few words about Taiwan and Academia Sinica

－Taiwan（台灣）is an island south of China
－About $36,200 \mathrm{~km}^{2}$ large
－Territory of the Republic of China（not to be confused with the People＇s Republic of China）
－Capital is Taipei（台北）
－Marine tropical climate
－ 99 summits over 3000 meters（highest peak： 3952 m）
－Wildlife includes black bears，salmon，monkeys．．．

A few words about Taiwan and Academia Sinica

－Taiwan（台灣）is an island south of China
－About $36,200 \mathrm{~km}^{2}$ large
－Territory of the Republic of China（not to be confused with the People＇s Republic of China）
－Capital is Taipei（台北）
－Marine tropical climate
－ 99 summits over 3000 meters（highest peak： 3952 m）
－Wildlife includes black bears，salmon，monkeys．．．
－Academia Sinica is a research facility funded by ROC
－About 30 institutes
－More than 800 principal investigators，about 900 postdocs and more than 2200 students

A picture from Taiwan－Sun－Moon Lake（日月潭）

For more pictures check out http：／／cryptojedi．org／gallery／
How to use the negation map in the Pollard rho method

The discrete-logarithm problem

- Let $G=\langle P\rangle$ be a finite cyclic group with generator P
- In the following: G is written additively

The discrete-logarithm problem

- Let $G=\langle P\rangle$ be a finite cyclic group with generator P
- In the following: G is written additively
- Given $Q \in G$, the discrete-logarithm problem (DLP) is to find $k \in \mathbb{Z}$, such that

$$
k \cdot P=Q
$$

The discrete-logarithm problem

- Let $G=\langle P\rangle$ be a finite cyclic group with generator P
- In the following: G is written additively
- Given $Q \in G$, the discrete-logarithm problem (DLP) is to find $k \in \mathbb{Z}$, such that

$$
k \cdot P=Q
$$

- For certain groups G this problem is the basis of many asymmetric cryptographic protocols
- Most importantly: $\mathbb{Z} / n \mathbb{Z}$ and elliptic-curve groups

Pollard's rho algorithm

- Does not use any additional structure (aside from the group structure)
- Best known algorithm to solve the DLP in generic groups of prime order

Pollard's rho algorithm

- Does not use any additional structure (aside from the group structure)
- Best known algorithm to solve the DLP in generic groups of prime order
- Uses a pseudorandom iteration function $f: G \rightarrow G$
- Start with $W_{0}=n_{0} P+m_{0} Q$
- Iteratively apply f to obtain $W_{i+1}=f\left(W_{i}\right)$

Pollard's rho algorithm

- Does not use any additional structure (aside from the group structure)
- Best known algorithm to solve the DLP in generic groups of prime order
- Uses a pseudorandom iteration function $f: G \rightarrow G$
- Start with $W_{0}=n_{0} P+m_{0} Q$
- Iteratively apply f to obtain $W_{i+1}=f\left(W_{i}\right)$
- Update n_{i+1}, m_{i+1} from n_{i}, m_{i} (compute modulo $|G|$)
- f needs to preserve knowledge about the linear combination in P and Q

Pollard's rho algorithm

- Does not use any additional structure (aside from the group structure)
- Best known algorithm to solve the DLP in generic groups of prime order
- Uses a pseudorandom iteration function $f: G \rightarrow G$
- Start with $W_{0}=n_{0} P+m_{0} Q$
- Iteratively apply f to obtain $W_{i+1}=f\left(W_{i}\right)$
- Update n_{i+1}, m_{i+1} from n_{i}, m_{i} (compute modulo $|G|$)
- f needs to preserve knowledge about the linear combination in P and Q
- If $W_{i}=W_{j}$ for $i \neq j$, then

$$
\begin{aligned}
& n_{i} P+m_{i} Q=n_{j} P+m_{j} Q \Rightarrow \\
& k=\left(n_{j}-n_{i}\right) /\left(m_{i}-m_{j}\right) \bmod |G|
\end{aligned}
$$

