
Constructive and destructive implementations of
elliptic-curve arithmetic

Peter Schwabe

Research Center for Information Technology Innovation
Academia Sinica

October 30, 2012

ECC 2012, Querétaro, Mexico

Variable-basepoint scalar multiplication

(Part of) Patrick Longa’s first slide at ECC 2011
“Elliptic Curve Cryptography at High Speeds”

Constructive and destructive implementations of elliptic-curve arithmetic 2

Answers to this question

I Three recent updates (all for Intel Sandy Bridge):
I Aranha, Faz-Hernández, López, and Rodríguez-Henríquez: Faster

implementation of scalar multiplication on Koblitz curves,
Latincrypt 2012.
Result: 99200 cycles on the NIST-K283 curve.
Code will be available

I Longa and Sica: Four-Dimensional Gallant-Lambert-Vanstone
Scalar Multiplication, Asiacrypt 2012.
Result: 91000 cycles on a 256-bit curve over a prime field.
Code not available

I Oliveira, Rodríguez-Henríquez, and López: New timings for scalar
multiplication using a new set of coordinates, ECC 2012 rump
session.
Result: 75000 cycles on a 254-bit curve over a binary field.
Code will be available

Constructive and destructive implementations of elliptic-curve arithmetic 3

Outline of this talk

I In all ECC software I wrote I never answered the question “How fast
can we do variable-basepoint scalar multiplication?”

I Maybe I’m not doing my job properly, or maybe it is (often) the
wrong question to ask in the first place?

I Certainly there is a lot more to do for ECC software performance
I Example 1: Elliptic-curve Diffie-Hellman key exchange
I Example 2: Elliptic-curve signatures
I Example 3: Solving the ECDLP with Pollard’s rho algorithm

Constructive and destructive implementations of elliptic-curve arithmetic 4

Outline of this talk

I In all ECC software I wrote I never answered the question “How fast
can we do variable-basepoint scalar multiplication?”

I Maybe I’m not doing my job properly, or maybe it is (often) the
wrong question to ask in the first place?

I Certainly there is a lot more to do for ECC software performance

I Example 1: Elliptic-curve Diffie-Hellman key exchange
I Example 2: Elliptic-curve signatures
I Example 3: Solving the ECDLP with Pollard’s rho algorithm

Constructive and destructive implementations of elliptic-curve arithmetic 4

Outline of this talk

I In all ECC software I wrote I never answered the question “How fast
can we do variable-basepoint scalar multiplication?”

I Maybe I’m not doing my job properly, or maybe it is (often) the
wrong question to ask in the first place?

I Certainly there is a lot more to do for ECC software performance
I Example 1: Elliptic-curve Diffie-Hellman key exchange
I Example 2: Elliptic-curve signatures
I Example 3: Solving the ECDLP with Pollard’s rho algorithm

Constructive and destructive implementations of elliptic-curve arithmetic 4

Elliptic-curve Diffie-Hellman key exchange

I Alice and Bob each pick random secret scalar, compute scalar
product with a fixed base point

I Alice and Bob each receive point from the other one, multiply by
their secret scalar

I Second step sounds exactly like variable basepoint scalar
multiplication

I Usual way to make this fast:

I High level: reduce number of EC additions and doublings
I Mid level: reduce number of field operations per EC addition and

doubling
I Low level: reduce number of CPU cycles taken by field operations

Constructive and destructive implementations of elliptic-curve arithmetic 5

Elliptic-curve Diffie-Hellman key exchange

I Alice and Bob each pick random secret scalar, compute scalar
product with a fixed base point

I Alice and Bob each receive point from the other one, multiply by
their secret scalar

I Second step sounds exactly like variable basepoint scalar
multiplication

I Usual way to make this fast:

I High level: reduce number of EC additions and doublings
I Mid level: reduce number of field operations per EC addition and

doubling
I Low level: reduce number of CPU cycles taken by field operations

Constructive and destructive implementations of elliptic-curve arithmetic 5

Elliptic-curve Diffie-Hellman key exchange

I Alice and Bob each pick random secret scalar, compute scalar
product with a fixed base point

I Alice and Bob each receive point from the other one, multiply by
their secret scalar

I Second step sounds exactly like variable basepoint scalar
multiplication

I Usual way to make this fast:
I High level: reduce number of EC additions and doublings
I Mid level: reduce number of field operations per EC addition and

doubling
I Low level: reduce number of CPU cycles taken by field operations

Constructive and destructive implementations of elliptic-curve arithmetic 5

Sliding-window scalar multiplication

I Choose window size w
I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Rewrite scalar k as k =
∑
ki2

i with ki in {0, 1, 3, 5, . . . , 2w − 1}
with at most one non-zero entry in each window of length w

I Double for each coefficient, add for nonzero coefficients
I Expected number of additions: ≈ len(k)/(w + 1) + 2w−1

I Standard optimization: Use signed representation
I For curves with efficiently computable endomorphism ϕ:

I Split scalar k in k1, k2, s.t. kP = k1P + k2ϕ(P)
I Perform double-scalar multiplication with half-size scalars
I Halves the number of doublings
I Estimate by Galbraith, Lin, Scott (2009): speedup of 30% to 40%

Constructive and destructive implementations of elliptic-curve arithmetic 6

Sliding-window scalar multiplication

I Choose window size w
I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Rewrite scalar k as k =
∑
ki2

i with ki in {0, 1, 3, 5, . . . , 2w − 1}
with at most one non-zero entry in each window of length w

I Double for each coefficient, add for nonzero coefficients
I Expected number of additions: ≈ len(k)/(w + 1) + 2w−1

