## NIST PQC, Kyber, and beyond

August 10, 2022





# Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer* 

Peter W. Shor ${ }^{\dagger}$


#### Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.


"In the past, people have said, maybe it's 50 years away, it's a dream, maybe it'll happen sometime. I used to think it was 50. Now l'm thinking like it's 15 or a little more. It's within reach. It's within our lifetime. It's going to happen."
-Mark Ketchen (IBM), Feb. 2012, about quantum computers

## Post-quantum crypto

## Definition

Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum computers.

## Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum computers.

5 main directions

- Lattice-based crypto (PKE and Sigs)
- Code-based crypto (mainly PKE)
- Multivariate-based crypto (mainly Sigs)
- Hash-based signatures (only Sigs)
- Isogeny-based crypto (so far, mainly PKE)


## Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum computers.

5 main directions

- Lattice-based crypto (PKE and Sigs)
- Code-based crypto (mainly PKE)
- Multivariate-based crypto (mainly Sigs)
- Hash-based signatures (only Sigs)
- Isogeny-based crypto (so far, mainly PKE)


## The NIST PQC "not-a-competition"

- Inspired by two earlier NIST crypto competitions:
- AES, running from 1997 to 2000
- SHA3, running from 2007 to 2012


## The NIST PQC "not-a-competition"

- Inspired by two earlier NIST crypto competitions:
- AES, running from 1997 to 2000
- SHA3, running from 2007 to 2012
- Approach: NIST specifies criteria, everybody is welcome to submit proposals
- Selection through an open process and multiple rounds
- Actual decisions are being made by NIST


## The NIST PQC "not-a-competition"

- Inspired by two earlier NIST crypto competitions:
- AES, running from 1997 to 2000
- SHA3, running from 2007 to 2012
- Approach: NIST specifies criteria, everybody is welcome to submit proposals
- Selection through an open process and multiple rounds
- Actual decisions are being made by NIST
- PQC project:
- Announcement: Feb 2016
- Call for proposals: Dec 2016 (based on community input)
- Deadline for submissions: Nov 2017


## The NIST competition: initial overview

| Count of Problem Category Column Labels $\nabla$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Row Labels | - Key Exchange | Signature | Grand Total |
| ? | 1 |  | 1 |
| Braids | 1 | 1 | 2 |
| Chebychev | 1 |  | 1 |
| Codes | 19 | 5 | 24 |
| Finite Automata | 1 | 1 | 2 |
| Hash |  | 4 | 4 |
| Hypercomplex Numbers | 1 |  | 1 |
| Isogeny | 1 |  | 1 |
| Lattice | 24 | 4 | 28 |
| Mult. Var | 6 | 7 | 13 |
| Rand. walk | 1 |  | 1 |
| RSA | 1 | 1 | 2 |
| Grand Total | 57 | 23 | 80 |
| Q4 | $\downarrow_{231} \quad O_{27}$ | $\square$ |  |

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

## The NIST competition: Jan 2019

- Announcement planned at Real-World Crypto 2019


## The NIST competition: Jan 2019

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later


## The NIST competition: Jan 2019

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later

Encryption / Key agreement

- 9 lattice-based
- 7 code-based
- 1 isogeny-based


## The NIST competition: Jan 2019

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later

Encryption / Key agreement

- 9 lattice-based
- 7 code-based
- 1 isogeny-based

Signature schemes

- 3 lattice-based
- 2 symmetric-crypto based
- 4 MQ-based


## The NIST competition: Jul 2020

- Announcement planned for June 2020


## The NIST competition: Jul 2020

- Announcement planned for June 2020
- Due to pandemic (?) slightly later


## The NIST competition: Jul 2020

- Announcement planned for June 2020
- Due to pandemic (?) slightly later


## Finalists

- 4 key-agreement schemes
- 3 lattice-based
- 1 code-based
- 3 signature schemes
- 2 lattice-based
- 1 MQ-based


## The NIST competition: Jul 2020

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

Finalists

- 4 key-agreement schemes
- 3 lattice-based
- 1 code-based
- 3 signature schemes
- 2 lattice-based
- 1 MQ-based


## Alternate schemes

- 5 key-agreement schemes
- 2 lattice-based
- 2 code-based
- 1 isogeny-based
- 3 signature schemes
- 2 symmetric-crypto based
- 1 MQ-based


