Constructive and destructive implementations of elliptic-curve arithmetic

Peter Schwabe
Research Center for Information Technology Innovation Academia Sinica

October 30, 2012
ECC 2012, Querétaro, Mexico

Variable－basepoint scalar multiplication

The Problem

Given：
－an elliptic curve E over a finite field K，
－a prime order subgroup $E(\mathrm{~K})$ with r elements，
－a（variable）point $P \in E(\mathrm{~K})$ ，and
－an integer $k \in[1, r-1]$

How to compute point multiplication $[k] P$ at high speeds？
（Part of）Patrick Longa＇s first slide at ECC 2011
＂Elliptic Curve Cryptography at High Speeds＂
－Three recent updates（all for Intel Sandy Bridge）：
－Aranha，Faz－Hernández，López，and Rodríguez－Henríquez：Faster implementation of scalar multiplication on Koblitz curves， Latincrypt 2012.
Result： 99200 cycles on the NIST－K283 curve．
Code will be available
－Longa and Sica：Four－Dimensional Gallant－Lambert－Vanstone Scalar Multiplication，Asiacrypt 2012.
Result： 91000 cycles on a 256 －bit curve over a prime field．
Code not available
－Oliveira，Rodríguez－Henríquez，and López：New timings for scalar multiplication using a new set of coordinates，ECC 2012 rump session．
Result： 75000 cycles on a 254 －bit curve over a binary field．
Code will be available
－In all ECC software I wrote I never answered the question＂How fast can we do variable－basepoint scalar multiplication？＂
－In all ECC software I wrote I never answered the question＂How fast can we do variable－basepoint scalar multiplication？＂
－Maybe I＇m not doing my job properly，or maybe it is（often）the wrong question to ask in the first place？
－Certainly there is a lot more to do for ECC software performance
－In all ECC software I wrote I never answered the question＂How fast can we do variable－basepoint scalar multiplication？＂
－Maybe I＇m not doing my job properly，or maybe it is（often）the wrong question to ask in the first place？
－Certainly there is a lot more to do for ECC software performance
－Example 1：Elliptic－curve Diffie－Hellman key exchange
－Example 2：Elliptic－curve signatures
－Example 3：Solving the ECDLP with Pollard＇s rho algorithm

Elliptic－curve Diffie－Hellman key exchange 中央研究阮

－Alice and Bob each pick random secret scalar，compute scalar product with a fixed base point
－Alice and Bob each receive point from the other one，multiply by their secret scalar

Elliptic－curve Diffie－Hellman key exchange 中央研究院

－Alice and Bob each pick random secret scalar，compute scalar product with a fixed base point
－Alice and Bob each receive point from the other one，multiply by their secret scalar
－Second step sounds exactly like variable basepoint scalar multiplication

Elliptic－curve Diffie－Hellman key exchange 中央研究院

－Alice and Bob each pick random secret scalar，compute scalar product with a fixed base point
－Alice and Bob each receive point from the other one，multiply by their secret scalar
－Second step sounds exactly like variable basepoint scalar multiplication
－Usual way to make this fast：
－High level：reduce number of EC additions and doublings
－Mid level：reduce number of field operations per EC addition and doubling
－Low level：reduce number of CPU cycles taken by field operations

Sliding－window scalar multiplication

－Choose window size w
－Precompute $P, 3 P, 5 P, \ldots,\left(2^{w}-1\right) P$
－Rewrite scalar k as $k=\sum k_{i} 2^{i}$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non－zero entry in each window of length w
－Double for each coefficient，add for nonzero coefficients
－Expected number of additions：$\approx \operatorname{len}(k) /(w+1)+2^{w-1}$

Sliding－window scalar multiplication

－Choose window size w
－Precompute $P, 3 P, 5 P, \ldots,\left(2^{w}-1\right) P$
－Rewrite scalar k as $k=\sum k_{i} 2^{i}$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non－zero entry in each window of length w
－Double for each coefficient，add for nonzero coefficients
－Expected number of additions：$\approx \operatorname{len}(k) /(w+1)+2^{w-1}$
－Standard optimization：Use signed representation

Sliding－window scalar multiplication

－Choose window size w
－Precompute $P, 3 P, 5 P, \ldots,\left(2^{w}-1\right) P$
－Rewrite scalar k as $k=\sum k_{i} 2^{i}$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non－zero entry in each window of length w
－Double for each coefficient，add for nonzero coefficients
－Expected number of additions：$\approx \operatorname{len}(k) /(w+1)+2^{w-1}$
－Standard optimization：Use signed representation
－For curves with efficiently computable endomorphism φ ：
－Split scalar k in k_{1}, k_{2} ，s．t．$k P=k_{1} P+k_{2} \varphi(P)$
－Perform double－scalar multiplication with half－size scalars
－Halves the number of doublings
－Estimate by Galbraith，Lin，Scott（2009）：speedup of 30% to 40%

Problem：timing attacks

－Branch conditions depend on secret data（scalar）
－Code takes different amount of time depending on the scalar
－This is true even if the code in both possible branches takes the same amount of time（reason：branch prediction）
－Attacker can measure time and deduce information about the scalar

Problem：timing attacks

－Branch conditions depend on secret data（scalar）
－Code takes different amount of time depending on the scalar
－This is true even if the code in both possible branches takes the same amount of time（reason：branch prediction）
－Attacker can measure time and deduce information about the scalar
－You don＇t think this is scary？Wait for Billy Bob Brumley＇s talk tomorrow．

Fixed－window scalar multiplication

－Choose window size w
－Represent scalar k in base $2^{w}: k=\sum k_{i} 2^{i w}$
－Precompute $0 P, 1 P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P$
－For each k_{i} ：add $k_{i} P$ into result；do w point doublings

Fixed－window scalar multiplication

－Choose window size w
－Represent scalar k in base $2^{w}: k=\sum k_{i} 2^{i w}$
－Precompute $0 P, 1 P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P$
－For each k_{i} ：add $k_{i} P$ into result；do w point doublings
－Standard optimization：Use signed representation

