High-speed high-security signatures

Peter Schwabe

National Taiwan University

Joint work with Daniel J. Bernstein, Niels Duif, Tanja Lange, and Bo-Yin Yang

September 14, 2011

EiPSI Seminar

A look back...

A look back...

"Do you really think you can get a Ph.D. without even mentioning Edwards curves in your thesis?"

A new start: Work on Edwards signatures

- ► Elliptic-curve signatures using twisted Edwards curves
- ▶ 128 bits of security

- ► Elliptic-curve signatures using twisted Edwards curves
- ▶ 128 bits of security
- Support for batch verification
- ► Timing-attack resistant implementation
- ► Foolproof session keys
- ► Hash-function collision resilience

- ► Elliptic-curve signatures using twisted Edwards curves
- ▶ 128 bits of security
- Support for batch verification
- ▶ Timing-attack resistant implementation
- ► Foolproof session keys
- ► Hash-function collision resilience
- ► The usual: make it fast

- ► Elliptic-curve signatures using twisted Edwards curves
- ▶ 128 bits of security
- Support for batch verification
- ► Timing-attack resistant implementation
- ► Foolproof session keys
- ► Hash-function collision resilience
- ► The usual: make it fast
 - ► Fast signing
 - ► Fast verification
 - ► Faster batch verification
 - ► Fast key generation

The EdDSA signature system

EdDSA

▶ Integer $b \ge 10$

Ed25519

▶ b = 256

EdDSA

- ▶ Integer $b \ge 10$
- ▶ Prime power $q \equiv 1 \pmod{4}$
- $\qquad \qquad \bullet \quad (b-1) \text{-bit encoding of} \\ \text{elements of } \mathbb{F}_q$

Ed25519

- ▶ b = 256
- ▶ $q = 2^{255} 19$ (prime)
- \blacktriangleright little-endian encoding of $\{0,\dots,2^{255}-20\}$

EdDSA

- ▶ Integer $b \ge 10$
- ▶ Prime power $q \equiv 1 \pmod{4}$
- ▶ (b-1)-bit encoding of elements of \mathbb{F}_q
- ► Hash function *H* with 2*b*-bit output

Ed25519

- ► b = 256
- ▶ $q = 2^{255} 19$ (prime)
- ▶ little-endian encoding of $\{0, \dots, 2^{255} 20\}$
- ► H = SHA-512

EdDSA

- ▶ Integer $b \ge 10$
- ▶ Prime power $q \equiv 1 \pmod{4}$
- ▶ (b-1)-bit encoding of elements of \mathbb{F}_a
- ► Hash function *H* with 2*b*-bit output
- $lacksquare d \in \mathbb{F}_q$
- ► $B \in \{(x,y) \in$ $\mathbb{F}_q \times \mathbb{F}_q, -x^2 + y^2 = 1 + dx^2y^2\}$ (twisted Edwards curve E)
- ▶ prime $\ell \in (2^{b-4}, 2^{b-3})$ with $\ell B = (0, 1)$

Ed25519

- ▶ b = 256
- $ightharpoonup q = 2^{255} 19 \text{ (prime)}$
- ▶ little-endian encoding of $\{0, \dots, 2^{255} 20\}$
- ► H = SHA-512
- $\rightarrow d = -121665/121666$
- ▶ B = (x, 4/5), with x "even"
- \blacktriangleright ℓ a 253-bit prime

EdDSA

- ▶ Integer $b \ge 10$
- ▶ Prime power $q \equiv 1 \pmod{4}$
- ▶ (b-1)-bit encoding of elements of \mathbb{F}_q
- ► Hash function *H* with 2*b*-bit output
- $lacksquare d \in \mathbb{F}_q$
- ► $B \in \{(x,y) \in$ $\mathbb{F}_q \times \mathbb{F}_q, -x^2 + y^2 = 1 + dx^2y^2\}$ (twisted Edwards curve E)
- ▶ prime $\ell \in (2^{b-4}, 2^{b-3})$ with $\ell B = (0, 1)$

