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MPI-SP?

Max-Planck Institute for Security and Privacy
• Founded in 2019
• Currently: 2 directors +

• 2 directors
• 6 (soon 8) research group leaders
• ≈35 postdocs and Ph.D. students

• Long-term plan
• 6 directors
• 12 research group leaders
• 200+ scientific staff
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What crypto software (libraries) do you know?
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What properties do you expect from crypto software?
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3 properties

1. Correctness
• Functionally correct

• Memory safety

• Thread safety

• Termination

2. Security
• Don’t leak secrets

• “Constant-time”

• Resist Spectre attacks

• Resist Power/EM attacks

• Fault protection

• Easy-to-use APIs

3. Efficiency
• Speed (clock cycles)

• RAM usage

• Binary size

• Energy consumption
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The “traditional approach”

1. Implement crypto in C

2. Identify most relevant parts for performance

3. Re-implement those in assembly
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Correctness?

“Are you actually sure that your software is correct?”

—prof. Gerhard Woeginger, Jan. 24, 2011.
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#epicfail

mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi

• Code snippet is from > 8000 lines of
assembly

• Crypto always has more possible inputs
than we can exhaustively test

• Some bugs are triggered with very low
probability

• Testing won’t catch these bugs

• Audits might, but this requires expert
knowledge!
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Security?

Timing attacks
• Software only, can be carried out remotely

• We know how to systematically avoid them

• Increasingly standard requirement: “constant-time”

Plus side
• Full control (at least for assembly)

• Various tools to check for timing leaks

Minus side
• Many ways to screw up

• C compiler isn’t built for crypto
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Security?

100%

38.6%43.2%

75%

25% Don't know about tools

31.8% Haven't tried to use tools

4.5% Don't use tools

44 Developers

17 Developers

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain

Fouque, and Yasemin Acar: “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About

Timing Attacks. IEEE S&P 2022 8



3. Efficiency!
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High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

• Idea: Use tools/techniques from formal methods to prove
• functional correctness (including e.g., safety);
• certain implementation security properties; (and
• cryptographic security through reductions)

• Crypto software is a special here in multiple ways:
• Usually fairly little code (+)
• Has precise formal specification (+)
• Inherently security-critical (+)

• Highly performance critical (–)

We want formal guarantees without giving up on performance.
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Formosa Crypto

• Effort to formally verify crypto
• Currently three main projects:

• EasyCrypt proof assistant
• jasmin programming language
• libjade (PQ-)crpyto library

• Core community of ≈ 30–40 people

• Discussion forum with >100 people
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The toolchain and workflow
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Jasmin – assembly in your head

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub:
Jasmin: High-Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax
• Programming in jasmin is much closer to assembly:

• Generally: 1 line in jasmin → 1 line in asm
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics
• Compiler is formally proven to preserve constant-time property
• Many new features since 2017 paper!
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Jasmin – first steps

C code

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

jasmin code

• We don’t implement main in jasmin

• We don’t have I/O in jasmin
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Jasmin – first steps

export fn add42(reg u64 x) -> reg u64 {
reg u64 r;
r = x;
r += 42;
return r;

}
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Jasmin – first steps

https://cryptojedi.org/programming/jasmin.shtml
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Registers, stack, and arrays

• For each variable you need to decide if it is
• living in a register: reg,
• living on the stack: stack, or
• replaced by immediates during compilation: inline int

• Integer types are called u64, u32, etc.
• Jasmin supports arrays of reg and stack variables:

• reg u32[10] a;
• stack u64[100] b;

• Arrays have fixed length

• Jasmin supports sub-arrays with fixed offsets and lengths, e.g.
b[16:32] is the subarray of length 32 starting at index 16

15



Loops and conditionals

• Conditionals (if, else) like in C

• Two kinds of loops: for and while

• for loops are automatically unrolled

• for iterate over an inline int

• while loops are real loops with branch
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Three kinds of “functions”

export functions
• Entry points into jasmin-generated code

• Need at least one export function in a jasmin program

• Follows (Linux) AMD64 C function-call ABI

inline functions
• Historically only non-export functions

• Can receive stack-array arguments

“Regular” functions
• Array arguments passed through reg ptr

• reg ptr cannot be modifed through arithmetic

• No fixed function-call ABI (compilation has global view)

• Stack pointer decreased by caller
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Jasmin errors

• Easy case: syntax errors

• Slighly tougher: missing casts, see, e.g.,
t0 = a.[u256 (int)(32 *64u i)];

• Most time-consuming to debug: register-allocation errors
• Example 1: constraints not satisfiable
export fn add42(reg u64 x) -> reg u64 {
x += 42;
return x;

