Verifying ECC software

Peter Schwabe
Radboud University, Nijmegen, The Netherlands

September 29, 2015
ECC 2015, Bordeaux, France

Verifying ECC software (mainly: verifying Curve25519 software)

Peter Schwabe

Radboud University, Nijmegen, The Netherlands

September 29, 2015
ECC 2015, Bordeaux, France

X25519

- Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: "Curve25519")
- Secret keys: 32 -byte little-endian scalars
- Public keys: 32 -byte arrays, encoding x-coordinate of a point on

$$
E: y^{2}=x^{3}+486662 x^{2}+x
$$

over $\mathbb{F}_{2^{255}-19}$

- Base point: $(9,0, \ldots, 0)$

X25519

- Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: "Curve25519")
- Secret keys: 32 -byte little-endian scalars
- Public keys: 32 -byte arrays, encoding x-coordinate of a point on

$$
E: y^{2}=x^{3}+486662 x^{2}+x
$$

over $\mathbb{F}_{2^{255}-19}$

- Base point: $(9,0, \ldots, 0)$
- Given secret key s and public key (or base point) P :
- Copy s to s^{\prime}
- Set least significant 3 bits of s^{\prime} to zero
- Set most significant bit of s^{\prime} to zero
- Set second-most significant bit of s^{\prime} to one
- Compute x-coordinate of $s^{\prime} P$

The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_{P} of some point P Ensure: $x_{k P}$
$X_{1}=x_{P} ; X_{2}=1 ; Z_{2}=0 ; X_{3}=x_{P} ; Z_{3}=1$
for $i \leftarrow n-1$ downto 0 do
if bit i of k is 1 then
$(X 3, Z 3, X 2, Z 2) \leftarrow \operatorname{ladderstep}(X 1, X 3, Z 3, X 2, Z 2)$
else
$(X 2, Z 2, X 3, Z 3) \leftarrow$ ladderstep $(X 1, X 2, Z 2, X 3, Z 3)$
end if
end for
return $X_{2} \cdot Z_{2}^{-1}$

One Montgomery "ladder step"

const $a 24=(A+2) / 4$ (A from the curve equation) function ladderstep $\left(X_{Q-P}, X_{P}, Z_{P}, X_{Q}, Z_{Q}\right)$
$t_{1} \leftarrow X_{P}+Z_{P}$
$t_{6} \leftarrow t_{1}^{2}$
$t_{2} \leftarrow X_{P}-Z_{P}$
$t_{7} \leftarrow t_{2}^{2}$
$t_{5} \leftarrow t_{6}-t_{7}$
$t_{3} \leftarrow X_{Q}+Z_{Q}$
$t_{4} \leftarrow X_{Q}-Z_{Q}$
$t_{8} \leftarrow t_{4} \cdot t_{1}$
$t_{9} \leftarrow t_{3} \cdot t_{2}$
$X_{P+Q} \leftarrow\left(t_{8}+t_{9}\right)^{2}$
$Z_{P+Q} \leftarrow X_{Q-P} \cdot\left(t_{8}-t_{9}\right)^{2}$
$X_{2 P} \leftarrow t_{6} \cdot t_{7}$
$Z_{2 P} \leftarrow t_{5} \cdot\left(t_{7}+a 24 \cdot t_{5}\right)$
return $\left(X_{2 P}, Z_{2 P}, X_{P+Q}, Z_{P+Q}\right)$
end function

Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers

Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
- All of this software set speed records on the respective platform

Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
- All of this software set speed records on the respective platform

Secure software?

- Real-world attackers often don't break the math
- Often very practical: timing attacks
- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence ${ }^{-1}$ to obtain secret data

Secure software?

- Real-world attackers often don't break the math
- Often very practical: timing attacks
- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence ${ }^{-1}$ to obtain secret data
- Examples:
- Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux's dmcrypt in just 65 ms

Secure software?

