

Hash-based signatures – from Lamport to SPHINCS⁺

Peter Schwabe November 18, 2020

So many NIST candidates and one thing they all have in common...

So many NIST candidates and one thing they all have in common... they all need a hash function.

So many NIST candidates and one thing they all have in common... they all need a hash function.

What can we do with just a hash function?

Hash-based signatures

- · Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
 - Collision resistance: Hard two find two inputs that produce the same output
 - Preimage resistance: Given the output, it's hard to find the input
 - 2nd preimage resistance: Given input and output, it's hard to find a second input, producing the same output

Hash-based signatures

- Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
 - Collision resistance: Hard two find two inputs that produce the same output
 - Preimage resistance: Given the output, it's hard to find the input
 - 2nd preimage resistance: Given input and output, it's hard to find a second input, producing the same output
- Collision resistance is stronger assumption than (2nd) preimage resistance
- · Ideally, don't want to rely on collision resistance

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signing

• Send $\sigma = r$

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signing

• Send $\sigma = r$

Verification

• Check that h(r) = p

- Clearly an attacker who can invert h can break the scheme
- · Can we reduce from preimage-resistance to unforgeability?

- Clearly an attacker who can invert h can break the scheme
- · Can we reduce from preimage-resistance to unforgeability?
- Proof game:
 - Assume oracle ${\boldsymbol{\mathcal{A}}}$ that computes forgery, given public key pk
 - Get input y, use oracle to compute x, s.t., h(x) = y
 - Idea: use public-key pk = y, oracle will compute forgery x

- Clearly an attacker who can invert h can break the scheme
- · Can we reduce from preimage-resistance to unforgeability?
- Proof game:
 - Assume oracle $\ensuremath{\mathcal{A}}$ that computes forgery, given public key $\ensuremath{\mathsf{pk}}$
 - Get input y, use oracle to compute x, s.t., h(x) = y
 - Idea: use public-key pk = y, oracle will compute forgery x
 - ... or will it?

- Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?
- Proof game:
 - Assume oracle $\ensuremath{\mathcal{A}}$ that computes forgery, given public key pk
 - Get input y, use oracle to compute x, s.t., h(x) = y
 - Idea: use public-key pk = y, oracle will compute forgery x
 - ... or will it?
- Problem: y is not an output of h
- What if ${\mathcal A}$ can distinguish legit pk from random?
- Need additional property of h: undetectability
- · From now on assume that all our hash functions are undetectable

- Generate 256-bit random values $(r_0, r_1) = s$ (secret key)
- Compute $(h(r_0), h(r_1)) = (p_0, p_1) = p$ (public key)

- Generate 256-bit random values $(r_0, r_1) = s$ (secret key)
- Compute $(h(r_0), h(r_1)) = (p_0, p_1) = p$ (public key)

Signing

- Signature for message b = 0: $\sigma = r_0$
- Signature for message b = 1: $\sigma = r_1$

- Generate 256-bit random values $(r_0, r_1) = s$ (secret key)
- Compute $(h(r_0), h(r_1)) = (p_0, p_1) = p$ (public key)

Signing

- Signature for message b = 0: $\sigma = r_0$
- Signature for message b = 1: $\sigma = r_1$

Verification Check that $h(\sigma) = p_b$

• Same idea as for 0-bit messages: reduce from preimage resistance

- Same idea as for 0-bit messages: reduce from preimage resistance
- Proof game:
 - Assume oracle $\ensuremath{\mathcal{A}}$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$

- Same idea as for 0-bit messages: reduce from preimage resistance
- Proof game:
 - Assume oracle ${\boldsymbol{\mathcal{A}}}$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$
 - \mathcal{A} asks for signature on either 0 or 1
 - If you can, answer with preimage, otherwise fail (abort)

- Same idea as for 0-bit messages: reduce from preimage resistance
- Proof game:
 - Assume oracle $\ensuremath{\mathcal{A}}$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$
 - \mathcal{A} asks for signature on either 0 or 1
 - If you can, answer with preimage, otherwise fail (abort)
 - Now \mathcal{A} returns preimage, i.e., preimage of y

