
Scalar-multiplication algorithms

Peter Schwabe

Radboud University Nijmegen, The Netherlands

September 11, 2013

ECC 2013 Summer School



The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

I Typical setting for cryptosystems:
I P is a fixed system parameter,
I k is the secret (private) key,
I Q is the public key.

I Key generation needs to compute Q = kP , given k and P

Scalar-multiplication algorithms 2



The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that Q ∈ 〈P 〉, find
an integer k such that kP = Q.

I Typical setting for cryptosystems:
I P is a fixed system parameter,
I k is the secret (private) key,
I Q is the public key.

I Key generation needs to compute Q = kP , given k and P

Scalar-multiplication algorithms 2



EC Diffie-Hellman key exchange

I Users Alice and Bob have key pairs (kA, QA) and (kB , QB)

I Alice sends QA to Bob
I Bob sends QB to Alice
I Alice computes joint key as K = kAQB

I Bob computes joint key as K = kBQA

Scalar-multiplication algorithms 3



EC Diffie-Hellman key exchange

I Users Alice and Bob have key pairs (kA, QA) and (kB , QB)

I Alice sends QA to Bob
I Bob sends QB to Alice

I Alice computes joint key as K = kAQB

I Bob computes joint key as K = kBQA

Scalar-multiplication algorithms 3



EC Diffie-Hellman key exchange

I Users Alice and Bob have key pairs (kA, QA) and (kB , QB)

I Alice sends QA to Bob
I Bob sends QB to Alice
I Alice computes joint key as K = kAQB

I Bob computes joint key as K = kBQA

Scalar-multiplication algorithms 3



Schnorr signatures

I Alice has key pair (kA, QA)

I Order of 〈P 〉 is `
I Use cryptographic hash function H

I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature
(H(R,M), S) on M with

R = rP

S = (r +H(R,M)kA) mod `

I Verify: compute R = SP +H(R,M)QA and check that

H(R,M) = H(R,M)

Scalar-multiplication algorithms 4



Schnorr signatures

I Alice has key pair (kA, QA)

I Order of 〈P 〉 is `
I Use cryptographic hash function H
I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature

(H(R,M), S) on M with

R = rP

S = (r +H(R,M)kA) mod `

I Verify: compute R = SP +H(R,M)QA and check that

H(R,M) = H(R,M)

Scalar-multiplication algorithms 4



Schnorr signatures

I Alice has key pair (kA, QA)

I Order of 〈P 〉 is `
I Use cryptographic hash function H
I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature

(H(R,M), S) on M with

R = rP

S = (r +H(R,M)kA) mod `

I Verify: compute R = SP +H(R,M)QA and check that

H(R,M) = H(R,M)

Scalar-multiplication algorithms 4



Scalar multiplication

I Looks like all these schemes need computation of kP .

I Let’s take a closer look:

I For key generation, the point P is fixed at compile time
I For Diffie-Hellman joint-key computation the point is received at

runtime
I Key generation and Diffie-Hellman need one scalar multiplication kP
I Schnorr signature verification needs double-scalar multiplication
k1P1 + k2P2

I In key generation and Diffie-Hellman joint-key computation, k is
secret

I The scalars in Schnorr signature verification are public

I In the following: Distinguish these cases

Scalar-multiplication algorithms 5



Scalar multiplication

I Looks like all these schemes need computation of kP .
I Let’s take a closer look:

I For key generation, the point P is fixed at compile time
I For Diffie-Hellman joint-key computation the point is received at

runtime

I Key generation and Diffie-Hellman need one scalar multiplication kP
I Schnorr signature verification needs double-scalar multiplication
k1P1 + k2P2

I In key generation and Diffie-Hellman joint-key computation, k is
secret

I The scalars in Schnorr signature verification are public
I In the following: Distinguish these cases

Scalar-multiplication algorithms 5



Scalar multiplication

I Looks like all these schemes need computation of kP .
I Let’s take a closer look:

I For key generation, the point P is fixed at compile time
I For Diffie-Hellman joint-key computation the point is received at

runtime
I Key generation and Diffie-Hellman need one scalar multiplication kP
I Schnorr signature verification needs double-scalar multiplication
k1P1 + k2P2

I In key generation and Diffie-Hellman joint-key computation, k is
secret

I The scalars in Schnorr signature verification are public
I In the following: Distinguish these cases

Scalar-multiplication algorithms 5



Scalar multiplication

I Looks like all these schemes need computation of kP .
I Let’s take a closer look:

I For key generation, the point P is fixed at compile time
I For Diffie-Hellman joint-key computation the point is received at

runtime
I Key generation and Diffie-Hellman need one scalar multiplication kP
I Schnorr signature verification needs double-scalar multiplication
k1P1 + k2P2

I In key generation and Diffie-Hellman joint-key computation, k is
secret

I The scalars in Schnorr signature verification are public

I In the following: Distinguish these cases

Scalar-multiplication algorithms 5



Scalar multiplication

I Looks like all these schemes need computation of kP .
I Let’s take a closer look:

I For key generation, the point P is fixed at compile time
I For Diffie-Hellman joint-key computation the point is received at

runtime
I Key generation and Diffie-Hellman need one scalar multiplication kP
I Schnorr signature verification needs double-scalar multiplication
k1P1 + k2P2

I In key generation and Diffie-Hellman joint-key computation, k is
secret

I The scalars in Schnorr signature verification are public
I In the following: Distinguish these cases

Scalar-multiplication algorithms 5



Secret vs. public scalars

I The computation kP should have the same result for public or for
secret k

I True. We still want different algorithms.
I Problem: Timing information:

I Some fast scalar-multiplication algorithms have a running time that
depends on k

I An attacker can measure time and deduce information about k

I Brumley, Tuveri, 2011: A few minutes to steal the private key of a
TLS server over the network.

I For secret k we need constant-time algorithms

Scalar-multiplication algorithms 6



Secret vs. public scalars

I The computation kP should have the same result for public or for
secret k

I True. We still want different algorithms.
I Problem: Timing information:

I Some fast scalar-multiplication algorithms have a running time that
depends on k

I An attacker can measure time and deduce information about k

I Brumley, Tuveri, 2011: A few minutes to steal the private key of a
TLS server over the network.

I For secret k we need constant-time algorithms

Scalar-multiplication algorithms 6



Secret vs. public scalars

I The computation kP should have the same result for public or for
secret k

I True. We still want different algorithms.
I Problem: Timing information:

I Some fast scalar-multiplication algorithms have a running time that
depends on k

I An attacker can measure time and deduce information about k
I Brumley, Tuveri, 2011: A few minutes to steal the private key of a

TLS server over the network.

I For secret k we need constant-time algorithms

Scalar-multiplication algorithms 6



Secret vs. public scalars

I The computation kP should have the same result for public or for
secret k

I True. We still want different algorithms.
I Problem: Timing information:

I Some fast scalar-multiplication algorithms have a running time that
depends on k

I An attacker can measure time and deduce information about k
I Brumley, Tuveri, 2011: A few minutes to steal the private key of a

TLS server over the network.
I For secret k we need constant-time algorithms

Scalar-multiplication algorithms 6



A first approach

I Let’s compute 105 · P .