Pollard's rho algorithm II

How to use the negation map in the Pollard rho method

Pollard's rho algorithm II

- Easy way to define f :

$$
f(W)=n(W) P+m(W) Q,
$$

with pseudorandom functions $n, m: G \rightarrow \mathbb{Z} /|G| \mathbb{Z}$

Pollard's rho algorithm II

- Easy way to define f :

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions $n, m: G \rightarrow \mathbb{Z} /|G| \mathbb{Z}$

- Expected number of iterations until entering a cycle: $\sqrt{\frac{\pi|G|}{2}}$

Pollard's rho algorithm II

- Easy way to define f :

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions $n, m: G \rightarrow \mathbb{Z} /|G| \mathbb{Z}$

- Expected number of iterations until entering a cycle: $\sqrt{\frac{\pi|G|}{2}}$
- Detect cycles without storing all W_{i} : Floyd, Brent

Parallel Pollard

- Large instances of the DLP call for parallel computing
- Trivial parallelization of Pollard's rho algorithm on t computers gives speedup of \sqrt{t}

Parallel Pollard

- Large instances of the DLP call for parallel computing
- Trivial parallelization of Pollard's rho algorithm on t computers gives speedup of \sqrt{t}
- Much better: Use parallel approach by van Oorschot and Wiener:
- Client-Server approach, computation done on many clients
- Uses the notion of distinguished points (DPs), easy-to-determine property, such as "last d bits of the element's encoding are 0"

Parallel Pollard

- Large instances of the DLP call for parallel computing
- Trivial parallelization of Pollard's rho algorithm on t computers gives speedup of \sqrt{t}
- Much better: Use parallel approach by van Oorschot and Wiener:
- Client-Server approach, computation done on many clients
- Uses the notion of distinguished points (DPs), easy-to-determine property, such as "last d bits of the element's encoding are 0"
- Clients start from random points and iterate until they reach a DP
- Send starting point and DP to the server, restart from new random point

Parallel Pollard

- Large instances of the DLP call for parallel computing
- Trivial parallelization of Pollard's rho algorithm on t computers gives speedup of \sqrt{t}
- Much better: Use parallel approach by van Oorschot and Wiener:
- Client-Server approach, computation done on many clients
- Uses the notion of distinguished points (DPs), easy-to-determine property, such as "last d bits of the element's encoding are 0"
- Clients start from random points and iterate until they reach a DP
- Send starting point and DP to the server, restart from new random point
- Server searches in incoming points for collisions (same DP, different starting point)

Some notes on parallel Pollard

- Walks do not enter a cycle, shape is more like a λ

Some notes on parallel Pollard

- Walks do not enter a cycle, shape is more like a λ
- Choice of DP-property influences length of separate walks
- Fewer DPs: longer walks (on average), less storage, less communication
- More DPs: Less overhead after a collision

Some notes on parallel Pollard

- Walks do not enter a cycle, shape is more like a λ
- Choice of DP-property influences length of separate walks
- Fewer DPs: longer walks (on average), less storage, less communication
- More DPs: Less overhead after a collision
- Clients do not have to update n_{i} and m_{i}, simply do successful walks again to find coefficients

Additive walks

- Main cost of (parallalized) Pollard's rho algorithm: calls to the iteration function
- With $f(W)=n(W) P+m(W) Q$: two hash-function calls, one double-scalar multiplication

Additive walks

- Main cost of (parallalized) Pollard's rho algorithm: calls to the iteration function
- With $f(W)=n(W) P+m(W) Q$: two hash-function calls, one double-scalar multiplication
- Much more efficient: Additive walks
- Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
- Use hash function $h: G \rightarrow\{0, r-1\}$
- Define $f(W)=W+R_{h(W)}$