I Standard optimization: Use signed representation

I For curves with efficiently computable endomorphism ϕ:
I Split scalar k in k1, k2, s.t. kP = k1P + k2ϕ(P)
I Perform double-scalar multiplication with half-size scalars
I Halves the number of doublings
I Estimate by Galbraith, Lin, Scott (2009): speedup of 30% to 40%

Constructive and destructive implementations of elliptic-curve arithmetic 6

Sliding-window scalar multiplication

I Choose window size w
I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Rewrite scalar k as k =
∑
ki2

i with ki in {0, 1, 3, 5, . . . , 2w − 1}
with at most one non-zero entry in each window of length w

I Double for each coefficient, add for nonzero coefficients
I Expected number of additions: ≈ len(k)/(w + 1) + 2w−1

I Standard optimization: Use signed representation
I For curves with efficiently computable endomorphism ϕ:

I Split scalar k in k1, k2, s.t. kP = k1P + k2ϕ(P)
I Perform double-scalar multiplication with half-size scalars
I Halves the number of doublings
I Estimate by Galbraith, Lin, Scott (2009): speedup of 30% to 40%

Constructive and destructive implementations of elliptic-curve arithmetic 6

Problem: timing attacks

I Branch conditions depend on secret data (scalar)
I Code takes different amount of time depending on the scalar
I This is true even if the code in both possible branches takes the

same amount of time (reason: branch prediction)
I Attacker can measure time and deduce information about the scalar

I You don’t think this is scary? Wait for Billy Bob Brumley’s talk
tomorrow.

Constructive and destructive implementations of elliptic-curve arithmetic 7

Problem: timing attacks

I Branch conditions depend on secret data (scalar)
I Code takes different amount of time depending on the scalar
I This is true even if the code in both possible branches takes the

same amount of time (reason: branch prediction)
I Attacker can measure time and deduce information about the scalar
I You don’t think this is scary? Wait for Billy Bob Brumley’s talk

tomorrow.

Constructive and destructive implementations of elliptic-curve arithmetic 7

Fixed-window scalar multiplication

I Choose window size w
I Represent scalar k in base 2w: k =

∑
ki2

iw

I Precompute 0P, 1P, 2P, 3P, . . . , (2w − 1)P

I For each ki: add kiP into result; do w point doublings

I Standard optimization: Use signed representation
I Number of additions: dlen(k)/we+ 2w

I Penalty from more additions is relatively more serious for curves with
endomorphisms

I Dragons ahead!
I Requires constant-time EC addition, e.g., use complete Edwards

addition formulas
I Requires constant-time lookups of precomputed points (more later)
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 8

Fixed-window scalar multiplication

I Choose window size w
I Represent scalar k in base 2w: k =

∑
ki2

iw

I Precompute 0P, 1P, 2P, 3P, . . . , (2w − 1)P

I For each ki: add kiP into result; do w point doublings
I Standard optimization: Use signed representation

I Number of additions: dlen(k)/we+ 2w

I Penalty from more additions is relatively more serious for curves with
endomorphisms

I Dragons ahead!
I Requires constant-time EC addition, e.g., use complete Edwards

addition formulas
I Requires constant-time lookups of precomputed points (more later)
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 8

Fixed-window scalar multiplication

I Choose window size w
I Represent scalar k in base 2w: k =

∑
ki2

iw

I Precompute 0P, 1P, 2P, 3P, . . . , (2w − 1)P

I For each ki: add kiP into result; do w point doublings
I Standard optimization: Use signed representation
I Number of additions: dlen(k)/we+ 2w

I Penalty from more additions is relatively more serious for curves with
endomorphisms

I Dragons ahead!
I Requires constant-time EC addition, e.g., use complete Edwards

addition formulas
I Requires constant-time lookups of precomputed points (more later)
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 8

Fixed-window scalar multiplication

I Choose window size w
I Represent scalar k in base 2w: k =

∑
ki2

iw

I Precompute 0P, 1P, 2P, 3P, . . . , (2w − 1)P

I For each ki: add kiP into result; do w point doublings
I Standard optimization: Use signed representation
I Number of additions: dlen(k)/we+ 2w

I Penalty from more additions is relatively more serious for curves with
endomorphisms

I Dragons ahead!
I Requires constant-time EC addition, e.g., use complete Edwards

addition formulas
I Requires constant-time lookups of precomputed points (more later)
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 8

Montgomery Ladder

I Use Montgomery curve By2 = x3 +Ax2 + x

I Given the x-coordinate of P , compute the x-coordinate of kP
I For each bit of the scalar k perform a “ladder step”:

I From (xQ−P , xP , xQ) compute (xQ−P , x2P , xP+Q) (one addition,
one doubling)

I If the current bit is different from the next bit: swap x2P and xP+Q

I Advantage: Very regular structure, no table lookups
I Advantage: Point compression for free
I Dragons ahead!

I Requires constant-time conditional swap
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 9

Montgomery Ladder

I Use Montgomery curve By2 = x3 +Ax2 + x

I Given the x-coordinate of P , compute the x-coordinate of kP
I For each bit of the scalar k perform a “ladder step”:

I From (xQ−P , xP , xQ) compute (xQ−P , x2P , xP+Q) (one addition,
one doubling)

I If the current bit is different from the next bit: swap x2P and xP+Q

I Advantage: Very regular structure, no table lookups
I Advantage: Point compression for free

I Dragons ahead!
I Requires constant-time conditional swap
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 9

Montgomery Ladder

I Use Montgomery curve By2 = x3 +Ax2 + x

I Given the x-coordinate of P , compute the x-coordinate of kP
I For each bit of the scalar k perform a “ladder step”:

I From (xQ−P , xP , xQ) compute (xQ−P , x2P , xP+Q) (one addition,
one doubling)

I If the current bit is different from the next bit: swap x2P and xP+Q

I Advantage: Very regular structure, no table lookups
I Advantage: Point compression for free
I Dragons ahead!

