Scalar-multiplication algorithms

Peter Schwabe
Radboud University Nijmegen, The Netherlands

September 11, 2013
ECC 2013 Summer School

The ECDLP

Definition

Given two points P and Q on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer k such that $k P=Q$.

The ECDLP

Definition

Given two points P and Q on an elliptic curve, such that $Q \in\langle P\rangle$, find an integer k such that $k P=Q$.

- Typical setting for cryptosystems:
- P is a fixed system parameter,
- k is the secret (private) key,
- Q is the public key.
- Key generation needs to compute $Q=k P$, given k and P

EC Diffie-Hellman key exchange

- Users Alice and Bob have key pairs $\left(k_{A}, Q_{A}\right)$ and $\left(k_{B}, Q_{B}\right)$

EC Diffie-Hellman key exchange

- Users Alice and Bob have key pairs $\left(k_{A}, Q_{A}\right)$ and $\left(k_{B}, Q_{B}\right)$
- Alice sends Q_{A} to Bob
- Bob sends Q_{B} to Alice

EC Diffie-Hellman key exchange

- Users Alice and Bob have key pairs $\left(k_{A}, Q_{A}\right)$ and $\left(k_{B}, Q_{B}\right)$
- Alice sends Q_{A} to Bob
- Bob sends Q_{B} to Alice
- Alice computes joint key as $K=k_{A} Q_{B}$
- Bob computes joint key as $K=k_{B} Q_{A}$

Schnorr signatures

- Alice has key pair $\left(k_{A}, Q_{A}\right)$
- Order of $\langle P\rangle$ is ℓ
- Use cryptographic hash function H

Schnorr signatures

- Alice has key pair $\left(k_{A}, Q_{A}\right)$
- Order of $\langle P\rangle$ is ℓ
- Use cryptographic hash function H
- Sign: Generate secret random $r \in\{1, \ldots, \ell\}$, compute signature ($H(R, M), S$) on M with

$$
\begin{aligned}
R & =r P \\
S & =\left(r+H(R, M) k_{A}\right) \bmod \ell
\end{aligned}
$$

Schnorr signatures

- Alice has key pair $\left(k_{A}, Q_{A}\right)$
- Order of $\langle P\rangle$ is ℓ
- Use cryptographic hash function H
- Sign: Generate secret random $r \in\{1, \ldots, \ell\}$, compute signature ($H(R, M), S)$ on M with

$$
\begin{aligned}
& R=r P \\
& S=\left(r+H(R, M) k_{A}\right) \bmod \ell
\end{aligned}
$$

- Verify: compute $\bar{R}=S P+H(R, M) Q_{A}$ and check that

$$
H(\bar{R}, M)=H(R, M)
$$

Scalar multiplication

- Looks like all these schemes need computation of $k P$.

Scalar multiplication

- Looks like all these schemes need computation of $k P$.
- Let's take a closer look:
- For key generation, the point P is fixed at compile time
- For Diffie-Hellman joint-key computation the point is received at runtime

Scalar multiplication

- Looks like all these schemes need computation of $k P$.
- Let's take a closer look:
- For key generation, the point P is fixed at compile time
- For Diffie-Hellman joint-key computation the point is received at runtime
- Key generation and Diffie-Hellman need one scalar multiplication $k P$
- Schnorr signature verification needs double-scalar multiplication $k_{1} P_{1}+k_{2} P_{2}$

Scalar multiplication

- Looks like all these schemes need computation of $k P$.
- Let's take a closer look:
- For key generation, the point P is fixed at compile time
- For Diffie-Hellman joint-key computation the point is received at runtime
- Key generation and Diffie-Hellman need one scalar multiplication $k P$
- Schnorr signature verification needs double-scalar multiplication $k_{1} P_{1}+k_{2} P_{2}$
- In key generation and Diffie-Hellman joint-key computation, k is secret
- The scalars in Schnorr signature verification are public

Scalar multiplication

- Looks like all these schemes need computation of $k P$.
- Let's take a closer look:
- For key generation, the point P is fixed at compile time
- For Diffie-Hellman joint-key computation the point is received at runtime
- Key generation and Diffie-Hellman need one scalar multiplication $k P$
- Schnorr signature verification needs double-scalar multiplication $k_{1} P_{1}+k_{2} P_{2}$
- In key generation and Diffie-Hellman joint-key computation, k is secret
- The scalars in Schnorr signature verification are public
- In the following: Distinguish these cases

Secret vs. public scalars

- The computation $k P$ should have the same result for public or for secret k

Secret vs. public scalars

- The computation $k P$ should have the same result for public or for secret k
- True. We still want different algorithms.
- Problem: Timing information:
- Some fast scalar-multiplication algorithms have a running time that depends on k
- An attacker can measure time and deduce information about k

Secret vs. public scalars

- The computation $k P$ should have the same result for public or for secret k
- True. We still want different algorithms.
- Problem: Timing information:
- Some fast scalar-multiplication algorithms have a running time that depends on k
- An attacker can measure time and deduce information about k
- Brumley, Tuveri, 2011: A few minutes to steal the private key of a TLS server over the network.

Secret vs. public scalars

- The computation $k P$ should have the same result for public or for secret k
- True. We still want different algorithms.
- Problem: Timing information:
- Some fast scalar-multiplication algorithms have a running time that depends on k
- An attacker can measure time and deduce information about k
- Brumley, Tuveri, 2011: A few minutes to steal the private key of a TLS server over the network.
- For secret k we need constant-time algorithms

A first approach

- Let's compute $105 \cdot P$.

A first approach

- Let's compute $105 \cdot P$.
- Obvious: Can do that with 104 additions $P+P+P+\cdots+P$

A first approach

- Let's compute $105 \cdot P$.
- Obvious: Can do that with 104 additions $P+P+P+\cdots+P$
- Problem: 105 has 7 bits, we need roughly 2^{7} additions, real scalars have ≈ 256 bits, we would need roughly 2^{256} additions (more expensive than solving the ECDLP!)

