McBits: Fast code-based cryptography

Peter Schwabe
Radboud University Nijmegen, The Netherlands

Joint work with Daniel Bernstein, Tung Chou
December 17, 2013
IMA International Conference on Cryptography and Coding

Introduction: the bigger context

Public-key encryption

- Alice generates a key pair $(s k, p k)$, publishes $p k$, keeps $s k$ secret
- Bob takes some message M and $p k$ and computes an ciphertext C, sends C to Alice
- Alice uses $s k$ to decrypt C and obtain M

Introduction: the bigger context

Public-key encryption

- Alice generates a key pair $(s k, p k)$, publishes $p k$, keeps $s k$ secret
- Bob takes some message M and $p k$ and computes an ciphertext C, sends C to Alice
- Alice uses $s k$ to decrypt C and obtain M

Implementation targets

- Secure
- Fast
- (Small, low energy, low-power,...)

Secure Implementations

- "Traditional" cryptographic security: all attacks take $\geq 2^{128}$ operations

Secure Implementations

- "Traditional" cryptographic security: all attacks take $\geq 2^{128}$ operations
- Implementation security: no leakage through side channels
- Most relevant for desktops and servers: timing attacks
- Idea:
- Secret information influences time taken by software
- Attacker measures time, computes influence ${ }^{-1}$ to obtain secret information

Secure Implementations

- "Traditional" cryptographic security: all attacks take $\geq 2^{128}$ operations
- Implementation security: no leakage through side channels
- Most relevant for desktops and servers: timing attacks
- Idea:
- Secret information influences time taken by software
- Attacker measures time, computes influence ${ }^{-1}$ to obtain secret information
- Constant-time software avoids such timing leaks:

Secure Implementations

- "Traditional" cryptographic security: all attacks take $\geq 2^{128}$ operations
- Implementation security: no leakage through side channels
- Most relevant for desktops and servers: timing attacks
- Idea:
- Secret information influences time taken by software
- Attacker measures time, computes influence ${ }^{-1}$ to obtain secret information
- Constant-time software avoids such timing leaks:
- No secret branch conditions

Secure Implementations

- "Traditional" cryptographic security: all attacks take $\geq 2^{128}$ operations
- Implementation security: no leakage through side channels
- Most relevant for desktops and servers: timing attacks
- Idea:
- Secret information influences time taken by software
- Attacker measures time, computes influence ${ }^{-1}$ to obtain secret information
- Constant-time software avoids such timing leaks:
- No secret branch conditions
- No memory access with secret address (cache timing)

Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/lvy Bridge
- Techniques also interesting for other (micro-)architectures

Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/lvy Bridge
- Techniques also interesting for other (micro-)architectures

Vector arithmetic

- All "large" processors offer arithmetic on vectors of data
- Highest arithmetic throughput, example (Sandy Bridge):
- Three 32 -bit additions per cycle
- Two 4×32-bit vector additions per cycle

Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
- Techniques also interesting for other (micro-)architectures

Vector arithmetic

- All "large" processors offer arithmetic on vectors of data
- Highest arithmetic throughput, example (Sandy Bridge):
- Three 32 -bit additions per cycle
- Two 4×32-bit vector additions per cycle
- Also fast: full-vector loads
- Low performance for branches, independent vector-element loads

Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
- Techniques also interesting for other (micro-)architectures

Vector arithmetic

- All "large" processors offer arithmetic on vectors of data
- Highest arithmetic throughput, example (Sandy Bridge):
- Three 32 -bit additions per cycle
- Two 4×32-bit vector additions per cycle
- Also fast: full-vector loads
- Low performance for branches, independent vector-element loads
- Synergie between efficient vectorization and timing-attack protection

Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND

Bitslicing

- Any n-bit register is a vector register with $n 1$-bit elements
- Operations on such bit vectors are XOR, OR, AND
- This is called bitslicing, introduced by Biham in 1997 for DES

Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND
- This is called bitslicing, introduced by Biham in 1997 for DES
- Other views on bitslicing:
- Computations on a transposition of data
- Simulation of hardware implementations in software

Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND
- This is called bitslicing, introduced by Biham in 1997 for DES
- Other views on bitslicing:
- Computations on a transposition of data
- Simulation of hardware implementations in software
- Needs large degree of data-level parallelism (e.g., $128 \times$)
- Size of active data set increases massively (e.g., $128 \times$)
- Typical consequence: more loads and stores (that easily become the performance bottleneck)