Fixed－window scalar multiplication

－Choose window size w
－Represent scalar k in base $2^{w}: k=\sum k_{i} 2^{i w}$
－Precompute $0 P, 1 P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P$
－For each k_{i} ：add $k_{i} P$ into result；do w point doublings
－Standard optimization：Use signed representation
－Number of additions：$\lceil\operatorname{len}(k) / w\rceil+2^{w}$
－Penalty from more additions is relatively more serious for curves with endomorphisms

Fixed－window scalar multiplication

－Choose window size w
－Represent scalar k in base $2^{w}: k=\sum k_{i} 2^{i w}$
－Precompute $0 P, 1 P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P$
－For each k_{i} ：add $k_{i} P$ into result；do w point doublings
－Standard optimization：Use signed representation
－Number of additions：$\lceil\operatorname{len}(k) / w\rceil+2^{w}$
－Penalty from more additions is relatively more serious for curves with endomorphisms
－Dragons ahead！
－Requires constant－time EC addition，e．g．，use complete Edwards addition formulas
－Requires constant－time lookups of precomputed points（more later）
－Requires constant－time finite－field arithmetic

Montgomery Ladder

－Use Montgomery curve $B y^{2}=x^{3}+A x^{2}+x$
－Given the x－coordinate of P ，compute the x－coordinate of $k P$
－For each bit of the scalar k perform a＂ladder step＂：
－From $\left(x_{Q-P}, x_{P}, x_{Q}\right)$ compute $\left(x_{Q-P}, x_{2 P}, x_{P+Q}\right)$（one addition， one doubling）
－If the current bit is different from the next bit：swap $x_{2 P}$ and x_{P+Q}

Montgomery Ladder

－Use Montgomery curve $B y^{2}=x^{3}+A x^{2}+x$
－Given the x－coordinate of P ，compute the x－coordinate of $k P$
－For each bit of the scalar k perform a＂ladder step＂：
－From $\left(x_{Q-P}, x_{P}, x_{Q}\right)$ compute $\left(x_{Q-P}, x_{2 P}, x_{P+Q}\right)$（one addition， one doubling）
－If the current bit is different from the next bit：swap $x_{2 P}$ and x_{P+Q}
－Advantage：Very regular structure，no table lookups
－Advantage：Point compression for free

Montgomery Ladder

－Use Montgomery curve $B y^{2}=x^{3}+A x^{2}+x$
－Given the x－coordinate of P ，compute the x－coordinate of $k P$
－For each bit of the scalar k perform a＂ladder step＂：
－From $\left(x_{Q-P}, x_{P}, x_{Q}\right)$ compute $\left(x_{Q-P}, x_{2 P}, x_{P+Q}\right)$（one addition， one doubling）
－If the current bit is different from the next bit：swap $x_{2 P}$ and x_{P+Q}
－Advantage：Very regular structure，no table lookups
－Advantage：Point compression for free
－Dragons ahead！
－Requires constant－time conditional swap
－Requires constant－time finite－field arithmetic

Constant－time field arithmetic

－Typical operation for reduction：If $a \geq p$ then $a \leftarrow(a-p)$
－Same problem as before if a depends on secret data

Constant－time field arithmetic

－Typical operation for reduction：If $a \geq p$ then $a \leftarrow(a-p)$
－Same problem as before if a depends on secret data
－One way around this：Always subtract p ：

$$
\begin{aligned}
& b \leftarrow(a \geq p) \\
& t \leftarrow(a-p) \\
& a \leftarrow b \cdot t+(1-b) \cdot a
\end{aligned}
$$

Constant－time field arithmetic

－Typical operation for reduction：If $a \geq p$ then $a \leftarrow(a-p)$
－Same problem as before if a depends on secret data
－One way around this：Always subtract p ：

$$
\begin{aligned}
& b \leftarrow(a \geq p) \\
& t \leftarrow(a-p) \\
& a \leftarrow b \cdot t+(1-b) \cdot a
\end{aligned}
$$

－Better way around this：Never subtract p ：
－Choose a representation that leaves room for values $\geq p$
－For example： 564 －bit registers，radix 2^{51} to represent elements of $\mathbb{F}_{2^{255}-19}$
－Another advantage of such a redundant representation：fewer carries

Constant－time field arithmetic

－Typical operation for reduction：If $a \geq p$ then $a \leftarrow(a-p)$
－Same problem as before if a depends on secret data
－One way around this：Always subtract p ：

$$
\begin{aligned}
& b \leftarrow(a \geq p) \\
& t \leftarrow(a-p) \\
& a \leftarrow b \cdot t+(1-b) \cdot a
\end{aligned}
$$

－Better way around this：Never subtract p ：
－Choose a representation that leaves room for values $\geq p$
－For example： 564 －bit registers，radix 2^{51} to represent elements of $\mathbb{F}_{2^{255}-19}$
－Another advantage of such a redundant representation：fewer carries
－Optimal choice of representation highly depends on the field and the target microarchitecture
－Very often redundant－representation software outperforms non－redundant software（and is constant time！）

Some recent results，Intel processors

Performance on Nehalem／Westmere

－Bernstein，Duif，Lange，Schwabe，Yang（2011）： 227348 cycles，no endomorphisms，including point compression． Included as crypto＿scalarmult／curve25519／amd64－51／in SUPERCOP，http：／／bench．cr．yp．to／supercop．html

Performance on Sandy Bridge

－Hamburg（2012）： 153000 cycles，no endomorphisms，including point compression．Code not available．
－Longa，Sica（2012）： 137000 cycles（or is it 145000？）， endomorphisms，not including point compression．Code not available．

Some recent results，Intel processors

Performance on Sandy Bridge

－Hamburg（2012）： 153000 cycles，no endomorphisms，including point compression．Code not available．
－Longa，Sica（2012）： 137000 cycles（or is it 145000？）， endomorphisms，not including point compression．Code not available．