Additive walks

- Main cost of (parallalized) Pollard's rho algorithm: calls to the iteration function
- With $f(W)=n(W) P+m(W) Q$: two hash-function calls, one double-scalar multiplication
- Much more efficient: Additive walks
- Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
- Use hash function $h: G \rightarrow\{0, r-1\}$
- Define $f(W)=W+R_{h(W)}$
- Now: only one hash-function call, one group addition

Additive walks

- Main cost of (parallalized) Pollard's rho algorithm: calls to the iteration function
- With $f(W)=n(W) P+m(W) Q$: two hash-function calls, one double-scalar multiplication
- Much more efficient: Additive walks
- Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
- Use hash function $h: G \rightarrow\{0, r-1\}$
- Define $f(W)=W+R_{h(W)}$
- Now: only one hash-function call, one group addition
- Additive walks are noticably nonrandom, they require more iterations

Additive walks

- Main cost of (parallalized) Pollard's rho algorithm: calls to the iteration function
- With $f(W)=n(W) P+m(W) Q$: two hash-function calls, one double-scalar multiplication
- Much more efficient: Additive walks
- Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
- Use hash function $h: G \rightarrow\{0, r-1\}$
- Define $f(W)=W+R_{h(W)}$
- Now: only one hash-function call, one group addition
- Additive walks are noticably nonrandom, they require more iterations
- Teske showed that large r provides close-to-random behaviour (e.g. $r=20$)

Additive walks

- Main cost of (parallalized) Pollard's rho algorithm: calls to the iteration function
- With $f(W)=n(W) P+m(W) Q$: two hash-function calls, one double-scalar multiplication
- Much more efficient: Additive walks
- Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
- Use hash function $h: G \rightarrow\{0, r-1\}$
- Define $f(W)=W+R_{h(W)}$
- Now: only one hash-function call, one group addition
- Additive walks are noticably nonrandom, they require more iterations
- Teske showed that large r provides close-to-random behaviour (e.g. $r=20$)
- Summary: additive walks provide much better performance in practice

Application to elliptic-curve groups

- So far, everything worked in the generic-group model
- Now consider groups of points on elliptic curves
- Group elements are points (x, y)
- Efficient operation aside from group addition: negation
- For Weierstrass curves: $(x, y) \mapsto(x,-y)$

Application to elliptic-curve groups

- So far, everything worked in the generic-group model
- Now consider groups of points on elliptic curves
- Group elements are points (x, y)
- Efficient operation aside from group addition: negation
- For Weierstrass curves: $(x, y) \mapsto(x,-y)$
- Some curves have more efficiently computable endomorphisms, examples are Koblitz curves and BN curves

Application to elliptic-curve groups

- So far, everything worked in the generic-group model
- Now consider groups of points on elliptic curves
- Group elements are points (x, y)
- Efficient operation aside from group addition: negation
- For Weierstrass curves: $(x, y) \mapsto(x,-y)$
- Some curves have more efficiently computable endomorphisms, examples are Koblitz curves and BN curves
- Idea: Define iterations on equivalence classes modulo negation
- For example: always take the lexicographic minimum of $(x,-y)$ and (x, y)

Application to elliptic-curve groups

- So far, everything worked in the generic-group model
- Now consider groups of points on elliptic curves
- Group elements are points (x, y)
- Efficient operation aside from group addition: negation
- For Weierstrass curves: $(x, y) \mapsto(x,-y)$
- Some curves have more efficiently computable endomorphisms, examples are Koblitz curves and BN curves
- Idea: Define iterations on equivalence classes modulo negation
- For example: always take the lexicographic minimum of $(x,-y)$ and (x, y)
- This halves the size of the search space, expected number of iterations drops by a factor of $\sqrt{2}$

Putting it together

- Precompute R_{0}, \ldots, R_{r-1}
- Clients start at some random W_{0}
- Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
- $|W|$ chooses a well-defined representative in $\{-W, W\}$

Putting it together

- Precompute R_{0}, \ldots, R_{r-1}
- Clients start at some random W_{0}
- Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
- $|W|$ chooses a well-defined representative in $\{-W, W\}$
- Problem: fruitless cycles