A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
- $n \leq 2^{m}$
- $k=n-m t$
- $t \geq 2$

Example

- $m=12$,
$n=4096$
$k=3604$
$t=41$

A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
- $n \leq 2^{m}$
- $k=n-m t$
- $t \geq 2$
- An s-bit-key stream cipher S

Example

- $m=12$,
$n=4096$
$k=3604$
$t=41$
- $S=$ Salsa20 $(s=256)$

A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
- $n \leq 2^{m}$
- $k=n-m t$
- $t \geq 2$
- An s-bit-key stream cipher S
- An a-bit-key authenticator (MAC) A

Example

- $m=12$,
$n=4096$
$k=3604$
$t=41$
- $S=$ Salsa20 $(s=256)$
- $A=$ Poly1305 $(a=256)$

A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
- $n \leq 2^{m}$
- $k=n-m t$
- $t \geq 2$
- An s-bit-key stream cipher S
- An a-bit-key authenticator (MAC) A
- An $(s+a)$-bit-output hash function H

Example

- $m=12$,

$$
n=4096
$$

$$
k=3604
$$

$$
t=41
$$

- $S=$ Salsa20 $(s=256)$
- $A=$ Poly1305 $(a=256)$
- $H=$ SHA-512

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in $\mathbb{F}_{2^{m}}$
- An irreducible degree- t polynomial $g \in \mathbb{F}_{2^{m}}[x]$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in $\mathbb{F}_{2^{m}}$
- An irreducible degree- t polynomial $g \in \mathbb{F}_{2^{m}}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{2^{m}}^{t \times n}
$$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in $\mathbb{F}_{2^{m}}$
- An irreducible degree- t polynomial $g \in \mathbb{F}_{2^{m}}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{2^{m}}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2}
- Obtain a matrix $H_{\text {sec }} \in \mathbb{F}_{2}^{m t \times n}$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in $\mathbb{F}_{2^{m}}$
- An irreducible degree- t polynomial $g \in \mathbb{F}_{2^{m}}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{2^{m}}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2}
- Obtain a matrix $H_{\text {sec }} \in \mathbb{F}_{2}^{m t \times n}$
- $H_{\text {sec }}$ is a secret parity-check matrix of the Goppa code $\Gamma=\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$

Key generation

Secret key

- A random sequence $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of distinct elements in $\mathbb{F}_{2^{m}}$
- An irreducible degree- t polynomial $g \in \mathbb{F}_{2^{m}}[x]$
- Compute the secret matrix

$$
\left(\begin{array}{cccc}
1 / g\left(\alpha_{1}\right) & 1 / g\left(\alpha_{2}\right) & \cdots & 1 / g\left(\alpha_{n}\right) \\
\alpha_{1} / g\left(\alpha_{1}\right) & \alpha_{2} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n} / g\left(\alpha_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{t-1} / g\left(\alpha_{1}\right) & \alpha_{2}^{t-1} / g\left(\alpha_{2}\right) & \cdots & \alpha_{n}^{t-1} / g\left(\alpha_{n}\right)
\end{array}\right) \in \mathbb{F}_{2^{m}}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of $\mathbb{F}_{2^{m}}$ over \mathbb{F}_{2}
- Obtain a matrix $H_{s e c} \in \mathbb{F}_{2}^{m t \times n}$
- $H_{\text {sec }}$ is a secret parity-check matrix of the Goppa code $\Gamma=\Gamma_{2}\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$
- The secret key is $\left(\alpha_{1}, \ldots, \alpha_{n}, g\right)$

Key generation

Public key

- Perform Gaussian elimination on $H_{\text {sec }}$ to obtain a matrix $H_{p u b}$ whose left $\mathrm{tm} \times \mathrm{tm}$ submatrix is the identity matrix
- $H_{\text {pub }}$ is a public parity-check matrix for Γ
- The public key is $H_{p u b}$

Encryption

- Generate a random weight- t vector $e \in \mathbb{F}_{2}^{n}$
- Compute $w=H_{p u b} e$
- Compute $H(e)$ to obtain an $(s+a)$-bit string $\left(k_{\text {enc }}, k_{\text {auth }}\right)$
- Encrypt the message M with the stream cipher S under key $k_{\text {enc }}$ to obtain ciphertext C
- Compute authentication tag a on C using A with key $k_{\text {auth }}$
- Send (a, w, C)