- Same idea as for 0-bit messages: reduce from preimage resistance
- Proof game:
 - Assume oracle $\ensuremath{\mathcal{A}}$ that computes forgery, given public key pk
 - Get input y, use "public key" $(h(r_0), y)$ or $(y, h(r_1))$
 - \mathcal{A} asks for signature on either 0 or 1
 - If you can, answer with preimage, otherwise fail (abort)
 - Now \mathcal{A} returns preimage, i.e., preimage of y
- Reduction only works with 1/2 probability
- We get a tightness loss of 1/2

- Generate 256-bit random values $s = (r_{0,0}, r_{0,1} \dots, r_{255,0}, r_{255,1})$
- Compute $p = (h(r_{0,0}), h(r_{0,1}), \dots, h(r_{255,0}), h(r_{255,1})) = (p_{0,0}, p_{0,1}, \dots, p_{255,0}, p_{255,1})$

- Generate 256-bit random values $s = (r_{0,0}, r_{0,1} \dots, r_{255,0}, r_{255,1})$
- Compute $p = (h(r_{0,0}), h(r_{0,1}), \dots, h(r_{255,0}), h(r_{255,1})) = (p_{0,0}, p_{0,1}, \dots, p_{255,0}, p_{255,1})$

Signing

• Signature for message (b_0, \dots, b_{255}) : $\sigma = (\sigma_0, \dots, \sigma_{255}) = (r_{0,b_0}, \dots, r_{255, b_{255}})$

- Generate 256-bit random values $s = (r_{0,0}, r_{0,1} \dots, r_{255,0}, r_{255,1})$
- Compute $p = (h(r_{0,0}), h(r_{0,1}), \dots, h(r_{255,0}), h(r_{255,1})) = (p_{0,0}, p_{0,1}, \dots, p_{255,0}, p_{255,1})$

Signing

• Signature for message (b_0, \dots, b_{255}) : $\sigma = (\sigma_0, \dots, \sigma_{255}) = (r_{0,b_0}, \dots, r_{255, b_{255}})$

Verification

- Check that $h(\sigma_0) = p_{0,b_0}$
- . . .
- Check that $h(\sigma_{255}) = p_{255,b_{255}}$

- Same idea as before, replace one $p_{j,b}$ in the public key by challenge y
- Fail if signing needs the preimage of y
- In forgery, attacker has to flip at least one bit in m
- Chance of 1/256 that attacker flips the bit with the challenge
- Overall tightness loss of 1/512

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use $h^{w}(r)$ intead of h(r) ("hash chains")

Key generation

- Generate 256-bit random values r_0, \ldots, r_{63} (secret key)
- Compute $(p_0, \ldots, p_{63}) = (h^{15}(r_0), \ldots, h^{15}(r_{63})$ (public key)

- Lamport signatures are rather large (8 KB)
- · Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

Key generation

- Generate 256-bit random values r_0, \ldots, r_{63} (secret key)
- Compute $(p_0, \ldots, p_{63}) = (h^{15}(r_0), \ldots, h^{15}(r_{63})$ (public key)

Signing

- Chop 256 bit message into 64 chunks of 4 bits $m = (m_0, \ldots, m_{63})$
- Compute $\sigma = (\sigma_0, \dots, \sigma_{63}) = (h^{m_0}(r_0), \dots, h^{m_{63}}(r_{63}))$

- Lamport signatures are rather large (8 KB)
- · Can we tradeoff speed for size?
- Idea: use $h^w(r)$ intead of h(r) ("hash chains")

Key generation

- Generate 256-bit random values r_0, \ldots, r_{63} (secret key)
- Compute $(p_0, \ldots, p_{63}) = (h^{15}(r_0), \ldots, h^{15}(r_{63})$ (public key)

Signing

- Chop 256 bit message into 64 chunks of 4 bits $m = (m_0, \ldots, m_{63})$
- Compute $\sigma = (\sigma_0, \dots, \sigma_{63}) = (h^{m_0}(r_0), \dots, h^{m_{63}}(r_{63}))$

Verification

• Check that $p_0 = h^{15-m_0}(\sigma_0), \dots, p_{63} = h^{15-m_{63}}(\sigma_{63})$

Winternitz OTS (basic idea, ctd.)