If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$

Putting it together

- Precompute R_{0}, \ldots, R_{r-1}
- Clients start at some random W_{0}
- Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
- $|W|$ chooses a well-defined representative in $\{-W, W\}$
- Problem: fruitless cycles

If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$, and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence:

Putting it together

- Precompute R_{0}, \ldots, R_{r-1}
- Clients start at some random W_{0}
- Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
- $|W|$ chooses a well-defined representative in $\{-W, W\}$
- Problem: fruitless cycles

If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$, and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence:

$$
\begin{aligned}
& W_{i+1}=f\left(W_{i}\right)=-\left(W_{i}+R_{t}\right) \\
& W_{i+2}=f\left(W_{i+1}\right)=\left|-\left(W_{i}+R_{t}\right)+R_{t}\right|=\left|-W_{i}\right|=W_{i}
\end{aligned}
$$

Putting it together

- Precompute R_{0}, \ldots, R_{r-1}
- Clients start at some random W_{0}
- Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
- $|W|$ chooses a well-defined representative in $\{-W, W\}$
- Problem: fruitless cycles

If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$, and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence:

$$
\begin{aligned}
& W_{i+1}=f\left(W_{i}\right)=-\left(W_{i}+R_{t}\right) \\
& W_{i+2}=f\left(W_{i+1}\right)=\left|-\left(W_{i}+R_{t}\right)+R_{t}\right|=\left|-W_{i}\right|=W_{i}
\end{aligned}
$$

- Probability for such fruitless cycles: $1 / 2 r$

Putting it together

- Precompute R_{0}, \ldots, R_{r-1}
- Clients start at some random W_{0}
- Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
- $|W|$ chooses a well-defined representative in $\{-W, W\}$
- Problem: fruitless cycles

If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$, and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence:

$$
\begin{aligned}
& W_{i+1}=f\left(W_{i}\right)=-\left(W_{i}+R_{t}\right) \\
& W_{i+2}=f\left(W_{i+1}\right)=\left|-\left(W_{i}+R_{t}\right)+R_{t}\right|=\left|-W_{i}\right|=W_{i}
\end{aligned}
$$

- Probability for such fruitless cycles: $1 / 2 r$
- Similar observations hold for longer fruitless cycles (length 4,6,...)
- Probability of a cycle of length $2 c$ is $\approx 1 / r^{c}$

Dealing with fruitless cycles

- Avoid frequent cycles by choosing large r
- Problem: Lookups become more expensive (cache issues)

Dealing with fruitless cycles

- Avoid frequent cycles by choosing large r
- Problem: Lookups become more expensive (cache issues)
- Avoid larger cycles by frequent distinguished points
- Early-abort walks after a certain number of iterations
- Problem: Large communication cost and storage

Dealing with fruitless cycles

- Avoid frequent cycles by choosing large r
- Problem: Lookups become more expensive (cache issues)
- Avoid larger cycles by frequent distinguished points
- Early-abort walks after a certain number of iterations
- Problem: Large communication cost and storage

Cycle detection

- For 2-cycles: Compare $h\left(W_{i}\right)$ and $h\left(W_{i+1}\right)$
- Compare points

Dealing with fruitless cycles

- Avoid frequent cycles by choosing large r
- Problem: Lookups become more expensive (cache issues)
- Avoid larger cycles by frequent distinguished points
- Early-abort walks after a certain number of iterations
- Problem: Large communication cost and storage

Cycle detection

- For 2-cycles: Compare $h\left(W_{i}\right)$ and $h\left(W_{i+1}\right)$
- Compare points

Escape strategies

- Retroactively adjust $h\left(W_{i}\right)$
- Determine unique point in cycle, add "special point" to escape
- Determine unique point in cycle, double this point
- Important: Escape point must be independent of the entrance point

How expensive are fruitless cycles

- In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles

How expensive are fruitless cycles

- In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
- Iteration function did not use the negation map:
"We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment"