}

• Example 2: Running out of registers
"kem.jazz", line 14 (1) to line 27 (1):
compilation error:
register allocation: variable shkp.3135 must be allocated to conflicting register RSI { RSI.83 }
make: *** [../../../../../Makefile.common:73: kem.s] Error 1

• Register allocation is global
• Changes at one place may cause allocation to fail somewhere else
• Error messages not super-helpful
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Vector computations

Scalar computation
• Load 32-bit integer a

• Load 32-bit integer b

• Perform addition c← a+ b

• Store 32-bit integer c

Vectorized computation
• Load 4 consecutive 32-bit integers (a0, a1, a2, a3)

• Load 4 consecutive 32-bit integers (b0, b1, b2, b3)

• Perform addition
(c0, c1, c2, c3)← (a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• Store 128-bit vector (c0, c1, c2, c3)

• Perform the same operations on independent data streams (SIMD)

• Vector instructions available on most “large” processors

• Instructions for vectors of bytes, integers, floats. . .

• Need to interleave data items (e.g., 32-bit integers) in memory
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How fast is that?

• Consider the Intel Skylake processor with AVX2

• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• AVX2 vector instructions are almost as fast as scalar instructions but do 8× the work

• Situation on other architectures/microarchitectures is similar

• Reason: cheap way to increase arithmetic throughput (less decoding, address
computation, etc.)
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Vectorization in jasmin

• Jasmin supports 128-bit XMM and 256-bit YMM registers: u128 and u256

• Operations through “intrinsics”, e.g.,

reg u256 t0, t1;

for i = 0 to VLEN/8 {
t0 = a.[u256 (int)(32 *64u i)];
t1 = b.[u256 (int)(32 *64u i)];
t0 = #VPADD_8u32(t0, t1);
r.[u256 (int)(32 *64u i)] = t0;

}
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Some current limitations

AMD64 only
• Full functionality only for AMD64 assembly

• ARMv7M (Cortex-M4) support in development branch

• Future directions: ARMv8, RISC-V, OpenTitan

No “slice” arguments
• Arrays have to have fixed length also in function arguments

• Separate function for each input length, e.g.

fn _ishake256_128_33(reg ptr u8[128] out, reg const ptr u8[33] in) -> stack u8[128]

• Not an issue for variable-length arguments to export functions
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Some current limitations

No register-indexed subarrays

This works

stack u16[768] a;
inline int i;
for i=0 to 3
{
a[i*256:256] = foo(a[i*256:256]);

}

This does not

stack u16[768] a;
reg u64 i;
i = 0;
while(i < 3)
{
a[i*256:256] = foo(a[i*256:256]);
i += 1;

}
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Some current limitations

No typed export functions
• Inputs to export functions are of type reg u64

• Output is also a reg u64

• No argument passing over the stack

• No more than 6 arguments

• Distinguish between pointers and data only by usage/context

22



Memory and thread safety

• Jasmin does not support dynamic memory allocation
• All memory locations are either

• external memory accessible through export function pointer arguments, or
• allocated on the stack

• Checking memory safety is separate compiler pass

jasminc -checksafety INPUT.jazz

• This typically takes a while to finish

• Jasmin does not have global variables

• Thread safe (except if external memory is shared)
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So, where are we?

Correctness
• Functional correctness through EasyCrypt proofs

• Thread and memory safety guaranteed by jasmin

• Still need to check that EC specification is correct!

• Could be addressed by machine-readable standards

Efficiency

• Some limitations compared to assembly for memory safety

• No limitations that (majorly) impact performance

Security

• ???
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Timing attacks – secret branches

if(secret)
{
do_A();

}
else
{
do_B();

}
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Eliminating branches

• So, what do we do with code like this?
if s then

r← A
else

r← B
end if

• Replace by
r← sA+ (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

• For very fast A and B this can even be faster
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Timing attacks – secret indices

table[secret]

27



Scanning through tables (in C)

uint32 table[TABLE_LENGTH];

uint32 lookup(size_t pos)
{
size_t i;
int b;
uint32 r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{
b = isequal(i, pos);
cmov(&r, &table[i], b);

}
return r;

}
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Did we get it right?

Option 1: Auditing

“Originally, me, a glass of bourbon, and gdb were a good trio. But that got old pretty quick.
(The manual analysis part – not the whiskey.)”

—Survey response in https://ia.cr./2021/1650

Option 2: Check/verify
• Implement, use tool to check “constant-time” property

• Problems in practice:
• Some tools not sound
• Some tools not on binary/asm level
• Some tools not usable

 Fairly high on my whishlist. . .

Option 3: Avoid variable-time code
• Prevent leaking patterns on source level

• Prove that compilation doesn’t introduce leakage

29
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 Fairly high on my whishlist. . .