Decryption

- Receive (a, w, C)
- Decode w to obtain weight- t string e
- Hash e with H to obtain $\left(k_{\text {enc }}, k_{\text {auth }}\right)$
- Verify that a is a valid authentication tag on C using A with $k_{\text {auth }}$
- Use S with $k_{\text {enc }}$ to decrypt and obtain M

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of $m t$ bits each

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of $m t$ bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of $m t$ bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns
- This talk: ignore implementation of H, S, and A

Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of $m t$ bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns
- This talk: ignore implementation of H, S, and A

Decryption

- Decryption is mainly decoding, lots of operations in $\mathbb{F}_{2^{m}}$
- Decryption has to run in constant time!
- Obviously, decoding of w is the interesting part

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $H_{p u b} v=w$

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $H_{p u b} v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp's algorithm to obtain error-locator polynomial f of degree t

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $H_{p u b} v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp's algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_{j}=\alpha_{i}$, set error bit at position i in e

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $H_{p u b} v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp's algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_{j}=\alpha_{i}$, set error bit at position i in e
- All these computation work on medium-size polynomials over $\mathbb{F}_{2^{m}}$

A closer look at decoding

- Start with some $v \in \mathbb{F}_{2}^{n}$, such that $H_{p u b} v=w$
- Compute a Goppa syndrome $s_{0}, \ldots, s_{2 t-1}$
- Use Berlekamp's algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_{j}=\alpha_{i}$, set error bit at position i in e
- All these computation work on medium-size polynomials over $\mathbb{F}_{2^{m}}$
- Let's now fix the example parameters from above ($n=2^{m}=4096, t=41$)

Representing elements of $\mathbb{F}_{2^{m}}$

Option I

- Use 16 -bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)

Representing elements of $\mathbb{F}_{2^{m}}$

Option

- Use 16 -bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
- Use table lookups (not constant time!)

Representing elements of $\mathbb{F}_{2^{m}}$

Option

- Use 16 -bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
- Use table lookups (not constant time!)
- Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64×64-bit multiplication)

Representing elements of $\mathbb{F}_{2^{m}}$

Option

- Use 16 -bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
- Use table lookups (not constant time!)
- Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64×64-bit multiplication)
- Squaring uses the same algorithm as multiplication

Representing elements of $\mathbb{F}_{2^{m}}$

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions

Representing elements of $\mathbb{F}_{2^{m}}$

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
- Addition is 12 vector XORs for 256 parallel additions (much faster!)

Representing elements of $\mathbb{F}_{2^{m}}$

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
- Addition is 12 vector XORs for 256 parallel additions (much faster!)
- Multiplication is easily constant time, but is it fast?
- How about squaring, can it be faster?

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12 -coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12 -coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+x^{n} a_{1}\right)\left(b_{0}+x^{n} b_{1}\right) \\
= & a_{0} b_{0}+x^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+x^{2 n} a_{1} b_{1}
\end{aligned}
$$

Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12 -coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12}+x^{3}+1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: refined Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+x^{n} a_{1}\right)\left(b_{0}+x^{n} b_{1}\right) \\
= & a_{0} b_{0}+x^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+x^{2 n} a_{1} b_{1}
\end{aligned}
$$

- Refined Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+x^{n} a_{1}\right)\left(b_{0}+x^{n} b_{1}\right) \\
= & \left(1-x^{n}\right)\left(a_{0} b_{0}-x^{n} a_{1} b_{1}\right)+x^{n}\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{aligned}
$$

- Refined Karatsuba uses $M_{2 n}=3 M_{n}+7 n-3$ instead of $M_{2 n}=3 M_{n}+8 n-4$ bit operations
- For details see Bernstein, "Batch binary Edwards", Crypto 2009

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced multiplication is faster
- Bitsliced squaring is much faster (not very relevant)

Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced multiplication is faster
- Bitsliced squaring is much faster (not very relevant)
- In the following: High-level algorithms that drastically reduce the number of multiplications

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$
- Try all elements of $F_{2^{m}}$, Horner scheme takes 41 mul, 41 add per element

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$
- Try all elements of $F_{2^{m}}$, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$ etc.
- Same operation count but different structure

Root finding, the classical way

- Task: Find all t roots of a degree- t error-locator polynomial f
- Let $f=c_{41} x^{41}+c_{40}+x^{40}+\cdots+c_{0}$
- Try all elements of $F_{2^{m}}$, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_{i} g^{i}, c_{i} g^{2 i}, c_{i} g^{3 i}$ etc.
- Same operation count but different structure
- Berlekamp's trace algorithm: not constant time