How expensive are fruitless cycles

- In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
- Iteration function did not use the negation map:
"We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment"
- Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many ways of dealing with fruitless cycles best speedup is 1.29 , but

How expensive are fruitless cycles

- In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
- Iteration function did not use the negation map:
"We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment"
- Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many ways of dealing with fruitless cycles best speedup is 1.29 , but "If the Pollard rho method is parallelized in SIMD fashion, it is a challenge to achieve any speedup at all. ... Dealing with cycles entails administrative overhead and branching, which cause a non-negligible slowdown when running multiple walks in SIMD-parallel fashion. ... [This] is a major obstacle to the negation map in SIMD environments."

What's the problem with SIMD?

- SIMD stands for single instruction stream, multiple data streams
- Same sequence of instructions carried out on different data
- Most commonly implemented through vector registers
- Branching means (in the worst case): Sequentially execute both branches

What's the problem with SIMD?

- SIMD stands for single instruction stream, multiple data streams
- Same sequence of instructions carried out on different data
- Most commonly implemented through vector registers
- Branching means (in the worst case): Sequentially execute both branches
- Computing power of the Cell processor in the PlayStation 3 is in the Synergistic Processor Elements (SPEs)
- Instruction set of the SPEs is purely SIMD

What's the problem with SIMD?

- SIMD stands for single instruction stream, multiple data streams
- Same sequence of instructions carried out on different data
- Most commonly implemented through vector registers
- Branching means (in the worst case): Sequentially execute both branches
- Computing power of the Cell processor in the PlayStation 3 is in the Synergistic Processor Elements (SPEs)
- Instruction set of the SPEs is purely SIMD
- SIMD becomes more and more important on all modern microprocessors

What's the problem with SIMD?

- SIMD stands for single instruction stream, multiple data streams
- Same sequence of instructions carried out on different data
- Most commonly implemented through vector registers
- Branching means (in the worst case): Sequentially execute both branches
- Computing power of the Cell processor in the PlayStation 3 is in the Synergistic Processor Elements (SPEs)
- Instruction set of the SPEs is purely SIMD
- SIMD becomes more and more important on all modern microprocessors
- Question: Can we really not get the factor- $\sqrt{2}$ speedup with SIMD?

Our approach

- Solve ECDLP on elliptic curve over \mathbb{F}_{p}
- Begin with simplest type of negating additive walk
- Starting points W_{0} are known multiples of Q
- Precomputed table contains r known multiples of P

Our approach

- Solve ECDLP on elliptic curve over \mathbb{F}_{p}
- Begin with simplest type of negating additive walk
- Starting points W_{0} are known multiples of Q
- Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)

Our approach

- Solve ECDLP on elliptic curve over \mathbb{F}_{p}
- Begin with simplest type of negating additive walk
- Starting points W_{0} are known multiples of Q
- Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)
- $|(x, y)|$ is (x, y) if $y \in\{0,2,4, \ldots, p-1\},(x,-y)$ otherwise

Our approach

- Solve ECDLP on elliptic curve over \mathbb{F}_{p}
- Begin with simplest type of negating additive walk
- Starting points W_{0} are known multiples of Q
- Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)
- $|(x, y)|$ is (x, y) if $y \in\{0,2,4, \ldots, p-1\},(x,-y)$ otherwise
- Occasionally check for 2-cycles:
- If $W_{i-1}=W_{i-3}$, set $W_{i}=\left|2 \cdot \min \left\{W_{i-1}, W_{i-2}\right\}\right|$
- Otherwise set $W_{i}=W_{i-1}$

Our approach

- Solve ECDLP on elliptic curve over \mathbb{F}_{p}
- Begin with simplest type of negating additive walk
- Starting points W_{0} are known multiples of Q
- Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)
- $|(x, y)|$ is (x, y) if $y \in\{0,2,4, \ldots, p-1\},(x,-y)$ otherwise
- Occasionally check for 2-cycles:
- If $W_{i-1}=W_{i-3}$, set $W_{i}=\left|2 \cdot \min \left\{W_{i-1}, W_{i-2}\right\}\right|$
- Otherwise set $W_{i}=W_{i-1}$
- With even lower frequency check for 4-cycles, 6-cycles etc.
- Implementation actually checks for 12 -cycles (with very low frequency)