## The NIST competition: Aug 2022

- Announcement planned for March 2022


## The NIST competition: Aug 2022

- Announcement planned for March 2022
- Due to ??? announcement in July 2022


## The NIST competition: Aug 2022

- Announcement planned for March 2022
- Due to ??? announcement in July 2022

4 schemes selected for standardization

- CRYSTALS-Kyber: lattice-based key agreement
- CRYSTALS-Dilithium: lattice-based signature
- Falcon: lattice-based signature
- SPHINCS+: hash-based signature


## The NIST competition: Aug 2022

- Announcement planned for March 2022
- Due to ??? announcement in July 2022

4 schemes selected for standardization

- CRYSTALS-Kyber: lattice-based key agreement
- CRYSTALS-Dilithium: lattice-based signature
- Falcon: lattice-based signature
- SPHINCS+: hash-based signature

4 schemes advanced to round 4

- Classic McEliece: code-based key agreement
- BIKE: code-based key agreement
- HQC: code-based key agreement
- SIKE: isogeny-based key agreement


## The NIST competition: Aug 2022

- Announcement planned for March 2022
- Due to ??? announcement in July 2022

4 schemes selected for standardization

- CRYSTALS-Kyber: lattice-based key agreement
- CRYSTALS-Dilithium: lattice-based signature
- Falcon: lattice-based signature
- SPHINCS+: hash-based signature

4 schemes advanced to round 4

- Classic McEliece: code-based key agreement
- BIKE: code-based key agreement
- HQC: code-based key agreement
- SIKE: isogeny-based key agreement
- Additionally: call for more signature proposals


## What now?

- Standards ready "by 2024"
- Time to start upgrading systems!


## What now?

- Standards ready "by 2024"
- Time to start upgrading systems!


## Store now, decrypt later



- Urgency for key agreement (confidentiality)
- Need PQC now for long-term security


## What now?

- Standards ready "by 2024"
- Time to start upgrading systems!

Store now, decrypt later


- Urgency for key agreement (confidentiality)
- Need PQC now for long-term security

Let's understand Kyber and what it means to use it.

A long time ago (2015) in a galaxy far, far away (Šibenik, Croatia)....

## What is a Key Encapsulation Mechanism (KEM)?



## Ring learning with errors (RLWE)

- Given a, uniformly random
- Given "noise distribution" $\chi$
- Given samples as $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$


## Ring learning with errors (RLWE)

- Given a, uniformly random
- Given "noise distribution" $\chi$
- Given samples as $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Search version: find s
- Decision version: distinguish from uniform random


## Where do a, e, and s live?

Short answer
In $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$

## Where do a, e, and s live?

## Longer answer

Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =10 X^{3}+9 X^{2}+2 X+5 \\
& =3 X^{3}+2 X^{2}+2 X+5
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a}-\mathbf{b} & =-2 X^{3}+X^{2}+2 X-1 \\
& =5 X^{3}+X^{2}+2 X+6
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}= & 24 X^{6}+16 X^{5}+12 X^{3}+30 X^{5}+20 X^{4}+15 X^{2}+ \\
& 12 X^{4}+8 X^{3}+6 X+12 X^{3}+8 X^{2}+6
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}= & 24 X^{6}+16 X^{5}+12 X^{3}+30 X^{5}+20 X^{4}+15 X^{2}+ \\
& 12 X^{4}+8 X^{3}+6 X+12 X^{3}+8 X^{2}+6 \\
= & 24 X^{6}+46 X^{5}+32 X^{4}+32 X^{3}+23 X^{2}+6
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}= & 24 X^{6}+16 X^{5}+12 X^{3}+30 X^{5}+20 X^{4}+15 X^{2}+ \\
& 12 X^{4}+8 X^{3}+6 X+12 X^{3}+8 X^{2}+6 \\
= & 24 X^{6}+46 X^{5}+32 X^{4}+32 X^{3}+23 X^{2}+6 \\
= & 3 X^{6}+4 X^{5}+4 X^{4}+4 X^{3}+2 X^{2}+6
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}= & 24 X^{6}+16 X^{5}+12 X^{3}+30 X^{5}+20 X^{4}+15 X^{2}+ \\
& 12 X^{4}+8 X^{3}+6 X+12 X^{3}+8 X^{2}+6 \\
= & 24 X^{6}+46 X^{5}+32 X^{4}+32 X^{3}+23 X^{2}+6 \\
= & 3 X^{6}+4 X^{5}+4 X^{4}+4 X^{3}+2 X^{2}+6 \\
= & -3 X^{2}-4 X-4+4 X^{3}+2 X^{2}+6
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo ( $X^{n}+1$ )
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}= & 24 X^{6}+16 X^{5}+12 X^{3}+30 X^{5}+20 X^{4}+15 X^{2}+ \\
& 12 X^{4}+8 X^{3}+6 X+12 X^{3}+8 X^{2}+6 \\
= & 24 X^{6}+46 X^{5}+32 X^{4}+32 X^{3}+23 X^{2}+6 \\
= & 3 X^{6}+4 X^{5}+4 X^{4}+4 X^{3}+2 X^{2}+6 \\
= & -3 X^{2}-4 X-4+4 X^{3}+2 X^{2}+6 \\
= & -X^{2}-4 X+4 X^{3}+2
\end{aligned}
$$

