
Ahieving Software Speed Reords with qhasmPeter ShwabeEindhoven University of Tehnology12.10.2008EIPSI Seminar



Overview
What is qhasm?What does a qhasm program look like?AES on the UltraSPARC � a CACE study

Ahieving Software Speed Reords with qhasm 2



What is qhasm?...as opposed to Assembly and C.

Ahieving Software Speed Reords with qhasm 3



What is qhasm?...as opposed to Assembly and C.
◮ Assembly:

◮ Programmer has full ontrol (hoie of instrutions, sheduling,usage of memory/registers)
◮ Di�erent instrution set for di�erent arhitetures ⇒ di�erentimplementation for eah arhiteture
◮ Di�erent syntax for di�erent arhitetures

Ahieving Software Speed Reords with qhasm 3



What is qhasm?...as opposed to Assembly and C.
◮ Assembly:

◮ Programmer has full ontrol (hoie of instrutions, sheduling,usage of memory/registers)
◮ Di�erent instrution set for di�erent arhitetures ⇒ di�erentimplementation for eah arhiteture
◮ Di�erent syntax for di�erent arhitetures

◮ C:
◮ Choie of instrutions, sheduling et. left to ompiler, programmeran only give hints (register)
◮ Uni�ed �instrution set� and uni�ed syntax ⇒ just oneimplementation on all arhitetures

Ahieving Software Speed Reords with qhasm 3



What is qhasm?...as opposed to Assembly and C.
◮ Assembly:

◮ Programmer has full ontrol (hoie of instrutions, sheduling,usage of memory/registers)
◮ Di�erent instrution set for di�erent arhitetures ⇒ di�erentimplementation for eah arhiteture
◮ Di�erent syntax for di�erent arhitetures
◮ Programmer has to keep trak of whih �variable� is in whih register

◮ C:
◮ Choie of instrutions, sheduling et. left to ompiler, programmeran only give hints (register)
◮ Uni�ed �instrution set� and uni�ed syntax ⇒ just oneimplementation on all arhitetures

Ahieving Software Speed Reords with qhasm 3



What is qhasm?...as opposed to Assembly and C.
◮ Assembly:

◮ Programmer has full ontrol (hoie of instrutions, sheduling,usage of memory/registers)
◮ Di�erent instrution set for di�erent arhitetures ⇒ di�erentimplementation for eah arhiteture
◮ Di�erent syntax for di�erent arhitetures
◮ Programmer has to keep trak of whih �variable� is in whih register

◮ C:
◮ Choie of instrutions, sheduling et. left to ompiler, programmeran only give hints (register)
◮ Uni�ed �instrution set� and uni�ed syntax ⇒ just oneimplementation on all arhitetures

◮ qhasm assigns registers to register variables
◮ qhasm assigns stak spae to stak variables automatiallyAhieving Software Speed Reords with qhasm 3



Why would anyone want qhasm?

Ahieving Software Speed Reords with qhasm 4



Why would anyone want qhasm?
Consider AES implementation for UltraSPARC

Ahieving Software Speed Reords with qhasm 4



Why would anyone want qhasm?
Consider AES implementation for UltraSPARC

◮ 25.08 yles/byte with g
Ahieving Software Speed Reords with qhasm 4



Why would anyone want qhasm?
Consider AES implementation for UltraSPARC

◮ 25.08 yles/byte with g
◮ 20.75 yles/byte with Sun C ompiler

Ahieving Software Speed Reords with qhasm 4



Why would anyone want qhasm?
Consider AES implementation for UltraSPARC

◮ 25.08 yles/byte with g
◮ 20.75 yles/byte with Sun C ompiler
◮ 15.98 yles/byte with qhasm implementation

Ahieving Software Speed Reords with qhasm 4



What does a qhasm program look like?
◮ No funtion alls
◮ One instrution (line) in qhasm translates into one CPU instrution
◮ Whih instrutions are available: Chek doumentation

Ahieving Software Speed Reords with qhasm 5



The Baseline
◮ Consider 128 bit AES (10 Rounds) in Counter mode

Ahieving Software Speed Reords with qhasm 6



The Baseline
◮ Consider 128 bit AES (10 Rounds) in Counter mode
◮ Eah round has 20 loads, 16 shifts, 16 masks and 16 xors