I Requires constant-time conditional swap
I Requires constant-time finite-field arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 9

Constant-time field arithmetic

I Typical operation for reduction: If a ≥ p then a← (a− p)
I Same problem as before if a depends on secret data

I One way around this: Always subtract p:
b← (a ≥ p)
t← (a− p)
a← b · t+ (1− b) · a

I Better way around this: Never subtract p:
I Choose a representation that leaves room for values ≥ p
I For example: 5 64-bit registers, radix 251 to represent elements of

F2255−19

I Another advantage of such a redundant representation: fewer carries
I Optimal choice of representation highly depends on the field and the

target microarchitecture
I Very often redundant-representation software outperforms

non-redundant software (and is constant time!)

Constructive and destructive implementations of elliptic-curve arithmetic 10

Constant-time field arithmetic

I Typical operation for reduction: If a ≥ p then a← (a− p)
I Same problem as before if a depends on secret data
I One way around this: Always subtract p:

b← (a ≥ p)
t← (a− p)
a← b · t+ (1− b) · a

I Better way around this: Never subtract p:
I Choose a representation that leaves room for values ≥ p
I For example: 5 64-bit registers, radix 251 to represent elements of

F2255−19

I Another advantage of such a redundant representation: fewer carries
I Optimal choice of representation highly depends on the field and the

target microarchitecture
I Very often redundant-representation software outperforms

non-redundant software (and is constant time!)

Constructive and destructive implementations of elliptic-curve arithmetic 10

Constant-time field arithmetic

I Typical operation for reduction: If a ≥ p then a← (a− p)
I Same problem as before if a depends on secret data
I One way around this: Always subtract p:

b← (a ≥ p)
t← (a− p)
a← b · t+ (1− b) · a

I Better way around this: Never subtract p:
I Choose a representation that leaves room for values ≥ p
I For example: 5 64-bit registers, radix 251 to represent elements of

F2255−19

I Another advantage of such a redundant representation: fewer carries

I Optimal choice of representation highly depends on the field and the
target microarchitecture

I Very often redundant-representation software outperforms
non-redundant software (and is constant time!)

Constructive and destructive implementations of elliptic-curve arithmetic 10

Constant-time field arithmetic

I Typical operation for reduction: If a ≥ p then a← (a− p)
I Same problem as before if a depends on secret data
I One way around this: Always subtract p:

b← (a ≥ p)
t← (a− p)
a← b · t+ (1− b) · a

I Better way around this: Never subtract p:
I Choose a representation that leaves room for values ≥ p
I For example: 5 64-bit registers, radix 251 to represent elements of

F2255−19

I Another advantage of such a redundant representation: fewer carries
I Optimal choice of representation highly depends on the field and the

target microarchitecture
I Very often redundant-representation software outperforms

non-redundant software (and is constant time!)

Constructive and destructive implementations of elliptic-curve arithmetic 10

Some recent results, Intel processors

Performance on Nehalem/Westmere

I Bernstein, Duif, Lange, Schwabe, Yang (2011): 227348 cycles, no
endomorphisms, including point compression.
Included as crypto_scalarmult/curve25519/amd64-51/ in
SUPERCOP, http://bench.cr.yp.to/supercop.html

Performance on Sandy Bridge
I Hamburg (2012): 153000 cycles, no endomorphisms, including point

compression. Code not available.
I Longa, Sica (2012): 137000 cycles (or is it 145000?),

endomorphisms, not including point compression. Code not
available.

Constructive and destructive implementations of elliptic-curve arithmetic 11

http://bench.cr.yp.to/supercop.html

Some recent results, Intel processors

Performance on Sandy Bridge
I Hamburg (2012): 153000 cycles, no endomorphisms, including point

compression. Code not available.
I Longa, Sica (2012): 137000 cycles (or is it 145000?),

endomorphisms, not including point compression. Code not
available.

Performance on Ivy Bridge
I Bos, Costello, Hisil, Lauter (2012): � 140000 cycles, genus 2, no

endomorphisms, some compression. Code will be available in 13
days.

Constructive and destructive implementations of elliptic-curve arithmetic 11

Some recent results, Intel processors

Performance on Sandy Bridge
I Hamburg (2012): 153000 cycles, no endomorphisms, including point

compression. Code not available.
I Longa, Sica (2012): 137000 cycles (or is it 145000?),

endomorphisms, not including point compression. Code not
available.

I Schwabe (2012): 567000 cycles for 4 independent scalar
multiplications (141750 cycles per scalar multiplication), no
endomorphisms, including point compression. Code online soon at
http://cryptojedi.org/crypto/#curve25519avx.

Performance on Ivy Bridge
I Bos, Costello, Hisil, Lauter (2012): � 140000 cycles, genus 2, no

endomorphisms, some compression. Code will be available in 13
days.

Constructive and destructive implementations of elliptic-curve arithmetic 11

http://cryptojedi.org/crypto/#curve25519avx

Some recent results, Intel processors

Performance on Sandy Bridge
I Hamburg (2012): 153000 cycles, no endomorphisms, including point

compression. Code not available.
I Longa, Sica (2012): 137000 cycles (or is it 145000?),

endomorphisms, not including point compression. Code not
available.

I Schwabe (2012): 567000 cycles for 4 independent scalar
multiplications (� 142000 cycles per scalar multiplication), no
endomorphisms, including point compression. Code online soon at
http://cryptojedi.org/crypto/#curve25519avx.