I Obvious: Can do that with 104 additions P + P + P + · · ·+ P

I Problem: 105 has 7 bits, we need roughly 27 additions, real scalars
have ≈ 256 bits, we would need roughly 2256 additions (more
expensive than solving the ECDLP!)

I Conclusion: we need algorithms that run in polynomial time (in the
size of the scalar)

Scalar-multiplication algorithms 7



A first approach

I Let’s compute 105 · P .
I Obvious: Can do that with 104 additions P + P + P + · · ·+ P

I Problem: 105 has 7 bits, we need roughly 27 additions, real scalars
have ≈ 256 bits, we would need roughly 2256 additions (more
expensive than solving the ECDLP!)

I Conclusion: we need algorithms that run in polynomial time (in the
size of the scalar)

Scalar-multiplication algorithms 7



A first approach

I Let’s compute 105 · P .
I Obvious: Can do that with 104 additions P + P + P + · · ·+ P

I Problem: 105 has 7 bits, we need roughly 27 additions, real scalars
have ≈ 256 bits, we would need roughly 2256 additions (more
expensive than solving the ECDLP!)

I Conclusion: we need algorithms that run in polynomial time (in the
size of the scalar)

Scalar-multiplication algorithms 7



A first approach

I Let’s compute 105 · P .
I Obvious: Can do that with 104 additions P + P + P + · · ·+ P

I Problem: 105 has 7 bits, we need roughly 27 additions, real scalars
have ≈ 256 bits, we would need roughly 2256 additions (more
expensive than solving the ECDLP!)

I Conclusion: we need algorithms that run in polynomial time (in the
size of the scalar)

Scalar-multiplication algorithms 7



Rewriting the scalar

I 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

I 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

I 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

I 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P
I Cost: 6 doublings, 3 additions
I General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R

Scalar-multiplication algorithms 8



Rewriting the scalar

I 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

I 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

I 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

I 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P
I Cost: 6 doublings, 3 additions
I General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R

Scalar-multiplication algorithms 8



Rewriting the scalar

I 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

I 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

I 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

I 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P
I Cost: 6 doublings, 3 additions
I General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R

Scalar-multiplication algorithms 8



Rewriting the scalar

I 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

I 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

I 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

I 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P

I Cost: 6 doublings, 3 additions
I General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R

Scalar-multiplication algorithms 8



Rewriting the scalar

I 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

I 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

I 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

I 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P
I Cost: 6 doublings, 3 additions

I General algorithm: “Double and add”
R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R

Scalar-multiplication algorithms 8



Rewriting the scalar

I 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

I 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

I 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1
(Horner’s rule)

I 105 ·P = ((((((((((P ·2+P ) ·2)+0) ·2)+P ) ·2)+0) ·2)+0) ·2)+P
I Cost: 6 doublings, 3 additions
I General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R

Scalar-multiplication algorithms 8



Analysis of double-and-add

I Let n be the number of bits in the exponent
I Double-and-add takes n− 1 doublings

I Let m be the number of 1 bits in the exponent
I Double-and-add takes m− 1 additions
I On average: ≈ n/2 additions
I P does not need to be known in advance, no precomputation

depending on P
I Handles single-scalar multiplication
I Running time clearly depends on the scalar: insecure for secret

scalars!

Scalar-multiplication algorithms 9



Analysis of double-and-add

I Let n be the number of bits in the exponent
I Double-and-add takes n− 1 doublings
I Let m be the number of 1 bits in the exponent
I Double-and-add takes m− 1 additions
I On average: ≈ n/2 additions

I P does not need to be known in advance, no precomputation
depending on P

I Handles single-scalar multiplication
I Running time clearly depends on the scalar: insecure for secret

scalars!

Scalar-multiplication algorithms 9



Analysis of double-and-add

I Let n be the number of bits in the exponent
I Double-and-add takes n− 1 doublings
I Let m be the number of 1 bits in the exponent
I Double-and-add takes m− 1 additions
I On average: ≈ n/2 additions
I P does not need to be known in advance, no precomputation

depending on P

I Handles single-scalar multiplication
I Running time clearly depends on the scalar: insecure for secret

scalars!

Scalar-multiplication algorithms 9



Analysis of double-and-add

I Let n be the number of bits in the exponent
I Double-and-add takes n− 1 doublings
I Let m be the number of 1 bits in the exponent
I Double-and-add takes m− 1 additions
I On average: ≈ n/2 additions
I P does not need to be known in advance, no precomputation

depending on P
I Handles single-scalar multiplication

I Running time clearly depends on the scalar: insecure for secret
scalars!

Scalar-multiplication algorithms 9



Analysis of double-and-add

I Let n be the number of bits in the exponent
I Double-and-add takes n− 1 doublings
I Let m be the number of 1 bits in the exponent
I Double-and-add takes m− 1 additions
I On average: ≈ n/2 additions
I P does not need to be known in advance, no precomputation

depending on P
I Handles single-scalar multiplication
I Running time clearly depends on the scalar: insecure for secret

scalars!

Scalar-multiplication algorithms 9



Double-scalar double-and-add
I Let’s modify the algorithm to compute k1P1 + k2P2

I Obvious solution:
I Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
I Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
I Add the results (1 addition)

I We can do better (O denotes the neutral element):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end for
return R

I max(n1, n2) doublings, m1 +m2 additions

Scalar-multiplication algorithms 10



Double-scalar double-and-add
I Let’s modify the algorithm to compute k1P1 + k2P2

I Obvious solution:
I Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
I Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
I Add the results (1 addition)

I We can do better (O denotes the neutral element):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end for
return R

I max(n1, n2) doublings, m1 +m2 additions

Scalar-multiplication algorithms 10



Double-scalar double-and-add
I Let’s modify the algorithm to compute k1P1 + k2P2

I Obvious solution:
I Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
I Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
I Add the results (1 addition)

I We can do better (O denotes the neutral element):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end for
return R

I max(n1, n2) doublings, m1 +m2 additions

Scalar-multiplication algorithms 10



Double-scalar double-and-add
I Let’s modify the algorithm to compute k1P1 + k2P2

I Obvious solution:
I Compute k1P1 (n1 − 1 doublings, m1 − 1 additions)
I Compute k2P2 (n2 − 1 doublings, m2 − 1 additions)
I Add the results (1 addition)

I We can do better (O denotes the neutral element):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end for
return R

I max(n1, n2) doublings, m1 +m2 additions
Scalar-multiplication algorithms 10



Some precomputation helps
I Whenever k1 and k2 have a 1 bit at the same position, we first add
P1 and then P2 (on average for 1/4 of the bits)

I Let’s just precompute T = P1 + P2

I Modified algorithm (special case of Strauss’ algorithm):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 AND (k2)2[i] = 1 then

R← R+ T
else

if (k1)2[i] = 1 then
R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end if

end for
return R

Scalar-multiplication algorithms 11



Some precomputation helps
I Whenever k1 and k2 have a 1 bit at the same position, we first add
P1 and then P2 (on average for 1/4 of the bits)

I Let’s just precompute T = P1 + P2

I Modified algorithm (special case of Strauss’ algorithm):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 AND (k2)2[i] = 1 then

R← R+ T
else

if (k1)2[i] = 1 then
R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end if

end for
return R

Scalar-multiplication algorithms 11



Some precomputation helps
I Whenever k1 and k2 have a 1 bit at the same position, we first add
P1 and then P2 (on average for 1/4 of the bits)

I Let’s just precompute T = P1 + P2

I Modified algorithm (special case of Strauss’ algorithm):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 AND (k2)2[i] = 1 then

R← R+ T
else

if (k1)2[i] = 1 then
R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end if

end for
return R

Scalar-multiplication algorithms 11



Even more (offline) precomputation
I What if precomputation is free (fixed basepoint, offline

precomputation)?

