MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

Post-quantum key encapsulation: Kyber

Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
Damien Stehle, Jintai Ding

August 31, 2022

~C
/) Vacation Rentals, Home X | +

BEXLTY

c @ © | & hitps://www.airbnb.com

| | @ search n@oe& =

Email

Password

Forgot password?

More login options

Don't have an account? Signup

https://www.airbnb.com/login

~C
& Vacation Rentals, Home: X

BEXLTY

c & © & hiths/wwwairbnb.com % | ®search moe =

Email

Password

Forgot password?

More login options

Don't have an account? Signup

https://www.airbnb.com/login

Website Identity

Website: www.airbnb.com
Owner. Airbnb, Inc
Verified by: DigiCert Inc View Certificate
Expires on: July 6, 2022

Privacy & History

Have | visited this website prior to today? No
Is this website storing information on my Yes,

computer? rockies | Glear Cookies and Site Data
Have | saved any passwords for this website? Yes View Saved Passwords

Technical Details

Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 256 bit keys, TLS 1.2)
The page you are viewing was encrypted before being transmitted over the Intemet.
Encryption makes it difficult for unauthorized people to view information traveling between
computers. It is therefore unlikely that anyone read this page as it traveled across the
network

Help

VT SEXTT
{3y Vacation Rentals, Home: X | +
c @ © | & hitps://www.airbnb.com v © ¢ @search noe =
C—
il 1o
9 B K
General Media Permissions [JCaIE2

https://www.airbnb.com/login

Website Identity

Website: www.airbnb.com
Owner. Airbnb, Inc
Verified by: DigiCert Inc View Certificate
Expires on: July 6, 2022

Privacy & History

Have | visited this website prior to today? No
Is this website storing information on my Yes,

computer? tockies | Clear Cookies and Site Data
Have | saved any passwords for this website? Yes View Saved Passwords

Technical Details
Connection Encryptg (TLS_ECDHE_RSA WJYH_AES_256_GCM_SHA384, 256 bit keys, TLS 1.2)
The page you are vi efore being transmitted over the Internet.
Encryption makes it difficult for unauthorized people to view information traveling between
computers. It is therefore unlikely that anyone read this page as it traveled across the
network

Help

T SEXLT)
{3y Vacation Rentals, Home: X | +
c @ © | @ https://www.airbnb.com e @ t¢| | ®search n o e
C—
= 1o o)
\ =
General Media Permissions [JSaT)

https://www.airbnb.com/login

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have heen used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g.. the number of digits of the
integer to be factored.

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm thinking
like it's 15 or a little more. It's within reach. It's within our lifetime. It's
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using

classical and quantum computers.

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using

classical and quantum computers.

5 main directions

- Lattice-based crypto (PKE and Sigs)

- Code-based crypto (mainly PKE)

- Multivariate-based crypto (mainly Sigs)

- Hash-based signatures (only Sigs)

- Isogeny-based crypto (it's complicated. . .)

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using

classical and quantum computers.

5 main directions

- Lattice-based crypto (PKE and Sigs)

- Code-based crypto (mainly PKE)

- Multivariate-based crypto (mainly Sigs)

- Hash-based signatures (only Sigs)

- Isogeny-based crypto (it's complicated. . .)

The NIST PQC “not-a-competition”

+ Inspired by two earlier NIST crypto competitions:

+ AES, running from 1997 to 2000
+ SHA3, running from 2007 to 2012

The NIST PQC “not-a-competition”

+ Inspired by two earlier NIST crypto competitions:

+ AES, running from 1997 to 2000
+ SHA3, running from 2007 to 2012

- Approach: NIST specifies criteria, everybody is welcome to submit
proposals

+ Selection through an open process and multiple rounds
- Actual decisions are being made by NIST

The NIST PQC “not-a-competition”

+ Inspired by two earlier NIST crypto competitions:
+ AES, running from 1997 to 2000
+ SHA3, running from 2007 to 2012
- Approach: NIST specifies criteria, everybody is welcome to submit
proposals
+ Selection through an open process and multiple rounds
- Actual decisions are being made by NIST
+ PQC project:
+ Announcement: Feb 2016

- Call for proposals: Dec 2016 (based on community input)
+ Deadline for submissions: Nov 2017

The NIST competition: initial overview

t of Problem Categ Column Labels kd
Row Labels ey Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1 1
Lattice 24 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80
Qa4 0 Q2 &