Performance on Ivy Bridge
I Bos, Costello, Hisil, Lauter (2012): � 140000 cycles, genus 2, no

endomorphisms, some compression. Code will be available in 13
days.

Constructive and destructive implementations of elliptic-curve arithmetic 11

http://cryptojedi.org/crypto/#curve25519avx

Some recent results, ARM processors

Performance on ARM Cortex A8
I Bernstein, Schwabe (2012): 460200 cycles, no endomorphisms,

including point compression.
Included as crypto_scalarmult/curve25519/neon2/ in
SUPERCOP, http://bench.cr.yp.to/supercop.html

Performance on ARM Cortex A9
I Bernstein, Schwabe (2012): 577997 cycles, no endomorphisms,

including point compression. Same code as above.
I Hamburg (2012): 619000 cycles, no endomorphisms, including point

compression. Code not available.

Performance on Qualcomm Snapdragon S3
I Bernstein, Schwabe (2012): 425582 cycles, no endomorphisms,

including point compression. Same code as above.

Constructive and destructive implementations of elliptic-curve arithmetic 12

http://bench.cr.yp.to/supercop.html

Ed25519 elliptic-curve signatures

I Joint work with Bernstein, Duif, Lange, and Yang
I Signature scheme (variant of Schnorr signatures) based on

arithmetic on twisted Edwards curve F2255−19

I Curve is birationally equivalent to the Montgomery curve used in
Curve25519

I B is a fixed base point on the curve
I ` is a 253-bit prime, s.t. `B = (0, 1)

I ECC secret key: random scalar a
I Public key: 32-byte encoding A of A = aB (y and one bit of x)

Constructive and destructive implementations of elliptic-curve arithmetic 13

EdDSA signing

I Compute R = rB for pseudorandom per-message secret r
I Define S = (r + SHA-512(R,A,M)a) mod `

I Signature on message M : (R,S), with S the 256-bit little-endian
encoding of S

I Main operation: Compute rB:
I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute

R =

63∑
i=0

16iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I R is represented in extended coordinates (X,Y, Z, T) (Hisil, Wong,

Carter, Dawson, 2008)
I Table entries (x, y) are stored as (y − x, y + x, 2dxy)

Constructive and destructive implementations of elliptic-curve arithmetic 14

EdDSA signing

I Compute R = rB for pseudorandom per-message secret r
I Define S = (r + SHA-512(R,A,M)a) mod `

I Signature on message M : (R,S), with S the 256-bit little-endian
encoding of S

I Main operation: Compute rB:
I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute

R =

63∑
i=0

16iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I R is represented in extended coordinates (X,Y, Z, T) (Hisil, Wong,

Carter, Dawson, 2008)
I Table entries (x, y) are stored as (y − x, y + x, 2dxy)

Constructive and destructive implementations of elliptic-curve arithmetic 14

EdDSA signing

I Compute R = rB for pseudorandom per-message secret r
I Define S = (r + SHA-512(R,A,M)a) mod `

I Signature on message M : (R,S), with S the 256-bit little-endian
encoding of S

I Main operation: Compute rB:
I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute

R =
63∑
i=0

16iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I R is represented in extended coordinates (X,Y, Z, T) (Hisil, Wong,

Carter, Dawson, 2008)
I Table entries (x, y) are stored as (y − x, y + x, 2dxy)

Constructive and destructive implementations of elliptic-curve arithmetic 14

EdDSA signing

I Compute R = rB for pseudorandom per-message secret r
I Define S = (r + SHA-512(R,A,M)a) mod `

I Signature on message M : (R,S), with S the 256-bit little-endian
encoding of S

I Main operation: Compute rB:
I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute

R =
63∑
i=0

16iriB

I 64 table lookups, 64 conditional point negations, 63 point additions

I R is represented in extended coordinates (X,Y, Z, T) (Hisil, Wong,
Carter, Dawson, 2008)

I Table entries (x, y) are stored as (y − x, y + x, 2dxy)

Constructive and destructive implementations of elliptic-curve arithmetic 14

EdDSA signing

I Compute R = rB for pseudorandom per-message secret r
I Define S = (r + SHA-512(R,A,M)a) mod `

I Signature on message M : (R,S), with S the 256-bit little-endian
encoding of S

I Main operation: Compute rB:
I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute

R =
63∑
i=0

16iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I R is represented in extended coordinates (X,Y, Z, T) (Hisil, Wong,

Carter, Dawson, 2008)
I Table entries (x, y) are stored as (y − x, y + x, 2dxy)

Constructive and destructive implementations of elliptic-curve arithmetic 14

Timing attacks strike again

I Lookup addresses depend on secret scalar
I Lookups are fast if data is in cache, slow otherwise
I Attacker measures time, deduces information about the key

I Example for a cache-timing attack: In 2006 Osvik, Shamir, and
Tromer showed how to steal the 256-bit AES key of the Linux
dmcrypt harddisk encryption in just 65 ms.

I Countermeasure used in Ed25519: Always load all 8 table entries,
use arithmetic to choose the right one, e.g. at position r0:
D ← (1, 1, 0)
b← (|r0| = 1)
D ← b · Table[1] + (1− b) ·D
b← (|r0| = 2)
D ← b · Table[2] + (1− b) ·D
. . .

I Always compute negation, use arithmetic to choose D or −D

Constructive and destructive implementations of elliptic-curve arithmetic 15

Timing attacks strike again

I Lookup addresses depend on secret scalar
I Lookups are fast if data is in cache, slow otherwise
I Attacker measures time, deduces information about the key
I Example for a cache-timing attack: In 2006 Osvik, Shamir, and

Tromer showed how to steal the 256-bit AES key of the Linux
dmcrypt harddisk encryption in just 65 ms.