Multipoint evaluation via FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$

Multipoint evaluation via FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

Multipoint evaluation via FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$

Multipoint evaluation via FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)

Multipoint evaluation via FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
- von zur Gathen 1996: some improvements (still slow)

Multipoint evaluation via FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}\right)+\alpha f_{1}\left(\alpha^{2}\right) \text { and } \\
f(-\alpha) & =f_{0}\left(\alpha^{2}\right)-\alpha f_{1}\left(\alpha^{2}\right)
\end{aligned}
$$

- Problem: We have a binary field, and $\alpha=-\alpha$
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
- von zur Gathen 1996: some improvements (still slow)
- Gao, Mateer 2010: Much faster additive FFT

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

- Evaluate f_{0} and f_{1} at $\alpha^{2}+\alpha$, obtain $f(\alpha)$ and $f(\alpha+1)$ with only 1 multiplication and 2 additions

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

- Evaluate f_{0} and f_{1} at $\alpha^{2}+\alpha$, obtain $f(\alpha)$ and $f(\alpha+1)$ with only 1 multiplication and 2 additions
- Again: apply the idea recursively

Gao-Mateer additive FFT

- Evaluate a polynomial $f=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ on a size- n \mathbb{F}_{2}-linear space S
- Idea: Write polynomial f as $f_{0}\left(x^{2}+x\right)+x f_{1}\left(x^{2}+x\right)$
- Big overlap between evaluating

$$
\begin{aligned}
f(\alpha) & =f_{0}\left(\alpha^{2}+\alpha\right)+\alpha f_{1}\left(\alpha^{2}+\alpha\right) \text { and } \\
f(\alpha+1) & =f_{0}\left(\alpha^{2}+\alpha\right)+(\alpha+1) f_{1}\left(\alpha^{2}+\alpha\right)
\end{aligned}
$$

- Evaluate f_{0} and f_{1} at $\alpha^{2}+\alpha$, obtain $f(\alpha)$ and $f(\alpha+1)$ with only 1 multiplication and 2 additions
- Again: apply the idea recursively
- Our paper: generalize the idea to small-degree f
- Recursion can stop much earlier
- Various speedups at the end of the recursion

Syndrome computation, the classical way

- Receive n-bit input word, scale bits by Goppa constants
- Apply linear map

$$
M=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)
$$

Syndrome computation, the classical way

- Receive n-bit input word, scale bits by Goppa constants
- Apply linear map

$$
M=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)
$$

- Can precompute matrix mapping bits to syndrome
- Yields pretty large secret key, larger than L1 cache

Another look at syndrome computation

Look at the syndrome-computation map again:

$$
M=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)
$$

Consider the linear map M^{\top} :

$$
\left(\begin{array}{cccc}
1 & \alpha_{1} & \cdots & \alpha_{1}^{2 t-1} \\
1 & \alpha_{2} & \cdots & \alpha_{2}^{2 t-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{n} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{t}
\end{array}\right)=\left(\begin{array}{c}
v_{1}+v_{2} \alpha_{1}+\cdots+v_{t} \alpha_{1}^{2 t-1} \\
v_{1}+v_{2} \alpha_{2}+\cdots+v_{t} \alpha_{2}^{2 t-1} \\
\vdots \\
v_{1}+v_{2} \alpha_{n}+\cdots+v_{t} \alpha_{n}^{2 t-1}
\end{array}\right)=\left(\begin{array}{c}
f\left(\alpha_{1}\right) \\
f\left(\alpha_{2}\right) \\
\vdots \\
f\left(\alpha_{n}\right)
\end{array}\right)
$$

- This transposed linear map is actually doing multipoint evaluation
- Syndrome computation is a transposed multipoint evaluation

Transposing linear algorithms

- A linear map: $a_{0}, a_{1} \rightarrow a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{1} b_{1}$

Transposing linear algorithms

- A linear map: $a_{0}, a_{1} \rightarrow a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{1} b_{1}$

- Reversing the edges: $c_{0}, c_{1}, c_{2} \rightarrow b_{0} c_{0}+b_{1} c_{1}, b_{0} c_{1}+b_{1} c_{2}$

What did we just do?