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

The NIST competition, Feb 2019

Encryption / Key agreement
+ 9 lattice-based
+ 7 code-based
+ 1 isogeny-based

Signature schemes
- 3 lattice-based

- 2 symmetric-crypto based
- 4 MQ-based

The NIST competition: Jul 2020

Finalists Alternate schemes
+ 4 key-agreement schemes - 5 key-agreement schemes
+ 3 lattice-based + 2 lattice-based
+ 1 code-based + 2 code-based
- 3 signature schemes * Tisogeny-based
. 2 |attice-based - 3 signature schemes
+ 1 MQ-based + 2 symmetric-crypto based

+ 1 MQ-based

The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement

The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement

The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement

The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement

The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement

- Additionally: call for more signature proposals

- Standards ready by 2024"

- Time to start upgrading systems!

- Standards ready by 2024"
- Time to start upgrading systems!

Store now, decrypt later

- Urgency for key agreement (confidentiality)
- Need PQC now for long-term security

- Standards ready by 2024"
- Time to start upgrading systems!

Store now, decrypt later

- Urgency for key agreement (confidentiality)
- Need PQC now for long-term security

Let's understand Kyber and what it means to use it.

A long time ago (2015) in a galaxy far,
far away (Sibenik, Croatia)....

What is a Key Encapsulation Mechanism (KEM)?

Responder

(pk, sk) +— KEM.Gen

pk

(ct,K) <= KEM.Enc(pk)

ct

K + KEM.Dec(ct, sk)

Ring learning with errors (RLWE)

+ Given a, uniformly random
+ Given “noise distribution” x

- Given samples as + e, with e < x

Ring learning with errors (RLWE)

+ Given a, uniformly random

+ Given “noise distribution” x

- Given samples as + e, with e < x
+ Search version: find s

+ Decision version: distinguish from uniform random

Where do a, e, and s live?

Short answer
InRq = Zg[X]/(X" +1)

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)
Example

letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a+b=10X3+9X>+2X+5
=3X3+2X2 +2X+5

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a—b=-2C+X24+2X-1
=5X>+ X2 4+2X+6

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b=24X5 4+ 16X5° + 12X + 30X® + 20X* + 15X3+
12X* +8X3 +6X + 12X + 8X2 4+ 6

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b=24X5 4+ 16X5° + 12X + 30X® + 20X* + 15X3+
12X* +8X3 +6X + 12X + 8X2 4+ 6
= 24X% 4+ 46X° 4+ 32X* +32X3 + 23X2 + 6

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b= 24X5+16X° + 12X3 + 30X° + 20X* + 15X%+
12X+ 8X3 + 6X + 12X3 +8X2 4+ 6
= 24X5 +46X° + 32X* +32X3 +23X2 4+ 6
= 3O+ O +aXt 43 +2X2 16

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b= 24X5+16X° + 12X3 + 30X° + 20X* + 15X%+
12X+ 8X3 + 6X + 12X3 +8X2 4+ 6
= 24X5 +46X° + 32X* +32X3 +23X2 4+ 6
3XC F4X5 44Xt +4X3 42X + 6
= —3X?—4AX—44+4X3+2X2 46

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b= 24X5+16X° + 12X3 + 30X° + 20X* + 15X%+
12X+ 8X3 + 6X + 12X3 +8X2 4+ 6
= 24X5 +46X° + 32X* +32X3 +23X2 4+ 6
3XC F4X5 44Xt +4X3 42X + 6
= —3X?—4AX—44+4X3+2X2 46
= —X?P—4aX+4X3+2

Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b= 24X5+16X° + 12X3 + 30X° + 20X* + 15X%+
12X+ 8X3 + 6X + 12X3 +8X2 4+ 6
= 24X5 +46X° + 32X* +32X3 +23X2 4+ 6
3XC F4X5 44Xt +4X3 42X + 6
= —3X?—4AX—44+4X3+2X2 46
= —X?P—4aX+4X3+2
= 4X3+6X2+3X+2

How to build a KEM: the basic idea

Alice (server) Bob (client)
s,e & x e & x
b < as+e — > ucad+e
P
Alicehas v =us =ass' +e¢€'s
Bobhas v/ =bs =ass’ +es

- Secret and noise polynomials s, s’ e, ¢’ are small
- v and v’ are approximately the same

How to build a KEM: the construction

Alice Bob
s,e < se Ex
b+ as+e u
u<+ as’' +e
v < bs’

v/ < us

How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))

$ / / $
S, €4 X s’ e — X
(b,seed)
b« as+e ——— a <+ Parse(XOF(seed))
u< as’ +eé
v < bs’

v/ < us

How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))