I First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,
when we receive k, simply look up kP .

I Problem: k is large. For a 256-bit k we would need a table of size
3369993333393829974333376885877453834204643052817571560137951281152TB

I How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

I This needs only about 8KB of storage for n = 256

I Modified scalar-multiplication algorithm:
R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

I Eliminated all doublings in fixed-basepoint scalar multiplication!

Scalar-multiplication algorithms 12



Even more (offline) precomputation
I What if precomputation is free (fixed basepoint, offline

precomputation)?
I First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .

I Problem: k is large. For a 256-bit k we would need a table of size
3369993333393829974333376885877453834204643052817571560137951281152TB

I How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

I This needs only about 8KB of storage for n = 256

I Modified scalar-multiplication algorithm:
R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

I Eliminated all doublings in fixed-basepoint scalar multiplication!

Scalar-multiplication algorithms 12



Even more (offline) precomputation
I What if precomputation is free (fixed basepoint, offline

precomputation)?
I First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
I Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

I How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

I This needs only about 8KB of storage for n = 256

I Modified scalar-multiplication algorithm:
R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

I Eliminated all doublings in fixed-basepoint scalar multiplication!

Scalar-multiplication algorithms 12



Even more (offline) precomputation
I What if precomputation is free (fixed basepoint, offline

precomputation)?
I First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
I Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

I How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

I This needs only about 8KB of storage for n = 256

I Modified scalar-multiplication algorithm:
R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

I Eliminated all doublings in fixed-basepoint scalar multiplication!

Scalar-multiplication algorithms 12



Even more (offline) precomputation
I What if precomputation is free (fixed basepoint, offline

precomputation)?
I First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
I Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

I How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

I This needs only about 8KB of storage for n = 256

I Modified scalar-multiplication algorithm:
R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

I Eliminated all doublings in fixed-basepoint scalar multiplication!

Scalar-multiplication algorithms 12



Even more (offline) precomputation
I What if precomputation is free (fixed basepoint, offline

precomputation)?
I First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . ,

when we receive k, simply look up kP .
I Problem: k is large. For a 256-bit k we would need a table of size

3369993333393829974333376885877453834204643052817571560137951281152TB

I How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

I This needs only about 8KB of storage for n = 256

I Modified scalar-multiplication algorithm:
R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

I Eliminated all doublings in fixed-basepoint scalar multiplication!
Scalar-multiplication algorithms 12



Double-and-add always

I All algorithms so far perform conditional addition where the
condition is secret

I For secret scalars (most common case!) we need something else

I Idea: Always perform addition, discard result:
I Or simply add the neutral element O
I Still not constant time, more later. . .

Scalar-multiplication algorithms 13



Double-and-add always

I All algorithms so far perform conditional addition where the
condition is secret

I For secret scalars (most common case!) we need something else
I Idea: Always perform addition, discard result:

R← P
for i← n− 2 downto 0 do

R← 2R
Rt ← R+ P
if (k)2[i] = 1 then

R← Rt

end if
end for

I Or simply add the neutral element O
I Still not constant time, more later. . .

Scalar-multiplication algorithms 13



Double-and-add always

I All algorithms so far perform conditional addition where the
condition is secret

I For secret scalars (most common case!) we need something else
I Idea: Always perform addition, discard result:
I Or simply add the neutral element O

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
else

R← R+O
end if

end for
return R

I Still not constant time, more later. . .

Scalar-multiplication algorithms 13



Double-and-add always

I All algorithms so far perform conditional addition where the
condition is secret

I For secret scalars (most common case!) we need something else
I Idea: Always perform addition, discard result:
I Or simply add the neutral element O

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
else

R← R+O
end if

end for
return R

I Still not constant time, more later. . .

Scalar-multiplication algorithms 13



Let’s rewrite that a bit . . .

I We have a table T = (O, P )
I Notation T [0] = O, T [1] = P

I Scalar multiplication is
R← P
for i← n− 2 downto 0 do

R← 2R
R← R+ T [(k)2[i]]

end for

Scalar-multiplication algorithms 14



Changing the scalar radix

I So far we considered a scalar written in radix 2

I How about radix 3?

I We precompute a Table T = (O, P, 2P )
I Write scalar k as (kn−1, . . . , k0)3
I Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for
I Advantage: The scalar is shorter, fewer additions
I Disadvantage: 3 is just not nice (needs triplings)
I How about some nice numbers, like 4, 8, 16?

Scalar-multiplication algorithms 15



Changing the scalar radix

I So far we considered a scalar written in radix 2

I How about radix 3?
I We precompute a Table T = (O, P, 2P )
I Write scalar k as (kn−1, . . . , k0)3

I Compute scalar multiplication as
R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for
I Advantage: The scalar is shorter, fewer additions
I Disadvantage: 3 is just not nice (needs triplings)
I How about some nice numbers, like 4, 8, 16?

Scalar-multiplication algorithms 15



Changing the scalar radix

I So far we considered a scalar written in radix 2

I How about radix 3?
I We precompute a Table T = (O, P, 2P )
I Write scalar k as (kn−1, . . . , k0)3
I Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for

I Advantage: The scalar is shorter, fewer additions
I Disadvantage: 3 is just not nice (needs triplings)
I How about some nice numbers, like 4, 8, 16?

Scalar-multiplication algorithms 15



Changing the scalar radix

I So far we considered a scalar written in radix 2

I How about radix 3?
I We precompute a Table T = (O, P, 2P )
I Write scalar k as (kn−1, . . . , k0)3
I Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for
I Advantage: The scalar is shorter, fewer additions
I Disadvantage: 3 is just not nice (needs triplings)

I How about some nice numbers, like 4, 8, 16?

Scalar-multiplication algorithms 15



Changing the scalar radix

I So far we considered a scalar written in radix 2

I How about radix 3?
I We precompute a Table T = (O, P, 2P )
I Write scalar k as (kn−1, . . . , k0)3
I Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for
I Advantage: The scalar is shorter, fewer additions
I Disadvantage: 3 is just not nice (needs triplings)
I How about some nice numbers, like 4, 8, 16?