I Countermeasure used in Ed25519: Always load all 8 table entries,
use arithmetic to choose the right one, e.g. at position r0:
D ← (1, 1, 0)
b← (|r0| = 1)
D ← b · Table[1] + (1− b) ·D
b← (|r0| = 2)
D ← b · Table[2] + (1− b) ·D
. . .

I Always compute negation, use arithmetic to choose D or −D

Constructive and destructive implementations of elliptic-curve arithmetic 15

Timing attacks strike again

I Lookup addresses depend on secret scalar
I Lookups are fast if data is in cache, slow otherwise
I Attacker measures time, deduces information about the key
I Example for a cache-timing attack: In 2006 Osvik, Shamir, and

Tromer showed how to steal the 256-bit AES key of the Linux
dmcrypt harddisk encryption in just 65 ms.

I Countermeasure used in Ed25519: Always load all 8 table entries,
use arithmetic to choose the right one, e.g. at position r0:
D ← (1, 1, 0)
b← (|r0| = 1)
D ← b · Table[1] + (1− b) ·D
b← (|r0| = 2)
D ← b · Table[2] + (1− b) ·D
. . .

I Always compute negation, use arithmetic to choose D or −D

Constructive and destructive implementations of elliptic-curve arithmetic 15

Timing attacks strike again

I Lookup addresses depend on secret scalar
I Lookups are fast if data is in cache, slow otherwise
I Attacker measures time, deduces information about the key
I Example for a cache-timing attack: In 2006 Osvik, Shamir, and

Tromer showed how to steal the 256-bit AES key of the Linux
dmcrypt harddisk encryption in just 65 ms.

I Countermeasure used in Ed25519: Always load all 8 table entries,
use arithmetic to choose the right one, e.g. at position r0:
D ← (1, 1, 0)
b← (|r0| = 1)
D ← b · Table[1] + (1− b) ·D
b← (|r0| = 2)
D ← b · Table[2] + (1− b) ·D
. . .

I Always compute negation, use arithmetic to choose D or −D

Constructive and destructive implementations of elliptic-curve arithmetic 15

EdDSA verification

I Verify signature (R,S) on message M with public key A
I Check equation

SB − SHA-512(R,A,M)A = R

I Actually: Compare encoding of SB − SHA-512(R,A,M)A with R
I Two main parts:

I Decompression of A
I Computation of SB − SHA-512(R,A,M)A

I For second part do the following:
I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)

Constructive and destructive implementations of elliptic-curve arithmetic 16

EdDSA verification

I Verify signature (R,S) on message M with public key A
I Check equation

SB − SHA-512(R,A,M)A = R

I Actually: Compare encoding of SB − SHA-512(R,A,M)A with R

I Two main parts:
I Decompression of A
I Computation of SB − SHA-512(R,A,M)A

I For second part do the following:
I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)

Constructive and destructive implementations of elliptic-curve arithmetic 16

EdDSA verification

I Verify signature (R,S) on message M with public key A
I Check equation

SB − SHA-512(R,A,M)A = R

I Actually: Compare encoding of SB − SHA-512(R,A,M)A with R
I Two main parts:

I Decompression of A
I Computation of SB − SHA-512(R,A,M)A

I For second part do the following:
I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)

Constructive and destructive implementations of elliptic-curve arithmetic 16

EdDSA verification

I Verify signature (R,S) on message M with public key A
I Check equation

SB − SHA-512(R,A,M)A = R

I Actually: Compare encoding of SB − SHA-512(R,A,M)A with R
I Two main parts:

I Decompression of A
I Computation of SB − SHA-512(R,A,M)A

I For second part do the following:
I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)

Constructive and destructive implementations of elliptic-curve arithmetic 16

Point decompression

I Before double-scalar multiplication: compute x coordinate xA of A
as

xA = ±
√

(y2A − 1)/(dy2A + 1)

I Looks like a square root and an inversion is required

I As 2255 − 19 ≡ 5 (mod 8), for each square α we have α2 = β4,
with β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8

= u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Only one big exponentiation, cost similar to just inversion with
Fermat

Constructive and destructive implementations of elliptic-curve arithmetic 17

Point decompression

I Before double-scalar multiplication: compute x coordinate xA of A
as

xA = ±
√

(y2A − 1)/(dy2A + 1)

I Looks like a square root and an inversion is required
I As 2255 − 19 ≡ 5 (mod 8), for each square α we have α2 = β4,

with β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8

= u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Only one big exponentiation, cost similar to just inversion with
Fermat

Constructive and destructive implementations of elliptic-curve arithmetic 17

Point decompression

I Before double-scalar multiplication: compute x coordinate xA of A
as

xA = ±
√

(y2A − 1)/(dy2A + 1)

I Looks like a square root and an inversion is required
I As 2255 − 19 ≡ 5 (mod 8), for each square α we have α2 = β4,

with β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8

= u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Only one big exponentiation, cost similar to just inversion with
Fermat

Constructive and destructive implementations of elliptic-curve arithmetic 17

Point decompression

I Before double-scalar multiplication: compute x coordinate xA of A
as

xA = ±
√

(y2A − 1)/(dy2A + 1)

I Looks like a square root and an inversion is required
I As 2255 − 19 ≡ 5 (mod 8), for each square α we have α2 = β4,

with β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Only one big exponentiation, cost similar to just inversion with
Fermat

Constructive and destructive implementations of elliptic-curve arithmetic 17

Faster batch verification

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = SHA-512(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at

Africacrypt 2012: Batch verification without randomizers; broken by
Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