## Where do a, e, and s live?

Longer answer
Polynomials with $n$ coefficients, each coefficient in $\{0, \ldots, q-1\}$
Arithmetic uses reduction modulo $q$ and modulo $\left(X^{n}+1\right)$
Example
Let $q=7$ and $n=4$.
Let $\mathbf{a}=\left(4 X^{3}+5 X^{2}+2 X+2\right)$ and $\mathbf{b}=\left(6 X^{3}+4 X^{2}+3\right)$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b}= & 24 X^{6}+16 X^{5}+12 X^{3}+30 X^{5}+20 X^{4}+15 X^{2}+ \\
& 12 X^{4}+8 X^{3}+6 X+12 X^{3}+8 X^{2}+6 \\
= & 24 X^{6}+46 X^{5}+32 X^{4}+32 X^{3}+23 X^{2}+6 \\
= & 3 X^{6}+4 X^{5}+4 X^{4}+4 X^{3}+2 X^{2}+6 \\
= & -3 X^{2}-4 X-4+4 X^{3}+2 X^{2}+6 \\
= & -X^{2}-4 X+4 X^{3}+2 \\
= & 4 X^{3}+6 X^{2}+3 X+2
\end{aligned}
$$

## How to build a KEM: the basic idea

| Alice (server) |  | Bob (client) |
| :--- | :--- | :--- |
| $\mathbf{s}, \mathbf{e} \leftarrow^{\text {s }} \chi$ | $\mathrm{s}^{\prime}, \mathbf{e}^{\prime} \leftarrow^{\text {s }} \chi$ |  |
| $\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e}$ | $\underset{\mathbf{b}}{\longleftrightarrow}$ | $\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$ |
|  |  |  |

Alice has $\mathbf{v}=\mathbf{u s}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
Bob has $\quad \mathbf{v}^{\prime}=\mathbf{b s}^{\prime}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}$

- Secret and noise polynomials $\mathbf{s}, \mathbf{s}^{\prime}, \mathbf{e}, \mathbf{e}^{\prime}$ are small
- $\mathbf{v}$ and $\mathbf{v}^{\prime}$ are approximately the same


## How to build a KEM: the construction

$$
\begin{array}{lll}
\hline \text { Alice } & \text { Bob } \\
\hline & & \\
\mathbf{s}, \mathbf{e} \stackrel{\S}{\leftarrow} \chi & & \mathbf{s}^{\prime}, \mathbf{e}^{\prime} \quad \stackrel{(\mathbf{b} \quad)}{\leftarrow} \\
\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e} & \\
& & \mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime} \\
& & \mathbf{v} \leftarrow \mathbf{b s}^{\prime} \\
& & \\
\mathbf{v}^{\prime} \leftarrow \mathbf{u s} & \stackrel{(\mathbf{u})}{\longleftarrow} &
\end{array}
$$

## How to build a KEM: the construction

| Alice |  | Bob |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { seed } \stackrel{\&}{\leftarrow}\{0,1\}^{256} \\ & \mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}(\text { seed })) \\ & \mathbf{s}, \mathbf{e} \leftarrow \chi \\ & \mathbf{b} \leftarrow \mathbf{~} \leftarrow \mathbf{~}+\mathbf{e} \end{aligned}$ | $\xrightarrow{(b, \text { seed })}$ | $\begin{aligned} & \mathbf{s}^{\prime}, \mathbf{e}^{\prime} \quad \stackrel{\S}{\leftarrow} \chi \\ & \mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}(\text { seed })) \\ & \mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime} \\ & \mathbf{v} \leftarrow \mathbf{b s}^{\prime} \end{aligned}$ |
| $\mathrm{v}^{\prime} \leftarrow \mathrm{us}$ | $\stackrel{(1)}{\longleftrightarrow}$ |  |

