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X25519

I Bernstein 2006: X25519 Diffie-Hellman key exchange (originally:
“Curve25519”)

I Secret keys: 32-byte little-endian scalars
I Public keys: 32-byte arrays, encoding x-coordinate of a point on

E : y2 = x3 + 486662x2 + x

over F2255−19

I Base point: (9, 0, . . . , 0)

I Given secret key s and public key (or base point) P :
I Copy s to s′

I Set least significant 3 bits of s′ to zero
I Set most significant bit of s′ to zero
I Set second-most significant bit of s′ to one
I Compute x-coordinate of s′P
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The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: xkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return X2 · Z−1
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One Montgomery “ladder step”

const a24 = (A+ 2)/4 (A from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← XQ−P · (t8 − t9)
2

X2P ← t6 · t7
Z2P ← t5 · (t7 + a24 · t5)
return (X2P , Z2P , XP+Q, ZP+Q)

end function
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Curve25519 implementations

I Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
I Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
I Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
I Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel

Nehalem/Westmere
I Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015:

X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
I Chou, 2015: The fastest Curve25519 software ever
I Many more implementations, most without scientific papers

I All of this software set speed records on the respective platform
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Secure software?

I Real-world attackers often don’t break the math
I Often very practical: timing attacks

I Secret data has influence on timing of software
I Attacker measures timing
I Attacker computes influence−1 to obtain secret data

I Examples:
I Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s

dmcrypt in just 65ms

I Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of success
in recovering the secret key” for OpenSSL ECDSA using secp256k1
“with as little as 200 signatures”
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Constant-time software

Avoid secret branch conditions
I Branches largely influence timing of program
I Secret branch conditions leak information
I “Balancing branches” is typically insufficient
I ⇒ No data flow from secret data into branch conditions!

Avoid memory access at secret positions
I Caches influence timing depending on address
I Attackers can potentially control cache lines
I Caches are not the only problem (e.g., store-to-load forwarding)
I ⇒ No data flow from secret data into addresses!
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cmov

/* decision bit b has to be either 0 or 1 */
void cmov(uint32 *r, uint32 *a, uint32 b)
{

uint32 t;

b = -b; /* Now b is either 0 or 0xffffffff */
t = (*r ^ *a) & b;
*r ^= t;

}
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“Verifying” constant-time behavior

Run in valgrind with uninitialized secret data
(or use Langley’s ctgrind)

[short demo]
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Correct software?

“Are you actually sure that your software is correct?”

—prof. Gerhard Woeginger, Jan. 24, 2011.
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Bug attacks

I Imagine bug in crypto that is triggered with very low probability
I Attacker finds this bug, crafts input that

I triggers the bug if secret bit is 0
I does not trigger the bug if secret bit is 1

I Attacker observes output, learns secret bit

I Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in
OpenSSL 0.9.8g elliptic-curve Diffie-Hellman

I Bug was a mis-handled carry bit (which was almost always zero)
I Similar bug, again in OpenSSL, fixed in Jan. 2015
I Unclear whether that one can be exploited
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Arithmetic in F2255−19 for AMD64

Radix 264

I Standard: break elements of F2255−19 into 4 64-bit integers
I (Schoolbook) multiplication breaks down into 16 64-bit integer

multiplications
I Adding up partial results requires many add-with-carry (adc)
I Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

I Instead, break into 5 64-bit integers, use radix 251

I Can delay carry operations; carry “en bloc”
I Schoolbook multiplication now 25 64-bit integer multiplications
I Easy to merge multiplication with reduction (multiplies by 19)
I Better performance on Westmere/Nehalem, worse on 65 nm Core 2

and AMD processors
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Bug in the radix-64 reduction

mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi
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Bug in the radix-64 reduction

(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry

Full software package contains 8912 lines of qhasm code!

14



Bug in the radix-64 reduction

(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry

Full software package contains 8912 lines of qhasm code!