Ed25519

- ▶ b = 256
- $ightharpoonup q = 2^{255} 19 \text{ (prime)}$
- ▶ little-endian encoding of $\{0, \dots, 2^{255} 20\}$
- ► H = SHA-512
- $\rightarrow d = -121665/121666$
- ▶ B = (x, 4/5), with x "even"

 \blacktriangleright ℓ a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

- ► Secret key: *b*-bit string *k*
- $\blacktriangleright \ \mathsf{Compute} \ H(k) = (h_0, \dots, h_{2b-1})$

- ightharpoonup Secret key: *b*-bit string k
- lacksquare Compute $H(k)=(h_0,\ldots,h_{2b-1})$
- ▶ Derive integer $a = 2^{b-2} + \sum_{3 < i < b-3} 2^i h_i$
- ▶ Note that *a* is a multiple of 8

- ightharpoonup Secret key: b-bit string k
- lacksquare Compute $H(k)=(h_0,\ldots,h_{2b-1})$
- ▶ Derive integer $a = 2^{b-2} + \sum_{3 \le i \le b-3} 2^i h_i$
- lacktriangle Note that a is a multiple of 8
- ▶ Compute A = aB
- ▶ Public key: Encoding \underline{A} of $A=(x_A,y_A)$ as y_A and one (parity) bit of x_A (needs b bits)

- ightharpoonup Secret key: b-bit string k
- ▶ Compute $H(k) = (h_0, \dots, h_{2b-1})$
- \blacktriangleright Derive integer $a=2^{b-2}+\sum_{3\leq i\leq b-3}2^ih_i$
- lacksquare Note that a is a multiple of 8
- ▶ Compute A = aB
- ▶ Public key: Encoding \underline{A} of $A=(x_A,y_A)$ as y_A and one (parity) bit of x_A (needs b bits)
- ► Compute A from \underline{A} : $x_A = \pm \sqrt{(y_A^2 1)/(dy_A^2 + 1)}$

EdDSA signatures

Signing

- ▶ Message M determines $r = H(h_b, \ldots, h_{2b-1}, M) \in \{0, \ldots, 2^{2b} 1\}$
- ▶ Define R = rB
- ▶ Define $S = (r + H(\underline{R}, \underline{A}, M)a) \mod \ell$
- \blacktriangleright Signature: $(\underline{R},\underline{S}),$ with \underline{S} the b-bit little-endian encoding of S
- $lackbox{}(\underline{R},\underline{S})$ has 2b bits (3 known to be zero)

EdDSA signatures

Signing

- ▶ Message M determines $r = H(h_b, \ldots, h_{2b-1}, M) \in \{0, \ldots, 2^{2b} 1\}$
- ▶ Define R = rB
- ▶ Define $S = (r + H(\underline{R}, \underline{A}, M)a) \mod \ell$
- \blacktriangleright Signature: $(\underline{R},\underline{S}),$ with \underline{S} the b-bit little-endian encoding of S
- $lackbox (\underline{R},\underline{S})$ has 2b bits (3 known to be zero)

Verification

- lacktriangle Verifier parses A from \underline{A} and R from \underline{R}
- ▶ Computes $H(\underline{R}, \underline{A}, M)$
- ► Checks group equation

$$8SB = 8R + 8H(\underline{R}, \underline{A}, M)A$$

▶ Rejects if parsing fails or equation does not hold

Security features of EdDSA

Collision resilience

- ightharpoonup ECDSA uses H(M)
- ► Collisions in *H* allow existential forgery

Collision resilience

- ightharpoonup ECDSA uses H(M)
- ► Collisions in *H* allow existential forgery
- lacktriangle Schnorr signatures and EdDSA include \underline{R} in the hash
 - ▶ Schnorr: $H(\underline{R}, M)$
 - ► EdDSA: $H(\underline{R}, \underline{A}, M)$
- ► Signatures are hash-function-collision resilient