## How to build a KEM: the construction

| Alice |  | Bob |
| :---: | :---: | :---: |
| seed $\stackrel{\&}{\leftarrow}\{0,1\}^{256}$ |  |  |
| $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |  |  |
| s, e $\stackrel{\&}{\leftarrow} \chi$ |  | $\mathbf{s}^{\prime}, \mathbf{e}^{\prime} \stackrel{{ }^{\text {a }}}{\leftarrow} \chi$ |
| $\mathbf{b} \leftarrow \mathrm{as}+\mathrm{e}$ | $\xrightarrow{(b, \text { seed })}$ | $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |
|  |  | $\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathrm{e}^{\prime}$ |
|  |  | $\mathbf{v} \leftarrow \mathbf{b s}^{\prime}$ |
|  |  | $k \stackrel{8}{\leftarrow}\{0,1\}^{\text {n }}$ |
|  |  | $\mathbf{k} \leftarrow$ Encode(k) |
| $\mathbf{v}^{\prime} \leftarrow \mathrm{us}$ | $\stackrel{(u, c)}{\leftarrow}$ | $\mathbf{c} \leftarrow \mathrm{v}+\mathrm{k}$ |

## How to build a KEM: the construction

| Alice |  | Bob |
| :---: | :---: | :---: |
| seed $\stackrel{¢^{5}}{\leftarrow}\{0,1\}^{256}$ |  |  |
| $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |  |  |
| s, $\mathbf{e} \stackrel{\mathscr{\&}}{\leftarrow} \chi$ |  | $\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime} \stackrel{\&}{\leftarrow} \chi$ |
| $\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e}$ | $\xrightarrow{(b, \text { seed })}$ | $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |
|  |  | $\mathbf{u} \leftarrow \mathrm{as}^{\prime}+\mathrm{e}^{\prime}$ |
|  |  | $\mathbf{v} \leftarrow \mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}$ |
|  |  | $k \stackrel{8}{\leftarrow}\{0,1\}^{n}$ |
|  |  | $\mathbf{k} \leftarrow \operatorname{Encode}(k)$ |
| $\mathbf{v}^{\prime} \leftarrow$ us | $\stackrel{(u, c)}{\leftarrow}$ | $\mathbf{c} \leftarrow \mathrm{v}+\mathrm{k}$ |

## How to build a KEM: the construction

| Alice |  | Bob |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { seed } \stackrel{\&}{\leftarrow}\{0,1\}^{256} \\ & \mathbf{a} \leftarrow \text { Parse }(\text { XOF }(\text { seed })) \end{aligned}$ |  |  |
| $\mathrm{s}, \mathrm{e} \stackrel{¢}{\leftarrow} \downarrow$ |  | $\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime} \stackrel{\&}{\leftarrow} \chi$ |
| $\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e}$ | $\xrightarrow{(\mathrm{b}, \text { seed })}$ | $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |
|  |  | $\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$ |
|  |  | $\mathbf{v} \leftarrow \mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}$ |
|  |  | $k \stackrel{¢}{\leftarrow}\{0,1\}^{n}$ |
|  |  | $\mathbf{k} \leftarrow$ Encode $(k)$ |
| $\mathrm{v}^{\prime} \leftarrow \mathrm{us}$ | $\stackrel{(\mathbf{u}, \mathbf{c})}{ }$ | $\mathbf{c} \leftarrow \mathrm{v}+\mathrm{k}$ |
| $\mathbf{k}^{\prime} \leftarrow \mathbf{c}-\mathbf{v}^{\prime}$ |  |  |