- Real-world attackers often don't break the math
- Often very practical: timing attacks
- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence ${ }^{-1}$ to obtain secret data
- Examples:
- Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux's dmcrypt in just 65 ms
- Benger, van de Pol, Smart, Yarom, 2014: "reasonable level of success in recovering the secret key" for OpenSSL ECDSA using secp256k1 "with as little as 200 signatures"

Constant-time software

Avoid secret branch conditions

- Branches largely influence timing of program
- Secret branch conditions leak information
- "Balancing branches" is typically insufficient
- \Rightarrow No data flow from secret data into branch conditions!

Constant-time software

Avoid secret branch conditions

- Branches largely influence timing of program
- Secret branch conditions leak information
- "Balancing branches" is typically insufficient
- \Rightarrow No data flow from secret data into branch conditions!

Avoid memory access at secret positions

- Caches influence timing depending on address
- Attackers can potentially control cache lines
- Caches are not the only problem (e.g., store-to-load forwarding)
- \Rightarrow No data flow from secret data into addresses!

cmov

```
/* decision bit b has to be either 0 or 1 */
void cmov(uint32 *r, uint32 *a, uint32 b)
{
    uint32 t;
    b = -b; /* Now b is either 0 or Oxfffffffff */
    t = (*r ~ *a) & b;
    *r ^= t;
}
```


"Verifying" constant-time behavior

Run in valgrind with uninitialized secret data (or use Langley's ctgrind)
[short demo]

Correct software?

"Are you actually sure that your software is correct?"
—prof. Gerhard Woeginger, Jan. 24, 2011.

Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
- triggers the bug if secret bit is 0
- does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit

Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
- triggers the bug if secret bit is 0
- does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)

Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
- triggers the bug if secret bit is 0
- does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)
- Similar bug, again in OpenSSL, fixed in Jan. 2015
- Unclear whether that one can be exploited

Arithmetic in $\mathbb{F}_{2^{255}-19}$ for AMD64

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Arithmetic in $\mathbb{F}_{2^{255}-19}$ for AMD64

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 464 -bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2^{51}

- Instead, break into 564 -bit integers, use radix 2^{51}
- Can delay carry operations; carry "en bloc"
- Schoolbook multiplication now 25 64-bit integer multiplications
- Easy to merge multiplication with reduction (multiplies by 19)
- Better performance on Westmere/Nehalem, worse on 65 nm Core 2 and AMD processors

Bug in the radix-64 reduction

```
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi
```


Bug in the radix-64 reduction

```
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```


Bug in the radix-64 reduction

```
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```

Full software package contains 8912 lines of qhasm code!

Directions to correct crypto

Testing

- Is cheap, catches many bugs
- Does not conflict with performance
- Provides very high confidence in correctness for some crypto algorithms
- Typically fails to catch very rarely triggered bugs

Directions to correct crypto

Audits

- Expensive (time and/or money)
- Conflicts with performance
- Standard approach to ensure correctness and quality of crypto software

Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance

Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
- Should focus on cases where tests fail

Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
- Limbs a_{0}, \ldots, a_{n} compose a field element A
- Limbs b_{0}, \ldots, b_{n} compose a field element B
- Limbs r_{0}, \ldots, r_{n} compose a field element R
- $R=A \cdot B$

Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
- Limbs a_{0}, \ldots, a_{n} compose a field element A
- Limbs b_{0}, \ldots, b_{n} compose a field element B
- Limbs r_{0}, \ldots, r_{n} compose a field element R
- $R=A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations

Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
- Limbs a_{0}, \ldots, a_{n} compose a field element A
- Limbs b_{0}, \ldots, b_{n} compose a field element B
- Limbs r_{0}, \ldots, r_{n} compose a field element R
- $R=A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations
- Even better: feed to even higher level verification
- Verify that the sequence of field operations accomplishes EC arithmetic

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
- Annotate qhasm code
- Translate annotated qhasm automatically to SMT-solver boolector
- Use boolector to verify software

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
- Annotate qhasm code
- Translate annotated qhasm automatically to SMT-solver boolector
- Use boolector to verify software
- Verification target: Montgomery ladder step of X25519:
- 5 multiplications in $\mathbb{F}_{2^{255}-19}$
- 4 squarings in $\mathbb{F}_{2255-19}$
- 1 multiplication by 121666
- Several additions and subtractions