Performance on Ivy Bridge
－Bos，Costello，Hisil，Lauter（2012）：＜＜140000 cycles，genus 2，no endomorphisms，some compression．Code will be available in 13 days．

Some recent results，Intel processors

Performance on Sandy Bridge

－Hamburg（2012）： 153000 cycles，no endomorphisms，including point compression．Code not available．
－Longa，Sica（2012）： 137000 cycles（or is it 145000？）， endomorphisms，not including point compression．Code not available．
－Schwabe（2012）： 567000 cycles for 4 independent scalar multiplications（ 141750 cycles per scalar multiplication），no endomorphisms，including point compression．Code online soon at http：／／cryptojedi．org／crypto／\＃curve25519avx．

Performance on Ivy Bridge
－Bos，Costello，Hisil，Lauter（2012）：＜ 140000 cycles，genus 2，no endomorphisms，some compression．Code will be available in 13 days．

Some recent results，Intel processors

Performance on Sandy Bridge

－Hamburg（2012）： 153000 cycles，no endomorphisms，including point compression．Code not available．
－Longa，Sica（2012）： 137000 cycles（or is it 145000？）， endomorphisms，not including point compression．Code not available．
－Schwabe（2012）： 567000 cycles for 4 independent scalar multiplications（ <142000 cycles per scalar multiplication），no endomorphisms，including point compression．Code online soon at http：／／cryptojedi．org／crypto／\＃curve25519avx．

Performance on Ivy Bridge
－Bos，Costello，Hisil，Lauter（2012）：＜ 140000 cycles，genus 2，no endomorphisms，some compression．Code will be available in 13 days．

Some recent results，ARM processors

Performance on ARM Cortex A8
－Bernstein，Schwabe（2012）： 460200 cycles，no endomorphisms， including point compression．
Included as crypto＿scalarmult／curve25519／neon2／in SUPERCOP，http：／／bench．cr．yp．to／supercop．html

Performance on ARM Cortex A9

－Bernstein，Schwabe（2012）： 577997 cycles，no endomorphisms， including point compression．Same code as above．
－Hamburg（2012）： 619000 cycles，no endomorphisms，including point compression．Code not available．

Performance on Qualcomm Snapdragon S3

－Bernstein，Schwabe（2012）： 425582 cycles，no endomorphisms， including point compression．Same code as above．

Ed25519 elliptic－curve signatures

－Joint work with Bernstein，Duif，Lange，and Yang
－Signature scheme（variant of Schnorr signatures）based on arithmetic on twisted Edwards curve $\mathbb{F}_{2^{255}-19}$
－Curve is birationally equivalent to the Montgomery curve used in Curve25519
－B is a fixed base point on the curve
－ℓ is a 253 －bit prime，s．t．$\ell B=(0,1)$
－ECC secret key：random scalar a
－Public key：32－byte encoding \underline{A} of $A=a B$（ y and one bit of x ）

EdDSA signing

－Compute $R=r B$ for pseudorandom per－message secret r
－Define $S=(r+$ SHA－512 $(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature on message $M:(\underline{R}, \underline{S})$ ，with \underline{S} the 256 －bit little－endian encoding of S

EdDSA signing

－Compute $R=r B$ for pseudorandom per－message secret r
－Define $S=(r+$ SHA－512 $(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature on message $M:(\underline{R}, \underline{S})$ ，with \underline{S} the 256 －bit little－endian encoding of S
－Main operation：Compute $r B$ ：
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

－Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$ ，in a lookup table at compile time

EdDSA signing

－Compute $R=r B$ for pseudorandom per－message secret r
－Define $S=(r+$ SHA－512 $(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature on message $M:(\underline{R}, \underline{S})$ ，with \underline{S} the 256 －bit little－endian encoding of S
－Main operation：Compute $r B$ ：
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

－Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$ ，in a lookup table at compile time
－Compute

$$
R=\sum_{i=0}^{63} 16^{i} r_{i} B
$$

EdDSA signing

－Compute $R=r B$ for pseudorandom per－message secret r
－Define $S=(r+$ SHA－512 $(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature on message $M:(\underline{R}, \underline{S})$ ，with \underline{S} the 256 －bit little－endian encoding of S
－Main operation：Compute $r B$ ：
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

－Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$ ，in a lookup table at compile time
－Compute

$$
R=\sum_{i=0}^{63} 16^{i} r_{i} B
$$

－ 64 table lookups， 64 conditional point negations， 63 point additions

EdDSA signing

－Compute $R=r B$ for pseudorandom per－message secret r
－Define $S=(r+\operatorname{SHA}-512(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature on message $M:(\underline{R}, \underline{S})$ ，with \underline{S} the 256 －bit little－endian encoding of S
－Main operation：Compute $r B$ ：
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

－Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$ ，in a lookup table at compile time
－Compute

$$
R=\sum_{i=0}^{63} 16^{i} r_{i} B
$$

－ 64 table lookups， 64 conditional point negations， 63 point additions
－R is represented in extended coordinates (X, Y, Z, T)（Hisil，Wong， Carter，Dawson，2008）
－Table entries (x, y) are stored as $(y-x, y+x, 2 d x y)$

Timing attacks strike again

－Lookup addresses depend on secret scalar
－Lookups are fast if data is in cache，slow otherwise
－Attacker measures time，deduces information about the key

Timing attacks strike again

－Lookup addresses depend on secret scalar
－Lookups are fast if data is in cache，slow otherwise
－Attacker measures time，deduces information about the key
－Example for a cache－timing attack：In 2006 Osvik，Shamir，and Tromer showed how to steal the 256 －bit AES key of the Linux dmcrypt harddisk encryption in just 65 ms ．