Winternitz OTS (making it secure)

- Once you signed, say, $m = (8, m_1, \dots, m_{63})$, can easily forge signature on $m = (9, m_1, \dots, m_{63})$
- Idea: introduce checksum, force attacker to "go down" some chain in exchange

Winternitz OTS (making it secure)

- Once you signed, say, $m = (8, m_1, \dots, m_{63})$, can easily forge signature on $m = (9, m_1, \dots, m_{63})$
- Idea: introduce checksum, force attacker to "go down" some chain in exchange
- Compute $c = 960 \sum_{i=0}^{63} m_i \in \{0, \dots, 960\}$
- Write c in radix 16, obtain c_0, c_1, c_2
- Compute hash chains for c_0, c_1, c_2 as well

Winternitz OTS (making it secure)

- Once you signed, say, $m = (8, m_1, \dots, m_{63})$, can easily forge signature on $m = (9, m_1, \dots, m_{63})$
- Idea: introduce checksum, force attacker to "go down" some chain in exchange
- Compute $c = 960 \sum_{i=0}^{63} m_i \in \{0, \dots, 960\}$
- Write c in radix 16, obtain c_0, c_1, c_2
- Compute hash chains for c_0, c_1, c_2 as well
- When increasing one of the *m*_i's, one of the *c*_i's decreases
- In total obtain 67 hash chains, signatures have 2144 bytes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)
- Lots of tradeoffs between speed and size
 - w = 16 yields ≈ 2.1 KB signatures
 - w = 256 yields ≈ 1.1 KB signatures
 - However, w = 256 makes signing and verification $\approx 8 \times$ slower

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)
- Lots of tradeoffs between speed and size
 - w = 16 yields ≈ 2.1 KB signatures
 - w = 256 yields ≈ 1.1 KB signatures
 - However, w = 256 makes signing and verification $\approx 8 \times$ slower
- Verification recovers (and compares) the full public key
- Can publish *h*(pk) instead of pk

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- Can again place preimage challenge anywhere inside the chains

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- Can again place preimage challenge anywhere inside the chains
- · Problem: two ways for oracle to forge:
 - compute preimage (solve challenge)
 - find different chain that collides further up
- Forgery gives us either preimage or collision

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- Can again place preimage challenge anywhere inside the chains
- · Problem: two ways for oracle to forge:
 - compute preimage (solve challenge)
 - find different chain that collides further up
- Forgery gives us either preimage or collision
- Idea (Hülsing, 2013): control one input in that collision, get 2nd preimage!

- An attacker who can compute preimages can go backwards in chains
- · Problem: hard to prove that this is the only way to forge
- Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- Can again place preimage challenge anywhere inside the chains
- · Problem: two ways for oracle to forge:
 - compute preimage (solve challenge)
 - find different chain that collides further up
- Forgery gives us either preimage or collision
- Idea (Hülsing, 2013): control one input in that collision, get 2nd preimage!
- Replace h(r) by $h(r \oplus b)$ for "bitmask" b
- Include bitmasks in public key
- Reduction can now choose inputs to hash function

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
- Requires collision-resistant hash-function h

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
- Requires collision-resistant hash-function h
- Idea: randomize before feeding *m* into *h*
 - Pick random r
 - Compute $h(r \mid m)$
 - Send r as part of the signature

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
- Requires collision-resistant hash-function h
- Idea: randomize before feeding m into h
 - Pick random r
 - Compute $h(r \mid m)$
 - Send r as part of the signature
- Make deterministic: $r \leftarrow \mathsf{PRF}(s, m)$ for secret s
- Signature scheme is now collision resilient

Merkle Trees

- Merkle, 1979: Leverage one-time signatures to multiple messages
- Binary hash tree on top of OTS public keys

Merkle Trees

- Merkle, 1979: Leverage one-time signatures to multiple messages
- Binary hash tree on top of OTS public keys

Merkle Trees

- Use OTS keys sequentially
- SIG = $(i, sign(M, X_i), Y_i, Auth)$
- Signer needs to remember current index (\Rightarrow stateful scheme)

- Informally:
 - requires EUF-CMA-secure OTS
 - · requires collision-resistant hash in the tree
- Can apply bitmask trick to get rid of collision-resistance
 assumption
- Merkle signatures are stateful

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses $\Theta(2^h)$ memory

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses $\Theta(2^h)$ memory
- Better approach, call **TREEHASH** for each leaf, left to right: **function TREEHASH**(stack, leaf node *N*)

while stack.peek() is on the same level as *N* do

```
neighbor \leftarrow stack.pop()
```

```
N \leftarrow H(neighbor||N)
```

```
end while
```

```
stack.push(N)
```

end function

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses $\Theta(2^h)$ memory
- Better approach, call TREEHASH for each leaf, left to right:

function TREEHASH(stack, leaf node N)
while stack.peek() is on the same level as N do
 neighbor ← stack.pop()
 N ← H(neighbor||N)
end while
 stack.push(N)
end function

- · After going through all leaves, root will be on the top of the stack
- Memory requirement: h + 1 hashes

· KeyGen needs to compute the whole tree, but how about signing?