Scalar-multiplication algorithms 15



Fixed-window scalar multiplication

I Fix a window width w
I Precompute T = (O, P, 2P, . . . , (2w − 1)P )

I Write scalar k as (km−1, . . . , k0)2w

I This is the same as chopping the binary scalar into “windows” of
fixed length w

I Compute scalar multiplication as
R← T [(k)2w [m− 1]]
for i← m− 2 downto 0 do

for j ← 1 to w do
R← 2R

end for
R← R+ T [(k)2w [i]]

end for

Scalar-multiplication algorithms 16



Fixed-window scalar multiplication

I Fix a window width w
I Precompute T = (O, P, 2P, . . . , (2w − 1)P )

I Write scalar k as (km−1, . . . , k0)2w

I This is the same as chopping the binary scalar into “windows” of
fixed length w

I Compute scalar multiplication as
R← T [(k)2w [m− 1]]
for i← m− 2 downto 0 do

for j ← 1 to w do
R← 2R

end for
R← R+ T [(k)2w [i]]

end for

Scalar-multiplication algorithms 16



Fixed-window scalar multiplication

I Fix a window width w
I Precompute T = (O, P, 2P, . . . , (2w − 1)P )

I Write scalar k as (km−1, . . . , k0)2w

I This is the same as chopping the binary scalar into “windows” of
fixed length w

I Compute scalar multiplication as
R← T [(k)2w [m− 1]]
for i← m− 2 downto 0 do

for j ← 1 to w do
R← 2R

end for
R← R+ T [(k)2w [i]]

end for

Scalar-multiplication algorithms 16



Analysis of fixed window

I For an n-bit scalar we still have n− 1 doublings

I Precomputation costs us w/2− 1 additions and w/2− 1 doublings
I Number of additions in the loop is dn/we
I Larger w: More precomputation
I Smaller w: More additions inside the loop
I For ≈ 256-bit scalars choose w = 4 or w = 5

Scalar-multiplication algorithms 17



Analysis of fixed window

I For an n-bit scalar we still have n− 1 doublings
I Precomputation costs us w/2− 1 additions and w/2− 1 doublings

I Number of additions in the loop is dn/we
I Larger w: More precomputation
I Smaller w: More additions inside the loop
I For ≈ 256-bit scalars choose w = 4 or w = 5

Scalar-multiplication algorithms 17



Analysis of fixed window

I For an n-bit scalar we still have n− 1 doublings
I Precomputation costs us w/2− 1 additions and w/2− 1 doublings
I Number of additions in the loop is dn/we

I Larger w: More precomputation
I Smaller w: More additions inside the loop
I For ≈ 256-bit scalars choose w = 4 or w = 5

Scalar-multiplication algorithms 17



Analysis of fixed window

I For an n-bit scalar we still have n− 1 doublings
I Precomputation costs us w/2− 1 additions and w/2− 1 doublings
I Number of additions in the loop is dn/we
I Larger w: More precomputation
I Smaller w: More additions inside the loop

I For ≈ 256-bit scalars choose w = 4 or w = 5

Scalar-multiplication algorithms 17



Analysis of fixed window

I For an n-bit scalar we still have n− 1 doublings
I Precomputation costs us w/2− 1 additions and w/2− 1 doublings
I Number of additions in the loop is dn/we
I Larger w: More precomputation
I Smaller w: More additions inside the loop
I For ≈ 256-bit scalars choose w = 4 or w = 5

Scalar-multiplication algorithms 17



Is fixed-window constant time?

I For each window of the scalar perform w doublings and one
addition, sounds good.

I The devil is in the detail:
I Is addition running in constant time? Also for O?
I We can make that work, but how easy and efficient it is depends on

the curve shape (hint: you want to use Edward’s curves)

I Are lookups from the table T running in constant time?
I Usually not!

Scalar-multiplication algorithms 18



Is fixed-window constant time?

I For each window of the scalar perform w doublings and one
addition, sounds good.

I The devil is in the detail:
I Is addition running in constant time? Also for O?
I We can make that work, but how easy and efficient it is depends on

the curve shape (hint: you want to use Edward’s curves)

I Are lookups from the table T running in constant time?
I Usually not!

Scalar-multiplication algorithms 18



Is fixed-window constant time?

I For each window of the scalar perform w doublings and one
addition, sounds good.

I The devil is in the detail:
I Is addition running in constant time? Also for O?
I We can make that work, but how easy and efficient it is depends on

the curve shape (hint: you want to use Edward’s curves)
I Are lookups from the table T running in constant time?
I Usually not!

Scalar-multiplication algorithms 18



Cache-timing attacks

I We load from table T at position p = (k)2w [i]

I The position is part of the secret scalar, so also secret

I Most processors load data through several caches (transparent, fast
memory)

I loads are fast if data is found in cache (cache hit)
I loads are slow if data is not found in cache (cache miss)

I Solution (part 1): Load all items, pick the right one:
R← O
for i from 1 to 2w − 1 do

if p = i then
R← T [i]

end if
end for

I Problem 1: if-statements are not constant time
I Problem 2: Comparisons are not (guaranteed to be) constant time

Scalar-multiplication algorithms 19



Cache-timing attacks

I We load from table T at position p = (k)2w [i]

I The position is part of the secret scalar, so also secret
I Most processors load data through several caches (transparent, fast

memory)
I loads are fast if data is found in cache (cache hit)
I loads are slow if data is not found in cache (cache miss)

I Solution (part 1): Load all items, pick the right one:
R← O
for i from 1 to 2w − 1 do

if p = i then
R← T [i]

end if
end for

I Problem 1: if-statements are not constant time
I Problem 2: Comparisons are not (guaranteed to be) constant time

Scalar-multiplication algorithms 19



Cache-timing attacks

I We load from table T at position p = (k)2w [i]

I The position is part of the secret scalar, so also secret
I Most processors load data through several caches (transparent, fast

memory)
I loads are fast if data is found in cache (cache hit)
I loads are slow if data is not found in cache (cache miss)

I Solution (part 1): Load all items, pick the right one:
R← O
for i from 1 to 2w − 1 do

if p = i then
R← T [i]

end if
end for

I Problem 1: if-statements are not constant time
I Problem 2: Comparisons are not (guaranteed to be) constant time

Scalar-multiplication algorithms 19



Cache-timing attacks

I We load from table T at position p = (k)2w [i]

I The position is part of the secret scalar, so also secret
I Most processors load data through several caches (transparent, fast

memory)
I loads are fast if data is found in cache (cache hit)
I loads are slow if data is not found in cache (cache miss)

I Solution (part 1): Load all items, pick the right one:
R← O
for i from 1 to 2w − 1 do

if p = i then
R← T [i]

end if
end for

I Problem 1: if-statements are not constant time

I Problem 2: Comparisons are not (guaranteed to be) constant time

Scalar-multiplication algorithms 19



Cache-timing attacks

I We load from table T at position p = (k)2w [i]

I The position is part of the secret scalar, so also secret
I Most processors load data through several caches (transparent, fast

memory)
I loads are fast if data is found in cache (cache hit)
I loads are slow if data is not found in cache (cache miss)

I Solution (part 1): Load all items, pick the right one:
R← O
for i from 1 to 2w − 1 do

if p = i then
R← T [i]

end if
end for

I Problem 1: if-statements are not constant time
I Problem 2: Comparisons are not (guaranteed to be) constant time

Scalar-multiplication algorithms 19



Constant-time ifs

I A general if statement looks as follows:
if s then

R← A
else

R← B
end if

I This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

I Reason: branch prediction

I Suitable replacement:
R← s ·A+ (1− s) ·B

I Can replace multiplication and addition with bit-logical operations
(AND and XOR)

I For very fast A and B, this can even be faster than the conditional
branch

Scalar-multiplication algorithms 20



Constant-time ifs

I A general if statement looks as follows:
if s then

R← A
else

R← B
end if

I This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

I Reason: branch prediction
I Suitable replacement:

R← s ·A+ (1− s) ·B

I Can replace multiplication and addition with bit-logical operations
(AND and XOR)

I For very fast A and B, this can even be faster than the conditional
branch

Scalar-multiplication algorithms 20



Constant-time ifs

I A general if statement looks as follows:
if s then

R← A
else

R← B
end if

I This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

I Reason: branch prediction
I Suitable replacement:

R← s ·A+ (1− s) ·B
I Can replace multiplication and addition with bit-logical operations

(AND and XOR)

I For very fast A and B, this can even be faster than the conditional
branch

Scalar-multiplication algorithms 20



Constant-time ifs

I A general if statement looks as follows:
if s then

R← A
else

R← B
end if

I This takes different amount of time depending on the bit s, even if
A and B take the same amount of time.