Ahieving Software Speed Reords with qhasm 6



The Baseline
◮ Consider 128 bit AES (10 Rounds) in Counter mode
◮ Eah round has 20 loads, 16 shifts, 16 masks and 16 xors
◮ Last round is slightly di�erent: Needs 16 more mask instrutions
◮ Four load instrutions to load input, four xors with key stream, fourstores for output
◮ . . . some more overhead
◮ Results in 720 instrutions needed to enrypt a blok of 16 bytes
◮ Spei�ally: 208 loads, 4 stores, 508 integer instrutions

Ahieving Software Speed Reords with qhasm 6



How an the UltraSPARC handle these instrutions?Reminder: 208 loads, 4 stores, 508 integer instrutions

Ahieving Software Speed Reords with qhasm 7



How an the UltraSPARC handle these instrutions?Reminder: 208 loads, 4 stores, 508 integer instrutions
◮ Can dispath several (up to 4) instrutions per yle

Ahieving Software Speed Reords with qhasm 7



How an the UltraSPARC handle these instrutions?Reminder: 208 loads, 4 stores, 508 integer instrutions
◮ Can dispath several (up to 4) instrutions per yle
◮ Only one load or store per yle (⇒ at least 212 yles)

Ahieving Software Speed Reords with qhasm 7



How an the UltraSPARC handle these instrutions?Reminder: 208 loads, 4 stores, 508 integer instrutions
◮ Can dispath several (up to 4) instrutions per yle
◮ Only one load or store per yle (⇒ at least 212 yles)
◮ Only 2 integer instrutions per yle (⇒ at least 254 yles)

Ahieving Software Speed Reords with qhasm 7



How an the UltraSPARC handle these instrutions?Reminder: 208 loads, 4 stores, 508 integer instrutions
◮ Can dispath several (up to 4) instrutions per yle
◮ Only one load or store per yle (⇒ at least 212 yles)
◮ Only 2 integer instrutions per yle (⇒ at least 254 yles)
◮ Idea: �Hide� load/store instrutions between integer instrutions(needs more registers!)

Ahieving Software Speed Reords with qhasm 7



How an the UltraSPARC handle these instrutions?Reminder: 208 loads, 4 stores, 508 integer instrutions
◮ Can dispath several (up to 4) instrutions per yle
◮ Only one load or store per yle (⇒ at least 212 yles)
◮ Only 2 integer instrutions per yle (⇒ at least 254 yles)
◮ Idea: �Hide� load/store instrutions between integer instrutions(needs more registers!)
◮ Result: 254 yles/blok, 15.98 yles/byte in the eSTREAMbenhmarking framework for enryption of 4096 bytes

Ahieving Software Speed Reords with qhasm 7



Some more results (joint work with D.J. Bernstein)
◮ 12.08 yles/byte for UltraSPARC III
◮ 14.57 yles/byte for PowerPC G4 7410
◮ 14.15 yles/byte for Pentium 4 f12
◮ 10.57 yles/byte for Core 2
◮ 10.43 yles/byte for Athlon64

Ahieving Software Speed Reords with qhasm 8



Some more results (joint work with D.J. Bernstein)
◮ 12.08 yles/byte for UltraSPARC III
◮ 14.57 yles/byte for PowerPC G4 7410
◮ 14.15 yles/byte for Pentium 4 f12
◮ 10.57 yles/byte for Core 2
◮ 10.43 yles/byte for Athlon64
◮ All these implementations improve upon previously fastest ode.

Ahieving Software Speed Reords with qhasm 8



Some more results (joint work with D.J. Bernstein)
◮ 12.08 yles/byte for UltraSPARC III
◮ 14.57 yles/byte for PowerPC G4 7410
◮ 14.15 yles/byte for Pentium 4 f12
◮ 10.57 yles/byte for Core 2
◮ 10.43 yles/byte for Athlon64
◮ All these implementations improve upon previously fastest ode.
◮ All these implementations are in the publi domain

Ahieving Software Speed Reords with qhasm 8


	What is qhasm?
	What does a qhasm program look like?
	AES on the UltraSPARC -- a CACE study