Timing attacks strike again

－Lookup addresses depend on secret scalar
－Lookups are fast if data is in cache，slow otherwise
－Attacker measures time，deduces information about the key
－Example for a cache－timing attack：In 2006 Osvik，Shamir，and Tromer showed how to steal the 256－bit AES key of the Linux dmcrypt harddisk encryption in just 65 ms ．
－Countermeasure used in Ed25519：Always load all 8 table entries， use arithmetic to choose the right one，e．g．at position r_{0} ：

$$
\begin{aligned}
& D \leftarrow(1,1,0) \\
& b \leftarrow\left(\left|r_{0}\right|=1\right) \\
& D \leftarrow b \cdot \text { Table } 11]+(1-b) \cdot D \\
& b \leftarrow\left(\left|r_{0}\right|=2\right) \\
& D \leftarrow b \cdot \text { Table }[2]+(1-b) \cdot D
\end{aligned}
$$

Timing attacks strike again

－Lookup addresses depend on secret scalar
－Lookups are fast if data is in cache，slow otherwise
－Attacker measures time，deduces information about the key
－Example for a cache－timing attack：In 2006 Osvik，Shamir，and Tromer showed how to steal the 256 －bit AES key of the Linux dmcrypt harddisk encryption in just 65 ms ．
－Countermeasure used in Ed25519：Always load all 8 table entries， use arithmetic to choose the right one，e．g．at position r_{0} ：

$$
\begin{aligned}
& D \leftarrow(1,1,0) \\
& b \leftarrow\left(\left|r_{0}\right|=1\right) \\
& D \leftarrow b \cdot \text { Table } 11]+(1-b) \cdot D \\
& b \leftarrow\left(\left|r_{0}\right|=2\right) \\
& D \leftarrow b \cdot \text { Table }[2]+(1-b) \cdot D
\end{aligned}
$$

－Always compute negation，use arithmetic to choose D or $-D$

EdDSA verification

－Verify signature $(\underline{R}, \underline{S})$ on message M with public key \underline{A}
－Check equation

$$
S B-\operatorname{SHA}-512(\underline{R}, \underline{A}, M) A=R
$$

EdDSA verification

－Verify signature $(\underline{R}, \underline{S})$ on message M with public key \underline{A}
－Check equation

$$
S B-\text { SHA- } 512(\underline{R}, \underline{A}, M) A=R
$$

－Actually：Compare encoding of $S B-\operatorname{SHA}-512(\underline{R}, \underline{A}, M) A$ with \underline{R}

EdDSA verification

－Verify signature $(\underline{R}, \underline{S})$ on message M with public key \underline{A}
－Check equation

$$
S B-\text { SHA- } 512(\underline{R}, \underline{A}, M) A=R
$$

－Actually：Compare encoding of $S B-\operatorname{SHA}-512(\underline{R}, \underline{A}, M) A$ with \underline{R}
－Two main parts：
－Decompression of A
－Computation of $S B$－SHA－512 $(\underline{R}, \underline{A}, M) A$

EdDSA verification

－Verify signature $(\underline{R}, \underline{S})$ on message M with public key \underline{A}
－Check equation

$$
S B-\operatorname{SHA}-512(\underline{R}, \underline{A}, M) A=R
$$

－Actually：Compare encoding of $S B-\operatorname{SHA}-512(\underline{R}, \underline{A}, M) A$ with \underline{R}
－Two main parts：
－Decompression of A
－Computation of $S B$－SHA－512（ $\underline{R}, \underline{A}, M) A$
－For second part do the following：
－Double－scalar multiplication using signed sliding windows
－Different window sizes for B（compile time）and A（run time）

Point decompression

－Before double－scalar multiplication：compute x coordinate x_{A} of A as

$$
x_{A}= \pm \sqrt{\left(y_{A}^{2}-1\right) /\left(d y_{A}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required

Point decompression

－Before double－scalar multiplication：compute x coordinate x_{A} of A as

$$
x_{A}= \pm \sqrt{\left(y_{A}^{2}-1\right) /\left(d y_{A}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $2^{255}-19 \equiv 5(\bmod 8)$ ，for each square α we have $\alpha^{2}=\beta^{4}$ ， with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$

Point decompression

－Before double－scalar multiplication：compute x coordinate x_{A} of A as

$$
x_{A}= \pm \sqrt{\left(y_{A}^{2}-1\right) /\left(d y_{A}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $2^{255}-19 \equiv 5(\bmod 8)$ ，for each square α we have $\alpha^{2}=\beta^{4}$ ， with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
－Decompression has $\alpha=u / v$ ，merge square root with inversion：

$$
\beta=(u / v)^{(q+3) / 8}
$$

Point decompression

－Before double－scalar multiplication：compute x coordinate x_{A} of A as

$$
x_{A}= \pm \sqrt{\left(y_{A}^{2}-1\right) /\left(d y_{A}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $2^{255}-19 \equiv 5(\bmod 8)$ ，for each square α we have $\alpha^{2}=\beta^{4}$ ， with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
－Decompression has $\alpha=u / v$ ，merge square root with inversion：

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

－Only one big exponentiation，cost similar to just inversion with Fermat
－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=$ SHA－512 $\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=$ SHA－512 $\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=$ SHA－512 $\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

－Use Bos－Coster algorithm for multi－scalar multiplication
－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=$ SHA－512 $\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

－Use Bos－Coster algorithm for multi－scalar multiplication
－Karati，Das，Roychowdhury，Bellur，Bhattacharya，and Lyer at Africacrypt 2012：Batch verification without randomizers；broken by Bernstein，Doumen，Lange，and Oosterwijk（Indocrypt 2012）
－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=$ SHA－512 $\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

－Use Bos－Coster algorithm for multi－scalar multiplication
－Karati，Das，Roychowdhury，Bellur，Bhattacharya，and Lyer at Africacrypt 2012：Batch verification without randomizers；broken by Bernstein，Doumen，Lange，and Oosterwijk（Indocrypt 2012）
－Same Indocrypt 2012 paper：faster batch forgery identification

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
－Idea：Assume $s_{1}>s_{2}>\cdots>s_{n}$ ．Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
－Each step requires the two largest scalars，one scalar subtraction and one point addition
－Each step＂eliminates＂expected $\log n$ scalar bits