## How to build a KEM: the construction

| Alice |  | Bob |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { seed } \stackrel{\&}{\leftarrow}\{0,1\}^{256} \\ & \mathbf{a} \leftarrow \operatorname{Parse}(X O F(\text { seed })) \end{aligned}$ |  |  |
| s, $\mathrm{e} \stackrel{\&}{\leftarrow}$ |  | $\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime} \stackrel{\&}{\leftarrow} \chi$ |
| $\mathbf{b} \leftarrow \mathrm{as}+\mathbf{e}$ | $\xrightarrow{\text { (b,seed) }}$ | $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |
|  |  | $\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$ |
|  |  | $\mathbf{v} \leftarrow \mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}$ |
|  |  | $k \stackrel{8^{8}}{\leftarrow}\{0,1\}^{\text {n }}$ |
|  |  | $\mathbf{k} \leftarrow \operatorname{Encode}(k)$ |
| $\mathbf{v}^{\prime} \leftarrow \mathrm{us}$ | $\stackrel{(u, c)}{\longleftrightarrow}$ | $\mathbf{c} \leftarrow \mathrm{v}+\mathrm{k}$ |
| $\mathbf{k}^{\prime} \leftarrow \mathbf{c}-\mathbf{v}^{\prime}$ |  | $\mu \leftarrow \operatorname{Extract}(\mathbf{k})$ |
| $\mu \leftarrow \operatorname{Extract}\left(\mathbf{k}^{\prime}\right)$ |  |  |

## How to build a KEM: the construction

| Alice |  | Bob |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { seed } \stackrel{\&}{\leftarrow}\{0,1\}^{256} \\ & \mathbf{a} \leftarrow \operatorname{Parse}(\text { XOF }(\text { seed })) \end{aligned}$ |  |  |
| $\mathrm{s}, \mathrm{e} \stackrel{\leftarrow}{\leftarrow} \downarrow$ |  | $\mathrm{s}^{\prime}, \mathbf{e}^{\prime}, \mathrm{e}^{\prime \prime} \stackrel{\&}{\leftarrow} \chi$ |
| $\mathbf{b} \leftarrow \mathrm{as}+\mathbf{e}$ | $\xrightarrow{(\mathrm{b}, \text { seed })}$ | $\mathbf{a} \leftarrow \operatorname{Parse}(\mathrm{XOF}($ seed $)$ ) |
|  |  | $\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$ |
|  |  | $\mathbf{v} \leftarrow \mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}$ |
|  |  | $k \stackrel{8}{\leftarrow}\{0,1\}^{n}$ |
|  |  | $\mathbf{k} \leftarrow$ Encode(k) |
| $\mathrm{v}^{\prime} \leftarrow \mathrm{us}$ | $\stackrel{(\mathbf{u}, \mathbf{c})}{ }$ | $\mathbf{c} \leftarrow \mathrm{v}+\mathrm{k}$ |
| $\mathbf{k}^{\prime} \leftarrow \mathbf{c}-\mathbf{v}^{\prime}$ |  | $\mu \leftarrow \operatorname{Extract}(\mathbf{k})$ |
| $\mu \leftarrow \operatorname{Extract}\left(\mathbf{k}^{\prime}\right)$ |  |  |

This is LPR encryption, written as KEM (except for generation of a)

## Encode and Extract

- Encoding in LPR encryption: map $n$ bits to $n$ coefficients:
- A zero bit maps to 0
- A one bit maps to $q / 2$
- Idea: Noise affects low bits of coefficients, put data into high bits


## Encode and Extract

- Encoding in LPR encryption: map $n$ bits to $n$ coefficients:
- A zero bit maps to 0
- A one bit maps to $q / 2$
- Idea: Noise affects low bits of coefficients, put data into high bits
- Decode: map coefficient into $[-q / 2, q / 2]$
- Closer to 0 (i.e., in $[-q / 4, q / 4]$ ): set bit to zero
- Closer to $\pm q / 2$ : set bit to one



## THE KEM

| Roberto Avanzi | Joppe Bos | Jintai Ding |
| :--- | :--- | :--- |
| Léo Ducas | Eike Kiltz | Tancrede Lepoint |
| Vadim Lyubashevsky | John M. Schanck | Peter Schwabe |
| Gregor Seiler | Damien Stehlé |  |

MLWE instead of RLWE

IND-CCA2 Security

## Two more steps to Kyber

MLWE instead of RLWE

- Easily scale security
- Optimized routines the same for all security levels

IND-CCA2 Security

## Two more steps to Kyber

## MLWE instead of RLWE

- Easily scale security
- Optimized routines the same for all security levels

IND-CCA2 Security

- Support static (or cached) keys
- More robust
- Useful for authenticated key exchange
- Easy to construct PKE


## Module Learning with Errors (MLWE)

- RLWE uses arithmetic on large degree polynomials
- For example, NewHope uses $n=1024, q=12289$


## Module Learning with Errors (MLWE)

- RLWE uses arithmetic on large degree polynomials
- For example, NewHope uses $n=1024, q=12289$
- MLWE uses matrices and vectors of smaller polynomials of small dimension