Collision resilience

- ightharpoonup ECDSA uses H(M)
- ► Collisions in *H* allow existential forgery
- lacktriangle Schnorr signatures and EdDSA include \underline{R} in the hash
 - ▶ Schnorr: $H(\underline{R}, M)$
 - ▶ EdDSA: $H(\underline{R}, \underline{A}, M)$
- ► Signatures are hash-function-collision resilient
- lacktriangledown Including \underline{A} alleviates concerns about attacks against multiple keys

- ► Each message needs a different r ("session key")
- ightharpoonup Just knowing a few bits of r allows to recover a
- \blacktriangleright Usual approach (e.g., Schnorr signatures): Choose random r for each message

- ► Each message needs a different r ("session key")
- \blacktriangleright Just knowing a few bits of r allows to recover a
- ightharpoonup Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs

- ► Each message needs a different r ("session key")
- \blacktriangleright Just knowing a few bits of r allows to recover a
- ightharpoonup Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- ► Even worse: No random-number generator: Sony's PS3 security desaster

- ► Each message needs a different r ("session key")
- ightharpoonup Just knowing a few bits of r allows to recover a
- ightharpoonup Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- Even worse: No random-number generator: Sony's PS3 security desaster
- ightharpoonup EdDSA uses deterministic, pseudo-random session keys $H(h_b,\ldots,h_{2b-1},M)$

- ► Each message needs a different r ("session key")
- \blacktriangleright Just knowing a few bits of r allows to recover a
- ightharpoonup Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- Even worse: No random-number generator: Sony's PS3 security desaster
- ▶ EdDSA uses deterministic, pseudo-random session keys $H(h_b, \ldots, h_{2b-1}, M)$
- ► Same security as Schnorr under standard PRF assumptions
- ▶ Does not consume per-message randomness
- ▶ Better for testing (deterministic output)

Speed of Ed25519

Fast constant-time implementation

► Recent paper by Brumley and Tuveri: remote timing attack against ECDSA implementation in OpenSSL

Fast constant-time implementation

- ► Recent paper by Brumley and Tuveri: remote timing attack against ECDSA implementation in OpenSSL
- ▶ Protection against timing attacks means:
 - ▶ No data flow from secret data into branch conditions
 - ► No data flow from secret data into load indices

Fast constant-time implementation

- ► Recent paper by Brumley and Tuveri: remote timing attack against ECDSA implementation in OpenSSL
- ▶ Protection against timing attacks means:
 - ▶ No data flow from secret data into branch conditions
 - ► No data flow from secret data into load indices
- ► Choose constant-time scalar-multiplication algorithms
- ► Substitute table lookups by arithmetic

Fast signing

lacktriangle Main computational task: Compute R=rB

Fast signing

- ▶ Main computational task: Compute R = rB
- ullet First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

Fast signing

- ▶ Main computational task: Compute R = rB
- ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

▶ Precompute $16^i|r_i|B$ for $i=0,\ldots,63$ and $|r_i|\in\{1,\ldots,8\}$, in a lookup table at compile time

- lacktriangle Main computational task: Compute R=rB
- ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i| B$ for $i=0,\ldots,63$ and $|r_i| \in \{1,\ldots,8\}$, in a lookup table at compile time
- ► Compute $R = \sum_{i=0}^{63} 16^i r_i B$

- ▶ Main computational task: Compute R = rB
- lacksquare First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i| B$ for $i=0,\ldots,63$ and $|r_i| \in \{1,\ldots,8\}$, in a lookup table at compile time
- ightharpoonup Compute $R=\sum_{i=0}^{63}16^ir_iB$
- lacktriangledown 64 table lookups, 64 conditional point negations, 63 point additions

- ▶ Main computational task: Compute R = rB
- ullet First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i| B$ for $i=0,\ldots,63$ and $|r_i| \in \{1,\ldots,8\}$, in a lookup table at compile time
- ightharpoonup Compute $R=\sum_{i=0}^{63}16^ir_iB$
- lacktriangledown 64 table lookups, 64 conditional point negations, 63 point additions
- ▶ Wait, lookups?