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
－Idea：Assume $s_{1}>s_{2}>\cdots>s_{n}$ ．Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
－Each step requires the two largest scalars，one scalar subtraction and one point addition
－Each step＂eliminates＂expected $\log n$ scalar bits
－Requires fast access to the two largest scalars：put scalars into a heap
－Crucial for good performance：fast heap implementation
－Heap is a binary tree，each parent node is larger than the two child nodes
－Data structure is stored as a simple array，positions in the array determine positions in the tree
－Root is at position 0 ，left child node at position 1 ，right child node at position 2 etc．
－For node at position i ，child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$ ，parent node is at position $\lfloor(i-1) / 2\rfloor$
－Heap is a binary tree，each parent node is larger than the two child nodes
－Data structure is stored as a simple array，positions in the array determine positions in the tree
－Root is at position 0 ，left child node at position 1 ，right child node at position 2 etc．
－For node at position i ，child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$ ，parent node is at position $\lfloor(i-1) / 2\rfloor$
－Typical heap root replacement（pop operation）：start at the root， swap down for a variable amount of times
－Heap is a binary tree，each parent node is larger than the two child nodes
－Data structure is stored as a simple array，positions in the array determine positions in the tree
－Root is at position 0 ，left child node at position 1 ，right child node at position 2 etc．
－For node at position i ，child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$ ，parent node is at position $\lfloor(i-1) / 2\rfloor$
－Typical heap root replacement（pop operation）：start at the root， swap down for a variable amount of times
－Floyd＇s heap：swap down to the bottom，swap up for a variable amount of times，advantages：
－Each swap－down step needs only one comparison（instead of two）
－Swap－down loop is more friendly to branch predictors

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
－Idea：Assume $s_{1}>s_{2}>\cdots>s_{n}$ ．Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
－Each step requires the two largest scalars，one scalar subtraction and one point addition
－Each step＂eliminates＂expected $\log n$ scalar bits
－Requires fast access to the two largest scalars：put scalars into a heap
－Crucial for good performance：fast heap implementation

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
－Idea：Assume $s_{1}>s_{2}>\cdots>s_{n}$ ．Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
－Each step requires the two largest scalars，one scalar subtraction and one point addition
－Each step＂eliminates＂expected $\log n$ scalar bits
－Requires fast access to the two largest scalars：put scalars into a heap
－Crucial for good performance：fast heap implementation
－Further optimization：Start with heap without the z_{i} until largest scalar has ≤ 128 bits
－Then：extend heap with the z_{i}

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
－Idea：Assume $s_{1}>s_{2}>\cdots>s_{n}$ ．Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
－Each step requires the two largest scalars，one scalar subtraction and one point addition
－Each step＂eliminates＂expected $\log n$ scalar bits
－Requires fast access to the two largest scalars：put scalars into a heap
－Crucial for good performance：fast heap implementation
－Further optimization：Start with heap without the z_{i} until largest scalar has ≤ 128 bits
－Then：extend heap with the z_{i}
－Optimize the heap on the assembly level

Ed25519 performance

Performance on Intel Nehalem／Westmere
－ 87548 cycles for signing
－ 273364 cycles for verification
－ 8550000 cycles to verify a batch of 64 valid signatures（ $\ll 134000$ cycles per signature）

Performance on ARM Cortex A8
－Bernstein，Schwabe（2012）： 244655 cycles for signing
－Bernstein，Schwabe（2012）： 624846 cycles for verification

Ed25519 performance

Performance on Intel Nehalem／Westmere
－ 87548 cycles for signing
－ 273364 cycles for verification
－ 8550000 cycles to verify a batch of 64 valid signatures $(\ll 134000$ cycles per signature）

Performance on ARM Cortex A8
－Bernstein，Schwabe（2012）： 244655 cycles for signing
－Bernstein，Schwabe（2012）： 624846 cycles for verification
Followup results by Hamburg
－52000／170000 cycles for signing／verification on Sandy Bridge
－256000／624000 cycles for signing／verification on Cortex A9
－So far：Branches and table lookups were bad with secret scalars
－They should be no problem at all in cryptanalysis
－Consider the parallel Pollard rho algorithm to find k ，given P and $Q=k P$ in $G \subseteq E\left(\mathbb{F}_{q}\right)$

Parallel Pollard rho（clients）

－Use pseudorandom function f
－Start with $W_{0}=n_{0} P+m_{0} Q$ for random n_{0}, m_{0}
－Iteratively apply f to obtain $W_{i+1}=f\left(W_{i}\right)$
－At each step，check whether W_{i} is a distinguished point（DP），e．g．， ＂last k bits of W_{i}＇s encoding are 0 ＂
－When finding a DP W_{d} ：send $\left(n_{0}, m_{0}, W_{d}\right)$ to the server，start with new W_{0}

Parallel Pollard rho（server）

－Server searches in incoming data for collisions $\left(n_{0}, m_{0}, W_{d}\right)$ ， $\left(n_{0}^{\prime}, m_{0}^{\prime}, W_{d}\right)$
－Recomputes the two walks to W_{d} ，updates n_{i}, m_{i} and $n_{i}^{\prime}, m_{i}^{\prime}$ to obtain $n_{d}, m_{d}, n_{d}^{\prime}, m_{d}^{\prime}$ with

$$
n_{d} P+m_{d} Q=n_{d}^{\prime} P+m_{d}^{\prime} Q=W_{d}
$$

－Computes discrete log

$$
k=\left(n_{d}-n_{d}^{\prime}\right) /\left(m_{d}^{\prime}-m_{d}\right) \quad(\bmod |G|)
$$

－Note that f needs to preserve knowledge about the linear combination in P and Q

Additive walks

－Easy way to define f ：

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions n, m
－Cost：two hash－function calls，one double－scalar multiplication

Additive walks

－Easy way to define f ：

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions n, m
－Cost：two hash－function calls，one double－scalar multiplication
－Much more efficient：Additive walks
－Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
－Use hash function $h: G \rightarrow\{0, \ldots, r-1\}$
－Define $f(W)=W+R_{h(W)}$

