
Post-quantum key encapsulation: Kyber

Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
Damien Stehle, Jintai Ding

August 31, 2022

2

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m thinking
like it’s 15 or a little more. It’s within reach. It’s within our lifetime. It’s
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

3

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (it’s complicated. . .)

4

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (it’s complicated. . .)

4

Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (it’s complicated. . .)

4

The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5

The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5

The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5

The NIST competition: initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

6

The NIST competition, Feb 2019

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7

The NIST competition: Jul 2020

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8

The NIST competition: Aug 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

The NIST competition: Aug 2022

4 schemes selected for standardization
• CRYSTALS-Kyber: lattice-based key agreement

• CRYSTALS-Dilithium: lattice-based signature

• Falcon: lattice-based signature

• SPHINCS+: hash-based signature

4 schemes advanced to round 4
• Classic McEliece: code-based key agreement

• BIKE: code-based key agreement

• HQC: code-based key agreement

• SIKE: isogeny-based key agreement

• Additionally: call for more signature proposals

9

What now?

• Standards ready “by 2024”

• Time to start upgrading systems!

Store now, decrypt later

• Urgency for key agreement (confidentiality)

• Need PQC now for long-term security

Let’s understand Kyber and what it means to use it.

10

What now?

• Standards ready “by 2024”

• Time to start upgrading systems!

Store now, decrypt later

• Urgency for key agreement (confidentiality)

• Need PQC now for long-term security

Let’s understand Kyber and what it means to use it.

10

What now?

• Standards ready “by 2024”

• Time to start upgrading systems!

Store now, decrypt later

• Urgency for key agreement (confidentiality)

• Need PQC now for long-term security

Let’s understand Kyber and what it means to use it.

10

A long time ago (2015) in a galaxy far,
far away (Šibenik, Croatia)....

What is a Key Encapsulation Mechanism (KEM)?

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

12

Ring learning with errors (RLWE)

• Given a, uniformly random

• Given “noise distribution” χ

• Given samples as + e, with e← χ

• Search version: find s
• Decision version: distinguish from uniform random

13

Ring learning with errors (RLWE)

• Given a, uniformly random

• Given “noise distribution” χ

• Given samples as + e, with e← χ

• Search version: find s
• Decision version: distinguish from uniform random

13

Where do a, e, and s live?

Short answer
InRq = Zq[X]/(Xn + 1)

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a + b = 10X3 + 9X2 + 2X+ 5

= 3X3 + 2X2 + 2X+ 5

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a− b = −2X3 + X2 + 2X− 1

= 5X3 + X2 + 2X+ 6

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

Where do a, e, and s live?
Longer answer
Polynomials with n coefficients, each coefficient in {0, . . . , q− 1}
Arithmetic uses reduction modulo q and modulo (Xn + 1)

Example
Let q = 7 and n = 4.
Let a = (4X3 + 5X2 + 2X+ 2) and b = (6X3 + 4X2 + 3)

a · b = 24X6 + 16X5 + 12X3 + 30X5 + 20X4 + 15X2+

12X4 + 8X3 + 6X+ 12X3 + 8X2 + 6

= 24X6 + 46X5 + 32X4 + 32X3 + 23X2 + 6

= 3X6 + 4X5 + 4X4 + 4X3 + 2X2 + 6

= − 3X2 − 4X− 4 + 4X3 + 2X2 + 6

= − X2 − 4X+ 4X3 + 2

= 4X3 + 6X2 + 3X+ 2

14

How to build a KEM: the basic idea

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b← as + e b−−−−→ u← as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• v and v′ are approximately the same

15

How to build a KEM: the construction

Alice Bob

seed $← {0, 1}256

a← Parse(XOF(seed))

s, e $← χ s′, e′

, e′′

$← χ

b← as + e (b

,seed

)−−−−−→

a← Parse(XOF(seed))

u← as′ + e′
v← bs′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u

,c

)←−−−

c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′

, e′′

$← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u

,c

)←−−−

c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′

, e′′

$← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k

k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k

k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k
k′ ← c− v′

µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

How to build a KEM: the construction

Alice Bob
seed $← {0, 1}256

a← Parse(XOF(seed))
s, e $← χ s′, e′, e′′ $← χ

b← as + e (b,seed)−−−−−→ a← Parse(XOF(seed))
u← as′ + e′
v← bs′ + e′′

k $← {0, 1}n

k← Encode(k)

v′ ← us (u,c)←−−− c← v + k
k′ ← c− v′ µ← Extract(k)
µ← Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)

16

Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0

• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]
• Closer to 0 (i.e., in [−q/4, q/4]): set bit to zero
• Closer to ±q/2: set bit to one

17

Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0

• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits
• Decode: map coefficient into [−q/2, q/2]

• Closer to 0 (i.e., in [−q/4, q/4]): set bit to zero
• Closer to ±q/2: set bit to one

17

Two more steps to Kyber

MLWE instead of RLWE

• Easily scale security

• Optimized routines the same for all security levels

IND-CCA2 Security

• Support static (or cached) keys

• More robust

• Useful for authenticated key exchange

• Easy to construct PKE

18

Two more steps to Kyber

MLWE instead of RLWE
• Easily scale security

• Optimized routines the same for all security levels

IND-CCA2 Security

• Support static (or cached) keys

• More robust

• Useful for authenticated key exchange

• Easy to construct PKE

18

Two more steps to Kyber

MLWE instead of RLWE
• Easily scale security

• Optimized routines the same for all security levels

IND-CCA2 Security
• Support static (or cached) keys

• More robust

• Useful for authenticated key exchange

• Easy to construct PKE

18

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

19

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

19

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

19

Module Learning with Errors (MLWE)