- ▶ Main computational task: Compute R = rB
- ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i| B$ for $i=0,\ldots,63$ and $|r_i| \in \{1,\ldots,8\}$, in a lookup table at compile time
- ightharpoonup Compute $R=\sum_{i=0}^{63}16^ir_iB$
- lacktriangledown 64 table lookups, 64 conditional point negations, 63 point additions
- ▶ Wait, lookups?
- ▶ In each lookup load all 8 relevant entries from the table, use arithmetic to obtain the desired one

- ▶ Main computational task: Compute R = rB
- ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i| B$ for $i=0,\ldots,63$ and $|r_i| \in \{1,\ldots,8\}$, in a lookup table at compile time
- ightharpoonup Compute $R = \sum_{i=0}^{63} 16^i r_i B$
- \blacktriangleright 64 table lookups, 64 conditional point negations, 63 point additions
- ▶ Wait, lookups?
- ▶ In each lookup load all 8 relevant entries from the table, use arithmetic to obtain the desired one
- ► Signing takes 88,328 cycles on an Intel Westmere CPU
- ► Key generation takes about 6,000 cycles more (read from /dev/urandom)

 \blacktriangleright First part: point decompression, compute x coordinate x_R of R as

$$x_R = \pm \sqrt{(y_R^2 - 1)/(dy_R^2 + 1)}$$

► Looks like a square root and an inversion is required

$$x_R = \pm \sqrt{(y_R^2 - 1)/(dy_R^2 + 1)}$$

- ► Looks like a square root and an inversion is required
- \blacktriangleright As $q\equiv 5\pmod 8$ for each square α we have $\alpha^2=\beta^4,$ with $\beta=\alpha^{(q+3)/8}$
- ▶ Standard: Compute β , conditionally multiply by $\sqrt{-1}$ if $\beta^2 = -\alpha$

$$x_R = \pm \sqrt{(y_R^2 - 1)/(dy_R^2 + 1)}$$

- ► Looks like a square root and an inversion is required
- \blacktriangleright As $q\equiv 5\pmod 8$ for each square α we have $\alpha^2=\beta^4,$ with $\beta=\alpha^{(q+3)/8}$
- \blacktriangleright Standard: Compute $\beta,$ conditionally multiply by $\sqrt{-1}$ if $\beta^2=-\alpha$
- \blacktriangleright Decompression has $\alpha=u/v$, merge square root with inversion:

$$\beta = (u/v)^{(q+3)/8}$$

$$x_R = \pm \sqrt{(y_R^2 - 1)/(dy_R^2 + 1)}$$

- ► Looks like a square root and an inversion is required
- \blacktriangleright As $q\equiv 5\pmod 8$ for each square α we have $\alpha^2=\beta^4,$ with $\beta=\alpha^{(q+3)/8}$
- \blacktriangleright Standard: Compute $\beta,$ conditionally multiply by $\sqrt{-1}$ if $\beta^2=-\alpha$
- lacktriangle Decompression has $\alpha=u/v$, merge square root with inversion:

$$\beta = (u/v)^{(q+3)/8} = u^{(q+3)/8}v^{q-1-(q+3)/8}$$
$$= u^{(q+3)/8}v^{(7q-11)/8} = uv^3(uv^7)^{(q-5)/8}.$$

$$x_R = \pm \sqrt{(y_R^2 - 1)/(dy_R^2 + 1)}$$

- ► Looks like a square root and an inversion is required
- \blacktriangleright As $q\equiv 5\pmod 8$ for each square α we have $\alpha^2=\beta^4,$ with $\beta=\alpha^{(q+3)/8}$
- \blacktriangleright Standard: Compute $\beta,$ conditionally multiply by $\sqrt{-1}$ if $\beta^2=-\alpha$
- \blacktriangleright Decompression has $\alpha=u/v,$ merge square root with inversion:

$$\beta = (u/v)^{(q+3)/8} = u^{(q+3)/8}v^{q-1-(q+3)/8}$$
$$= u^{(q+3)/8}v^{(7q-11)/8} = uv^3(uv^7)^{(q-5)/8}.$$