Example: Addition in radix 2^{51}

```
\#// assume \(0<=u \mathrm{x} 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4<=\mathrm{u} 2 * * 51+2 * * 15\)
\#// assume \(0<=u\) y0, y1, y2, y3, y4 <=u \(2 * * 51+2 * * 15\)
\(\mathrm{r} 0=\mathrm{x} 0\)
\(\mathrm{r} 1=\mathrm{x} 1\)
r2 = x2
r3 \(=x 3\)
r4 \(=x 4\)
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4
\#// var sum_x = x0@u320 + x1@u320 * 2**51 + x2@u320 * 2**102 \}
                        \(+\mathrm{x} 3 @ \mathrm{u} 320\) * \(2 * * 153+\mathrm{x} 4 @ u 320 * 2 * * 204\)
\#// sum_y = y0@u320 + y1@u320 * 2**51 + y2@u320 * 2**102 \}
    + y3@u320 * \(2 * * 153+\) y4@u320 * \(2 * * 204\)
\#// sum_r = r0@u320 + r1@u320 * 2**51 + r2@u320 * 2**102 \}
+ r3@u320 * 2**153 + r4@u320 * 2**204
\#// assert (sum_r - (sum_x + sum_y)) \% (2**255 - 19) = 0 \&\&
\#// \(0<=u r 0, r 1, r 2, r 3, r 4<u \quad 2 * * 53\)
```


How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
- 217 lines of qhasm, including variable declarations
- 589 lines of annotations

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
- 217 lines of qhasm, including variable declarations
- 589 lines of annotations
- Large amount of manual work on top of assembly optimization
- Writing verifiable code requires expert knowledge from two domains!
- Verification of just multiplication takes >90 hours

Overall results

- Formally verified Montgomery ladderstep
- "Redundant" radix- 2^{51} representation
- Non-redundant radix- 2^{64} representation
- Reproduced bug in original version of the software
- Most verification used automatic qhasm \rightarrow boolector translation
- Tiny bit of code in radix- 2^{64} needed proof assistant Coq

Another approach. . .

- 2 problems with SMT approach:
- Huge amount of (manual) annotations
- Long verification time

Another approach. . .

- 2 problems with SMT approach:
- Huge amount of (manual) annotations
- Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Another approach. . .

- 2 problems with SMT approach:
- Huge amount of (manual) annotations
- Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Work in progress with Bernstein

- Annotate C code (later: also qhasm)
- (Currently) use C++ compiler and operator overloading to
- Keep track of computation graph
- Keep track of worst-case ranges of limbs
- Output polynomial relations to Sage
- Use Sage to verify correctness of C code

Example: addition (radix $2^{25.5}$)

```
crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];
verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);
fe_add(h,f,g);
verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);
```


Example: multiplication

```
crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];
verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);
fe_mul(h,f,g);
verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertprodmod(&vh,&vf,&vg,"2^255-19");
```


A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it
- Still too slow for big chunks of code
- Problem: verification always goes back to the beginning
- Idea: Declare that we trust already verified results
- This is known as "cutting" the verification

Let's "cut some limbs"

Let's call it a draw

First results and TODOs

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in $\approx 1: 10$ minutes

First results and TODOs

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in $\approx 1: 10$ minutes

TODOs

- Support final compression to byte array
- Translate to higher-level view (ECC arithmetic, inversion)
- Support assembly
- Support "non-redundant" arithmetic
- Change interface
- Test, test, test

Papers and Software

- Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying Curve25519 Software. https://cryptojedi.org/papers/\#verify25519
- Many X25519 implementations in SUPERCOP (crypto_scalarmult/curve25519) http://bench.cr.yp.to/supercop.html
- Verification using boolector:
https://cryptojedi.org/crypto/\#verify25519
- Verification using Sage (in the near future): https://cryptojedi.org/crypto/\#gfverif

PKC 2016, Taipei, Taiwan, March 6-9, 2016