Additive walks

－Easy way to define f ：

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions n, m
－Cost：two hash－function calls，one double－scalar multiplication
－Much more efficient：Additive walks
－Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
－Use hash function $h: G \rightarrow\{0, \ldots, r-1\}$
－Define $f(W)=W+R_{h(W)}$
－Now：only one hash－function call，one group addition

Additive walks

－Easy way to define f ：

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions n, m
－Cost：two hash－function calls，one double－scalar multiplication
－Much more efficient：Additive walks
－Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
－Use hash function $h: G \rightarrow\{0, \ldots, r-1\}$
－Define $f(W)=W+R_{h(W)}$
－Now：only one hash－function call，one group addition
－Additive walks are noticeably nonrandom，they require more iterations

Additive walks

－Easy way to define f ：

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions n, m
－Cost：two hash－function calls，one double－scalar multiplication
－Much more efficient：Additive walks
－Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
－Use hash function $h: G \rightarrow\{0, \ldots, r-1\}$
－Define $f(W)=W+R_{h(W)}$
－Now：only one hash－function call，one group addition
－Additive walks are noticeably nonrandom，they require more iterations
－Teske showed that large r provides close－to－random behavior（e．g． $r=20$ ）

Additive walks

－Easy way to define f ：

$$
f(W)=n(W) P+m(W) Q
$$

with pseudorandom functions n, m
－Cost：two hash－function calls，one double－scalar multiplication
－Much more efficient：Additive walks
－Precompute r pseudorandom elements R_{0}, \ldots, R_{r-1} with known linear combination in P and Q
－Use hash function $h: G \rightarrow\{0, \ldots, r-1\}$
－Define $f(W)=W+R_{h(W)}$
－Now：only one hash－function call，one group addition
－Additive walks are noticeably nonrandom，they require more iterations
－Teske showed that large r provides close－to－random behavior（e．g． $r=20$ ）
－Summary：additive walks provide much better performance in practice
－So far，everything worked with any group G
－Now consider groups of points on elliptic curves
－Efficient operation aside from group addition：negation
－For Weierstrass curves：$(x, y) \mapsto(x,-y)$
－So far，everything worked with any group G
－Now consider groups of points on elliptic curves
－Efficient operation aside from group addition：negation
－For Weierstrass curves：$(x, y) \mapsto(x,-y)$
－Some curves have more efficiently computable endomorphisms， examples are Koblitz curves，GLS curves，and BN curves

Walks modulo negation

－So far，everything worked with any group G
－Now consider groups of points on elliptic curves
－Efficient operation aside from group addition：negation
－For Weierstrass curves：$(x, y) \mapsto(x,-y)$
－Some curves have more efficiently computable endomorphisms， examples are Koblitz curves，GLS curves，and BN curves
－Idea：Define iterations on equivalence classes modulo negation
－For example：always take the lexicographic minimum of $(x,-y)$ and (x, y)
－So far，everything worked with any group G
－Now consider groups of points on elliptic curves
－Efficient operation aside from group addition：negation
－For Weierstrass curves：$(x, y) \mapsto(x,-y)$
－Some curves have more efficiently computable endomorphisms， examples are Koblitz curves，GLS curves，and BN curves
－Idea：Define iterations on equivalence classes modulo negation
－For example：always take the lexicographic minimum of $(x,-y)$ and (x, y)
－This halves the size of the search space，expected number of iterations drops by a factor of $\sqrt{2}$

Putting it together

－Precompute R_{0}, \ldots, R_{r-1}
－Clients start at some random W_{0}
－Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
－$|W|$ chooses a well－defined representative in $\{-W, W\}$

Putting it together

－Precompute R_{0}, \ldots, R_{r-1}
－Clients start at some random W_{0}
－Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
－$|W|$ chooses a well－defined representative in $\{-W, W\}$
－Problem：fruitless cycles
If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$

Putting it together

－Precompute R_{0}, \ldots, R_{r-1}
－Clients start at some random W_{0}
－Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
－$|W|$ chooses a well－defined representative in $\{-W, W\}$
－Problem：fruitless cycles If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$ ，and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence：

Putting it together

－Precompute R_{0}, \ldots, R_{r-1}
－Clients start at some random W_{0}
－Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
－$|W|$ chooses a well－defined representative in $\{-W, W\}$
－Problem：fruitless cycles
If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$ ，and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence：

$$
\begin{aligned}
& W_{i+1}=f\left(W_{i}\right)=-\left(W_{i}+R_{t}\right) \\
& W_{i+2}=f\left(W_{i+1}\right)=\left|-\left(W_{i}+R_{t}\right)+R_{t}\right|=\left|-W_{i}\right|=W_{i}
\end{aligned}
$$

Putting it together

－Precompute R_{0}, \ldots, R_{r-1}
－Clients start at some random W_{0}
－Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
－$|W|$ chooses a well－defined representative in $\{-W, W\}$
－Problem：fruitless cycles
If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$ ，and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence：

$$
\begin{aligned}
& W_{i+1}=f\left(W_{i}\right)=-\left(W_{i}+R_{t}\right) \\
& W_{i+2}=f\left(W_{i+1}\right)=\left|-\left(W_{i}+R_{t}\right)+R_{t}\right|=\left|-W_{i}\right|=W_{i}
\end{aligned}
$$

－Probability for such fruitless cycles： $1 / 2 r$

Putting it together

－Precompute R_{0}, \ldots, R_{r-1}
－Clients start at some random W_{0}
－Iteratively compute $W_{i+1}=\left|W_{i}+R_{h\left(W_{i}\right)}\right|$
－$|W|$ chooses a well－defined representative in $\{-W, W\}$
－Problem：fruitless cycles
If $t=h\left(W_{i}\right)=h\left(W_{i+1}\right)$ ，and $\left|W_{i}+R_{t}\right|=-\left(W_{i}+R_{t}\right)$ we obtain the following sequence：

$$
\begin{aligned}
& W_{i+1}=f\left(W_{i}\right)=-\left(W_{i}+R_{t}\right) \\
& W_{i+2}=f\left(W_{i+1}\right)=\left|-\left(W_{i}+R_{t}\right)+R_{t}\right|=\left|-W_{i}\right|=W_{i}
\end{aligned}
$$