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key
- · Can recompute tree every time: very slow signing

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key
- · Can recompute tree every time: very slow signing
- Obvious tradeoff: remember last authentication path
- Most of the time can reuse most nodes

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key
- Can recompute tree every time: very slow signing
- Obvious tradeoff: remember last authentication path
- Most of the time can reuse most nodes
- Signing speed now depends largely on index
- Idea: balance computations, store nodes required for future signatures
- Best known algorithm (again allowing tradeoffs): **BDS traversal** Buchmann, Dahmen, Schneider, 2008: *Merkle tree traversal revisited*

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10. 1.1.420.4170&rep=rep1&type=pdf

- · Secret key changes with every signature
- Going back to previous secret key is security disaster

- Secret key changes with every signature
- · Going back to previous secret key is security disaster
- Huge problem in many contexts:
 - Backups
 - VM Snapshots
 - Load balancing
 - · API is incompatible!

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature **forward security**: old signatures remain valid after key compromise

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature **forward security**: old signatures remain valid after key compromise
- Need "timestamp" baked into signature
- · Secret key has to evolve to disable signing "in the past"

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature **forward security**: old signatures remain valid after key compromise
- Need "timestamp" baked into signature
- · Secret key has to evolve to disable signing "in the past"
- For Hash-based signatures:
 - generate OTS secret keys as $s_i = h(s_{i-1})$
 - store only next valid OTS secret key
 - Need to keep hashes of old public keys

- Remember forward secrecy?: old ciphertexts remain secure after key compromise
- Signature **forward security**: old signatures remain valid after key compromise
- Need "timestamp" baked into signature
- · Secret key has to evolve to disable signing "in the past"
- For Hash-based signatures:
 - generate OTS secret keys as $s_i = h(s_{i-1})$
 - store only next valid OTS secret key
 - Need to keep hashes of old public keys
- After key compromise publish index of compromised key
- Signatures with lower index remain valid

- Remember that KeyGen has to compute the whole tree
- Infeasible for very large trees

- Remember that KeyGen has to compute the whole tree
- Infeasible for very large trees
- Idea: generate all secret keys pseudo-randomly
- Use PRF on secret seed with position in the tree

Multi-tree constructions

- Remember that KeyGen has to compute the whole tree
- Infeasible for very large trees
- Idea: generate all secret keys pseudo-randomly
- Use PRF on secret seed with position in the tree
- Use hierarchy of trees, connected via one-time signatures
- Key generation computes only the top tree
- Many more size-speed tradeoffs

SPHINCS: stateless practical hash-based signatures (2015)

Daniel J. Bernstein Daira Hopwood Andreas Hülsing Tanja Lange Ruben Niederhagen Louiza Papachristodoulou Michael Schneider Peter Schwabe Zooko Wilcox-O'Hearn

SPHINCS: stateless practical hash-based incredibly nice cryptographic signatures (2015)

Daniel J. Bernstein Daira Hopwood Andreas Hülsing Tanja Lange Ruben Niederhagen Louiza Papachristodoulou Michael Schneider Peter Schwabe Zooko Wilcox-O'Hearn

The SPHINCS approach

- Use a "hyper-tree" of total height *h*
- Parameter $d \ge 1$, such that $d \mid h$
- Each (Merkle) tree has height h/d
- (h/d)-ary certification tree

The SPHINCS approach

- Pick index (pseudo-)randomly
- Messages signed with *few-time* signature scheme
- Significantly reduce total tree height
- Require Pr[r-times Coll] · Pr[Forgery after r signatures] = negl(n)

The HORS few-time signature scheme

• Lamport signatures reveal half of the secret key with each signature

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge
- Example parameters:
 - Generate $sk = (r_0, ..., r_{2^{16}})$
 - Compute public key $(h(r_0), \ldots, h(r_{2^{16}}))$