A first approach

- Let's compute $105 \cdot P$.
- Obvious: Can do that with 104 additions $P+P+P+\cdots+P$
- Problem: 105 has 7 bits, we need roughly 2^{7} additions, real scalars have ≈ 256 bits, we would need roughly 2^{256} additions (more expensive than solving the ECDLP!)
- Conclusion: we need algorithms that run in polynomial time (in the size of the scalar)

Rewriting the scalar

- $105=64+32+8+1=2^{6}+2^{5}+2^{3}+2^{0}$

Rewriting the scalar

- $105=64+32+8+1=2^{6}+2^{5}+2^{3}+2^{0}$
- $105=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$

Rewriting the scalar

- $105=64+32+8+1=2^{6}+2^{5}+2^{3}+2^{0}$
- $105=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$
- $105=(((((((((1 \cdot 2+1) \cdot 2)+0) \cdot 2)+1) \cdot 2)+0) \cdot 2)+0) \cdot 2)+1$ (Horner's rule)

Rewriting the scalar

- $105=64+32+8+1=2^{6}+2^{5}+2^{3}+2^{0}$
- $105=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$
- $105=(((((((((1 \cdot 2+1) \cdot 2)+0) \cdot 2)+1) \cdot 2)+0) \cdot 2)+0) \cdot 2)+1$ (Horner's rule)
- $105 \cdot P=(((((((((P \cdot 2+P) \cdot 2)+0) \cdot 2)+P) \cdot 2)+0) \cdot 2)+0) \cdot 2)+P$

Rewriting the scalar

- $105=64+32+8+1=2^{6}+2^{5}+2^{3}+2^{0}$
- $105=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$
- $105=(((((((((1 \cdot 2+1) \cdot 2)+0) \cdot 2)+1) \cdot 2)+0) \cdot 2)+0) \cdot 2)+1$ (Horner's rule)
- $105 \cdot P=(((((((((P \cdot 2+P) \cdot 2)+0) \cdot 2)+P) \cdot 2)+0) \cdot 2)+0) \cdot 2)+P$
- Cost: 6 doublings, 3 additions

Rewriting the scalar

- $105=64+32+8+1=2^{6}+2^{5}+2^{3}+2^{0}$
- $105=1 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$
- $105=(((((((((1 \cdot 2+1) \cdot 2)+0) \cdot 2)+1) \cdot 2)+0) \cdot 2)+0) \cdot 2)+1$ (Horner's rule)
- $105 \cdot P=(((((((((P \cdot 2+P) \cdot 2)+0) \cdot 2)+P) \cdot 2)+0) \cdot 2)+0) \cdot 2)+P$
- Cost: 6 doublings, 3 additions
- General algorithm: "Double and add"

$$
R \leftarrow P
$$

for $i \leftarrow n-2$ downto 0 do $R \leftarrow 2 R$
if $(k)_{2}[i]=1$ then $R \leftarrow R+P$
end if
end for
return R

Analysis of double-and-add

- Let n be the number of bits in the exponent
- Double-and-add takes $n-1$ doublings

Analysis of double-and-add

- Let n be the number of bits in the exponent
- Double-and-add takes $n-1$ doublings
- Let m be the number of 1 bits in the exponent
- Double-and-add takes $m-1$ additions
- On average: $\approx n / 2$ additions

Analysis of double-and-add

- Let n be the number of bits in the exponent
- Double-and-add takes $n-1$ doublings
- Let m be the number of 1 bits in the exponent
- Double-and-add takes $m-1$ additions
- On average: $\approx n / 2$ additions
- P does not need to be known in advance, no precomputation depending on P

Analysis of double-and-add

- Let n be the number of bits in the exponent
- Double-and-add takes $n-1$ doublings
- Let m be the number of 1 bits in the exponent
- Double-and-add takes $m-1$ additions
- On average: $\approx n / 2$ additions
- P does not need to be known in advance, no precomputation depending on P
- Handles single-scalar multiplication

Analysis of double-and-add

- Let n be the number of bits in the exponent
- Double-and-add takes $n-1$ doublings
- Let m be the number of 1 bits in the exponent
- Double-and-add takes $m-1$ additions
- On average: $\approx n / 2$ additions
- P does not need to be known in advance, no precomputation depending on P
- Handles single-scalar multiplication
- Running time clearly depends on the scalar: insecure for secret scalars!

Double-scalar double-and-add

- Let's modify the algorithm to compute $k_{1} P_{1}+k_{2} P_{2}$

Double-scalar double-and-add

- Let's modify the algorithm to compute $k_{1} P_{1}+k_{2} P_{2}$
- Obvious solution:
- Compute $k_{1} P_{1}$ ($n_{1}-1$ doublings, $m_{1}-1$ additions)
- Compute $k_{2} P_{2}$ ($n_{2}-1$ doublings, $m_{2}-1$ additions)
- Add the results (1 addition)

Double-scalar double-and-add

- Let's modify the algorithm to compute $k_{1} P_{1}+k_{2} P_{2}$
- Obvious solution:
- Compute $k_{1} P_{1}$ ($n_{1}-1$ doublings, $m_{1}-1$ additions)
- Compute $k_{2} P_{2}$ ($n_{2}-1$ doublings, $m_{2}-1$ additions)
- Add the results (1 addition)
- We can do better (\mathcal{O} denotes the neutral element):

```
R\leftarrow\mathcal{O}
for }i\leftarrow\operatorname{max}(\mp@subsup{n}{1}{},\mp@subsup{n}{2}{})-1\mathrm{ downto 0 do
    R\leftarrow2R
    if (k}\mp@subsup{k}{1}{}\mp@subsup{)}{2}{}[i]=1 the
        R\leftarrowR+P
    end if
    if (k2)
        R\leftarrowR+P2
    end if
end for
return R
```


Double-scalar double-and-add

- Let's modify the algorithm to compute $k_{1} P_{1}+k_{2} P_{2}$
- Obvious solution:
- Compute $k_{1} P_{1}$ ($n_{1}-1$ doublings, $m_{1}-1$ additions)
- Compute $k_{2} P_{2}$ ($n_{2}-1$ doublings, $m_{2}-1$ additions)
- Add the results (1 addition)
- We can do better (\mathcal{O} denotes the neutral element):

```
\(R \leftarrow \mathcal{O}\)
for \(i \leftarrow \max \left(n_{1}, n_{2}\right)-1\) downto 0 do
        \(R \leftarrow 2 R\)
        if \(\left(k_{1}\right)_{2}[i]=1\) then
        \(R \leftarrow R+P_{1}\)
    end if
        if \(\left(k_{2}\right)_{2}[i]=1\) then
        \(R \leftarrow R+P_{2}\)
        end if
end for
return \(R\)
```

$-\max \left(n_{1}, n_{2}\right)$ doublings, $m_{1}+m_{2}$ additions

Some precomputation helps

- Whenever k_{1} and k_{2} have a 1 bit at the same position, we first add P_{1} and then P_{2} (on average for $1 / 4$ of the bits)

Some precomputation helps

- Whenever k_{1} and k_{2} have a 1 bit at the same position, we first add P_{1} and then P_{2} (on average for $1 / 4$ of the bits)
- Let's just precompute $T=P_{1}+P_{2}$

Some precomputation helps

- Whenever k_{1} and k_{2} have a 1 bit at the same position, we first add P_{1} and then P_{2} (on average for $1 / 4$ of the bits)
- Let's just precompute $T=P_{1}+P_{2}$
- Modified algorithm (special case of Strauss' algorithm):

```
R\leftarrow\mathcal{O}
for }i\leftarrow\operatorname{max}(\mp@subsup{n}{1}{},\mp@subsup{n}{2}{})-1\mathrm{ downto 0 do
    R\leftarrow2R
    if (k, (k) [i]=1 AND ( }\mp@subsup{k}{2}{}\mp@subsup{)}{2}{}[i]=1\mathrm{ then
        R\leftarrowR+T
    else
        if (k}\mp@subsup{k}{1}{}\mp@subsup{)}{2}{}[i]=1 the
        R\leftarrowR+P
        end if
        if (k2)
        R\leftarrowR+P2
        end if
    end if
end for
return R
```


Even more (offline) precomputation

- What if precomputation is free (fixed basepoint, offline precomputation)?