－Probability for such fruitless cycles： $1 / 2 r$
－Similar observations hold for longer fruitless cycles（length $4,6, \ldots$ ）
－Probability of a cycle of length $2 c$ is $\approx 1 / r^{c}$
－In July 2009：Break of ECDLP on 112－bit curve over a prime field by Bos，Kaihara，Kleinjung，Lenstra，and Montgomery
－Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles

How expensive are fruitless cycles

－In July 2009：Break of ECDLP on 112－bit curve over a prime field by Bos，Kaihara，Kleinjung，Lenstra，and Montgomery
－Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
－Iteration function did not use the negation map：
＂We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment＂

How expensive are fruitless cycles

－In July 2009：Break of ECDLP on 112－bit curve over a prime field by Bos，Kaihara，Kleinjung，Lenstra，and Montgomery
－Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
－Iteration function did not use the negation map：
＂We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment＂
－Paper at ANTS 2010 by Bos，Kleinjung，and Lenstra：Among many ways of dealing with fruitless cycles best speedup is 1.29 ，but
－In July 2009：Break of ECDLP on 112－bit curve over a prime field by Bos，Kaihara，Kleinjung，Lenstra，and Montgomery
－Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
－Iteration function did not use the negation map：
＂We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment＂
－Paper at ANTS 2010 by Bos，Kleinjung，and Lenstra：Among many ways of dealing with fruitless cycles best speedup is 1.29 ，but ＂If the Pollard rho method is parallelized in SIMD fashion， it is a challenge to achieve any speedup at all．．．．Dealing with cycles entails administrative overhead and branching， which cause a non－negligible slowdown when running multiple walks in SIMD－parallel fashion．．．．［This］is a major obstacle to the negation map in SIMD environments．＂

Why are fruitless cycles so expensive?

The problem with large tables

- Probability of fruitless cycles gets smaller with larger r
- Using a huge r seems like an obvious fix

Why are fruitless cycles so expensive?

The problem with large tables

- Probability of fruitless cycles gets smaller with larger r
- Using a huge r seems like an obvious fix, but:
- precomputed points won't fit into cache \rightarrow performance penalty from slow loads

Why are fruitless cycles so expensive？

The problem with large tables
－Probability of fruitless cycles gets smaller with larger r
－Using a huge r seems like an obvious fix，but：
－precomputed points won＇t fit into cache \rightarrow performance penalty from slow loads

SIMD computations
－SIMD：Same sequence of instructions carried out on different data
－Branching means（in the worst case）：Sequentially execute both branches

Why are fruitless cycles so expensive？

The problem with large tables
－Probability of fruitless cycles gets smaller with larger r
－Using a huge r seems like an obvious fix，but：
－precomputed points won＇t fit into cache \rightarrow performance penalty from slow loads

SIMD computations

－SIMD：Same sequence of instructions carried out on different data
－Branching means（in the worst case）：Sequentially execute both branches
－Computing power of the the PlayStation 3 is entirely based on SIMD computations
－SIMD becomes more and more important on all modern microprocessors
－Joint work with Bernstein and Lange：Get the $\sqrt{2}$－speedup with SIMD
－Consider ECDLP on elliptic curve over \mathbb{F}_{p}
－Begin with simplest type of negating additive walk
－Starting points W_{0} are known multiples of Q
－Precomputed table contains r known multiples of P
－Joint work with Bernstein and Lange：Get the $\sqrt{2}$－speedup with SIMD
－Consider ECDLP on elliptic curve over \mathbb{F}_{p}
－Begin with simplest type of negating additive walk
－Starting points W_{0} are known multiples of Q
－Precomputed table contains r known multiples of P
－Use（relatively）large r（in our implementation：2048）
－Joint work with Bernstein and Lange：Get the $\sqrt{2}$－speedup with SIMD
－Consider ECDLP on elliptic curve over \mathbb{F}_{p}
－Begin with simplest type of negating additive walk
－Starting points W_{0} are known multiples of Q
－Precomputed table contains r known multiples of P
－Use（relatively）large r（in our implementation：2048）
－$|(x, y)|$ is (x, y) if $y \in\{0,2,4, \ldots, p-1\},(x,-y)$ otherwise
－Joint work with Bernstein and Lange：Get the $\sqrt{2}$－speedup with SIMD
－Consider ECDLP on elliptic curve over \mathbb{F}_{p}
－Begin with simplest type of negating additive walk
－Starting points W_{0} are known multiples of Q
－Precomputed table contains r known multiples of P
－Use（relatively）large r（in our implementation：2048）
－$|(x, y)|$ is (x, y) if $y \in\{0,2,4, \ldots, p-1\},(x,-y)$ otherwise
－Occasionally check for 2－cycles：
－If $W_{i-1}=W_{i-3}$ ，set $W_{i}=\left|2 \min \left\{W_{i-1}, W_{i-2}\right\}\right|$
－Otherwise set $W_{i}=W_{i-1}$
－Joint work with Bernstein and Lange：Get the $\sqrt{2}$－speedup with SIMD
－Consider ECDLP on elliptic curve over \mathbb{F}_{p}
－Begin with simplest type of negating additive walk
－Starting points W_{0} are known multiples of Q
－Precomputed table contains r known multiples of P
－Use（relatively）large r（in our implementation：2048）
－$|(x, y)|$ is (x, y) if $y \in\{0,2,4, \ldots, p-1\},(x,-y)$ otherwise
－Occasionally check for 2－cycles：
－If $W_{i-1}=W_{i-3}$ ，set $W_{i}=\left|2 \min \left\{W_{i-1}, W_{i-2}\right\}\right|$
－Otherwise set $W_{i}=W_{i-1}$
－With even lower frequency check for 4 －cycles， 6 －cycles etc．
－Implementation actually checks for 12 －cycles（with very low frequency）
－Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$ ，with $\epsilon=y \bmod 2$
－Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$ ，with $\epsilon=y \bmod 2$
－Amortize min computations across relevant iterations，update min while computing iterations