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge
- Example parameters:
 - Generate sk = $(r_0, \ldots, r_{2^{16}})$
 - Compute public key $(h(r_0), \ldots, h(r_{2^{16}}))$
 - Sign 512-bit hash $g(m) = (g_0, ..., g_{31})$
 - Each $g_i \in 0, ..., 2^{16}$

- Lamport signatures reveal half of the secret key with each signature
- Idea in HORS:
 - use much bigger secret key
 - reveal only small portion
 - sign hash g(m); attacker does not control output of g
 - attacker won't have enough secret-key to forge
- Example parameters:
 - Generate sk = $(r_0, ..., r_{2^{16}})$
 - Compute public key $(h(r_0), \ldots, h(r_{2^{16}}))$
 - Sign 512-bit hash $g(m) = (g_0, ..., g_{31})$
 - Each $g_i \in 0, ..., 2^{16}$
 - Signature is $(r_{g_0}, \ldots, r_{g_{31}})$
 - · Signature reveals 32 out of 65536 secret-key values
 - Even after, say, 5 signatures, attacker does not know enough secret key to forge with non-negligible probability

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!
- Idea:
 - build hash-tree on top of public-key chunks
 - use root of tree as new public key (32 bytes)
 - include authentication paths in signature

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!
- Idea:
 - build hash-tree on top of public-key chunks
 - use root of tree as new public key (32 bytes)
 - include authentication paths in signature
- Signature size (naïve):

 $32 \cdot 32 + 32 \cdot 16 \cdot 32 = 17408$ Bytes

- Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!
- Idea:
 - build hash-tree on top of public-key chunks
 - use root of tree as new public key (32 bytes)
 - · include authentication paths in signature
- Signature size (naïve):

 $32 \cdot 32 + 32 \cdot 16 \cdot 32 = 17408$ Bytes

• Signature size (somewhat optimized): 13312 Bytes

- Designed for 128 bits of post-quantum security
- Support up to 2^{50} signatures
- 12 trees of height 5 each

- · Designed for 128 bits of post-quantum security
- Support up to 2^{50} signatures
- 12 trees of height 5 each
- n = 256 bit hashes in WOTS and HORST
- Winternitz paramter w = 16
- HORST with 2¹⁶ expanded-secret-key chunks (total: 2 MB)

- · Designed for 128 bits of post-quantum security
- Support up to 2^{50} signatures
- 12 trees of height 5 each
- n = 256 bit hashes in WOTS and HORST
- Winternitz paramter w = 16
- HORST with 2¹⁶ expanded-secret-key chunks (total: 2 MB)
- m = 512 bit message hash (BLAKE-512)
- ChaCha12 as PRG

Cost of SPHINCS-256 signing

- Three main components:
 - PRG for HORST secret-key expansion to 2 MB
 - + Hashing in WOTS and HORS public-key generation: $F: \{0,1\}^{256} \to \{0,1\}^{256}$
 - + Hashing in trees (mainly HORST public-key): $H: \{0,1\}^{512} \to \{0,1\}^{256}$
- Overall: 451 456 invocations of F, 91 251 invocations of H

Cost of SPHINCS-256 signing

- Three main components:
 - PRG for HORST secret-key expansion to 2 MB
 - + Hashing in WOTS and HORS public-key generation: $F: \{0,1\}^{256} \to \{0,1\}^{256}$
 - + Hashing in trees (mainly HORST public-key): $H: \{0,1\}^{512} \to \{0,1\}^{256}$
- Overall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
- Construction in SPHINCS-256:
 - $F(M_1) = \text{Chop}_{256}(\pi(M_1||C))$
 - $H(M_1||M_2) = \text{Chop}_{256}(\pi(\pi(M_1||C) \oplus (M_2||0^{256})))$

Cost of SPHINCS-256 signing

- Three main components:
 - PRG for HORST secret-key expansion to 2 MB
 - + Hashing in WOTS and HORS public-key generation: $F: \{0,1\}^{256} \to \{0,1\}^{256}$
 - + Hashing in trees (mainly HORST public-key): $H: \{0,1\}^{512} \to \{0,1\}^{256}$
- Overall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
- Construction in SPHINCS-256:
 - $F(M_1) = \text{Chop}_{256}(\pi(M_1||C))$
 - $H(M_1||M_2) = \text{Chop}_{256}(\pi(\pi(M_1||C) \oplus (M_2||0^{256})))$
- Use fast ChaCha12 permutation for π
- All building blocks (PRG, message hash, *H*, *F*) built from very similar permutations