Even more (offline) precomputation

- What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0 P, P, 2 P, 3 P, \ldots$, when we receive k, simply look up $k P$.

Even more (offline) precomputation

- What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0 P, P, 2 P, 3 P, \ldots$, when we receive k, simply look up $k P$.
- Problem: k is large. For a 256 -bit k we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152 TB

Even more (offline) precomputation

- What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0 P, P, 2 P, 3 P, \ldots$, when we receive k, simply look up $k P$.
- Problem: k is large. For a 256 -bit k we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB
- How about, for example, precompute $P, 2 P, 4 P, 8 P, \ldots, 2^{n-1} P$
- This needs only about 8 KB of storage for $n=256$

Even more (offline) precomputation

- What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0 P, P, 2 P, 3 P, \ldots$, when we receive k, simply look up $k P$.
- Problem: k is large. For a 256 -bit k we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB
- How about, for example, precompute $P, 2 P, 4 P, 8 P, \ldots, 2^{n-1} P$
- This needs only about 8 KB of storage for $n=256$
- Modified scalar-multiplication algorithm:

```
R\leftarrow\mathcal{O}
for }i\leftarrow0\mathrm{ to n-1 do
    if (k)\mp@subsup{)}{2}{}[i]=1 then
        R\leftarrowR+2i}
    end if
end for
return R
```


Even more (offline) precomputation

- What if precomputation is free (fixed basepoint, offline precomputation)?
- First idea: Let's precompute a table containing $0 P, P, 2 P, 3 P, \ldots$, when we receive k, simply look up $k P$.
- Problem: k is large. For a 256 -bit k we would need a table of size 3369993333393829974333376885877453834204643052817571560137951281152TB
- How about, for example, precompute $P, 2 P, 4 P, 8 P, \ldots, 2^{n-1} P$
- This needs only about 8 KB of storage for $n=256$
- Modified scalar-multiplication algorithm:

```
R\leftarrow\mathcal{O}
for }i\leftarrow0\mathrm{ to n-1 do
    if (k)\mp@subsup{)}{2}{}[i]=1 then
        R\leftarrowR+2i}
    end if
end for
return R
```

- Eliminated all doublings in fixed-basepoint scalar multiplication!

Double-and-add always

- All algorithms so far perform conditional addition where the condition is secret
- For secret scalars (most common case!) we need something else

Double-and-add always

- All algorithms so far perform conditional addition where the condition is secret
- For secret scalars (most common case!) we need something else
- Idea: Always perform addition, discard result:

```
\(R \leftarrow P\)
for \(i \leftarrow n-2\) downto 0 do
    \(R \leftarrow 2 R\)
    \(R_{t} \leftarrow R+P\)
    if \((k)_{2}[i]=1\) then
        \(R \leftarrow R_{t}\)
    end if
end for
```


Double-and-add always

- All algorithms so far perform conditional addition where the condition is secret
- For secret scalars (most common case!) we need something else
- Idea: Always perform addition, discard result:
- Or simply add the neutral element \mathcal{O}

$$
\begin{aligned}
& R \leftarrow P \\
& \text { for } i \leftarrow n-2 \text { downto } 0 \text { do } \\
& \quad R \leftarrow 2 R \\
& \quad \text { if }(k)_{2}[i]=1 \text { then } \\
& \quad R \leftarrow R+P \\
& \quad \text { else } \\
& \quad R \leftarrow R+\mathcal{O} \\
& \text { end if } \\
& \text { end for } \\
& \text { return } R
\end{aligned}
$$

Double-and-add always

- All algorithms so far perform conditional addition where the condition is secret
- For secret scalars (most common case!) we need something else
- Idea: Always perform addition, discard result:
- Or simply add the neutral element \mathcal{O}

$$
\begin{aligned}
& R \leftarrow P \\
& \text { for } i \leftarrow n-2 \text { downto } 0 \text { do } \\
& R \leftarrow 2 R \\
& \text { if }(k)_{2}[i]=1 \text { then } \\
& \quad R \leftarrow R+P \\
& \quad \text { else } \\
& \quad R \leftarrow R+\mathcal{O} \\
& \text { end if } \\
& \text { end for } \\
& \text { return } R
\end{aligned}
$$

- Still not constant time, more later...

Let's rewrite that a bit . . .

- We have a table $T=(\mathcal{O}, P)$
- Notation $T[0]=\mathcal{O}, T[1]=P$
- Scalar multiplication is

$$
\begin{aligned}
& R \leftarrow P \\
& \text { for } i \leftarrow n-2 \text { downto } 0 \text { do } \\
& \quad R \leftarrow 2 R \\
& \quad R \leftarrow R+T\left[(k)_{2}[i]\right] \\
& \text { end for }
\end{aligned}
$$

Changing the scalar radix

- So far we considered a scalar written in radix 2
- How about radix 3 ?