- The original linear map:

$$
\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1}+a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{0} & 0 \\
b_{1} & b_{0} \\
0 & b_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

- The transposed map:

$$
\binom{b_{0} c_{0}+b_{1} c_{1}}{b_{0} c_{1}+b_{1} c_{2}}=\left(\begin{array}{ccc}
b_{0} & b_{1} & 0 \\
0 & b_{0} & b_{1}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

What did we just do?

- The original linear map:

$$
\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1}+a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{0} & 0 \\
b_{1} & b_{0} \\
0 & b_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

- The transposed map:

$$
\binom{b_{0} c_{0}+b_{1} c_{1}}{b_{0} c_{1}+b_{1} c_{2}}=\left(\begin{array}{ccc}
b_{0} & b_{1} & 0 \\
0 & b_{0} & b_{1}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

- Reversing the edges automatically gives an algorithm for the transposed map
- This is called the transposition principle

What did we just do?

- The original linear map:

$$
\left(\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1}+a_{1} b_{0} \\
a_{1} b_{1}
\end{array}\right)=\left(\begin{array}{cc}
b_{0} & 0 \\
b_{1} & b_{0} \\
0 & b_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

- The transposed map:

$$
\binom{b_{0} c_{0}+b_{1} c_{1}}{b_{0} c_{1}+b_{1} c_{2}}=\left(\begin{array}{ccc}
b_{0} & b_{1} & 0 \\
0 & b_{0} & b_{1}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)
$$

- Reversing the edges automatically gives an algorithm for the transposed map
- This is called the transposition principle
- Preserves number of multiplications
- References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
- Huge program (all loops and function calls removed)

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
- Huge program (all loops and function calls removed)
- At $m=13$ or $m=14 \mathrm{gcc}$ runs out of memory

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
- Huge program (all loops and function calls removed)
- At $m=13$ or $m=14 \mathrm{gcc}$ runs out of memory
- Can use better register allocators, but the program is still huge

Transposing the additive FFT

A better approach

- Analyze structure of additive FFT $A: B, A_{1}, A_{2}, C$
- A_{1}, A_{2} are recursive calls

Transposing the additive FFT

A better approach

- Analyze structure of additive FFT $A: B, A_{1}, A_{2}, C$
- A_{1}, A_{2} are recursive calls
- Transposition has structure $C^{T}, A_{2}^{T}, A_{1}^{T}, B^{T}$
- Use recursive calls to reduce code size

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π : load from position i, store at position $\pi(i)$

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π : load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time

Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π : load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time
- Solution: sorting networks

Sorting networks

A sorting network sorts an array S of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps $S[i]$ and $S[j]$ if $S[i]>S[j]$.

Sorting networks

A sorting network sorts an array S of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- A comparator swaps $S[i]$ and $S[j]$ if $S[i]>S[j]$.
- Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements http://en.wikipedia.org/wiki/Batcher\'s_sort

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of $b[i]$ and $b[j]$ with condition bit c as

$$
y \leftarrow b[i] \oplus b[j] ; \quad y \leftarrow c y ; \quad b[i] \leftarrow b[i] \oplus y ; \quad b[j] \leftarrow b[j] \oplus y
$$

Permuting by sorting

Example

Computing b_{3}, b_{2}, b_{1} from b_{1}, b_{2}, b_{3} can be done by sorting the key-value pairs $\left(3, b_{1}\right),\left(2, b_{2}\right),\left(1, b_{3}\right)$ the output is $\left(1, b_{3}\right),\left(2, b_{2}\right),\left(3, b_{1}\right)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of $b[i]$ and $b[j]$ with condition bit c as

$$
y \leftarrow b[i] \oplus b[j] ; \quad y \leftarrow c y ; \quad b[i] \leftarrow b[i] \oplus y ; \quad b[j] \leftarrow b[j] \oplus y
$$

- Possibly better than Batcher sort: Beneš permutation network (work in progress)

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493
- These are amortized cycle counts across 256 parallel computations

Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493
- These are amortized cycle counts across 256 parallel computations
- All computations with full timing-attack protection!

Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- mceliece: 1219344 cycles
- ronald1024: 1340040 cycles
- ronald3072: 16052564 cycles

Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- mceliece: 1219344 cycles
- ronald1024: 1340040 cycles
- ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS

- gls254: 77468 cycles
- kumfp127g 116944 cycles
- curve25519: 182632 cycles

References

- Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: fast constant-time code-based cryptography., CHES 2013. http://cryptojedi.org/papers/\#mcbits
- Software will be online (public domain), for example, at http://cryptojedi.org/crypto/\#mcbits