Option 3: Avoid variable-time code
• Prevent leaking patterns on source level

• Prove that compilation doesn’t introduce leakage 29
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Information-flow type system

• Enforce constant-time on jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

• #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to

Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650
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Spectre v1

void victim_function(size_t x,
size_t array1_size,
const uint8_t *array1,
const uint8_t *array2,
uint8_t *temp)

{
if (x < array1_size) {
*temp &= array2[array1[x] * 512];

}
}

31



Spectre v1

export fn victim_function(reg u64 x, reg u64 array1_size,
reg u64 array1, reg u64 array2, reg u64 temp) {

reg u64 a;
reg u8 ab bb pab pbb t;
inline bool b;

t = (u8)[temp];
b = x < array1_size;
if (b) {

ab = (u8)[array1 + x];
a = (64u)ab;
a <<= 9;
bb = (u8)[array2 + a];
t &= bb;

}
(u8)[temp] = t;

} 32



It’s more subtle than this

fn aes_rounds (stack u128[11] rkeys, reg u128 in) -> reg u128 {
reg u64 rkoffset;
state = in;

state ^= rkeys[0];
rkoffset = 0;
while(rkoffset < 9*16) {
rk = rkeys.[(int)rkoffset];
state = #AESENC(state, rk);
rkoffset += 16;

}
rk = rkeys[10];
#declassify state = #AESENCLAST(state, rk);
return state;

}
33



It’s more subtle than this

Spectre declassified
• Caller is free to leak (declassified) state

• Very common in crypto: ciphertext is actually sent!

• state is not “out of bounds” data, it’s “early data”

• Must not speculatively #declassify early!

Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsatiansup,

Daniel Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom: Spectre Declassified: Reading from the

Right Place at the Wrong Time. IEEE S&P 2023. https://eprint.iacr.org/2022/426
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Countermeasures

Fencing
• Can prevent speculation through barriers (LFENCE)

• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)

• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value
• Implemented in LLVM since version 8

• Still noticable performance overhead
• No formal guarantees of security
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Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!

• Obvious idea: mask only loads into public registers
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Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public
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The special case of crypto

• We know what inputs secret and what inputs are public

• Most of the state is actually secret

• Most loads do not need protect!

• Even better: mark additional inputs as secret

• No cost of those inputs don’t flow into leaking instructions

• Even better: Spills don’t need protect if there is no branch between store and load

• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!
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Performance results (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

ChaCha20

avx2 32 B 314 352 12.10
avx2 32 B xor 314 352 12.10
avx2 128 B 330 370 12.12
avx2 128 B xor 338 374 10.65
avx2 1 KiB 1190 1234 3.70
avx2 1 KiB xor 1198 1242 3.67
avx2 1 KiB 18872 18912 0.21
avx2 16 KiB xor 18970 18994 0.13
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Performance results (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

Poly1305

avx2 32 B 46 78 69.57
avx2 32 B verif 48 84 75.00
avx2 128 B 136 172 26.47
avx2 128 B verif 140 170 21.43
avx2 1 KiB 656 686 4.57
avx2 1 KiB verif 654 686 4.89
avx2 16 KiB 8420 8450 0.36
avx2 16 KiB verif 8416 8466 0.59
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Performance results (Comet Lake cyles)

Primitive Impl. Op. CT SCT overhead [%]

X25519
mulx smult 98352 98256 -0.098
mulx base 98354 98262 -0.094

Kyber512
avx2 keypair 25694 25912 0.848
avx2 enc 35186 35464 0.790
avx2 dec 27684 27976 1.055

Kyber768
avx2 keypair 42768 42888 0.281
avx2 enc 54518 54818 0.550
avx2 dec 43824 44152 0.748
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Limitations

• Spectre v1 is not the only speculative attack vector

• Spectre v2: Avoid by not using indirect branches

• Spectre v4: Use SSBD: https://github.com/tyhicks/ssbd-tools
• Our protection requires separation of crypto code!

• Typically crypto is living in the same address space as application
• Any Spectre v1 gadget in application can leak keys!

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Tiago
Oliveira, Swarn Priya, Peter Schwabe, Lucas Tabary-Maujean: Typing High-Speed Cryptography against
Spectre v1. https://eprint.iacr.org/2022/1270
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Summary

Programming in jasmin gives you

• A more convenient way to “write assembly”

• Safety guarantees

• Systematic timing-attack protection

• Systematic Spectre v1 protection
• Link to computer-verified (EasyCrypt) proofs of

• Functional correctness
• Cryptographic security

• Spoiler: there’s more to come
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Join us!

https://formosa-crypto.org

https://formosa-crypto.zulipchat.com/
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