I Reason: branch prediction
I Suitable replacement:

R← s ·A+ (1− s) ·B
I Can replace multiplication and addition with bit-logical operations

(AND and XOR)
I For very fast A and B, this can even be faster than the conditional

branch

Scalar-multiplication algorithms 20



Constant-time comparison

static unsigned long long eq(unsigned char a, unsigned char b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

Scalar-multiplication algorithms 21



More offline precomputation

I Let’s get back to fixed-basepoint multiplication
I So far we precomputed P, 2P, 4P, 8P, . . .

I We can combine that with fixed-window scalar multiplication
I Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, dn/we − 1

I Perform scalar multiplication as
R← T0[(k)2w [0]]
for i← 1 to dn/we − 1 do

R← R+ Ti[(k)2w [i]]
end for

I No doublings, only db/we − 1 additions
I Can use huge w, but:

I at some point the precomputed tables don’t fit into cache anymore.
I constant-time loads get slow for large w

Scalar-multiplication algorithms 22



More offline precomputation

I Let’s get back to fixed-basepoint multiplication
I So far we precomputed P, 2P, 4P, 8P, . . .
I We can combine that with fixed-window scalar multiplication
I Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, dn/we − 1

I Perform scalar multiplication as
R← T0[(k)2w [0]]
for i← 1 to dn/we − 1 do

R← R+ Ti[(k)2w [i]]
end for

I No doublings, only db/we − 1 additions
I Can use huge w, but:

I at some point the precomputed tables don’t fit into cache anymore.
I constant-time loads get slow for large w

Scalar-multiplication algorithms 22



More offline precomputation

I Let’s get back to fixed-basepoint multiplication
I So far we precomputed P, 2P, 4P, 8P, . . .
I We can combine that with fixed-window scalar multiplication
I Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, dn/we − 1

I Perform scalar multiplication as
R← T0[(k)2w [0]]
for i← 1 to dn/we − 1 do

R← R+ Ti[(k)2w [i]]
end for

I No doublings, only db/we − 1 additions
I Can use huge w, but:

I at some point the precomputed tables don’t fit into cache anymore.
I constant-time loads get slow for large w

Scalar-multiplication algorithms 22



More offline precomputation

I Let’s get back to fixed-basepoint multiplication
I So far we precomputed P, 2P, 4P, 8P, . . .
I We can combine that with fixed-window scalar multiplication
I Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, dn/we − 1

I Perform scalar multiplication as
R← T0[(k)2w [0]]
for i← 1 to dn/we − 1 do

R← R+ Ti[(k)2w [i]]
end for

I No doublings, only db/we − 1 additions

I Can use huge w, but:
I at some point the precomputed tables don’t fit into cache anymore.
I constant-time loads get slow for large w

Scalar-multiplication algorithms 22



More offline precomputation

I Let’s get back to fixed-basepoint multiplication
I So far we precomputed P, 2P, 4P, 8P, . . .
I We can combine that with fixed-window scalar multiplication
I Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for
i = 0, w, 2w, 3w, dn/we − 1

I Perform scalar multiplication as
R← T0[(k)2w [0]]
for i← 1 to dn/we − 1 do

R← R+ Ti[(k)2w [i]]
end for

I No doublings, only db/we − 1 additions
I Can use huge w, but:

I at some point the precomputed tables don’t fit into cache anymore.
I constant-time loads get slow for large w

Scalar-multiplication algorithms 22



Fixed-window limitations

I Consider the scalar 22 = (1 01 10)2 and window size 2
I Initialize R with P
I Double, double, add P
I Double, double, add 2P

I More efficient:
I Initialize R with P
I Double, double, double, add 3P
I double

I Problem with fixed window: it’s fixed.
I Idea: “Slide” the window over the scalar

Scalar-multiplication algorithms 23



Fixed-window limitations

I Consider the scalar 22 = (1 01 10)2 and window size 2
I Initialize R with P
I Double, double, add P
I Double, double, add 2P

I More efficient:
I Initialize R with P
I Double, double, double, add 3P
I double

I Problem with fixed window: it’s fixed.
I Idea: “Slide” the window over the scalar

Scalar-multiplication algorithms 23



Fixed-window limitations

I Consider the scalar 22 = (1 01 10)2 and window size 2
I Initialize R with P
I Double, double, add P
I Double, double, add 2P

I More efficient:
I Initialize R with P
I Double, double, double, add 3P
I double

I Problem with fixed window: it’s fixed.

I Idea: “Slide” the window over the scalar

Scalar-multiplication algorithms 23



Fixed-window limitations

I Consider the scalar 22 = (1 01 10)2 and window size 2
I Initialize R with P
I Double, double, add P
I Double, double, add 2P

I More efficient:
I Initialize R with P
I Double, double, double, add 3P
I double

I Problem with fixed window: it’s fixed.
I Idea: “Slide” the window over the scalar

Scalar-multiplication algorithms 23



Sliding window scalar multiplication

I Choose window size w
I Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

I Do this by scanning k from right to left, expand window from each
1-bit

I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Perform scalar multiplication
R← O
for i← m to 0 do

R← 2R
if ki then

R← R+ kiP
end if

end for

Scalar-multiplication algorithms 24



Sliding window scalar multiplication

I Choose window size w
I Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

I Do this by scanning k from right to left, expand window from each
1-bit

I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Perform scalar multiplication
R← O
for i← m to 0 do

R← 2R
if ki then

R← R+ kiP
end if

end for

Scalar-multiplication algorithms 24



Sliding window scalar multiplication

I Choose window size w
I Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

I Do this by scanning k from right to left, expand window from each
1-bit

I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Perform scalar multiplication
R← O
for i← m to 0 do

R← 2R
if ki then

R← R+ kiP
end if

end for

Scalar-multiplication algorithms 24



Sliding window scalar multiplication

I Choose window size w
I Rewrite scalar k as k = (k0, . . . , km) with ki in
{0, 1, 3, 5, . . . , 2w − 1} with at most one non-zero entry in each
window of length w

I Do this by scanning k from right to left, expand window from each
1-bit

I Precompute P, 3P, 5P, . . . , (2w − 1)P

I Perform scalar multiplication
R← O
for i← m to 0 do

R← 2R
if ki then

R← R+ kiP
end if

end for

Scalar-multiplication algorithms 24



Analysis of sliding window

I We still do n− 1 doublings for an n-bit scalar
I Precomputation needs 2w−1

I Expected number of additions in the main loop: n/(w + 1)

I For the same w only half the precomputation compared to
fixed-window scalar multiplication

I For the same w fewer additions in the main loop
I But: It’s not running in constant time!
I Still nice (in double-scalar version) for signature verification

