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Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have heen used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g.. the number of digits of the
integer to be factored.



“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm thinking
like it's 15 or a little more. It's within reach. It's within our lifetime. It's
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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The NIST PQC “not-a-competition”

+ Inspired by two earlier NIST crypto competitions:
+ AES, running from 1997 to 2000
+ SHA3, running from 2007 to 2012
- Approach: NIST specifies criteria, everybody is welcome to submit
proposals
+ Selection through an open process and multiple rounds
- Actual decisions are being made by NIST
+ PQC project:
+ Announcement: Feb 2016

- Call for proposals: Dec 2016 (based on community input)
+ Deadline for submissions: Nov 2017



The NIST competition: initial overview

t of Problem Categ Column Labels kd
Row Labels ey Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1 1
Lattice 24 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80
Qa4 0 Q2 &

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.



The NIST competition, Feb 2019

Encryption / Key agreement
+ 9 lattice-based
+ 7 code-based
+ 1 isogeny-based

Signature schemes
- 3 lattice-based

- 2 symmetric-crypto based
- 4 MQ-based



The NIST competition: Jul 2020

Finalists Alternate schemes
+ 4 key-agreement schemes - 5 key-agreement schemes
+ 3 lattice-based + 2 lattice-based
+ 1 code-based + 2 code-based
- 3 signature schemes * Tisogeny-based
. 2 |attice-based - 3 signature schemes
+ 1 MQ-based + 2 symmetric-crypto based

+ 1 MQ-based



The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement
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The NIST competition: Aug 2022

4 schemes selected for standardization
« CRYSTALS-Kyber: lattice-based key agreement
+ CRYSTALS-Dilithium: lattice-based signature
+ Falcon: lattice-based signature
+ SPHINCS™: hash-based signature

4 schemes advanced to round 4
+ Classic McEliece: code-based key agreement
+ BIKE: code-based key agreement
+ HQC: code-based key agreement
- SIKE: isogeny-based key agreement

- Additionally: call for more signature proposals
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- Standards ready by 2024"
- Time to start upgrading systems!

Store now, decrypt later

- Urgency for key agreement (confidentiality)
- Need PQC now for long-term security

Let's understand Kyber and what it means to use it.



A long time ago (2015) in a galaxy far,
far away (Sibenik, Croatia)....



What is a Key Encapsulation Mechanism (KEM)?

Responder

(pk, sk) +— KEM.Gen

pk

(ct,K) <= KEM.Enc(pk)

ct

K + KEM.Dec(ct, sk)
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Ring learning with errors (RLWE)

+ Given a, uniformly random

+ Given “noise distribution” x

- Given samples as + e, with e < x
+ Search version: find s

+ Decision version: distinguish from uniform random




Where do a, e, and s live?

Short answer
InRq = Zg[X]/(X" +1)
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Longer answer
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Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.
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Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a—b=-2C+X24+2X-1
=5X>+ X2 4+2X+6
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Where do a, e, and s live?

Longer answer
Polynomials with n coefficients, each coefficientin {0,...,q — 1}

Arithmetic uses reduction modulo g and modulo (X" + 1)

Example
letg=T7Tandn =4.

Leta = (4X3 + 5X? + 2X + 2) and b = (6X3 + 4X2 + 3)

a-b= 24X5+16X° + 12X3 + 30X° + 20X* + 15X%+
12X+ 8X3 + 6X + 12X3 +8X2 4+ 6
= 24X5 +46X° + 32X* +32X3 +23X2 4+ 6
3XC F4X5 44Xt +4X3 42X + 6
= —3X?—4AX—44+4X3+2X2 46
= —X?P—4aX+4X3+2
= 4X3+6X2+3X+2



How to build a KEM: the basic idea

Alice (server) Bob (client)
s,e & x e & x
b < as+e — > ucad+e
P
Alicehas v =us =ass' +e¢€'s
Bobhas v/ =bs =ass’ +es

- Secret and noise polynomials s, s’ e, ¢’ are small
- v and v’ are approximately the same



How to build a KEM: the construction

Alice Bob
s,e < se  Ex
b+ as+e u
u<+ as’' +e
v < bs’

v/ < us
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How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))

$ AN
S, €4 X §,€e,e <X
(b,seed)
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k «+ Encode(k)

v/ < us éﬂi c+—v+k
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How to build a KEM: the construction

Alice Bob
seed & {0,1}2%6
a + Parse(XOF(seed))
$ APV
s,e<— X s,e,e’ <— Y
(b,seed)
b« as+e ——— a <+ Parse(XOF(seed))
u<+ as’' +e
v < bs’ +¢€”
k& {0,1)"
k «+ Encode(k)
v/ < us éﬂi c+—v+k
k' —c—v w + Extract(k)
w + Extract(k’)

This is LPR encryption, written as KEM (except for generation of a)
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Encode and Extract