- ▶ Second part: computation of $SB H(\underline{R}, \underline{A}, M)A$
- ▶ Double-scalar multiplication using signed sliding windows
- ightharpoonup Different window sizes for B (compile time) and A (run time)

$$x_R = \pm \sqrt{(y_R^2 - 1)/(dy_R^2 + 1)}$$

- ► Looks like a square root and an inversion is required
- \blacktriangleright As $q\equiv 5\pmod 8$ for each square α we have $\alpha^2=\beta^4,$ with $\beta=\alpha^{(q+3)/8}$
- \blacktriangleright Standard: Compute $\beta,$ conditionally multiply by $\sqrt{-1}$ if $\beta^2=-\alpha$
- \blacktriangleright Decompression has $\alpha=u/v,$ merge square root with inversion:

$$\beta = (u/v)^{(q+3)/8} = u^{(q+3)/8}v^{q-1-(q+3)/8}$$
$$= u^{(q+3)/8}v^{(7q-11)/8} = uv^3(uv^7)^{(q-5)/8}.$$

- ▶ Second part: computation of $SB H(\underline{R}, \underline{A}, M)A$
- ► Double-scalar multiplication using signed sliding windows
- ightharpoonup Different window sizes for B (compile time) and A (run time)
- ▶ Verification takes < 280,000 cycles

▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- lacktriangle Choose independent uniform random $128 ext{-bit}$ integers z_i
- ▶ Compute $H_i = H(\underline{R_i}, \underline{A_i}, M_i)$

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- ightharpoonup Choose independent uniform random 128-bit integers z_i
- lacksquare Compute $H_i = H(R_i, A_i, M_i)$
- ► Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- lacktriangle Choose independent uniform random 128-bit integers z_i
- ▶ Compute $H_i = H(\underline{R_i}, \underline{A_i}, M_i)$
- ► Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

► Use Bos-Coster algorithm for multi-scalar multiplication

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- lacktriangle Choose independent uniform random 128-bit integers z_i
- lacksquare Compute $H_i=H(\underline{R_i},\underline{A_i},M_i)$
- ► Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

- ► Use Bos-Coster algorithm for multi-scalar multiplication
- ► Verifying a batch of 64 signatures takes 8.55 million cycles (134,000 cycles/signature)

▶ Computation of $Q = \sum_{1}^{n} s_i P_i$

- ▶ Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1>s_2>\cdots>s_n$. Recursively compute $Q=(s_1-s_2)P_1+s_2(P_1+P_2)+s_3P_3\cdots+s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- lacktriangle Each step "eliminates" expected $\log n$ scalar bits

- ▶ Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1>s_2>\cdots>s_n$. Recursively compute $Q=(s_1-s_2)P_1+s_2(P_1+P_2)+s_3P_3\cdots+s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- lacktriangle Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- ► Crucial for good performance: fast heap implementation

- ▶ Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1>s_2>\cdots>s_n$. Recursively compute $Q=(s_1-s_2)P_1+s_2(P_1+P_2)+s_3P_3\cdots+s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- lacktriangle Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- ► Crucial for good performance: fast heap implementation
- Typical heap root replacement: start at the root, swap down for a variable amount of times

- ▶ Computation of $Q = \sum_{i=1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1>s_2>\cdots>s_n$. Recursively compute $Q=(s_1-s_2)P_1+s_2(P_1+P_2)+s_3P_3\cdots+s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- lacktriangle Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- ► Crucial for good performance: fast heap implementation
- Typical heap root replacement: start at the root, swap down for a variable amount of times
- ► Floyd's heap: swap down to the bottom, swap up for a variable amount of times, advantages:
 - ► Each swap-down step needs only one comparison (instead of two)
 - ► Swap-down loop is more friendly to branch predictors

Results

Results

- ▶ New fast and secure signature scheme
- ► (Slow) C and Python reference implementations
- ► Fast AMD64 assembly implementations
- ► All software in the public domain and included in eBATS
- ► Software to be included in the NaCl library
- ▶ Paper to be presented at CHES 2011

http://ed25519.cr.yp.to/

Questions?