I Same Indocrypt 2012 paper: faster batch forgery identification

Constructive and destructive implementations of elliptic-curve arithmetic 18

Faster batch verification

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = SHA-512(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at

Africacrypt 2012: Batch verification without randomizers; broken by
Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

I Same Indocrypt 2012 paper: faster batch forgery identification

Constructive and destructive implementations of elliptic-curve arithmetic 18

Faster batch verification

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = SHA-512(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at

Africacrypt 2012: Batch verification without randomizers; broken by
Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

I Same Indocrypt 2012 paper: faster batch forgery identification

Constructive and destructive implementations of elliptic-curve arithmetic 18

Faster batch verification

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = SHA-512(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication

I Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at
Africacrypt 2012: Batch verification without randomizers; broken by
Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

I Same Indocrypt 2012 paper: faster batch forgery identification

Constructive and destructive implementations of elliptic-curve arithmetic 18

Faster batch verification

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = SHA-512(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at

Africacrypt 2012: Batch verification without randomizers; broken by
Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

I Same Indocrypt 2012 paper: faster batch forgery identification

Constructive and destructive implementations of elliptic-curve arithmetic 18

Faster batch verification

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = SHA-512(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at

Africacrypt 2012: Batch verification without randomizers; broken by
Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

I Same Indocrypt 2012 paper: faster batch forgery identification

Constructive and destructive implementations of elliptic-curve arithmetic 18

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation
I Further optimization: Start with heap without the zi until largest

scalar has ≤ 128 bits
I Then: extend heap with the zi

Constructive and destructive implementations of elliptic-curve arithmetic 19

The Bos-Coster algorithm

II Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits

I Requires fast access to the two largest scalars: put scalars into a
heap

I Crucial for good performance: fast heap implementation
I Further optimization: Start with heap without the zi until largest

scalar has ≤ 128 bits
I Then: extend heap with the zi

Constructive and destructive implementations of elliptic-curve arithmetic 19

The Bos-Coster algorithm

II Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation

I Further optimization: Start with heap without the zi until largest
scalar has ≤ 128 bits

I Then: extend heap with the zi

Constructive and destructive implementations of elliptic-curve arithmetic 19

A fast heap

II Heap is a binary tree, each parent node is larger than the two child
nodes

I Data structure is stored as a simple array, positions in the array
determine positions in the tree

I Root is at position 0, left child node at position 1, right child node
at position 2 etc.

I For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position b(i− 1)/2c

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

Constructive and destructive implementations of elliptic-curve arithmetic 20

A fast heap

I Heap is a binary tree, each parent node is larger than the two child
nodes

I Data structure is stored as a simple array, positions in the array
determine positions in the tree

I Root is at position 0, left child node at position 1, right child node
at position 2 etc.

I For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position b(i− 1)/2c

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

Constructive and destructive implementations of elliptic-curve arithmetic 20

A fast heap

I Heap is a binary tree, each parent node is larger than the two child
nodes

I Data structure is stored as a simple array, positions in the array
determine positions in the tree

I Root is at position 0, left child node at position 1, right child node
at position 2 etc.

I For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position b(i− 1)/2c

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

Constructive and destructive implementations of elliptic-curve arithmetic 20

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation

I Further optimization: Start with heap without the zi until largest
scalar has ≤ 128 bits

I Then: extend heap with the zi
I Optimize the heap on the assembly level

Constructive and destructive implementations of elliptic-curve arithmetic 21

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation
I Further optimization: Start with heap without the zi until largest

scalar has ≤ 128 bits
I Then: extend heap with the zi

I Optimize the heap on the assembly level

Constructive and destructive implementations of elliptic-curve arithmetic 21

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation
I Further optimization: Start with heap without the zi until largest

scalar has ≤ 128 bits
I Then: extend heap with the zi
I Optimize the heap on the assembly level

Constructive and destructive implementations of elliptic-curve arithmetic 21

Ed25519 performance

Performance on Intel Nehalem/Westmere

I 87548 cycles for signing
I 273364 cycles for verification
I 8550000 cycles to verify a batch of 64 valid signatures (� 134000

cycles per signature)

Performance on ARM Cortex A8
I Bernstein, Schwabe (2012): 244655 cycles for signing
I Bernstein, Schwabe (2012): 624846 cycles for verification

Followup results by Hamburg
I 52000/170000 cycles for signing/verification on Sandy Bridge
I 256000/624000 cycles for signing/verification on Cortex A9

Constructive and destructive implementations of elliptic-curve arithmetic 22

Ed25519 performance

Performance on Intel Nehalem/Westmere

I 87548 cycles for signing
I 273364 cycles for verification
I 8550000 cycles to verify a batch of 64 valid signatures (� 134000

cycles per signature)

Performance on ARM Cortex A8
I Bernstein, Schwabe (2012): 244655 cycles for signing
I Bernstein, Schwabe (2012): 624846 cycles for verification

Followup results by Hamburg
I 52000/170000 cycles for signing/verification on Sandy Bridge
I 256000/624000 cycles for signing/verification on Cortex A9

Constructive and destructive implementations of elliptic-curve arithmetic 22

Pollard rho for the ECDLP

I So far: Branches and table lookups were bad with secret scalars
I They should be no problem at all in cryptanalysis
I Consider the parallel Pollard rho algorithm to find k, given P and
Q = kP in G ⊆ E(Fq)

Constructive and destructive implementations of elliptic-curve arithmetic 23

Parallel Pollard rho (clients)

I Use pseudorandom function f
I Start with W0 = n0P +m0Q for random n0,m0

I Iteratively apply f to obtain Wi+1 = f(Wi)

I At each step, check whether Wi is a distinguished point (DP), e.g.,
“last k bits of Wi’s encoding are 0”