Changing the scalar radix

- So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T=(\mathcal{O}, P, 2 P)$
- Write scalar k as $\left(k_{n-1}, \ldots, k_{0}\right)_{3}$

Changing the scalar radix

- So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T=(\mathcal{O}, P, 2 P)$
- Write scalar k as $\left(k_{n-1}, \ldots, k_{0}\right)_{3}$
- Compute scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T\left[(k)_{3}[n-1]\right] \\
& \text { for } i \leftarrow n-2 \text { downto } 0 \text { do } \\
& \quad R \leftarrow 3 R \\
& \quad R \leftarrow R+T\left[(k)_{3}[i]\right] \\
& \text { end for }
\end{aligned}
$$

Changing the scalar radix

- So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T=(\mathcal{O}, P, 2 P)$
- Write scalar k as $\left(k_{n-1}, \ldots, k_{0}\right)_{3}$
- Compute scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T\left[(k)_{3}[n-1]\right] \\
& \text { for } i \leftarrow n-2 \text { downto } 0 \text { do } \\
& \quad R \leftarrow 3 R \\
& \quad R \leftarrow R+T\left[(k)_{3}[i]\right] \\
& \text { end for }
\end{aligned}
$$

- Advantage: The scalar is shorter, fewer additions
- Disadvantage: 3 is just not nice (needs triplings)

Changing the scalar radix

- So far we considered a scalar written in radix 2
- How about radix 3?
- We precompute a Table $T=(\mathcal{O}, P, 2 P)$
- Write scalar k as $\left(k_{n-1}, \ldots, k_{0}\right)_{3}$
- Compute scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T\left[(k)_{3}[n-1]\right] \\
& \text { for } i \leftarrow n-2 \text { downto } 0 \text { do } \\
& \quad R \leftarrow 3 R \\
& \quad R \leftarrow R+T\left[(k)_{3}[i]\right] \\
& \text { end for }
\end{aligned}
$$

- Advantage: The scalar is shorter, fewer additions
- Disadvantage: 3 is just not nice (needs triplings)
- How about some nice numbers, like $4,8,16$?

Fixed-window scalar multiplication

- Fix a window width w
- Precompute $T=\left(\mathcal{O}, P, 2 P, \ldots,\left(2^{w}-1\right) P\right)$

Fixed-window scalar multiplication

- Fix a window width w
- Precompute $T=\left(\mathcal{O}, P, 2 P, \ldots,\left(2^{w}-1\right) P\right)$
- Write scalar k as $\left(k_{m-1}, \ldots, k_{0}\right)_{2^{w}}$
- This is the same as chopping the binary scalar into "windows" of fixed length w

Fixed-window scalar multiplication

- Fix a window width w
- Precompute $T=\left(\mathcal{O}, P, 2 P, \ldots,\left(2^{w}-1\right) P\right)$
- Write scalar k as $\left(k_{m-1}, \ldots, k_{0}\right)_{2^{w}}$
- This is the same as chopping the binary scalar into "windows" of fixed length w
- Compute scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T\left[(k)_{2^{w}}[m-1]\right] \\
& \text { for } i \leftarrow m-2 \text { downto } 0 \text { do } \\
& \quad \text { for } j \leftarrow 1 \text { to } w \text { do } \\
& \quad R \leftarrow 2 R \\
& \quad \text { end for } \\
& \quad R \leftarrow R+T\left[(k)_{2^{w}}[i]\right] \\
& \text { end for }
\end{aligned}
$$

Analysis of fixed window

- For an n-bit scalar we still have $n-1$ doublings

Analysis of fixed window

- For an n-bit scalar we still have $n-1$ doublings
- Precomputation costs us $w / 2-1$ additions and $w / 2-1$ doublings

Analysis of fixed window

- For an n-bit scalar we still have $n-1$ doublings
- Precomputation costs us $w / 2-1$ additions and $w / 2-1$ doublings
- Number of additions in the loop is $\lceil n / w\rceil$

Analysis of fixed window

- For an n-bit scalar we still have $n-1$ doublings
- Precomputation costs us $w / 2-1$ additions and $w / 2-1$ doublings
- Number of additions in the loop is $\lceil n / w\rceil$
- Larger w: More precomputation
- Smaller w : More additions inside the loop

Analysis of fixed window

- For an n-bit scalar we still have $n-1$ doublings
- Precomputation costs us $w / 2-1$ additions and $w / 2-1$ doublings
- Number of additions in the loop is $\lceil n / w\rceil$
- Larger w : More precomputation
- Smaller w : More additions inside the loop
- For ≈ 256-bit scalars choose $w=4$ or $w=5$

Is fixed-window constant time?

- For each window of the scalar perform w doublings and one addition, sounds good.

Is fixed-window constant time?

- For each window of the scalar perform w doublings and one addition, sounds good.
- The devil is in the detail:
- Is addition running in constant time? Also for \mathcal{O} ?
- We can make that work, but how easy and efficient it is depends on the curve shape (hint: you want to use Edward's curves)

Is fixed-window constant time?

- For each window of the scalar perform w doublings and one addition, sounds good.
- The devil is in the detail:
- Is addition running in constant time? Also for \mathcal{O} ?
- We can make that work, but how easy and efficient it is depends on the curve shape (hint: you want to use Edward's curves)
- Are lookups from the table T running in constant time?
- Usually not!

Cache-timing attacks

- We load from table T at position $p=(k)_{2^{w}}[i]$
- The position is part of the secret scalar, so also secret

Cache-timing attacks

- We load from table T at position $p=(k)_{2^{w}}[i]$
- The position is part of the secret scalar, so also secret
- Most processors load data through several caches (transparent, fast memory)
- loads are fast if data is found in cache (cache hit)
- loads are slow if data is not found in cache (cache miss)

Cache-timing attacks

- We load from table T at position $p=(k)_{2^{w}}[i]$
- The position is part of the secret scalar, so also secret
- Most processors load data through several caches (transparent, fast memory)
- loads are fast if data is found in cache (cache hit)
- loads are slow if data is not found in cache (cache miss)
- Solution (part 1): Load all items, pick the right one:

```
R\leftarrow\mathcal{O}
for i from 1 to 2 }\mp@subsup{2}{}{w}-1\mathrm{ do
    if }p=i\mathrm{ then
        R\leftarrowT[i]
    end if
end for
```


Cache-timing attacks

- We load from table T at position $p=(k)_{2^{w}}[i]$
- The position is part of the secret scalar, so also secret
- Most processors load data through several caches (transparent, fast memory)
- loads are fast if data is found in cache (cache hit)
- loads are slow if data is not found in cache (cache miss)
- Solution (part 1): Load all items, pick the right one:

```
R\leftarrow\mathcal{O}
for i from 1 to 2 }\mp@subsup{2}{}{w}-1\mathrm{ do
    if }p=i\mathrm{ then
        R\leftarrowT[i]
    end if
end for
```

- Problem 1: if-statements are not constant time

Cache-timing attacks

- We load from table T at position $p=(k)_{2^{w}}[i]$
- The position is part of the secret scalar, so also secret
- Most processors load data through several caches (transparent, fast memory)
- loads are fast if data is found in cache (cache hit)
- loads are slow if data is not found in cache (cache miss)
- Solution (part 1): Load all items, pick the right one:

```
R\leftarrow\mathcal{O}
for i from 1 to 2 }\mp@subsup{2}{}{w}-1\mathrm{ do
    if }p=i\mathrm{ then
        R\leftarrowT[i]
    end if
end for
```

- Problem 1: if-statements are not constant time
- Problem 2: Comparisons are not (guaranteed to be) constant time