$ 7 $
S, €4 X s,e —X
(b,seed)
b« as+e ——— a <+ Parse(XOF(seed))
u<+ as’ +eé
v < bs’
k& {0,1)"

k «+ Encode(k)

éﬂﬂ c+—v+k

v/ < us

How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))

$ APV
S, €4 X §,€e,e <X
(b,seed)
b« as+e ——— a <+ Parse(XOF(seed))
u< as’ +eé
v < bs’ +¢e”
k& {0,1)"

k «+ Encode(k)

éﬂﬂ c+—v+k

v/ < us

How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))

$ AN
S, €4 X §,€e,e <X
(b,seed)

b« as+e ——— a <+ Parse(XOF(seed))
u< as’ +eé
v < bs’ +¢e”
k& {0,1)"
k «+ Encode(k)

v/ < us éﬂi c+—v+k

k+—c—v

How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))
$ APV
s,e<— X s,e,e’ <— Y
(b,seed)
b« as+e ——— a <+ Parse(XOF(seed))
u<+ as’' +e
v < bs’ +¢€”
k& {0,1)"
k «+ Encode(k)
v/ < us éﬂi c+—v+k
k' —c—v w + Extract(k)
w + Extract(k’)

How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))
$ APV
s,e<— X s,e,e’ <— Y
(b,seed)
b« as+e ——— a <+ Parse(XOF(seed))
u<+ as’' +e
v < bs’ +¢€”
k& {0,1)"
k «+ Encode(k)
v/ < us éﬂi c+—v+k
k' —c—v w + Extract(k)
w + Extract(k’)

This is LPR encryption, written as KEM (except for generation of a)

Encode and Extract

+ Encoding in LPR encryption: map n bits to n coefficients:

+ A zero bit mapsto 0
+ Aone bit maps to g/2

- |dea: Noise affects low bits of coefficients, put data into high bits

Encode and Extract

+ Encoding in LPR encryption: map n bits to n coefficients:

+ A zero bit mapsto 0

+ Aone bit maps to g/2
- |dea: Noise affects low bits of coefficients, put data into high bits
+ Decode: map coefficient into [—q/2,q/2]

- Closerto 0 (i.e.,in [—q/4,q/4]): set bit to zero
+ Closerto £q/2: set bit to one

Two more steps to Kyber

MLWE instead of RLWE

IND-CCA2 Security

Two more steps to Kyber

MLWE instead of RLWE

+ Easily scale security
- Optimized routines the same for all security levels

IND-CCA2 Security

Two more steps to Kyber

MLWE instead of RLWE

+ Easily scale security

- Optimized routines the same for all security levels

IND-CCA2 Security
- Support static (or cached) keys

+ More robust
- Useful for authenticated key exchange
+ Easy to construct PKE

Module Learning with Errors (MLWE)

+ RLWE uses arithmetic on large degree polynomials
+ For example, NEWHOPE uses n = 1024, g = 12289

Module Learning with Errors (MLWE)

+ RLWE uses arithmetic on large degree polynomials
+ For example, NEWHOPE uses n = 1024, g = 12289

+ MLWE uses matrices and vectors of smaller polynomials of small
dimension

Module Learning with Errors (MLWE)

+ RLWE uses arithmetic on large degree polynomials
+ For example, NEWHOPE uses n = 1024, g = 12289
+ MLWE uses matrices and vectors of smaller polynomials of small
dimension
+ Kyber: n = 256, g = 3329
- Security level 1 (AES-128): d = 2
- Security level 3 (AES-192): d = 3
« Security level 5 (AES-256): d = 4

- Core arithmetic is in Zs329[X]/(X?° + 1) for all security levels

Module Learning with Errors (MLWE)

+ RLWE uses arithmetic on large degree polynomials
+ For example, NEWHOPE uses n = 1024, g = 12289

+ MLWE uses matrices and vectors of smaller polynomials of small
dimension
+ Kyber: n = 256, g = 3329
- Security level 1 (AES-128): d = 2
- Security level 3 (AES-192): d = 3
« Security level 5 (AES-256): d = 4

- Core arithmetic is in Zs329[X]/(X?° + 1) for all security levels
+ Noise is centered binomial HW(x) — HW(y) for 2-bit x and y

Chosen-ciphertext attacks

- Decryption failures are a function of s, e, ¢, €

- Attacker can choose larger secret/noise ¢’ and s’
+ Observe if decryption fails

+ Learn something about s

20

Chosen-ciphertext attacks

- Decryption failures are a function of s, e, ¢, €

- Attacker can choose larger secret/noise ¢’ and s’
+ Observe if decryption fails

+ Learn something about s

- This is a chosen ciphertext attack (CCA)

- Learn full s after a few thousand queries

20

Chosen-ciphertext attacks

- Decryption failures are a function of s, e, ¢, €

- Attacker can choose larger secret/noise ¢’ and s’
+ Observe if decryption fails

+ Learn something about s

- This is a chosen ciphertext attack (CCA)

- Learn full s after a few thousand queries

+ NEWHOPE never claimed CCA-security!