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

- ${\boldsymbol{\cdot}}\,\approx 40\,{\rm KB}\,{\rm signature}$
- $\approx 1 \text{ KB}$ public key (mainly bitmasks)
- $\cdot \approx 1 \, \mathrm{KB}$ private key

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

- ${\ \cdot \ }\approx 40\,{\rm KB}\,{\rm signature}$
- $\approx 1 \text{ KB}$ public key (mainly bitmasks)
- + $\approx 1 \, \mathrm{KB}$ private key

High-speed implementation

- Target Intel Haswell with 256-bit AVX2 vector instructions
- Use $8 \times$ parallel hashing, vectorize on high level
- + pprox 1.6 cycles/byte for H and F

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

- ${\boldsymbol{\cdot}}\,\approx 40\,{\rm KB}\,{\rm signature}$
- $\approx 1 \text{ KB}$ public key (mainly bitmasks)
- + $\approx 1 \, \mathrm{KB}$ private key

High-speed implementation

- Target Intel Haswell with 256-bit AVX2 vector instructions
- Use $8 \times$ parallel hashing, vectorize on high level
- + pprox 1.6 cycles/byte for H and F

SPHINCS-256 speed

- Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)
- Verification: < 1.5 Mio. Haswell cycles
- Keygen: < 3.3 Mio. Haswell cycles

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - try all inputs of appropriate size
 - win if output matches any of the challenges

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - try all inputs of appropriate size
 - win if output matches any of the challenges
- · Idea: use different hash function for each call
- Use address in the tree to pick hash function

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - try all inputs of appropriate size
 - win if output matches any of the challenges
- · Idea: use different hash function for each call
- Use address in the tree to pick hash function
- Proposed in 2016 by Hülsing, Rijneveld, and Song
- First adopted in XMSS (see RFC 8391)

- Remember tightness loss from many hash calls
- SPHINCS and SPHINCS⁺ have many hash calls
- Think of it as attacker solving one out of many 2nd preimage challenges
- Trivial (pre-quantum) attack:
 - try all inputs of appropriate size
 - win if output matches any of the challenges
- · Idea: use different hash function for each call
- Use address in the tree to pick hash function
- Proposed in 2016 by Hülsing, Rijneveld, and Song
- First adopted in XMSS (see RFC 8391)
- Merge with random bitmasks into tweakable hash function
- NIST proposal: tweakable hash from SHA-256, SHAKE-256, or Haraka

- Verifiable index computation:
 - · SPHINCS:
 - $(i,r) \leftarrow \mathsf{PRF}(s,m)$,
 - $d \leftarrow h(r,m)$
 - sign digest *d* with FTS
 - include *i* in signature

- · Verifiable index computation:
 - · SPHINCS:
 - $(i,r) \leftarrow \mathsf{PRF}(s,m)$,
 - $d \leftarrow h(r,m)$
 - sign digest d with FTS
 - include i in signature
 - SPHINCS+:
 - $r \leftarrow \mathsf{PRF}(s, m)$
 - $(i,d) \leftarrow h(r,m),$
 - sign digest *d* with FTS
 - include r in signature

- · Verifiable index computation:
 - · SPHINCS:
 - $(i,r) \leftarrow \mathsf{PRF}(s,m)$,
 - $d \leftarrow h(r,m)$
 - sign digest d with FTS
 - include i in signature
 - SPHINCS+:
 - $r \leftarrow \mathsf{PRF}(s, m)$
 - $(i,d) \leftarrow h(r,m)$,
 - sign digest *d* with FTS
 - include r in signature
 - Verifier can check that d and i belong together
 - Attacker cannot pick *d* and *i* independently

- · Verifiable index computation:
 - · SPHINCS:
 - $(i,r) \leftarrow \mathsf{PRF}(s,m)$,
 - $d \leftarrow h(r,m)$
 - sign digest d with FTS
 - include i in signature
 - SPHINCS+:
 - $r \leftarrow \mathsf{PRF}(s, m)$
 - $(i,d) \leftarrow h(r,m)$,
 - sign digest *d* with FTS
 - include r in signature
 - Verifier can check that d and i belong together
 - Attacker cannot pick d and i independently
- Additionally: Improvements to FTS (FORS)
- Use multiple smaller trees instead of one big tree
- Per signature, reveal one secret-key leaf per tree

https://sphincs.org