Constant-time ifs

- A general if statement looks as follows:
if s then
$R \leftarrow A$
else
$R \leftarrow B$
end if
- This takes different amount of time depending on the bit s, even if A and B take the same amount of time.
- Reason: branch prediction

Constant-time ifs

- A general if statement looks as follows:

```
    if }s\mathrm{ then
        R\leftarrowA
    else
        R\leftarrowB
    end if
```

- This takes different amount of time depending on the bit s, even if A and B take the same amount of time.
- Reason: branch prediction
- Suitable replacement:

$$
R \leftarrow s \cdot A+(1-s) \cdot B
$$

Constant-time ifs

- A general if statement looks as follows:
if s then
$R \leftarrow A$
else
$R \leftarrow B$
end if
- This takes different amount of time depending on the bit s, even if A and B take the same amount of time.
- Reason: branch prediction
- Suitable replacement:

$$
R \leftarrow s \cdot A+(1-s) \cdot B
$$

- Can replace multiplication and addition with bit-logical operations (AND and XOR)

Constant-time ifs

- A general if statement looks as follows:

```
    if s}\mathrm{ then
        R\leftarrowA
    else
        R\leftarrowB
    end if
```

- This takes different amount of time depending on the bit s, even if A and B take the same amount of time.
- Reason: branch prediction
- Suitable replacement:

$$
R \leftarrow s \cdot A+(1-s) \cdot B
$$

- Can replace multiplication and addition with bit-logical operations (AND and XOR)
- For very fast A and B, this can even be faster than the conditional branch

Constant-time comparison

```
static unsigned long long eq(unsigned char a, unsigned char b)
{
    unsigned long long t = a ^ b;
    t = (-t) >> 63;
    return 1-t;
}
```


More offline precomputation

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2 P, 4 P, 8 P, \ldots$

More offline precomputation

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2 P, 4 P, 8 P, \ldots$
- We can combine that with fixed-window scalar multiplication
- Precompute $T_{i}=\left(\mathcal{O}, P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P\right) \cdot 2^{i}$ for $i=0, w, 2 w, 3 w,\lceil n / w\rceil-1$

More offline precomputation

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2 P, 4 P, 8 P, \ldots$
- We can combine that with fixed-window scalar multiplication
- Precompute $T_{i}=\left(\mathcal{O}, P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P\right) \cdot 2^{i}$ for $i=0, w, 2 w, 3 w,\lceil n / w\rceil-1$
- Perform scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T_{0}\left[(k)_{2^{w}}[0]\right] \\
& \text { for } i \leftarrow 1 \text { to }\lceil n / w\rceil-1 \text { do } \\
& \quad R \leftarrow R+T_{i}\left[(k)_{2^{w}}[i]\right] \\
& \text { end for }
\end{aligned}
$$

More offline precomputation

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2 P, 4 P, 8 P, \ldots$
- We can combine that with fixed-window scalar multiplication
- Precompute $T_{i}=\left(\mathcal{O}, P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P\right) \cdot 2^{i}$ for $i=0, w, 2 w, 3 w,\lceil n / w\rceil-1$
- Perform scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T_{0}\left[(k)_{2^{w}}[0]\right] \\
& \text { for } i \leftarrow 1 \text { to }\lceil n / w\rceil-1 \text { do } \\
& \quad R \leftarrow R+T_{i}\left[(k)_{2^{w}}[i]\right] \\
& \text { end for }
\end{aligned}
$$

- No doublings, only $\lceil b / w\rceil-1$ additions

More offline precomputation

- Let's get back to fixed-basepoint multiplication
- So far we precomputed $P, 2 P, 4 P, 8 P, \ldots$
- We can combine that with fixed-window scalar multiplication
- Precompute $T_{i}=\left(\mathcal{O}, P, 2 P, 3 P, \ldots,\left(2^{w}-1\right) P\right) \cdot 2^{i}$ for $i=0, w, 2 w, 3 w,\lceil n / w\rceil-1$
- Perform scalar multiplication as

$$
\begin{aligned}
& R \leftarrow T_{0}\left[(k)_{2^{w}}[0]\right] \\
& \text { for } i \leftarrow 1 \text { to }\lceil n / w\rceil-1 \text { do } \\
& \quad R \leftarrow R+T_{i}\left[(k)_{2^{w}}[i]\right] \\
& \text { end for }
\end{aligned}
$$

- No doublings, only $\lceil b / w\rceil-1$ additions
- Can use huge w, but:
- at some point the precomputed tables don't fit into cache anymore.
- constant-time loads get slow for large w

Fixed-window limitations

- Consider the scalar $22=(10110)_{2}$ and window size 2
- Initialize R with P
- Double, double, add P
- Double, double, add $2 P$

Fixed-window limitations

- Consider the scalar $22=(10110)_{2}$ and window size 2
- Initialize R with P
- Double, double, add P
- Double, double, add $2 P$
- More efficient:
- Initialize R with P
- Double, double, double, add $3 P$
- double

Fixed-window limitations

- Consider the scalar $22=(10110)_{2}$ and window size 2
- Initialize R with P
- Double, double, add P
- Double, double, add $2 P$
- More efficient:
- Initialize R with P
- Double, double, double, add $3 P$
- double
- Problem with fixed window: it's fixed.

Fixed-window limitations

- Consider the scalar $22=(10110)_{2}$ and window size 2
- Initialize R with P
- Double, double, add P
- Double, double, add $2 P$
- More efficient:
- Initialize R with P
- Double, double, double, add $3 P$
- double
- Problem with fixed window: it's fixed.
- Idea: "Slide" the window over the scalar

Sliding window scalar multiplication

- Choose window size w
- Rewrite scalar k as $k=\left(k_{0}, \ldots, k_{m}\right)$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non-zero entry in each window of length w

Sliding window scalar multiplication

- Choose window size w
- Rewrite scalar k as $k=\left(k_{0}, \ldots, k_{m}\right)$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non-zero entry in each window of length w
- Do this by scanning k from right to left, expand window from each 1-bit

Sliding window scalar multiplication

- Choose window size w
- Rewrite scalar k as $k=\left(k_{0}, \ldots, k_{m}\right)$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non-zero entry in each window of length w
- Do this by scanning k from right to left, expand window from each 1-bit
- Precompute $P, 3 P, 5 P, \ldots,\left(2^{w}-1\right) P$