I When finding a DP Wd: send (n0,m0,Wd) to the server, start with
new W0

Constructive and destructive implementations of elliptic-curve arithmetic 24

Parallel Pollard rho (server)

I Server searches in incoming data for collisions (n0,m0,Wd),
(n′0,m

′
0,Wd)

I Recomputes the two walks to Wd, updates ni,mi and n′i,m
′
i to

obtain nd,md, n
′
d,m

′
d with

ndP +mdQ = n′dP +m′dQ = Wd

I Computes discrete log

k = (nd − n′d)/(m′d −md) (mod |G|)

I Note that f needs to preserve knowledge about the linear
combination in P and Q

Constructive and destructive implementations of elliptic-curve arithmetic 25

Additive walks
I Easy way to define f :

f(W) = n(W)P +m(W)Q

with pseudorandom functions n,m
I Cost: two hash-function calls, one double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, . . . , r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticeably nonrandom, they require more

iterations
I Teske showed that large r provides close-to-random behavior (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

Constructive and destructive implementations of elliptic-curve arithmetic 26

Additive walks
I Easy way to define f :

f(W) = n(W)P +m(W)Q

with pseudorandom functions n,m
I Cost: two hash-function calls, one double-scalar multiplication
I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, . . . , r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticeably nonrandom, they require more

iterations
I Teske showed that large r provides close-to-random behavior (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

Constructive and destructive implementations of elliptic-curve arithmetic 26

Additive walks
I Easy way to define f :

f(W) = n(W)P +m(W)Q

with pseudorandom functions n,m
I Cost: two hash-function calls, one double-scalar multiplication
I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, . . . , r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition

I Additive walks are noticeably nonrandom, they require more
iterations

I Teske showed that large r provides close-to-random behavior (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

Constructive and destructive implementations of elliptic-curve arithmetic 26

Additive walks
I Easy way to define f :

f(W) = n(W)P +m(W)Q

with pseudorandom functions n,m
I Cost: two hash-function calls, one double-scalar multiplication
I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, . . . , r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticeably nonrandom, they require more

iterations

I Teske showed that large r provides close-to-random behavior (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

Constructive and destructive implementations of elliptic-curve arithmetic 26

Additive walks
I Easy way to define f :

f(W) = n(W)P +m(W)Q

with pseudorandom functions n,m
I Cost: two hash-function calls, one double-scalar multiplication
I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, . . . , r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticeably nonrandom, they require more

iterations
I Teske showed that large r provides close-to-random behavior (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

Constructive and destructive implementations of elliptic-curve arithmetic 26

Additive walks
I Easy way to define f :

f(W) = n(W)P +m(W)Q

with pseudorandom functions n,m
I Cost: two hash-function calls, one double-scalar multiplication
I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, . . . , r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticeably nonrandom, they require more

iterations
I Teske showed that large r provides close-to-random behavior (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

Constructive and destructive implementations of elliptic-curve arithmetic 26

Walks modulo negation

I So far, everything worked with any group G
I Now consider groups of points on elliptic curves
I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves, GLS curves, and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

Constructive and destructive implementations of elliptic-curve arithmetic 27

Walks modulo negation

I So far, everything worked with any group G
I Now consider groups of points on elliptic curves
I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves, GLS curves, and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

Constructive and destructive implementations of elliptic-curve arithmetic 27

Walks modulo negation

I So far, everything worked with any group G
I Now consider groups of points on elliptic curves
I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves, GLS curves, and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

Constructive and destructive implementations of elliptic-curve arithmetic 27

Walks modulo negation

I So far, everything worked with any group G
I Now consider groups of points on elliptic curves
I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves, GLS curves, and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

Constructive and destructive implementations of elliptic-curve arithmetic 27

Putting it together

I Precompute R0, . . . , Rr−1

I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}

I Problem: fruitless cycles
If t = h(Wi) = h(Wi+1)

, and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4, 6, . . .)
I Probability of a cycle of length 2c is ≈ 1/rc

Constructive and destructive implementations of elliptic-curve arithmetic 28

Putting it together

I Precompute R0, . . . , Rr−1

I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1)

, and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4, 6, . . .)
I Probability of a cycle of length 2c is ≈ 1/rc

Constructive and destructive implementations of elliptic-curve arithmetic 28

Putting it together

I Precompute R0, . . . , Rr−1

I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4, 6, . . .)
I Probability of a cycle of length 2c is ≈ 1/rc

Constructive and destructive implementations of elliptic-curve arithmetic 28

Putting it together

I Precompute R0, . . . , Rr−1

I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4, 6, . . .)
I Probability of a cycle of length 2c is ≈ 1/rc

Constructive and destructive implementations of elliptic-curve arithmetic 28

Putting it together

I Precompute R0, . . . , Rr−1

I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4, 6, . . .)
I Probability of a cycle of length 2c is ≈ 1/rc

Constructive and destructive implementations of elliptic-curve arithmetic 28

Putting it together

I Precompute R0, . . . , Rr−1

I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4, 6, . . .)
I Probability of a cycle of length 2c is ≈ 1/rc

Constructive and destructive implementations of elliptic-curve arithmetic 28

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles

I Iteration function did not use the negation map:
“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

Constructive and destructive implementations of elliptic-curve arithmetic 29

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

Constructive and destructive implementations of elliptic-curve arithmetic 29

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

Constructive and destructive implementations of elliptic-curve arithmetic 29

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

Constructive and destructive implementations of elliptic-curve arithmetic 29

Why are fruitless cycles so expensive?