## Module Learning with Errors (MLWE)

- RLWE uses arithmetic on large degree polynomials
- For example, NewHope uses $n=1024, q=12289$
- MLWE uses matrices and vectors of smaller polynomials of small dimension
- Kyber: $n=256, q=3329$
- Security level 1 (AES-128): $d=2$
- Security level 3 (AES-192): $d=3$
- Security level 5 (AES-256): $d=4$
- Core arithmetic is in $\mathbb{Z}_{3329}[X] /\left(X^{256}+1\right)$ for all security levels


## Module Learning with Errors (MLWE)

- RLWE uses arithmetic on large degree polynomials
- For example, NewHope uses $n=1024, q=12289$
- MLWE uses matrices and vectors of smaller polynomials of small dimension
- Kyber: $n=256, q=3329$
- Security level 1 (AES-128): $d=2$
- Security level 3 (AES-192): $d=3$
- Security level 5 (AES-256): $d=4$
- Core arithmetic is in $\mathbb{Z}_{3329}[X] /\left(X^{256}+1\right)$ for all security levels
- Noise is centered binomial HW $(x)-H W(y)$ for 2-bit $x$ and $y$


## Chosen-ciphertext attacks

- Decryption failures are a function of $\mathbf{s}, \mathbf{e}, \mathbf{s}^{\prime}, \mathbf{e}^{\prime}$
- Attacker can choose larger secret/noise $\mathbf{e}^{\prime}$ and $\mathbf{s}^{\prime}$
- Observe if decryption fails
- Learn something about s


## Chosen-ciphertext attacks

- Decryption failures are a function of $\mathbf{s}, \mathbf{e}, \mathbf{s}^{\prime}, \mathbf{e}^{\prime}$
- Attacker can choose larger secret/noise $\mathbf{e}^{\prime}$ and $\mathbf{s}^{\prime}$
- Observe if decryption fails
- Learn something about s
- This is a chosen ciphertext attack (CCA)
- Learn full s after a few thousand queries


## Chosen-ciphertext attacks

- Decryption failures are a function of $\mathbf{s}, \mathbf{e}, \mathbf{s}^{\prime}, \mathbf{e}^{\prime}$
- Attacker can choose larger secret/noise $\mathbf{e}^{\prime}$ and $\mathbf{s}^{\prime}$
- Observe if decryption fails
- Learn something about s
- This is a chosen ciphertext attack (CCA)
- Learn full s after a few thousand queries
- NewHope never claimed CCA-security!
- This "attack" is completely expected
- Not a problem for ephemeral s


## From passive to CCA security

## The Fujisaki-Okamoto Transform (idea)

- Build CCA-secure KEM from passively secure encryption scheme
- Make failure probability negligible for honest $\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime}$
- Force encapsulator to generate $\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime}$ honestly


## From passive to CCA security

The Fujisaki-Okamoto Transform

| Alice (Server) |  | Bob (Client) |
| :---: | :---: | :---: |
| Gen(): |  | Encaps(pk): |
| pk, sk $\leftarrow$ KeyGen() | $\stackrel{\text { pk }}{\longrightarrow}$ $\stackrel{c t}{\text { ct }}$ | $\begin{aligned} & x \leftarrow\{0, \ldots, 255\}^{32} \\ & k, \text { coins } \leftarrow \text { SHA3- } 512(x) \\ & \text { ct } \leftarrow \text { Encrypt }(p k, x, \text { coins }) \end{aligned}$ |
| Decaps((sk, pk), ct): |  |  |
| $\overline{x^{\prime}} \leftarrow$ Decrypt(sk, ct) |  |  |
| $k^{\prime}$, coins ${ }^{\prime} \leftarrow$ SHA3-512 $\left(x^{\prime}\right)$ |  |  |
| $\begin{aligned} & \mathrm{ct}^{\prime} \leftarrow \text { Encrypt }\left(\mathrm{pk}, x^{\prime}, \text { coins }^{\prime}\right) \\ & \text { verify if } \mathrm{ct}=\mathrm{ct}^{\prime} \end{aligned}$ |  |  |