Scalar-multiplication algorithms 25



Analysis of sliding window

I We still do n− 1 doublings for an n-bit scalar
I Precomputation needs 2w−1

I Expected number of additions in the main loop: n/(w + 1)

I For the same w only half the precomputation compared to
fixed-window scalar multiplication

I For the same w fewer additions in the main loop

I But: It’s not running in constant time!
I Still nice (in double-scalar version) for signature verification

Scalar-multiplication algorithms 25



Analysis of sliding window

I We still do n− 1 doublings for an n-bit scalar
I Precomputation needs 2w−1

I Expected number of additions in the main loop: n/(w + 1)

I For the same w only half the precomputation compared to
fixed-window scalar multiplication

I For the same w fewer additions in the main loop
I But: It’s not running in constant time!
I Still nice (in double-scalar version) for signature verification

Scalar-multiplication algorithms 25



Using efficient negation

I So far everything we did works for any cyclic group 〈P 〉
I Elliptic curves have so much more to offer
I For example, efficient negation: −(x, y) = (x,−y) (on Weierstrass

curves)

I Idea: use a signed representation for the scalar
I Fixed-window scalar multiplication:

I Write scalar as (k0, . . . , km−1) with ki ∈ [−2w, . . . , 2w − 1]
I Precompute T = (−2wP, (−2w + 1)P, . . . ,O, P, . . . , (2w − 1)P
I Perform normal fixed-window scalar multiplication

I Half of the precomputation is almost free, we get one bit of w for free
I Negation is so fast that we can do it on the fly (saves half the table,

faster constant-time lookups)

I Similar scalar-negation speedup for sliding-window multiplication

Scalar-multiplication algorithms 26



Using efficient negation

I So far everything we did works for any cyclic group 〈P 〉
I Elliptic curves have so much more to offer
I For example, efficient negation: −(x, y) = (x,−y) (on Weierstrass

curves)
I Idea: use a signed representation for the scalar
I Fixed-window scalar multiplication:

I Write scalar as (k0, . . . , km−1) with ki ∈ [−2w, . . . , 2w − 1]
I Precompute T = (−2wP, (−2w + 1)P, . . . ,O, P, . . . , (2w − 1)P
I Perform normal fixed-window scalar multiplication
I Half of the precomputation is almost free, we get one bit of w for free

I Negation is so fast that we can do it on the fly (saves half the table,
faster constant-time lookups)

I Similar scalar-negation speedup for sliding-window multiplication

Scalar-multiplication algorithms 26



Using efficient negation

I So far everything we did works for any cyclic group 〈P 〉
I Elliptic curves have so much more to offer
I For example, efficient negation: −(x, y) = (x,−y) (on Weierstrass

curves)
I Idea: use a signed representation for the scalar
I Fixed-window scalar multiplication:

I Write scalar as (k0, . . . , km−1) with ki ∈ [−2w, . . . , 2w − 1]
I Precompute T = (−2wP, (−2w + 1)P, . . . ,O, P, . . . , (2w − 1)P
I Perform normal fixed-window scalar multiplication
I Half of the precomputation is almost free, we get one bit of w for free
I Negation is so fast that we can do it on the fly (saves half the table,

faster constant-time lookups)

I Similar scalar-negation speedup for sliding-window multiplication

Scalar-multiplication algorithms 26



Using efficient negation

I So far everything we did works for any cyclic group 〈P 〉
I Elliptic curves have so much more to offer
I For example, efficient negation: −(x, y) = (x,−y) (on Weierstrass

curves)
I Idea: use a signed representation for the scalar
I Fixed-window scalar multiplication:

I Write scalar as (k0, . . . , km−1) with ki ∈ [−2w, . . . , 2w − 1]
I Precompute T = (−2wP, (−2w + 1)P, . . . ,O, P, . . . , (2w − 1)P
I Perform normal fixed-window scalar multiplication
I Half of the precomputation is almost free, we get one bit of w for free
I Negation is so fast that we can do it on the fly (saves half the table,

faster constant-time lookups)
I Similar scalar-negation speedup for sliding-window multiplication

Scalar-multiplication algorithms 26



Using other efficient endomorphisms

I Ben showed us before that there are efficient endomorphisms on
elliptic curves

I Let’s now just take an efficient endomorphism ϕ

I Let’s assume that ϕ(Q) corresponds to λQ for all Q ∈ 〈P 〉

I We can use this for faster scalar multiplication (Gallant, Lambert,
Vanstone, 2000; and Galbraith, Lin, Scott, 2009)

I Write scalar k = k1 + k2λ with k1 and k2 half the length of k
I Perform half-size double-scalar multiplication k1(P ) + k2(ϕ(P ))
I Save half of the doublings (estimated speedup: 30− 40%)

I With two efficient endomorphisms we can do a 4-dimensional
decomposition

I Perform quarter-size quad-scalar multiplication (save another 25% of
doublings)

Scalar-multiplication algorithms 27



Using other efficient endomorphisms

I Ben showed us before that there are efficient endomorphisms on
elliptic curves

I Let’s now just take an efficient endomorphism ϕ

I Let’s assume that ϕ(Q) corresponds to λQ for all Q ∈ 〈P 〉
I We can use this for faster scalar multiplication (Gallant, Lambert,

Vanstone, 2000; and Galbraith, Lin, Scott, 2009)
I Write scalar k = k1 + k2λ with k1 and k2 half the length of k
I Perform half-size double-scalar multiplication k1(P ) + k2(ϕ(P ))
I Save half of the doublings (estimated speedup: 30− 40%)

I With two efficient endomorphisms we can do a 4-dimensional
decomposition

I Perform quarter-size quad-scalar multiplication (save another 25% of
doublings)

Scalar-multiplication algorithms 27



Using other efficient endomorphisms

I Ben showed us before that there are efficient endomorphisms on
elliptic curves

I Let’s now just take an efficient endomorphism ϕ

I Let’s assume that ϕ(Q) corresponds to λQ for all Q ∈ 〈P 〉
I We can use this for faster scalar multiplication (Gallant, Lambert,

Vanstone, 2000; and Galbraith, Lin, Scott, 2009)
I Write scalar k = k1 + k2λ with k1 and k2 half the length of k
I Perform half-size double-scalar multiplication k1(P ) + k2(ϕ(P ))
I Save half of the doublings (estimated speedup: 30− 40%)

I With two efficient endomorphisms we can do a 4-dimensional
decomposition

I Perform quarter-size quad-scalar multiplication (save another 25% of
doublings)

Scalar-multiplication algorithms 27



Differential addition

I Consider elliptic curves of the form By2 = x3 +Ax2 + x.
I Montgomery in 1987 showed how to perform x-coordinate-based

arithmetic:
I Given the x-coordinate xP of P , and
I given the x-coordinate xQ of Q, and
I given the x-coordinate xP−Q of P −Q

I compute the x-coordinate xR of R = P +Q

I This is called differential addition
I Less efficient differential-addition formulas for other curve shapes
I Can be used for efficient computation of the x-coordinate of kP

given only the x-coordinate of P
I For this, let’s use projective representation (X : Z) with x = (X/Z)