+ Encoding in LPR encryption: map n bits to n coefficients:

+ A zero bit mapsto 0

+ Aone bit maps to g/2
- |dea: Noise affects low bits of coefficients, put data into high bits
+ Decode: map coefficient into [—q/2,q/2]

- Closerto 0 (i.e.,in [—q/4,q/4]): set bit to zero
+ Closerto £q/2: set bit to one
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Two more steps to Kyber

MLWE instead of RLWE

+ Easily scale security

- Optimized routines the same for all security levels

IND-CCA2 Security
- Support static (or cached) keys

+ More robust
- Useful for authenticated key exchange
+ Easy to construct PKE
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Module Learning with Errors (MLWE)

+ RLWE uses arithmetic on large degree polynomials
+ For example, NEWHOPE uses n = 1024, g = 12289

+ MLWE uses matrices and vectors of smaller polynomials of small
dimension
+ Kyber: n = 256, g = 3329
- Security level 1 (AES-128): d = 2
- Security level 3 (AES-192): d = 3
« Security level 5 (AES-256): d = 4

- Core arithmetic is in Zs329[X]/(X?° + 1) for all security levels
+ Noise is centered binomial HW(x) — HW(y) for 2-bit x and y
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Chosen-ciphertext attacks

- Decryption failures are a function of s, e, ¢, €

- Attacker can choose larger secret/noise ¢’ and s’
+ Observe if decryption fails

+ Learn something about s

- This is a chosen ciphertext attack (CCA)

- Learn full s after a few thousand queries

+ NEWHOPE never claimed CCA-security!

+ This “attack” is completely expected

- Not a problem for ephemeral s

20



From passive to CCA security

The Fujisaki-Okamoto Transform (idea)
+ Build CCA-secure KEM from passively secure encryption scheme
- Make failure probability negligible for honest ¢/, €/, €”

- Force encapsulator to generate s/, €/, €” honestly

21



From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)
Gen(): Encaps(pk):
pk, sk + KeyGen() L {0,...,255}32
k, coins < SHA3-512(x)
& ot Encrypt(pk, x, coins)

Decaps((sk, pk), ct):

x" « Decrypt(sk, ct)

k', coins’ «— SHA3-512(x")
ct’ < Encrypt(pk, x’, coins’)
verify if ct = ct’
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From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server)

Bob (Client)

Gen():
pk, sk <— KeyGen()

gjics

Decaps((sk, pk), ct):

x" « Decrypt(sk, ct)

k', coins’ «— SHA3-512(x")
ct’ < Encrypt(pk, x’, coins’)
verify if ct = ct’

Encaps(pk):

x + {0,...,255}32
k, coins < SHA3-512(x)

ct < Encrypt(pk, x, coins)

Additionally in Kyber:

- Hash the (hash of the) public key into x
- Multi-target protection (for coins)

+ Turn into contributory KEM

- Hash the (hash of the) ciphertext into the final key

21



Kyber for Engineers, the baseline

Key exchange today: ECDH
+ Key-pair generation = 100,000 Comet Lake cycles
- Shared-key computation = 100, 000 Comet Lake cycles
+ Public keys have 32 bytes

22



Kyber for Engineers, part I: A KEM is not DH!

Bob

A+ g? B+ ¢

K+ B2 = (gb)a _ gab K+ Ab — (ga)b _ gab

23
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Bob

A+ @g? B+ ¢
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Kyber for Engineers, part I: A KEM is not DH!

Responder

(pk, sk) +— KEM.Gen

pk

(ct,K) <= KEM.Enc(pk)

ct

K + KEM.Dec(ct, sk)

23



Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
- Key-pair generation ~ 40,000 Comet Lake cycles
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Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
- Key-pair generation ~ 40,000 Comet Lake cycles
- Encapsulation ~ 55,000 Comet Lake cycles
+ Decapsulation ~ 45,000 Comet Lake cycles
+ Public keys have 1184 bytes
- Ciphertexts have 1088 bytes
- Cycles are dominated by Keccak!

24



Kyber for Engineers, part Ill: SCA and Fl against FO

+ FO-transform: hide if decryption succeeded

+ Use full re-encryption to do this

25



Kyber for Engineers, part Ill: SCA and Fl against FO

+ FO-transform: hide if decryption succeeded
+ Use full re-encryption to do this

- Long computation, one bit of information

+ Very hard to protect against SCA/FI

25



Recommendations

- Start playing with Kyber
+ Assume that details may still change
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Recommendations

- Start playing with Kyber

+ Assume that details may still change

- Always combine with pre-quantum crypto (hybrid KEMs)
+ Use Kyber768 (or Kyber1024)

26



Online references

* NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

+ NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

+ Kyber:
https://pg-crystals.org/kyber
https://github.com/pg-crystals/kyber

27
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