## From passive to CCA security

The Fujisaki-Okamoto Transform

| Alice (Server) |  | Bob (Client) |
| :---: | :---: | :---: |
| Gen(): |  | Encaps(pk): |
| pk, sk $\leftarrow \operatorname{KeyGen}()$ | $\stackrel{\text { pk }}{\longrightarrow}$ $\stackrel{c t}{\text { ct }}$ | $\begin{aligned} & x \leftarrow\{0, \ldots, 255\}^{32} \\ & k, \text { coins } \leftarrow \text { SHA3- } 512(x) \\ & \text { ct } \leftarrow \text { Encrypt }(p k, x, \text { coins }) \end{aligned}$ |
| Decaps((sk, pk), ct): |  |  |
| $\left.\overline{x^{\prime}} \leftarrow \operatorname{Decrypt(sk,ct}\right)$ |  |  |
| $k^{\prime}$, coins ${ }^{\prime} \leftarrow$ SHA3-512 $\left(x^{\prime}\right)$ |  |  |
| $\begin{aligned} & \mathrm{ct}^{\prime} \leftarrow \text { Encrypt }\left(\mathrm{pk}, x^{\prime}, \text { coins }^{\prime}\right) \\ & \text { verify if } \mathrm{ct}=\mathrm{ct}^{\prime} \end{aligned}$ |  |  |

## Additionally in Kyber:

- Hash the (hash of the) public key into $x$
- Multi-target protection (for coins)
- Turn into contributory KEM
- Hash the (hash of the) ciphertext into the final key


## Kyber for Engineers, the baseline

Key exchange today: ECDH

- Key-pair generation $\approx 125,000$ Comet Lake cycles
- Shared-key computation $\approx 125,000$ Comet Lake cycles
- Public keys have 32 bytes

Alice
$A \leftarrow g^{a}$
$B \leftarrow g^{b}$

$$
A
$$

B

$$
K \leftarrow B^{a}=\left(g^{b}\right)^{a}=g^{a b} \quad K \leftarrow A^{b}=\left(g^{a}\right)^{b}=g^{a b}
$$

## Alice

$A \leftarrow g^{a}$
$B \leftarrow g^{b}$
B

A
$K \leftarrow B^{a}=\left(g^{b}\right)^{a}=g^{a b} \quad K \leftarrow A^{b}=\left(g^{a}\right)^{b}=g^{a b}$

## Kyber for Engineers, part I: A KEM is not DH!

| Initiator |  | Responder |
| :---: | :---: | :---: |
| $(\mathrm{pk}, \mathrm{sk}) \leftarrow$ KEM.Gen |  |  |
| pk |  |  |
| ct $(\mathrm{ct}, \mathrm{K}) \leftarrow \mathrm{KEM.Enc}(\mathrm{pk})$ |  |  |
|  |  |  |

## Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)

- Key-pair generation $\approx 40,000$ Comet Lake cycles
- Encapsulation $\approx 55,000$ Comet Lake cycles
- Decapsulation $\approx 45,000$ Comet Lake cycles


## Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)

- Key-pair generation $\approx 40,000$ Comet Lake cycles
- Encapsulation $\approx 55,000$ Comet Lake cycles
- Decapsulation $\approx 45,000$ Comet Lake cycles
- Public keys have 1184 bytes
- Ciphertexts have 1088 bytes


## Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)

- Key-pair generation $\approx 40,000$ Comet Lake cycles
- Encapsulation $\approx 55,000$ Comet Lake cycles
- Decapsulation $\approx 45,000$ Comet Lake cycles
- Public keys have 1184 bytes
- Ciphertexts have 1088 bytes
- Cycles are dominated by Keccak!


## Kyber for Engineers, part III: SCA and FI against FO

- FO-transform: hide if decryption succeeded
- Use full re-encryption to do this


## Kyber for Engineers, part III: SCA and FI against FO

- FO-transform: hide if decryption succeeded
- Use full re-encryption to do this
- Long computation, one bit of information
- Very hard to protect against SCA/FI


## Recommendations

- Start playing with Kyber
- Assume that details may still change


## Recommendations

- Start playing with Kyber
- Assume that details may still change
- Always combine with pre-quantum crypto (hybrid KEMs)
- Use Kyber768 (or Kyber1024)
- Will need to migrate to PQC in the next 5-10 years
- Use this to migrate to high-assurance implementations!
- Computer-verified correctness
- Computer-verified security
- Computer-verified implementation security
https://formosa-crypto.org


## Online references

- NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
- NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/ email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
- Kyber:
https://pq-crystals.org/kyber
https://github.com/pq-crystals/kyber