Scalar-multiplication algorithms 28



Differential addition

I Consider elliptic curves of the form By2 = x3 +Ax2 + x.
I Montgomery in 1987 showed how to perform x-coordinate-based

arithmetic:
I Given the x-coordinate xP of P , and
I given the x-coordinate xQ of Q, and
I given the x-coordinate xP−Q of P −Q
I compute the x-coordinate xR of R = P +Q

I This is called differential addition
I Less efficient differential-addition formulas for other curve shapes
I Can be used for efficient computation of the x-coordinate of kP

given only the x-coordinate of P
I For this, let’s use projective representation (X : Z) with x = (X/Z)

Scalar-multiplication algorithms 28



Differential addition

I Consider elliptic curves of the form By2 = x3 +Ax2 + x.
I Montgomery in 1987 showed how to perform x-coordinate-based

arithmetic:
I Given the x-coordinate xP of P , and
I given the x-coordinate xQ of Q, and
I given the x-coordinate xP−Q of P −Q
I compute the x-coordinate xR of R = P +Q

I This is called differential addition

I Less efficient differential-addition formulas for other curve shapes
I Can be used for efficient computation of the x-coordinate of kP

given only the x-coordinate of P
I For this, let’s use projective representation (X : Z) with x = (X/Z)

Scalar-multiplication algorithms 28



Differential addition

I Consider elliptic curves of the form By2 = x3 +Ax2 + x.
I Montgomery in 1987 showed how to perform x-coordinate-based

arithmetic:
I Given the x-coordinate xP of P , and
I given the x-coordinate xQ of Q, and
I given the x-coordinate xP−Q of P −Q
I compute the x-coordinate xR of R = P +Q

I This is called differential addition
I Less efficient differential-addition formulas for other curve shapes

I Can be used for efficient computation of the x-coordinate of kP
given only the x-coordinate of P

I For this, let’s use projective representation (X : Z) with x = (X/Z)

Scalar-multiplication algorithms 28



Differential addition

I Consider elliptic curves of the form By2 = x3 +Ax2 + x.
I Montgomery in 1987 showed how to perform x-coordinate-based

arithmetic:
I Given the x-coordinate xP of P , and
I given the x-coordinate xQ of Q, and
I given the x-coordinate xP−Q of P −Q
I compute the x-coordinate xR of R = P +Q

I This is called differential addition
I Less efficient differential-addition formulas for other curve shapes
I Can be used for efficient computation of the x-coordinate of kP

given only the x-coordinate of P
I For this, let’s use projective representation (X : Z) with x = (X/Z)

Scalar-multiplication algorithms 28



One Montgomery “ladder step”

const a24 = (A+ 2)/4 (A from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← XQ−P · (t8 − t9)2
X[2]P ← t6 · t7
Z[2]P ← t5 · (t7 + a24 · t5)
return (X[2]P , Z[2]P , XP+Q, ZP+Q)

end function

Scalar-multiplication algorithms 29



The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: (X[k]P , Z[k]P ) fulfilling x[k]P = X[k]P /Z[k]P

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

Scalar-multiplication algorithms 30



Advantages of the Montgomery ladder

I Very regular structure, easy to protect against timing attacks
I Replace the if statement by conditional swap
I Be careful with constant-time swaps

I Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

I Point compression/decompression is free
I Easy to implement
I No ugly special cases (see Bernstein’s “Curve25519” paper)

Scalar-multiplication algorithms 31



Advantages of the Montgomery ladder

I Very regular structure, easy to protect against timing attacks
I Replace the if statement by conditional swap
I Be careful with constant-time swaps

I Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

I Point compression/decompression is free
I Easy to implement
I No ugly special cases (see Bernstein’s “Curve25519” paper)

Scalar-multiplication algorithms 31



Advantages of the Montgomery ladder

I Very regular structure, easy to protect against timing attacks
I Replace the if statement by conditional swap
I Be careful with constant-time swaps

I Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

I Point compression/decompression is free

I Easy to implement
I No ugly special cases (see Bernstein’s “Curve25519” paper)

Scalar-multiplication algorithms 31



Advantages of the Montgomery ladder

I Very regular structure, easy to protect against timing attacks
I Replace the if statement by conditional swap
I Be careful with constant-time swaps

I Very fast (at least if we don’t compare to curves with efficient
endomorphisms)

I Point compression/decompression is free
I Easy to implement
I No ugly special cases (see Bernstein’s “Curve25519” paper)

Scalar-multiplication algorithms 31



Multi-scalar multiplication

I Consider computation Q =
∑n

1 kiPi

I We looked at n = 2 before, how about n = 128?

I Idea: Assume k1 > k2 > · · · > kn.
I Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

I Each step requires one scalar subtraction and one point addition
I Each step “eliminates” expected log n scalar bits
I Can be very fast (but not constant-time)
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation

Scalar-multiplication algorithms 32



Multi-scalar multiplication

I Consider computation Q =
∑n

1 kiPi

I We looked at n = 2 before, how about n = 128?
I Idea: Assume k1 > k2 > · · · > kn.
I Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

I Each step requires one scalar subtraction and one point addition
I Each step “eliminates” expected log n scalar bits
I Can be very fast (but not constant-time)
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation

Scalar-multiplication algorithms 32



Multi-scalar multiplication

I Consider computation Q =
∑n

1 kiPi

I We looked at n = 2 before, how about n = 128?
I Idea: Assume k1 > k2 > · · · > kn.
I Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

I Each step requires one scalar subtraction and one point addition
I Each step “eliminates” expected log n scalar bits
I Can be very fast (but not constant-time)

I Requires fast access to the two largest scalars: put scalars into a
heap

I Crucial for good performance: fast heap implementation

Scalar-multiplication algorithms 32



Multi-scalar multiplication

I Consider computation Q =
∑n

1 kiPi

I We looked at n = 2 before, how about n = 128?
I Idea: Assume k1 > k2 > · · · > kn.
I Bos-Coster algorithm: recursively compute
Q = (k1 − k2)P1 + k2(P1 + P2) + k3P3 · · ·+ knPn

I Each step requires one scalar subtraction and one point addition
I Each step “eliminates” expected log n scalar bits
I Can be very fast (but not constant-time)
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation

Scalar-multiplication algorithms 32



A fast heap

I Heap is a binary tree, each parent node is larger than the two child
nodes

I Data structure is stored as a simple array, positions in the array
determine positions in the tree

I Root is at position 0, left child node at position 1, right child node
at position 2 etc.

I For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position b(i− 1)/2c

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

Scalar-multiplication algorithms 33



A fast heap

I Heap is a binary tree, each parent node is larger than the two child
nodes

I Data structure is stored as a simple array, positions in the array
determine positions in the tree

I Root is at position 0, left child node at position 1, right child node
at position 2 etc.

I For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position b(i− 1)/2c

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

Scalar-multiplication algorithms 33



A fast heap

I Heap is a binary tree, each parent node is larger than the two child
nodes

I Data structure is stored as a simple array, positions in the array
determine positions in the tree

I Root is at position 0, left child node at position 1, right child node
at position 2 etc.

I For node at position i, child nodes are at position 2 · i+ 1 and
2 · i+ 2, parent node is at position b(i− 1)/2c

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

Scalar-multiplication algorithms 33



Coming back to finite-field inversion

I Inversion with Fermat’s theorem uses exponentiation with p− 2

I Exponentiation is not really different from scalar multiplication
(doublings become squarings, additions become multiplications)

I The prime p is public, so also p− 2 is public
I First idea: use sliding window to compute exponentiation
I But wait, p is not only public, it’s a fixed system parameter, can we

do better?