+ This “attack” is completely expected

- Not a problem for ephemeral s

20

From passive to CCA security

The Fujisaki-Okamoto Transform (idea)
+ Build CCA-secure KEM from passively secure encryption scheme
- Make failure probability negligible for honest ¢/, €/, €”

- Force encapsulator to generate s/, €/, €” honestly

21

From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)
Gen(): Encaps(pk):
pk, sk + KeyGen() L {0,...,255}32
k, coins < SHA3-512(x)
& ot Encrypt(pk, x, coins)

Decaps((sk, pk), ct):

x" « Decrypt(sk, ct)

k', coins’ «— SHA3-512(x")
ct’ < Encrypt(pk, x’, coins’)
verify if ct = ct’

21

From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server)

Bob (Client)

Gen():
pk, sk <— KeyGen()

gjics

Decaps((sk, pk), ct):

x" « Decrypt(sk, ct)

k', coins’ «— SHA3-512(x")
ct’ < Encrypt(pk, x’, coins’)
verify if ct = ct’

Encaps(pk):

x + {0,...,255}32
k, coins < SHA3-512(x)

ct < Encrypt(pk, x, coins)

Additionally in Kyber:

- Hash the (hash of the) public key into x
- Multi-target protection (for coins)

+ Turn into contributory KEM

- Hash the (hash of the) ciphertext into the final key

21

Kyber for Engineers, the baseline

Key exchange today: ECDH
+ Key-pair generation = 100,000 Comet Lake cycles
- Shared-key computation = 100, 000 Comet Lake cycles
+ Public keys have 32 bytes

22

Kyber for Engineers, part I: A KEM is not DH!

Bob

A+ g? B+ ¢

K+ B2 = (gb)a _ gab K+ Ab — (ga)b _ gab

23

Kyber for Engineers, part I: A KEM is not DH!

Bob

A+ @g? B+ ¢

K+ B2 = (gb)a _ gab K+ Ab — (ga)b _ gab

23

Kyber for Engineers, part I: A KEM is not DH!

Responder

(pk, sk) +— KEM.Gen

pk

(ct,K) <= KEM.Enc(pk)

ct

K + KEM.Dec(ct, sk)

23

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
- Key-pair generation ~ 40,000 Comet Lake cycles
- Encapsulation ~ 55,000 Comet Lake cycles
+ Decapsulation ~ 45,000 Comet Lake cycles

24

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
- Key-pair generation ~ 40,000 Comet Lake cycles
- Encapsulation ~ 55,000 Comet Lake cycles
+ Decapsulation ~ 45,000 Comet Lake cycles
+ Public keys have 1184 bytes
- Ciphertexts have 1088 bytes

24

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
- Key-pair generation ~ 40,000 Comet Lake cycles
- Encapsulation ~ 55,000 Comet Lake cycles
+ Decapsulation ~ 45,000 Comet Lake cycles
+ Public keys have 1184 bytes
- Ciphertexts have 1088 bytes
- Cycles are dominated by Keccak!

24

Kyber for Engineers, part Ill: SCA and Fl against FO

+ FO-transform: hide if decryption succeeded

+ Use full re-encryption to do this

25

Kyber for Engineers, part Ill: SCA and Fl against FO

+ FO-transform: hide if decryption succeeded
+ Use full re-encryption to do this

- Long computation, one bit of information

+ Very hard to protect against SCA/FI

25

Recommendations

- Start playing with Kyber
+ Assume that details may still change

26

Recommendations

- Start playing with Kyber

+ Assume that details may still change

- Always combine with pre-quantum crypto (hybrid KEMs)
+ Use Kyber768 (or Kyber1024)

26

Online references

* NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

+ NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

+ Kyber:
https://pg-crystals.org/kyber
https://github.com/pg-crystals/kyber

27

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://pq-crystals.org/kyber
https://github.com/pq-crystals/kyber