14



Directions to correct crypto

Testing
I Is cheap, catches many bugs
I Does not conflict with performance
I Provides very high confidence in correctness for some crypto

algorithms
I Typically fails to catch very rarely triggered bugs

15



Directions to correct crypto

Audits
I Expensive (time and/or money)
I Conflicts with performance
I Standard approach to ensure correctness and quality of crypto

software
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Formal verification
I Strongest guarantees of correctness
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I Should focus on cases where tests fail
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Verification: the vision

I C or assembly programmer adds high-level annotations
I More specifically, for example:

I Limbs a0, . . . , an compose a field element A
I Limbs b0, . . . , bn compose a field element B
I Limbs r0, . . . , rn compose a field element R
I R = A ·B

I Annotated code gets fed to verification tool
I Verification ensures that operation on limbs corresponds to

high-level arithmetic
I Audits look at high-level annotations
I Even better: feed to even higher level verification
I Verify that the sequence of field operations accomplishes EC

arithmetic
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Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein
I Idea for verification:

I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

17



Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein

I Idea for verification:
I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

17



Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein
I Idea for verification:

I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

17



Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

I Nehalem Curve25519 software is written in qhasm
I qhasm is a portable assembly language by Bernstein
I Idea for verification:

I Annotate qhasm code
I Translate annotated qhasm automatically to SMT-solver boolector
I Use boolector to verify software

I Verification target: Montgomery ladder step of X25519:
I 5 multiplications in F2255−19

I 4 squarings in F2255−19

I 1 multiplication by 121666
I Several additions and subtractions

17



Example: Addition in radix 251

#// assume 0 <=u x0, x1, x2, x3, x4 <=u 2**51 + 2**15
#// assume 0 <=u y0, y1, y2, y3, y4 <=u 2**51 + 2**15
r0 = x0
r1 = x1
r2 = x2
r3 = x3
r4 = x4
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4
#// var sum_x = x0@u320 + x1@u320 * 2**51 + x2@u320 * 2**102 \

+ x3@u320 * 2**153 + x4@u320 * 2**204
#// sum_y = y0@u320 + y1@u320 * 2**51 + y2@u320 * 2**102 \

+ y3@u320 * 2**153 + y4@u320 * 2**204
#// sum_r = r0@u320 + r1@u320 * 2**51 + r2@u320 * 2**102 \

+ r3@u320 * 2**153 + r4@u320 * 2**204
#// assert (sum_r - (sum_x + sum_y)) % (2**255 - 19) = 0 &&
#// 0 <=u r0, r1, r2, r3, r4 <u 2**53
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How about multiplication?

I Again, express input field elements and output field elements
I Again, express bounds on the “limb size”
I Again, express algebraic relation of a modular multiplication
I Overall slightly more annoations for an auditor to look at

I Huge amount of intermediate annotations
I SMT solver cannot simply verify from inputs to outputs
I Overall:

I 217 lines of qhasm, including variable declarations
I 589 lines of annotations

I Large amount of manual work on top of assembly optimization
I Writing verifiable code requires expert knowledge from two domains!
I Verification of just multiplication takes > 90 hours
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Overall results

I Formally verified Montgomery ladderstep
I “Redundant” radix-251 representation
I Non-redundant radix-264 representation
I Reproduced bug in original version of the software

I Most verification used automatic qhasm → boolector translation
I Tiny bit of code in radix-264 needed proof assistant Coq

20



Another approach. . .

I 2 problems with SMT approach:
I Huge amount of (manual) annotations
I Long verification time

I Idea: automagically translate to input for computer-algebra system
I Accept failures to prove correctness

Work in progress with Bernstein
I Annotate C code (later: also qhasm)
I (Currently) use C++ compiler and operator overloading to

I Keep track of computation graph
I Keep track of worst-case ranges of limbs
I Output polynomial relations to Sage
I Use Sage to verify correctness of C code
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Example: addition (radix 225.5)

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_add(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);
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Example: multiplication

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_mul(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertprodmod(&vh,&vf,&vg,"2^255-19");
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A small demo

I Consider computation of x2100 in F2127−1

I Input is little-endian byte array
I Convert to internal representation in radix 226

I Verify a single squaring
I Put a loop around it
I Still too slow for big chunks of code

I Problem: verification always goes back to the beginning
I Idea: Declare that we trust already verified results
I This is known as “cutting” the verification
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Let’s “cut some limbs”

25



Let’s call it a draw
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First results and TODOs

Results
I Verification of modular multiplication in a few seconds
I Verification of full X25519 Montgomery ladder in ≈1:10 minutes

TODOs
I Support final compression to byte array
I Translate to higher-level view (ECC arithmetic, inversion)
I Support assembly
I Support “non-redundant” arithmetic
I Change interface
I Test, test, test
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Papers and Software

I Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi
Yang. Verifying Curve25519 Software.
https://cryptojedi.org/papers/#verify25519

I Many X25519 implementations in SUPERCOP
(crypto_scalarmult/curve25519)
http://bench.cr.yp.to/supercop.html

I Verification using boolector:
https://cryptojedi.org/crypto/#verify25519

I Verification using Sage (in the near future):
https://cryptojedi.org/crypto/#gfverif
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