Scalar-multiplication algorithms 34



Coming back to finite-field inversion

I Inversion with Fermat’s theorem uses exponentiation with p− 2

I Exponentiation is not really different from scalar multiplication
(doublings become squarings, additions become multiplications)

I The prime p is public, so also p− 2 is public
I First idea: use sliding window to compute exponentiation

I But wait, p is not only public, it’s a fixed system parameter, can we
do better?

Scalar-multiplication algorithms 34



Coming back to finite-field inversion

I Inversion with Fermat’s theorem uses exponentiation with p− 2

I Exponentiation is not really different from scalar multiplication
(doublings become squarings, additions become multiplications)

I The prime p is public, so also p− 2 is public
I First idea: use sliding window to compute exponentiation
I But wait, p is not only public, it’s a fixed system parameter, can we

do better?

Scalar-multiplication algorithms 34



Addition chains

Definition
Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

I s1 = 1

I sm = k

I for each si it holds that si = sj + sk and j, k < i

I An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :

I Start with s1P = P
I Compute siP = sjP + skP for i = 2, . . . ,m

I All algorithms so far basically just computed additions chains “on the
fly”

I Signed-scalar representations are “addition-subtraction chains”
I For inversion we know k at compile time, we can spend a lot of time

to find a good addition chain.

Scalar-multiplication algorithms 35



Addition chains

Definition
Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

I s1 = 1

I sm = k

I for each si it holds that si = sj + sk and j, k < i

I An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :

I Start with s1P = P
I Compute siP = sjP + skP for i = 2, . . . ,m

I All algorithms so far basically just computed additions chains “on the
fly”

I Signed-scalar representations are “addition-subtraction chains”
I For inversion we know k at compile time, we can spend a lot of time

to find a good addition chain.

Scalar-multiplication algorithms 35



Addition chains

Definition
Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

I s1 = 1

I sm = k

I for each si it holds that si = sj + sk and j, k < i

I An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :

I Start with s1P = P
I Compute siP = sjP + skP for i = 2, . . . ,m

I All algorithms so far basically just computed additions chains “on the
fly”

I Signed-scalar representations are “addition-subtraction chains”

I For inversion we know k at compile time, we can spend a lot of time
to find a good addition chain.

Scalar-multiplication algorithms 35



Addition chains

Definition
Let k be a positive integer. A sequence s1, s2, . . . , sm is called an
addition chain of length m for k if

I s1 = 1

I sm = k

I for each si it holds that si = sj + sk and j, k < i

I An addition chain for k immediately translates into a scalar
multiplication algorithm to compute kP :

I Start with s1P = P
I Compute siP = sjP + skP for i = 2, . . . ,m

I All algorithms so far basically just computed additions chains “on the
fly”

I Signed-scalar representations are “addition-subtraction chains”
I For inversion we know k at compile time, we can spend a lot of time

to find a good addition chain.

Scalar-multiplication algorithms 35



Inversion in F2255−19

void fe25519_invert(fe25519 *r, const fe25519 *x)
{
fe25519 z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;

int i;
/* 2 */ fe25519_square(&z2,x);
/* 4 */ fe25519_square(&t,&z2);
/* 8 */ fe25519_square(&t,&t);
/* 9 */ fe25519_mul(&z9,&t,x);
/* 11 */ fe25519_mul(&z11,&z9,&z2);
/* 22 */ fe25519_square(&t,&z11);
/* 2^5 - 2^0 = 31 */fe25519_mul(&z2_5_0,&t,&z9);
/* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
/* 2^20 - 2^10 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
/* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
/* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
/* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);

Scalar-multiplication algorithms 36



Inversion in F2255−19

/* 2^41 - 2^1 */ fe25519_square(&t,&t);
/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
/* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
/* 2^201 - 2^1 */ fe25519_square(&t,&t);
/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
/* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
/* 2^251 - 2^1 */ fe25519_square(&t,&t);
/* 2^252 - 2^2 */ fe25519_square(&t,&t);
/* 2^253 - 2^3 */ fe25519_square(&t,&t);
/* 2^254 - 2^4 */ fe25519_square(&t,&t);
/* 2^255 - 2^5 */ fe25519_square(&t,&t);
/* 2^255 - 21 */ fe25519_mul(r,&t,&z11);
}

Scalar-multiplication algorithms 36



Summary

I Remember double-and-add
I Remember not to use it (at least never with a secret scalar)

I Keep in mind that writing constant-time code is hard
I A beer of your choice for anybody who computes a2

255−21 in 254
squarings and 10 multiplications

I Two beers of your choice for anybody who computes a2
255−21 in 254

squarings and 9 multiplications
I . . .

I Slides of both talks will be online at
http://cryptojedi.org/

Scalar-multiplication algorithms 37

http://cryptojedi.org/


Summary

I Remember double-and-add
I Remember not to use it (at least never with a secret scalar)
I Keep in mind that writing constant-time code is hard

I A beer of your choice for anybody who computes a2
255−21 in 254

squarings and 10 multiplications
I Two beers of your choice for anybody who computes a2

255−21 in 254
squarings and 9 multiplications

I . . .

I Slides of both talks will be online at
http://cryptojedi.org/

Scalar-multiplication algorithms 37

http://cryptojedi.org/


Summary

I Remember double-and-add
I Remember not to use it (at least never with a secret scalar)
I Keep in mind that writing constant-time code is hard
I A beer of your choice for anybody who computes a2

255−21 in 254
squarings and 10 multiplications

I Two beers of your choice for anybody who computes a2
255−21 in 254

squarings and 9 multiplications
I . . .

I Slides of both talks will be online at
http://cryptojedi.org/

Scalar-multiplication algorithms 37

http://cryptojedi.org/


Summary

I Remember double-and-add
I Remember not to use it (at least never with a secret scalar)
I Keep in mind that writing constant-time code is hard
I A beer of your choice for anybody who computes a2

255−21 in 254
squarings and 10 multiplications

I Two beers of your choice for anybody who computes a2
255−21 in 254

squarings and 9 multiplications

I . . .

I Slides of both talks will be online at
http://cryptojedi.org/

Scalar-multiplication algorithms 37

http://cryptojedi.org/


Summary

I Remember double-and-add
I Remember not to use it (at least never with a secret scalar)
I Keep in mind that writing constant-time code is hard
I A beer of your choice for anybody who computes a2

255−21 in 254
squarings and 10 multiplications

I Two beers of your choice for anybody who computes a2
255−21 in 254

squarings and 9 multiplications
I . . .

I Slides of both talks will be online at
http://cryptojedi.org/

Scalar-multiplication algorithms 37

http://cryptojedi.org/


Summary

I Remember double-and-add
I Remember not to use it (at least never with a secret scalar)
I Keep in mind that writing constant-time code is hard
I A beer of your choice for anybody who computes a2

255−21 in 254
squarings and 10 multiplications

I Two beers of your choice for anybody who computes a2
255−21 in 254

squarings and 9 multiplications
I . . .

I Slides of both talks will be online at
http://cryptojedi.org/

Scalar-multiplication algorithms 37

http://cryptojedi.org/