• RLWE uses arithmetic on large degree polynomials

• For example, NEWHOPE uses n = 1024, q = 12289

• MLWE uses matrices and vectors of smaller polynomials of small
dimension

• Kyber: n = 256, q = 3329

• Security level 1 (AES-128): d = 2

• Security level 3 (AES-192): d = 3

• Security level 5 (AES-256): d = 4

• Core arithmetic is in Z3329[X]/(X256 + 1) for all security levels

• Noise is centered binomial HW(x)− HW(y) for 2-bit x and y

19

Chosen-ciphertext attacks

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s

• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s

20

Chosen-ciphertext attacks

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s
• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s

20

Chosen-ciphertext attacks

• Decryption failures are a function of s, e, s′, e′

• Attacker can choose larger secret/noise e′ and s′

• Observe if decryption fails

• Learn something about s
• This is a chosen ciphertext attack (CCA)

• Learn full s after a few thousand queries

• NEWHOPE never claimed CCA-security!

• This “attack” is completely expected

• Not a problem for ephemeral s

20

From passive to CCA security

The Fujisaki-Okamoto Transform (idea)
• Build CCA-secure KEM from passively secure encryption scheme

• Make failure probability negligible for honest s′, e′, e′′

• Force encapsulator to generate s′, e′, e′′ honestly

Additionally in Kyber:

• Hash the (hash of the) public key into x
• Multi-target protection (for coins)
• Turn into contributory KEM

• Hash the (hash of the) ciphertext into the final key

21

From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)

Gen(): Encaps(pk):

pk, sk← KeyGen() pk→ x← {0, . . . , 255}32
k, coins← SHA3-512(x)

ct← ct← Encrypt(pk, x, coins)
Decaps((sk, pk), ct):
x′ ← Decrypt(sk, ct)
k′, coins′ ← SHA3-512(x′)
ct′ ← Encrypt(pk, x′, coins′)
verify if ct = ct′

Additionally in Kyber:

• Hash the (hash of the) public key into x
• Multi-target protection (for coins)
• Turn into contributory KEM

• Hash the (hash of the) ciphertext into the final key

21

From passive to CCA security

The Fujisaki-Okamoto Transform

Alice (Server) Bob (Client)

Gen(): Encaps(pk):

pk, sk← KeyGen() pk→ x← {0, . . . , 255}32
k, coins← SHA3-512(x)

ct← ct← Encrypt(pk, x, coins)
Decaps((sk, pk), ct):
x′ ← Decrypt(sk, ct)
k′, coins′ ← SHA3-512(x′)
ct′ ← Encrypt(pk, x′, coins′)
verify if ct = ct′

Additionally in Kyber:

• Hash the (hash of the) public key into x
• Multi-target protection (for coins)
• Turn into contributory KEM

• Hash the (hash of the) ciphertext into the final key
21

Kyber for Engineers, the baseline

Key exchange today: ECDH
• Key-pair generation ≈ 100, 000 Comet Lake cycles

• Shared-key computation ≈ 100, 000 Comet Lake cycles

• Public keys have 32 bytes

22

Kyber for Engineers, part I: A KEM is not DH!

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

23

Kyber for Engineers, part I: A KEM is not DH!

Alice Bob

A← ga B← gb

B

A

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

23

Kyber for Engineers, part I: A KEM is not DH!

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

23

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
• Key-pair generation ≈ 40, 000 Comet Lake cycles

• Encapsulation ≈ 55, 000 Comet Lake cycles

• Decapsulation ≈ 45, 000 Comet Lake cycles

• Public keys have 1184 bytes

• Ciphertexts have 1088 bytes

• Cycles are dominated by Keccak!

24

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
• Key-pair generation ≈ 40, 000 Comet Lake cycles

• Encapsulation ≈ 55, 000 Comet Lake cycles

• Decapsulation ≈ 45, 000 Comet Lake cycles

• Public keys have 1184 bytes

• Ciphertexts have 1088 bytes

• Cycles are dominated by Keccak!

24

Kyber for Engineers, part II: Performance

Kyber768 (NIST Security level 3)
• Key-pair generation ≈ 40, 000 Comet Lake cycles

• Encapsulation ≈ 55, 000 Comet Lake cycles

• Decapsulation ≈ 45, 000 Comet Lake cycles

• Public keys have 1184 bytes

• Ciphertexts have 1088 bytes

• Cycles are dominated by Keccak!

24

Kyber for Engineers, part III: SCA and FI against FO

• FO-transform: hide if decryption succeeded

• Use full re-encryption to do this

• Long computation, one bit of information

• Very hard to protect against SCA/FI

25

Kyber for Engineers, part III: SCA and FI against FO

• FO-transform: hide if decryption succeeded

• Use full re-encryption to do this

• Long computation, one bit of information

• Very hard to protect against SCA/FI

25

Recommendations

• Start playing with Kyber

• Assume that details may still change

• Always combine with pre-quantum crypto (hybrid KEMs)

• Use Kyber768 (or Kyber1024)

26

Recommendations

• Start playing with Kyber

• Assume that details may still change

• Always combine with pre-quantum crypto (hybrid KEMs)

• Use Kyber768 (or Kyber1024)

26

Online references

• NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

• Kyber:
https://pq-crystals.org/kyber
https://github.com/pq-crystals/kyber

27

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://pq-crystals.org/kyber
https://github.com/pq-crystals/kyber