Eliminating branches

- Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$, with $\epsilon=y \bmod 2$

Eliminating branches

- Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$, with $\epsilon=y \bmod 2$
- Amortize min computations across relevant iterations, update min while computing iterations

Eliminating branches

- Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$, with $\epsilon=y \bmod 2$
- Amortize min computations across relevant iterations, update min while computing iterations
- Always compute doublings, even if they are not used
- Select W_{i} from W_{i-1} and $2 W_{\text {min }}$ without branch
- Selection bit is output of branchfree comparison between W_{i-1} and W_{i-1-c} when detecting c-cycles

Eliminating branches

- Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$, with $\epsilon=y \bmod 2$
- Amortize min computations across relevant iterations, update min while computing iterations
- Always compute doublings, even if they are not used
- Select W_{i} from W_{i-1} and $2 W_{\text {min }}$ without branch
- Selection bit is output of branchfree comparison between W_{i-1} and W_{i-1-c} when detecting c-cycles
- All selections, subtractions, additions and comparisons are linear-time
- Asymptotalically negligible compared to finite-field multiplications in EC arithmetic

Optimization and analysis

- Checking for fruitless cycles every w iterations
- Probability for fruitless cycle: $w / 2 r$
- Average wasted iterations if fruitless cycle occured: $w / 2$

Optimization and analysis

- Checking for fruitless cycles every w iterations
- Probability for fruitless cycle: $w / 2 r$
- Average wasted iterations if fruitless cycle occured: $w / 2$
- Checking without finding a fruitless cycle wastes one iteration

Optimization and analysis

- Checking for fruitless cycles every w iterations
- Probability for fruitless cycle: $w / 2 r$
- Average wasted iterations if fruitless cycle occured: $w / 2$
- Checking without finding a fruitless cycle wastes one iteration
- Overall loss: $1+w^{2} / 4 r$ per w iterations

Optimization and analysis

- Checking for fruitless cycles every w iterations
- Probability for fruitless cycle: $w / 2 r$
- Average wasted iterations if fruitless cycle occured: $w / 2$
- Checking without finding a fruitless cycle wastes one iteration
- Overall loss: $1+w^{2} / 4 r$ per w iterations
- Minimize $1 / w+w / 4 r$: Take $w \approx 2 \sqrt{r}$

Optimization and analysis

- Checking for fruitless cycles every w iterations
- Probability for fruitless cycle: $w / 2 r$
- Average wasted iterations if fruitless cycle occured: $w / 2$
- Checking without finding a fruitless cycle wastes one iteration
- Overall loss: $1+w^{2} / 4 r$ per w iterations
- Minimize $1 / w+w / 4 r$: Take $w \approx 2 \sqrt{r}$
- Slowdown from fruitless cycles by a factor of $1+\Theta(1 / \sqrt{r})$

Optimization and analysis

- Checking for fruitless cycles every w iterations
- Probability for fruitless cycle: $w / 2 r$
- Average wasted iterations if fruitless cycle occured: $w / 2$
- Checking without finding a fruitless cycle wastes one iteration
- Overall loss: $1+w^{2} / 4 r$ per w iterations
- Minimize $1 / w+w / 4 r$: Take $w \approx 2 \sqrt{r}$
- Slowdown from fruitless cycles by a factor of $1+\Theta(1 / \sqrt{r})$
- Negligible if $r \rightarrow \infty$ as $p \rightarrow \infty$

Solving the 112-bit ECDLP faster

- Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- Our software takes expected 35.6 PS3 years for the same DLP

Solving the 112-bit ECDLP faster

- Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- Our software takes expected 35.6 PS3 years for the same DLP
- (very-close-to) factor- $\sqrt{2}$ speedup through negation map