Eliminating branches

－Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$ ，with $\epsilon=y \bmod 2$
－Amortize min computations across relevant iterations，update min while computing iterations
－Always compute doublings，even if they are not used
－Select W_{i} from W_{i-1} and $2 W_{\text {min }}$ without branch
－Selection bit is output of branchfree comparison between W_{i-1} and W_{i-1-c} when detecting c－cycles

Eliminating branches

－Compute $|(x, y)|$ as $(x, y+\epsilon(p-2 y))$ ，with $\epsilon=y \bmod 2$
－Amortize min computations across relevant iterations，update min while computing iterations
－Always compute doublings，even if they are not used
－Select W_{i} from W_{i-1} and $2 W_{\text {min }}$ without branch
－Selection bit is output of branchfree comparison between W_{i-1} and W_{i-1-c} when detecting c－cycles
－All selections，subtractions，additions and comparisons are linear－time
－Asymptotically negligible compared to finite－field multiplications in EC arithmetic

Optimization and analysis

－Checking for fruitless cycles every w iterations
－Probability for fruitless cycle：$w / 2 r$
－Average wasted iterations if fruitless cycle occurred：$w / 2$

Optimization and analysis

－Checking for fruitless cycles every w iterations
－Probability for fruitless cycle：$w / 2 r$
－Average wasted iterations if fruitless cycle occurred：$w / 2$
－Checking without finding a fruitless cycle wastes one iteration

Optimization and analysis

－Checking for fruitless cycles every w iterations
－Probability for fruitless cycle：$w / 2 r$
－Average wasted iterations if fruitless cycle occurred：$w / 2$
－Checking without finding a fruitless cycle wastes one iteration
－Overall loss： $1+w^{2} / 4 r$ per w iterations

Optimization and analysis

－Checking for fruitless cycles every w iterations
－Probability for fruitless cycle：$w / 2 r$
－Average wasted iterations if fruitless cycle occurred：$w / 2$
－Checking without finding a fruitless cycle wastes one iteration
－Overall loss： $1+w^{2} / 4 r$ per w iterations
－Minimize $1 / w+w / 4 r$ ：Take $w \approx 2 \sqrt{r}$

Optimization and analysis

－Checking for fruitless cycles every w iterations
－Probability for fruitless cycle：$w / 2 r$
－Average wasted iterations if fruitless cycle occurred：$w / 2$
－Checking without finding a fruitless cycle wastes one iteration
－Overall loss： $1+w^{2} / 4 r$ per w iterations
－Minimize $1 / w+w / 4 r$ ：Take $w \approx 2 \sqrt{r}$
－Slowdown from fruitless cycles by a factor of $1+\Theta(1 / \sqrt{r})$

Optimization and analysis

－Checking for fruitless cycles every w iterations
－Probability for fruitless cycle：$w / 2 r$
－Average wasted iterations if fruitless cycle occurred：$w / 2$
－Checking without finding a fruitless cycle wastes one iteration
－Overall loss： $1+w^{2} / 4 r$ per w iterations
－Minimize $1 / w+w / 4 r$ ：Take $w \approx 2 \sqrt{r}$
－Slowdown from fruitless cycles by a factor of $1+\Theta(1 / \sqrt{r})$
－Negligible if $r \rightarrow \infty$ as $p \rightarrow \infty$

Solving the 112－bit ECDLP faster

－Software by Bos et al．takes expected 65．16 PS3 years to solve DLP
－Our software takes expected 35．6 PS3 years for the same DLP

Solving the 112－bit ECDLP faster

－Software by Bos et al．takes expected 65．16 PS3 years to solve DLP
－Our software takes expected 35．6 PS3 years for the same DLP
－（very－close－to）factor－$\sqrt{2}$ speedup through negation map

Solving the 112－bit ECDLP faster

－Software by Bos et al．takes expected 65．16 PS3 years to solve DLP
－Our software takes expected 35．6 PS3 years for the same DLP
－（very－close－to）factor－$\sqrt{2}$ speedup through negation map
－Faster iterations
－Faster arithmetic in $\mathbb{Z} /\left(2^{128}-3\right) \mathbb{Z}$（prime field has order $\left.\left(2^{128}-3\right) / 76439\right)$
－Non－standard radix $2^{12.8}$ to represent elements of $\left(2^{128}-3\right) / 76439$
－Careful design of iteration function，arithmetic and handling of fruitless cycles

Solving the 112－bit ECDLP faster

－Software by Bos et al．takes expected 65．16 PS3 years to solve DLP
－Our software takes expected 35．6 PS3 years for the same DLP
－（very－close－to）factor－$\sqrt{2}$ speedup through negation map
－Faster iterations
－Faster arithmetic in $\mathbb{Z} /\left(2^{128}-3\right) \mathbb{Z}$（prime field has order $\left.\left(2^{128}-3\right) / 76439\right)$
－Non－standard radix $2^{12.8}$ to represent elements of $\left(2^{128}-3\right) / 76439$
－Careful design of iteration function，arithmetic and handling of fruitless cycles
－Negligible overhead（in practice！）from fruitless cycles

Daniel J．Bernstein，Niels Duif，Tanja Lange，Peter Schwabe，and Bo－Yin Yang：High－speed high－security signatures．
http：／／cryptojedi．org／papers／\＃ed25519
Daniel J．Bernstein，Tanja Lange，and Peter Schwabe：On the correct use of the negation map in the Pollard rho method．
http：／／cryptojedi．org／papers／\＃negation
Daniel J．Bernstein and Peter Schwabe：NEON crypto．
http：／／cryptojedi．org／papers／\＃neoncrypto