The problem with large tables
I Probability of fruitless cycles gets smaller with larger r
I Using a huge r seems like an obvious fix

, but:
I precomputed points won’t fit into cache → performance penalty

from slow loads

SIMD computations
I SIMD: Same sequence of instructions carried out on different data
I Branching means (in the worst case): Sequentially execute both

branches

I Computing power of the the PlayStation 3 is entirely based on SIMD
computations

I SIMD becomes more and more important on all modern
microprocessors

Constructive and destructive implementations of elliptic-curve arithmetic 30

Why are fruitless cycles so expensive?

The problem with large tables
I Probability of fruitless cycles gets smaller with larger r
I Using a huge r seems like an obvious fix, but:
I precomputed points won’t fit into cache → performance penalty

from slow loads

SIMD computations
I SIMD: Same sequence of instructions carried out on different data
I Branching means (in the worst case): Sequentially execute both

branches

I Computing power of the the PlayStation 3 is entirely based on SIMD
computations

I SIMD becomes more and more important on all modern
microprocessors

Constructive and destructive implementations of elliptic-curve arithmetic 30

Why are fruitless cycles so expensive?

The problem with large tables
I Probability of fruitless cycles gets smaller with larger r
I Using a huge r seems like an obvious fix, but:
I precomputed points won’t fit into cache → performance penalty

from slow loads

SIMD computations
I SIMD: Same sequence of instructions carried out on different data
I Branching means (in the worst case): Sequentially execute both

branches

I Computing power of the the PlayStation 3 is entirely based on SIMD
computations

I SIMD becomes more and more important on all modern
microprocessors

Constructive and destructive implementations of elliptic-curve arithmetic 30

Why are fruitless cycles so expensive?

The problem with large tables
I Probability of fruitless cycles gets smaller with larger r
I Using a huge r seems like an obvious fix, but:
I precomputed points won’t fit into cache → performance penalty

from slow loads

SIMD computations
I SIMD: Same sequence of instructions carried out on different data
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the the PlayStation 3 is entirely based on SIMD

computations
I SIMD becomes more and more important on all modern

microprocessors

Constructive and destructive implementations of elliptic-curve arithmetic 30

Our approach

I Joint work with Bernstein and Lange: Get the
√

2-speedup with
SIMD

I Consider ECDLP on elliptic curve over Fp

I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P

I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

Constructive and destructive implementations of elliptic-curve arithmetic 31

Our approach

I Joint work with Bernstein and Lange: Get the
√

2-speedup with
SIMD

I Consider ECDLP on elliptic curve over Fp

I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)

I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

Constructive and destructive implementations of elliptic-curve arithmetic 31

Our approach

I Joint work with Bernstein and Lange: Get the
√

2-speedup with
SIMD

I Consider ECDLP on elliptic curve over Fp

I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise

I Occasionally check for 2-cycles:
I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

Constructive and destructive implementations of elliptic-curve arithmetic 31

Our approach

I Joint work with Bernstein and Lange: Get the
√

2-speedup with
SIMD

I Consider ECDLP on elliptic curve over Fp

I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

Constructive and destructive implementations of elliptic-curve arithmetic 31

Our approach

I Joint work with Bernstein and Lange: Get the
√

2-speedup with
SIMD

I Consider ECDLP on elliptic curve over Fp

I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

Constructive and destructive implementations of elliptic-curve arithmetic 31

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotically negligible compared to finite-field multiplications in
EC arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 32

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotically negligible compared to finite-field multiplications in
EC arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 32

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotically negligible compared to finite-field multiplications in
EC arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 32

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotically negligible compared to finite-field multiplications in
EC arithmetic

Constructive and destructive implementations of elliptic-curve arithmetic 32

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occurred: w/2

I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

Constructive and destructive implementations of elliptic-curve arithmetic 33

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occurred: w/2
I Checking without finding a fruitless cycle wastes one iteration

I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

Constructive and destructive implementations of elliptic-curve arithmetic 33

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occurred: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations

I Minimize 1/w + w/4r: Take w ≈ 2
√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

Constructive and destructive implementations of elliptic-curve arithmetic 33

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occurred: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

Constructive and destructive implementations of elliptic-curve arithmetic 33

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occurred: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

Constructive and destructive implementations of elliptic-curve arithmetic 33

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occurred: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

Constructive and destructive implementations of elliptic-curve arithmetic 33

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP

I (very-close-to) factor-
√

2 speedup through negation map
I Faster iterations

I Faster arithmetic in Z/(2128 − 3)Z (prime field has order
(2128 − 3)/76439)

I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

Constructive and destructive implementations of elliptic-curve arithmetic 34

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations

I Faster arithmetic in Z/(2128 − 3)Z (prime field has order
(2128 − 3)/76439)

I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

Constructive and destructive implementations of elliptic-curve arithmetic 34

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations
I Faster arithmetic in Z/(2128 − 3)Z (prime field has order

(2128 − 3)/76439)
I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

Constructive and destructive implementations of elliptic-curve arithmetic 34

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations
I Faster arithmetic in Z/(2128 − 3)Z (prime field has order

(2128 − 3)/76439)
I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles
I Negligible overhead (in practice!) from fruitless cycles

Constructive and destructive implementations of elliptic-curve arithmetic 34

References

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang: High-speed high-security signatures.
http://cryptojedi.org/papers/#ed25519

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe: On the correct
use of the negation map in the Pollard rho method.
http://cryptojedi.org/papers/#negation

Daniel J. Bernstein and Peter Schwabe: NEON crypto.
http://cryptojedi.org/papers/#neoncrypto

Constructive and destructive implementations of elliptic-curve arithmetic 35

http://cryptojedi.org/papers/#ed25519
http://cryptojedi.org/papers/#negation
http://cryptojedi.org/papers/#neoncrypto