Solving the 112-bit ECDLP faster

- Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- Our software takes expected 35.6 PS3 years for the same DLP
- (very-close-to) factor- $\sqrt{2}$ speedup through negation map
- Faster iterations
- Faster arithmetic in $\mathbb{Z} /\left(2^{128}-3\right) \mathbb{Z}$ (prime field has order $\left.\left(2^{128}-3\right) / 76439\right)$
- Non-standard radix $2^{12.8}$ to represent elements of $\left(2^{128}-3\right) / 76439$
- Careful design of iteration function, arithmetic, and handling of fruitless cycles

Solving the 112-bit ECDLP faster

- Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- Our software takes expected 35.6 PS3 years for the same DLP
- (very-close-to) factor- $\sqrt{2}$ speedup through negation map
- Faster iterations
- Faster arithmetic in $\mathbb{Z} /\left(2^{128}-3\right) \mathbb{Z}$ (prime field has order $\left.\left(2^{128}-3\right) / 76439\right)$
- Non-standard radix $2^{12.8}$ to represent elements of $\left(2^{128}-3\right) / 76439$
- Careful design of iteration function, arithmetic, and handling of fruitless cycles
- Negligible overhead (in practice!) from fruitless cycles

Solving smaller DLPs

- We have a faster implementation to solve the DLP
- But we don't have a cluster of >200 PlayStations
- How can we demonstrate that the implementation indeed works?

Solving smaller DLPs

- We have a faster implementation to solve the DLP
- But we don't have a cluster of >200 PlayStations
- How can we demonstrate that the implementation indeed works?
- Implementation solves ECDLPs on elliptic curves $E: y^{2}=x^{3}-3 x+b$
- Repeatedly solve DLP on curves with smaller subgroups (choose different b), specifically:

Solving smaller DLPs

- We have a faster implementation to solve the DLP
- But we don't have a cluster of >200 PlayStations
- How can we demonstrate that the implementation indeed works?
- Implementation solves ECDLPs on elliptic curves $E: y^{2}=x^{3}-3 x+b$
- Repeatedly solve DLP on curves with smaller subgroups (choose different b), specifically:
- 32237 experiments in a subgroup of order $\approx 2^{50}$
- 257241 experiments in a subgroup of order $\approx 2^{55}$
- 33791 experiments in a subgroup of order $\approx 2^{60}$
- Rate of DPs per hour matches expectations
- Median number of DPs required to solve DLP matches expectations

Solving smaller DLPs

- We have a faster implementation to solve the DLP
- But we don't have a cluster of >200 PlayStations
- How can we demonstrate that the implementation indeed works?
- Implementation solves ECDLPs on elliptic curves $E: y^{2}=x^{3}-3 x+b$
- Repeatedly solve DLP on curves with smaller subgroups (choose different b), specifically:
- 32237 experiments in a subgroup of order $\approx 2^{50}$
- 257241 experiments in a subgroup of order $\approx 2^{55}$
- 33791 experiments in a subgroup of order $\approx 2^{60}$
- Rate of DPs per hour matches expectations
- Median number of DPs required to solve DLP matches expectations
- Confident performance extrapolation to 112-bit DLP

Left-out details

- Paper has way more details on the implementation

Left-out details

- Paper has way more details on the implementation
- Hand-optimized assembly implementation (not online yet)

Left-out details

- Paper has way more details on the implementation
- Hand-optimized assembly implementation (not online yet)
- Various tricks in the design of the iteration function

Left-out details

- Paper has way more details on the implementation
- Hand-optimized assembly implementation (not online yet)
- Various tricks in the design of the iteration function
- Entertaining history on "How not to use negation in Pollard's rho method"

Left-out details

- Paper has way more details on the implementation
- Hand-optimized assembly implementation (not online yet)
- Various tricks in the design of the iteration function
- Entertaining history on "How not to use negation in Pollard's rho method"
- Paper is online, e.g. at http://cryptojedi.org/papers/\#negation