Sliding window scalar multiplication

- Choose window size w
- Rewrite scalar k as $k=\left(k_{0}, \ldots, k_{m}\right)$ with k_{i} in $\left\{0,1,3,5, \ldots, 2^{w}-1\right\}$ with at most one non-zero entry in each window of length w
- Do this by scanning k from right to left, expand window from each 1-bit
- Precompute $P, 3 P, 5 P, \ldots,\left(2^{w}-1\right) P$
- Perform scalar multiplication

$$
\begin{aligned}
& R \leftarrow \mathcal{O} \\
& \text { for } i \leftarrow m \text { to } 0 \text { do } \\
& \quad R \leftarrow 2 R \\
& \text { if } k_{i} \text { then } \\
& \quad R \leftarrow R+k_{i} P \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

Analysis of sliding window

- We still do $n-1$ doublings for an n-bit scalar
- Precomputation needs 2^{w-1}
- Expected number of additions in the main loop: $n /(w+1)$

Analysis of sliding window

- We still do $n-1$ doublings for an n-bit scalar
- Precomputation needs 2^{w-1}
- Expected number of additions in the main loop: $n /(w+1)$
- For the same w only half the precomputation compared to fixed-window scalar multiplication
- For the same w fewer additions in the main loop

Analysis of sliding window

- We still do $n-1$ doublings for an n-bit scalar
- Precomputation needs 2^{w-1}
- Expected number of additions in the main loop: $n /(w+1)$
- For the same w only half the precomputation compared to fixed-window scalar multiplication
- For the same w fewer additions in the main loop
- But: It's not running in constant time!
- Still nice (in double-scalar version) for signature verification

Using efficient negation

- So far everything we did works for any cyclic group $\langle P\rangle$
- Elliptic curves have so much more to offer
- For example, efficient negation: $-(x, y)=(x,-y)$ (on Weierstrass curves)

Using efficient negation

- So far everything we did works for any cyclic group $\langle P\rangle$
- Elliptic curves have so much more to offer
- For example, efficient negation: $-(x, y)=(x,-y)$ (on Weierstrass curves)
- Idea: use a signed representation for the scalar
- Fixed-window scalar multiplication:
- Write scalar as $\left(k_{0}, \ldots, k_{m-1}\right)$ with $k_{i} \in\left[-2^{w}, \ldots, 2^{w}-1\right]$
- Precompute $T=\left(-2^{w} P,\left(-2^{w}+1\right) P, \ldots, \mathcal{O}, P, \ldots,\left(2^{w}-1\right) P\right.$
- Perform normal fixed-window scalar multiplication
- Half of the precomputation is almost free, we get one bit of w for free

Using efficient negation

- So far everything we did works for any cyclic group $\langle P\rangle$
- Elliptic curves have so much more to offer
- For example, efficient negation: $-(x, y)=(x,-y)$ (on Weierstrass curves)
- Idea: use a signed representation for the scalar
- Fixed-window scalar multiplication:
- Write scalar as $\left(k_{0}, \ldots, k_{m-1}\right)$ with $k_{i} \in\left[-2^{w}, \ldots, 2^{w}-1\right]$
- Precompute $T=\left(-2^{w} P,\left(-2^{w}+1\right) P, \ldots, \mathcal{O}, P, \ldots,\left(2^{w}-1\right) P\right.$
- Perform normal fixed-window scalar multiplication
- Half of the precomputation is almost free, we get one bit of w for free
- Negation is so fast that we can do it on the fly (saves half the table, faster constant-time lookups)

Using efficient negation

- So far everything we did works for any cyclic group $\langle P\rangle$
- Elliptic curves have so much more to offer
- For example, efficient negation: $-(x, y)=(x,-y)$ (on Weierstrass curves)
- Idea: use a signed representation for the scalar
- Fixed-window scalar multiplication:
- Write scalar as $\left(k_{0}, \ldots, k_{m-1}\right)$ with $k_{i} \in\left[-2^{w}, \ldots, 2^{w}-1\right]$
- Precompute $T=\left(-2^{w} P,\left(-2^{w}+1\right) P, \ldots, \mathcal{O}, P, \ldots,\left(2^{w}-1\right) P\right.$
- Perform normal fixed-window scalar multiplication
- Half of the precomputation is almost free, we get one bit of w for free
- Negation is so fast that we can do it on the fly (saves half the table, faster constant-time lookups)
- Similar scalar-negation speedup for sliding-window multiplication

Using other efficient endomorphisms

- Ben showed us before that there are efficient endomorphisms on elliptic curves
- Let's now just take an efficient endomorphism φ
- Let's assume that $\varphi(Q)$ corresponds to λQ for all $Q \in\langle P\rangle$

Using other efficient endomorphisms

- Ben showed us before that there are efficient endomorphisms on elliptic curves
- Let's now just take an efficient endomorphism φ
- Let's assume that $\varphi(Q)$ corresponds to λQ for all $Q \in\langle P\rangle$
- We can use this for faster scalar multiplication (Gallant, Lambert, Vanstone, 2000; and Galbraith, Lin, Scott, 2009)
- Write scalar $k=k_{1}+k_{2} \lambda$ with k_{1} and k_{2} half the length of k
- Perform half-size double-scalar multiplication $k_{1}(P)+k_{2}(\varphi(P))$
- Save half of the doublings (estimated speedup: 30-40\%)

Using other efficient endomorphisms

- Ben showed us before that there are efficient endomorphisms on elliptic curves
- Let's now just take an efficient endomorphism φ
- Let's assume that $\varphi(Q)$ corresponds to λQ for all $Q \in\langle P\rangle$
- We can use this for faster scalar multiplication (Gallant, Lambert, Vanstone, 2000; and Galbraith, Lin, Scott, 2009)
- Write scalar $k=k_{1}+k_{2} \lambda$ with k_{1} and k_{2} half the length of k
- Perform half-size double-scalar multiplication $k_{1}(P)+k_{2}(\varphi(P))$
- Save half of the doublings (estimated speedup: 30-40\%)
- With two efficient endomorphisms we can do a 4-dimensional decomposition
- Perform quarter-size quad-scalar multiplication (save another 25% of doublings)

Differential addition

- Consider elliptic curves of the form $B y^{2}=x^{3}+A x^{2}+x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
- Given the x-coordinate x_{P} of P, and
- given the x-coordinate x_{Q} of Q, and
- given the x-coordinate x_{P-Q} of $P-Q$

Differential addition

- Consider elliptic curves of the form $B y^{2}=x^{3}+A x^{2}+x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
- Given the x-coordinate x_{P} of P, and
- given the x-coordinate x_{Q} of Q, and
- given the x-coordinate x_{P-Q} of $P-Q$
- compute the x-coordinate x_{R} of $R=P+Q$

Differential addition

- Consider elliptic curves of the form $B y^{2}=x^{3}+A x^{2}+x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
- Given the x-coordinate x_{P} of P, and
- given the x-coordinate x_{Q} of Q, and
- given the x-coordinate x_{P-Q} of $P-Q$
- compute the x-coordinate x_{R} of $R=P+Q$
- This is called differential addition

Differential addition

- Consider elliptic curves of the form $B y^{2}=x^{3}+A x^{2}+x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
- Given the x-coordinate x_{P} of P, and
- given the x-coordinate x_{Q} of Q, and
- given the x-coordinate x_{P-Q} of $P-Q$
- compute the x-coordinate x_{R} of $R=P+Q$
- This is called differential addition
- Less efficient differential-addition formulas for other curve shapes

Differential addition

- Consider elliptic curves of the form $B y^{2}=x^{3}+A x^{2}+x$.
- Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:
- Given the x-coordinate x_{P} of P, and
- given the x-coordinate x_{Q} of Q, and
- given the x-coordinate x_{P-Q} of $P-Q$
- compute the x-coordinate x_{R} of $R=P+Q$
- This is called differential addition
- Less efficient differential-addition formulas for other curve shapes
- Can be used for efficient computation of the x-coordinate of $k P$ given only the x-coordinate of P
- For this, let's use projective representation $(X: Z)$ with $x=(X / Z)$

One Montgomery "ladder step"

const $a 24=(A+2) / 4$ (A from the curve equation)
function ladderstep $\left(X_{Q-P}, X_{P}, Z_{P}, X_{Q}, Z_{Q}\right)$
$t_{1} \leftarrow X_{P}+Z_{P}$
$t_{6} \leftarrow t_{1}^{2}$
$t_{2} \leftarrow X_{P}-Z_{P}$
$t_{7} \leftarrow t_{2}^{2}$
$t_{5} \leftarrow t_{6}-t_{7}$
$t_{3} \leftarrow X_{Q}+Z_{Q}$
$t_{4} \leftarrow X_{Q}-Z_{Q}$
$t_{8} \leftarrow t_{4} \cdot t_{1}$
$t_{9} \leftarrow t_{3} \cdot t_{2}$
$X_{P+Q} \leftarrow\left(t_{8}+t_{9}\right)^{2}$
$Z_{P+Q} \leftarrow X_{Q-P} \cdot\left(t_{8}-t_{9}\right)^{2}$
$X_{[2] P} \leftarrow t_{6} \cdot t_{7}$
$Z_{[2] P} \leftarrow t_{5} \cdot\left(t_{7}+a 24 \cdot t_{5}\right)$
return $\left(X_{[2] P}, Z_{[2] P}, X_{P+Q}, Z_{P+Q}\right)$
end function

The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_{P} of some point P Ensure: $\left(X_{[k] P}, Z_{[k] P}\right)$ fulfilling $x_{[k] P}=X_{[k] P} / Z_{[k] P}$
$X_{1}=x_{P} ; X_{2}=1 ; Z_{2}=0 ; X_{3}=x_{P} ; Z_{3}=1$
for $i \leftarrow n-1$ downto 0 do
if bit i of k is 1 then
$(X 3, Z 3, X 2, Z 2) \leftarrow$ ladderstep $(X 1, X 3, Z 3, X 2, Z 2)$
else
$(X 2, Z 2, X 3, Z 3) \leftarrow$ ladderstep $(X 1, X 2, Z 2, X 3, Z 3)$
end if
end for
return $\left(X_{2}, Z_{2}\right)$

Advantages of the Montgomery ladder

- Very regular structure, easy to protect against timing attacks
- Replace the if statement by conditional swap
- Be careful with constant-time swaps

Advantages of the Montgomery ladder

- Very regular structure, easy to protect against timing attacks
- Replace the if statement by conditional swap
- Be careful with constant-time swaps
- Very fast (at least if we don't compare to curves with efficient endomorphisms)

Advantages of the Montgomery ladder

- Very regular structure, easy to protect against timing attacks
- Replace the if statement by conditional swap
- Be careful with constant-time swaps
- Very fast (at least if we don't compare to curves with efficient endomorphisms)
- Point compression/decompression is free

Advantages of the Montgomery ladder

- Very regular structure, easy to protect against timing attacks
- Replace the if statement by conditional swap
- Be careful with constant-time swaps
- Very fast (at least if we don't compare to curves with efficient endomorphisms)
- Point compression/decompression is free
- Easy to implement
- No ugly special cases (see Bernstein's "Curve25519" paper)

Multi-scalar multiplication

- Consider computation $Q=\sum_{1}^{n} k_{i} P_{i}$
- We looked at $n=2$ before, how about $n=128$?

Multi-scalar multiplication

- Consider computation $Q=\sum_{1}^{n} k_{i} P_{i}$
- We looked at $n=2$ before, how about $n=128$?
- Idea: Assume $k_{1}>k_{2}>\cdots>k_{n}$.
- Bos-Coster algorithm: recursively compute

$$
Q=\left(k_{1}-k_{2}\right) P_{1}+k_{2}\left(P_{1}+P_{2}\right)+k_{3} P_{3} \cdots+k_{n} P_{n}
$$

Multi-scalar multiplication

- Consider computation $Q=\sum_{1}^{n} k_{i} P_{i}$
- We looked at $n=2$ before, how about $n=128$?
- Idea: Assume $k_{1}>k_{2}>\cdots>k_{n}$.
- Bos-Coster algorithm: recursively compute $Q=\left(k_{1}-k_{2}\right) P_{1}+k_{2}\left(P_{1}+P_{2}\right)+k_{3} P_{3} \cdots+k_{n} P_{n}$
- Each step requires one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Can be very fast (but not constant-time)

Multi-scalar multiplication

- Consider computation $Q=\sum_{1}^{n} k_{i} P_{i}$
- We looked at $n=2$ before, how about $n=128$?
- Idea: Assume $k_{1}>k_{2}>\cdots>k_{n}$.
- Bos-Coster algorithm: recursively compute $Q=\left(k_{1}-k_{2}\right) P_{1}+k_{2}\left(P_{1}+P_{2}\right)+k_{3} P_{3} \cdots+k_{n} P_{n}$
- Each step requires one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Can be very fast (but not constant-time)
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0 , left child node at position 1 , right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$, parent node is at position $\lfloor(i-1) / 2\rfloor$

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0 , left child node at position 1 , right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$, parent node is at position $\lfloor(i-1) / 2\rfloor$
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- Data structure is stored as a simple array, positions in the array determine positions in the tree
- Root is at position 0 , left child node at position 1 , right child node at position 2 etc.
- For node at position i, child nodes are at position $2 \cdot i+1$ and $2 \cdot i+2$, parent node is at position $\lfloor(i-1) / 2\rfloor$
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times
- Floyd's heap: swap down to the bottom, swap up for a variable amount of times, advantages:
- Each swap-down step needs only one comparison (instead of two)
- Swap-down loop is more friendly to branch predictors

Coming back to finite-field inversion

- Inversion with Fermat's theorem uses exponentiation with $p-2$
- Exponentiation is not really different from scalar multiplication (doublings become squarings, additions become multiplications)

Coming back to finite-field inversion

- Inversion with Fermat's theorem uses exponentiation with $p-2$
- Exponentiation is not really different from scalar multiplication (doublings become squarings, additions become multiplications)
- The prime p is public, so also $p-2$ is public
- First idea: use sliding window to compute exponentiation

Coming back to finite-field inversion

- Inversion with Fermat's theorem uses exponentiation with $p-2$
- Exponentiation is not really different from scalar multiplication (doublings become squarings, additions become multiplications)
- The prime p is public, so also $p-2$ is public
- First idea: use sliding window to compute exponentiation
- But wait, p is not only public, it's a fixed system parameter, can we do better?

Addition chains

Definition

Let k be a positive integer. A sequence $s_{1}, s_{2}, \ldots, s_{m}$ is called an addition chain of length m for k if

- $s_{1}=1$
- $s_{m}=k$
- for each s_{i} it holds that $s_{i}=s_{j}+s_{k}$ and $j, k<i$

Addition chains

Definition

Let k be a positive integer. A sequence $s_{1}, s_{2}, \ldots, s_{m}$ is called an addition chain of length m for k if

- $s_{1}=1$
- $s_{m}=k$
- for each s_{i} it holds that $s_{i}=s_{j}+s_{k}$ and $j, k<i$
- An addition chain for k immediately translates into a scalar multiplication algorithm to compute $k P$:
- Start with $s_{1} P=P$
- Compute $s_{i} P=s_{j} P+s_{k} P$ for $i=2, \ldots, m$

Addition chains

Definition

Let k be a positive integer. A sequence $s_{1}, s_{2}, \ldots, s_{m}$ is called an addition chain of length m for k if

- $s_{1}=1$
- $s_{m}=k$
- for each s_{i} it holds that $s_{i}=s_{j}+s_{k}$ and $j, k<i$
- An addition chain for k immediately translates into a scalar multiplication algorithm to compute $k P$:
- Start with $s_{1} P=P$
- Compute $s_{i} P=s_{j} P+s_{k} P$ for $i=2, \ldots, m$
- All algorithms so far basically just computed additions chains "on the fly"
- Signed-scalar representations are "addition-subtraction chains"

Addition chains

Definition

Let k be a positive integer. A sequence $s_{1}, s_{2}, \ldots, s_{m}$ is called an addition chain of length m for k if

- $s_{1}=1$
- $s_{m}=k$
- for each s_{i} it holds that $s_{i}=s_{j}+s_{k}$ and $j, k<i$
- An addition chain for k immediately translates into a scalar multiplication algorithm to compute $k P$:
- Start with $s_{1} P=P$
- Compute $s_{i} P=s_{j} P+s_{k} P$ for $i=2, \ldots, m$
- All algorithms so far basically just computed additions chains "on the fly"
- Signed-scalar representations are "addition-subtraction chains"
- For inversion we know k at compile time, we can spend a lot of time to find a good addition chain.

Inversion in $\mathbb{F}_{2^{255}-19}$

```
void fe25519_invert(fe25519 *r, const fe25519 *x)
\(\{\)
fe25519 z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;
    int i;
/* 2 */ fe25519_square (\&z2,x);
/* 4 */ fe25519_square (\&t,\&z2);
/* 8 */ fe25519_square (\&t, \&t);
/* 9 */ fe25519_mul(\&z9,\&t,x);
/* 11 */ fe25519_mul(\&z11,\&z9,\&z2);
/* 22 */ fe25519_square(\&t,\&z11);
/* 2~5 - 2~0 = 31 */fe25519_mul(\&z2_5_0,\&t,\&z9);
```



```
/* 2~20 - 2^10 */ for (i = 1;i < 5;i++) \{ fe25519_square (\&t,\&t); \}
/* 2~10 - 2~0 */ fe25519_mul(\&z2_10_0,\&t,\&z2_5_0);
/* 2~11 - 2~1 */ fe25519_square(\&t,\&z2_10_0);
/* 2~20 - 2~10 */ for (i = 1;i < 10;i++) \{ fe25519_square (\&t, \&t); \}
/* 2~20 - 2~0 */ fe25519_mul(\&z2_20_0, \&t,\&z2_10_0);
/* 2~21 - 2~1 */ fe25519_square(奴,\&z2_20_0);
/* 2~40 - 2~20 */ for (i = 1;i < 20;i++) \{ fe25519_square (\&t, \&t); \}
/* 2~40 - 2~0 */ fe25519_mul(\&t,\&t,\&z2_20_0);
```


Inversion in $\mathbb{F}_{2^{255}-19}$

```
/* 2^41 - 2^1 */ fe25519_square(&t,&t);
/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
/* 2~200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
/* 2^201 - 2^1 */ fe25519_square(&t,&t);
/* 2~250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
/* 2^250 - 2~0 */ fe25519_mul(&t,&t,&z2_50_0);
/* 2^251 - 2^1 */ fe25519_square(&t,&t);
/* 2^252 - 2^2 */ fe25519_square(&t,&t);
/* 2^253 - 2^3 */ fe25519_square(&t,&t);
/* 2^254 - 2^4 */ fe25519_square(&t,&t);
/* 2^255 - 2~5 */ fe25519_square(&t,&t);
/* 2~255 - 21 */ fe25519_mul(r,&t,&z11);
}
```


Summary

- Remember double-and-add
- Remember not to use it (at least never with a secret scalar)

Summary

- Remember double-and-add
- Remember not to use it (at least never with a secret scalar)
- Keep in mind that writing constant-time code is hard

Summary

- Remember double-and-add
- Remember not to use it (at least never with a secret scalar)
- Keep in mind that writing constant-time code is hard
- A beer of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 10 multiplications

Summary

- Remember double-and-add
- Remember not to use it (at least never with a secret scalar)
- Keep in mind that writing constant-time code is hard
- A beer of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 10 multiplications
- Two beers of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 9 multiplications

Summary

- Remember double-and-add
- Remember not to use it (at least never with a secret scalar)
- Keep in mind that writing constant-time code is hard
- A beer of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 10 multiplications
- Two beers of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 9 multiplications

Summary

- Remember double-and-add
- Remember not to use it (at least never with a secret scalar)
- Keep in mind that writing constant-time code is hard
- A beer of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 10 multiplications
- Two beers of your choice for anybody who computes $a^{2^{255}-21}$ in 254 squarings and 9 multiplications
- Slides of both talks will be online at
http://cryptojedi.org/

